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I still remember my first day of teaching as a new
assistant professor at the University of Iowa. As I
headed down from my office on the third floor of
Schaeffer Hall carrying my books and notes, I was
nervous. I had no idea what to expect in the classroom.

Thirteen first-year graduate students were waiting for their
required introduction to statistics course. In retrospect, I am
sure they did not know what to expect either. Iowa had a
reputation for providing very good training in quantitative
methods, and I was taking over the course fromBeckyMorton.
I figured my heavily mathematical graduate training during
my PhD studies at Caltech had prepared me well to cover the
material at an appropriately technical level. It had not pro-
vided, however, much in the way of classroom experience. Still,
the butterflies inmy stomach confirmedmyuncertainty:Was I
prepared enough? Did I know the material well enough?
Would the students ask difficult questions that I could not
answer?

My fears were largely unfounded, as I suspect is typical in
these situations. It turned out that my graduate training
provided me with a much better background in methods than
a first-year graduate student, even at Iowa. Nevertheless, it did
not necessarily prepare me to teach it effectively to these
students. My original plan that year was to teach the material
I knew, the way I knew it. It seemed the safest approach and—
not irrelevant for a first-year assistant professor—the easiest.
However, it became clear over the course of the semester that it
was not the best approach for the students I was teaching. Too
many of them were unprepared for and disoriented by the
heavily mathematical approach. It heightened their own anx-
ieties and reinforced the idea that studying or learning
methods was only for a select few with good mathematical
skills.

The course went fine, but I knew I needed to make changes
for the next year—and that set off a long process of gradual
changes in how I approach teaching graduate methods that
has evolved into a coherent philosophy.1 I now focus on
engaging students with the material in various ways to engage
multiple learning styles and provide useful tools for students
with different backgrounds and different expectations for how
methods will fit into their career—academic or otherwise.2

Since that first semester, I have taught dozens of undergradu-
ate and graduate courses at Iowa, ranging from statistics to

regression to maximum likelihood estimation (MLE) to vari-
ous advanced topics; I have offered numerous half- and multi-
day workshops at Iowa and at other institutions; and I have
taught regularly in social science summer training programs.
In the process, I have encountered hundreds of students from
many disciplines with varied statistical backgrounds andwide-
ranging learning objectives.

These experiences have taughtme to providemultiple ways
of understanding and learning the material. I therefore
approach every method and estimator I teach from multiple
perspectives and provide students with opportunities to inter-
act with them from various perspectives: mathematical, intui-
tive, visual, engineering, and applied. This range reflects the
different ways that students may utilize the material in the
future. Despite my methods proselytizing, most students sim-
ply want to be able to apply these methods in the future.
Perhaps a few will want or need to interact with them on a
more technical level.

My main goals for students are that they understand when
to apply a given method, why to apply it instead of common
alternatives, and how to obtain and interpret estimates.
Clearly incorporating these objectives into the syllabus and
the weekly material helps students to see where their long-
term goals fit in and how they can obtain the skills they want. I
believe this is especially beneficial for students who lack a
strong mathematical or statistical background and may not
perceive initially how a methods course fits into their plans to
study political science. It is important that the three main
course objectives can be reached without mastering mathem-
atical details—even though many students benefit from them.
Some students will make sense of the math, others will make
sense from the applications, and still others will make sense
from the figures or intuition. Ideally, these perspectives work
together and allow students to grasp the method and turn it
around in their mind to see it in different ways to better
understand the whole. Just as the intuition and visualizations
can demystify the equations, so can the math sharpen the
intuition or interpret the application.

In practice, how are these different approaches imple-
mented? Typically, I start with a general intuition about where
the method fits in the bigger picture and then quickly move to
a review of the underlying math. As much as possible, I
supplement the equations with pictures, analogies, metaphors,

242 PS • January 2022
© The Author(s), 2021. Published by Cambridge University Press on behalf of the
American Political Science Association doi:10.1017/S1049096521001190

https://doi.org/10.1017/S1049096521001190 Published online by Cambridge University Press

https://doi.org/10.1017/S1049096521001190
https://doi.org/10.1017/S1049096521001190


and examples. Following this, I move to a series of exercises to
extract the meaning of the equations. This typically includes a
lab session in which students generate data from the model
and then apply the estimator. Underpinning this approach is
the idea that if students cannot generate data from an estima-
tor, then they do not fully understand how it works. In more
advanced classes, students might program the likelihood
themselves, which provides an opportunity to work with the
details of the estimator and to see how it is implemented in

software for estimation; in other settings, it might involve
using an existing command or package.

The simulation process affords an opportunity to compare
the results under the true data-generating process to those
obtained from a “next-best” but less sophisticated estimator
that ignores key features of the data. This often serves as the
foundation for a Monte Carlo exercise in which students can
compare more comprehensively the results across estimators.
The value of Monte Carlo simulations has been seen across
various disciplines including, among others, political science
(Carsey and Harden 2013, 2015; Mooney 1997) and statistics
(Sigal and Chalmers 2016). Those who are concerned that it
might be too complex or technical should know that simple
versions are used to teach middle-school children about prob-
ability (Braun, White, and Craig 2014). With more compli-
cated methods, Monte Carlo often is the only way to
determine differences among approaches. Simulations allow
students to experiment with the underlying assumptions that
govern the degree of difference between the correct model and
the incorrect next-best model, often by varying the magnitude
of a correlation, variance, or mean. Related exercises focus on
generating predicted values with associated measures of
uncertainty. Although existing software packages and com-
mands exist to accomplish this, asking students to use the
formulas to calculate predictions and simulation to capture the
uncertainty provides an opportunity to interact with the data-
generating process. We then take these lessons and skills to
real-world data where the truth of our assumptions is not
known to see how different estimators perform, how they may
change our inferences, and how to address the inevitable
complications of analyzing data.

To see how this fits together, this article describes how I
teach the topic of nonrandom sample selection. I use this
example because it is adaptable to all of the techniques that
I described but also because I find it often is misunderstood. I
typically cover this topic in our advanced methods course,
which largely encompasses limited dependent variables and
MLE. For this topic, students prepare by reading the relevant
chapter in Long (1997), one of the primary texts for the course.
During lecture, I introduce Little and Rubin’s (2020) typology
of missing data to provide context and intuition on different

types of “missingness” and their consequences for estimating
population and model parameters. We then move to a pres-
entation of the probit selection and continuous outcome
equations that combine to form a Heckman selection model
(Heckman 1979). I focus on the key conditions that determine
the presence and consequences of nonrandom sample selec-
tion: correlation between the errors and correlation or overlap
in the independent variables from the two equations. Both
must be present for biased slope coefficients to occur.

This is readily used for visualization to build intuition, as
displayed in figure 1. Each row of plots shows the relationship
between the selection equation’s independent variable and
latent outcome (i.e., the left plot) and the equation of interest’s
independent variable and outcome (i.e., the right plot). Obser-
vations in the scatter plots are colored black for cases that
select and gray for cases that do not. Observations that select
in are represented by identification numbers based on the
order of the values of the selection-equation independent
variable. The black lines show the linear fit for observed data
and the gray lines in the outcome-equation column show the
regression line among all cases, whether or not they are
selected. With fully observed data, obtaining unbiased esti-
mates of the coefficients in the continuous equation of interest
poses no challenge. Deviations of the line estimated among
observed cases show the consequences of different combin-
ations of correlation between the independent variables and
the errors, respectively.

The first row presents the case with correlation in neither
the independent variables nor the errors. In this case, selection
means that we randomly lose data points in the outcome
equation; however, without correlation, the lost points are
spread evenly across the cloud of all observations in the
outcome equation plot. Note the lack of a pattern in the
location of the numbered data points (other than the fact that
they tend to be larger because such observations are more
likely to select in as shown in the left plot). Under these
circumstances, the main consequence is simply a decrease in
observations that produces no bias. The second row shows
how this changes when we add correlation (i.e., positive, for
exposition) in the independent variables. Observations that do
not select in have smaller values of the independent variable
for selection, which translates into lost observations occurring
more frequently for smaller values of the independent variable
for the equation of interest. This is evidenced by the prepon-
derance of larger case-identification numbers in the scatter
plot for the equation of interest. However, removing these
observations does not produce bias because it amounts to
selecting on the independent variable, onwhich the regression
model is explicitly conditioned. Note that fewer of the
observed cases in the equation of interest come from lower

My main goals for students are that they understand when to apply a given method,
why to apply it instead of common alternatives, and how to obtain and interpret
estimates.
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Figure 1

Consequences of Variable and Error Correlations for Regression Estimates

Note: Graphs on the left side plot values of the selection-equation latent dependent variable against the selection-equation independent variable; those on the right side show
the continuous outcome of interest against the independent variable for the equation of interest. Observations for which the outcome variable is observed are represented by
numbers ordered by the value of the independent variable in the selection equation. Those not observed are represented by gray circles. Black lines represent the estimated
linear relationship among observations included in the analysis—that is, all observations for the selection equation and those whose outcome variable is observed for the
outcome equation. Gray lines in the plots for the outcome equation represent the estimated linear relationship among all observations—that is, whether or not the outcome
would be observed.

244 PS • January 2022https://doi.org/10.1017/S1049096521001190 Published online by Cambridge University Press

https://doi.org/10.1017/S1049096521001190


values of the independent variable compared to the no-
correlation case.

Switching to correlation in the error terms requires shifting
our intuition from the horizontal axes to the distance between
the predicted values and the observed values, which corres-
ponds to the error terms. For large values of the variable in the
selection equation, the size of the error does not matter much
for whether an observation selects in. However, as that vari-
able decreases, the value of the error begins to matter more
until only observations with large values of the errors make it
to the equation of interest. A positive error correlation means
that we tend to lose observations in the equation of interest
that lie below the true regression line. However, the lack of
correlation between the independent variables means that the
lost observations are distributed randomly across the horizon-
tal axis in the equation of interest, as evidenced by the random
location of the case-identification numbers in the right plot.
The upward shift in the errors among the observed cases pulls
the estimated sample regression line upward, biasing the
intercept; however, the lack of association with the independ-
ent variable leaves the slope unaffected.

The final graph in figure 1 combines correlated errors with
correlated variables. As in the case with only correlated inde-
pendent variables, selection no longer removes observations
equally across the horizontal axis. Combining this with cor-
related errors creates problems, however. Observations with
large values of the independent variable in the selection
equation almost always will be included in the equation of
interest and therefore will have a full range of observed errors.
In contrast, observations with small values of the selection-
equation independent variable will appear only in the outcome
equation when they have larger values of the error term. This
induces correlation (negative in this example) between the
selection-equation independent variable and the selection-
equation errors among observations that select in. Recall that
in this case, the errors and the independent variables are each
correlated across equations. The induced correlation among
selected observations works through these preexisting correl-
ations to engender correlation between the independent vari-
able and the error among observed cases in the equation of
interest. These two features are evident in the right plot. First,

correlated independent variables lead most of the observed
cases to be associated with larger values of the independent
variable. Second, for smaller and medium values of the inde-
pendent variable, we observe cases that only lie well above the
full-sample regression line in gray, whereas for larger values,
we observe a better balance of cases above and below the line.
Together, this leads to pronounced bias in the regression line
among observed cases. In fact, the slope now has the wrong

sign. This figure allows students to see that the selection
process produces data that are not even representative of
themselves: the changing range of observed values of the
errors imposed by the selection process means that the out-
come does not cover its full range for some values of its
independent variable.

In the lecture component of this material, I present an
explanation based on the two plots in the final row of figure 1.
This provides an opportunity to pair the logic of the math in
the two equations with the visualization of bias in the presence
of both forms of correlation. Understanding the bias creates a
parallel opportunity to build intuition about when nonran-
dom sample selection produces bias. The key insight is that
selection makes the errors among observed cases unrepresen-
tative of the full set of errors that might occur and that
correlation in the independent variables leads to correlation
between the error and the independent variable in the equa-
tion of interest—a clear violation of a key assumption of linear
regression and MLE estimators.

In the lab session that follows, I ask students to work
through a data-generating process that produces the results
in each of the four cases represented in figure 1. At this point in
the semester, they have learned about generating random
variables, including from themultivariate normal distribution.
The instructions define specific parameter values for the
distribution of the errors and the independent variables as
well as the equations to generate the selection equation and
the equation of interest outcome variables. We start with the
case with no correlations. With the data generated, students
create graphs of the data for the equation of interest as in
figure 1 and estimate the parameters of the equation of interest
via a naïve linear regression model and again via the Heckman
approach. Because we generated the data, we can compare the
results obtained from estimating the outcome equation on the
selected data against those from the full data—an opportunity
not offered in real-world applications.

We proceed by changing the correlations between the
independent variables and the errors one at a time, corres-
ponding to the final three cases in figure 1. Students can see
the consequences of ignoring selection and observe the Heck-
man model’s ability to correct for it. I then encourage them to

experiment with the code. This can involve changing the
magnitude and direction of the correlations, which will affect
the direction and extent of bias in the naïve version of the
equation of interest. It also can involve changing the relative
contribution of the explanatory and error variables in the two
equations because both also matter for this bias. Changing the
parameters of the selection equation in a way that affects the
proportion and mix of cases that select in also matters.

The balance and level of math, visualization, intuition, simulation, and applied
examples may change, but I usually include most of them. This recognizes and targets
different modes of learning, providing all students an opportunity to gain some insight
on a given topic.
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I follow this exercise with a homework assignment that
directs students to estimate and evaluate the consequences of
selection in a real-world example. I do so using replication data
from an article published by a colleague (Lai 2003). The
assignment requires them to estimate the naïve and Heckman
models and compare the results. Furthermore, they implement
the Heckman approach through full information MLE and
then again by working through the two-step procedure manu-
ally (i.e., by generating the inverse Mills ratio and including it
in the equation of interest). I ask them to combine the results
into a single, publication-quality table and compare the
results.

I follow this basic structure for most of the methods topics
and courses that I teach. The balance and level of math,
visualization, intuition, simulation, and applied examples
may change, but I usually include most of them. This recog-
nizes and targets different modes of learning, providing all
students an opportunity to gain some insight on a given
topic. It also provides students with a toolkit for learning
about and developing new methods. For example, several
PhD students have used these pieces to construct methods
articles to aid in interpreting, applying, or developing
methods (e.g., Kreitzer and Boehmke 2016; Licht 2011; Nei-
man 2015). However, it is in the increased appreciation for
and understanding of quantitative methods that its value is
most revealed. When students have less apprehension about
properly applying and interpreting these methods, theymake
better choices in their own research, offer better suggestions
to collaborators and colleagues, and convey more insight in
the classroom.▪

NOTES

1. It would be impossible to acknowledge (or even remember) all of the people
who have helped me understand and think about how to teach methods
courses, graduate and otherwise. However, I appreciate all of the conversa-
tions on the topic, and I especially acknowledge the support of the many
more-experienced scholars at Iowa andCaltech and in the Society for Political
Methodology who have shared their wisdom and advice over the years.

2. See Cassidy (2004) for a review of the literature on learning styles. Garfield
and Ben-Zvi (2007) provided a more targeted discussion of research on
teaching and learning statistics at all educational levels. Christou and Dinov
(2010) presented evidence from three studies that learning styles and discip-
linary attitudes affect course performance.
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