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Departamento de Matemática - IMAS FCEyN, Universidad de Buenos
Aires, Buenos Aires, Argentina (mblufstein@dm.uba.ar;
gminian@dm.uba.ar; isadofschi@dm.uba.ar)

(Received 27 June 2020; accepted 25 January 2021)

We present a metric condition τ ′ which describes the geometry of classical small
cancellation groups and applies also to other known classes of groups such as
two-dimensional Artin groups. We prove that presentations satisfying condition τ ′
are diagrammatically reducible in the sense of Sieradski and Gersten. In particular,
we deduce that the standard presentation of an Artin group is aspherical if and only
if it is diagrammatically reducible. We show that, under some extra hypotheses,
τ ′-groups have quadratic Dehn functions and solvable conjugacy problem. In the
spirit of Greendlinger’s lemma, we prove that if a presentation P = 〈X | R〉 of group
G satisfies conditions τ ′ − C′( 1

2
), the length of any nontrivial word in the free group

generated by X representing the trivial element in G is at least that of the shortest
relator. We also introduce a strict metric condition τ ′

< , which implies hyperbolicity.
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1. Introduction

The first ideas behind small cancellation theory appeared more than 100 years ago
in the study of M. Dehn. In [9] Dehn formulated the word and conjugacy problems
and later he presented an algorithm that solved these problems for the fundamen-
tal groups of closed orientable surfaces of genus g � 2 [10]. The key property of
the standard presentations of such groups is that any nontrivial product of two
different cyclic permutations of the single relator or its inverse admits only a lit-
tle cancellation (see [23]). There are currently many variants of small cancellation
theory. The development of the classical theory started with the studies of Tar-
takovskĭı [34], Schiek [30], Greendlinger [15, 16], Lyndon [22], Schupp [31] (see
also [23]), and continued later with the studies of Rips [26–28] and Olshanskĭı
[25]. The graphical variant of the theory started with Gromov [18] and continued
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with the studies of Ollivier [24], Gruber [19] and Steenbock [33]. The classical
conditions of small cancellation require the pieces to be small with respect to the
relators. Concretely, in the metric condition C ′(λ) the length �(s) of any piece s
of a relator r is smaller than λ�(r). The non-metric variant C(p) requires that no
relator is a product of fewer than p pieces. In graphical small cancellation the pre-
sentations are constructed from a labelled graph and one requires the pieces in the
graph to be small. Small cancellation is not only related to the word and conjugacy
problems. It has applications to curvature problems, hyperbolicity, asphericity and
diagrammatic reducibility. The notion of diagrammatic reducibility first appeared
in the study of Sieradski [32] and was developed by Gersten [13]. A presentation P
with no proper powers is diagrammatically reducible (DR) if all spherical diagrams
over P are reducible. Diagrammatic reducibility, which is a stronger condition than
asphericity, is relevant when studying equations over groups. We refer the reader
to Gersten’s papers [13, 14] for more details on diagrammatic reducibility and
applications to equations over groups.

In this paper, we introduce a metric condition τ ′ and a strict version τ ′
<. These

conditions are defined in terms of sums of lengths of pieces incident to interior
vertices of reduced diagrams (see definition 2.1). They generalize the classical metric
small cancellation conditions and apply also to other known classes of groups. Our
motivation is to encompass the geometries of classical small cancellation groups,
two-dimensional Artin groups, and one-relator groups satisfying a certain condition
(T ′) recently introduced in [4], under the same unifying geometry. In the case of
Artin groups, we show that condition τ ′ is equivalent to being two-dimensional.

Theorem 1.1. An Artin group AΓ is two-dimensional if and only if its standard
presentation PΓ satisfies condition τ ′.

We show that presentations (and groups) satisfying conditions τ ′ and τ ′
< have

nice properties. We analyse first curvature problems and diagrammatic reducibility.
In this direction we obtain the following result.

Theorem 1.2. If a presentation P satisfies condition τ ′ and has no proper powers,
then it is DR.

As an immediate consequence of the above theorem we deduce that the standard
presentation of an Artin group is aspherical if and only if it is DR (see remark 2.3).
We then prove that groups satisfying the strict condition τ ′

< are hyperbolic.

Theorem 1.3. Let G be a group which admits a finite presentation satisfying
conditions τ ′

< and C(3). Then G is hyperbolic.

We also prove that τ ′-groups have quadratic Dehn functions and solvable
conjugacy problem, provided all the relators in the presentation have the same
length.

Theorem 1.4. Let P be a presentation satisfying conditions τ ′ − C ′( 1
2 ) and such

that all its relators have length r, then P has a quadratic Dehn function. Moreover,
if P is finite the group G presented by P has solvable conjugacy problem.
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In fact we believe that the result is still valid without the hypothesis on the
length of the relators although we could not prove the general result. At the end of
§ 4 we discuss a strategy to prove solvability of the word problem for a wider class
of groups using this result.

In particular, theorem 4.2 proves the existence of quadratic Dehn functions
and the solution of the conjugacy problem for a subclass of two-dimensional
Artin groups. The solution of the word problem for two-dimensional Artin groups
was proved by Chermak [8]. Recently, Huang and Osajda proved that all two-
dimensional Artin groups have quadratic Dehn function and solvable conjugacy
problem [20]. Our results provide, although partially, an alternative, direct and
simpler proof of these facts.

In the spirit of Greendlinger’s lemma, we obtain the following result.

Proposition 1.5. Let P = 〈X | R〉 be a presentation of a group G, satisfying condi-
tions τ ′ − C ′( 1

2 ). Let rmin be the length of the shortest relator. Then any nontrivial
word W in the free group generated by X representing the trivial element in G has
length at least rmin. In particular, if P has a relator of length greater than or equal
to 2, then G is nontrivial.

Conditions τ ′ and τ ′
< are defined in terms of the lengths of the pieces and rela-

tors incident to interior vertices of reduced diagrams over the presentations. At first
glance it may seem that these conditions are difficult to check since the definitions
require to analyse all interior vertices of every possible diagram over the presen-
tation P . However we prove below that, for finite presentations, these conditions
can be verified by analysing the directed cycles in a finite weighted graph Γ(P )
associated with P . In this direction, in § 5 we describe an algorithm which decides
whether a given finite presentation P satisfies these conditions. This algorithm has
been implemented in the GAP [35] package SmallCancellation [29]. As an immediate
consequence of the construction of the algorithm, we also deduce that for any finite
presentation P satisfying the strict condition τ ′

<, the curvature of the interior ver-
tices of any diagram Δ over P is bounded above by a negative constant N , which is
independent of the diagram. This fact is used in theorem 3.4 to prove hyperbolicity
of the groups satisfying condition τ ′

<.

2. The small cancellation condition τ ′

Recall that a cellular map f : L→ K between CW-complexes is combinatorial if
its restriction to each open cell of L is a homeomorphism onto a cell of K, and a
combinatorial 2-complex is a CW-complex for which the attaching map ψ : S1 →
K(1) of each 2-cell is combinatorial after a suitable subdivision of S1 (see [13, 38]).
Let K be a combinatorial 2-complex. A diagram Δ in K is a combinatorial map
ϕ : M → K where M is a combinatorial structure on the sphere to which, perhaps,
we remove some open 2-cells. This includes spherical diagrams (whenM is the whole
sphere), (singular) disk diagrams (when M is a sphere with one 2-cell removed), and
annular diagrams (the sphere with two 2-cells removed). As usual, 0-cells, 1-cells
and 2-cells will be called respectively vertices, edges and faces. If P = 〈X | R〉 is a
presentation of a group G, a diagram over P is a diagram ϕ : M → KP where KP is
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the standard 2-complex associated with the presentation P . Throughout this paper,
we will assume that the relators of the presentations are cyclically reduced and no
relator is a cyclic permutation of another relator or of the inverse of another relator.
Since M is orientable we can fix an orientation in the usual way, so that when
traversing the boundaries of the 2-cells the edges in the intersection of two faces
f, f ′ are traversed twice, once in each possible orientation. The map ϕ : M → KP

induces a labelling on the edges of M by elements of X and their inverses. The
label on the boundary of any oriented face of the diagram (starting at any vertex)
is called a boundary label. Note that boundary labels are elements in the set R∗

of all cyclic permutations of the elements of R and their inverses. A diagram Δ is
reducible if it contains two faces f, f ′ such that the intersection of their boundaries
∂f ∩ ∂f ′ contains an edge such that the boundary labels of f and f ′ read with
opposite orientations and starting at a vertex of this edge coincide, otherwise Δ
is called reduced (see [23, chapter V, § 2] for more details). The degree d(v) of
a vertex v in a diagram Δ is the number of edges incident to v (the edges with
both boundary vertices at v are counting twice). A vertex v is called interior if
v /∈ ∂M .

Given a reduced diagram Δ over a presentation P , we can remove all interior
vertices of degree 2. We obtain a new diagram where the interior edges correspond
to pieces in R∗. Recall that a piece is a word which is a common prefix of two
different elements of R∗. The length �(e) of an interior edge e in this new diagram
is defined as the length of the corresponding word (equivalently, it is the number of
edges of the original diagram that were glued together to obtain e). In what follows
we consider diagrams with no interior vertices of degree 2.

Recall that the link of a vertex v is an epsilon sphere about v and the corners
of the 2-cells at v correspond to edges in the link. The endpoints of a corner in M
(of a 2-cell f) at v correspond to edges in the diagram incident to v (see [13, § 2]
and [38, definition 2.1]). Given a corner c at an interior vertex v, we denote by �1(c)
and �2(c) the lengths of the incident edges and by �r(c) the length of the relator
r ∈ R corresponding to the 2-cell f . Let d′F (v) =

∑
c�v(�1(c) + �2(c))/�r(c), where

the sum is taken over all corners at v.

Definition 2.1. We say that a presentation P satisfies the small cancellation con-
dition τ ′ if for every interior vertex of any reduced diagram over P (with no interior
vertices of degree 2), d′F (v) � d(v) − 2. Similarly, P satisfies the strict small can-
cellation condition τ ′

< if for every interior vertex of any reduced diagram over P ,
d′F (v) < d(v) − 2. A group G which admits a presentation P satisfying condition
τ ′ (resp. τ ′

<) is called a τ ′-group (resp. τ ′
<-group).

We investigate now the first examples of presentations satisfying conditions τ ′

and τ ′
<.

Classical metric small cancellation conditions

It is easy to verify that the classical metric small cancellation conditions C ′(1/6),
C ′(1/4) − T (4) and C ′(1/3) − T (6) imply condition τ ′

<. We will show below that
finitely presented τ ′

< − C(3)-groups are hyperbolic, generalizing the classical result
for small cancellation groups (see [5, 17]).
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Figure 1. 2-cell of an Artin group.

Two-dimensional Artin groups

Let Γ be a finite simple graph with a labelling on the edges by integers m � 2. The
Artin group defined by Γ is the group AΓ given by the following presentation PΓ.
The generators of PΓ are the vertices of Γ, and there is a relation of the form

ababa · · ·︸ ︷︷ ︸
m letters

= babab · · ·︸ ︷︷ ︸
m letters

for every pair of vertices a and b connected by an edge labelled by m. By results
of Charney and Davis [6, 7], it is well-known that an Artin group AΓ is two-
dimensional (i.e. it has geometric dimension 2) if and only if for every triangle in
the graph Γ with edges labelled by p, q and r we have 1/p+ 1/q + 1/r � 1 (see
also [20]).

We will show that an Artin group is two-dimensional if and only if its standard
presentation PΓ satisfies condition τ ′. We will also prove below that any group
which admits a finite presentation P satisfying conditions τ ′ and C ′( 1

2 ) and with
all relators of the same length, has quadratic Dehn function and solvable conju-
gacy problem (see theorem 4.2). These results put together partially recover, with
an alternative and simpler proof, similar results for two-dimensional Artin groups
recently obtained by Huang and Osajda [20].

Theorem 2.2. An Artin group AΓ is two-dimensional if and only if its standard
presentation PΓ satisfies condition τ ′.

Proof. Let AΓ be an Artin group and let K be the 2-complex associated with its
standard presentation. Note that the 2-cells of K have two distinguished sides in
which all edges have the same orientation (see figure 1). If the label of the edge in
Γ corresponding to the relator is m, each of these sides has m edges. The terminal
vertices of both sides are called initial and final vertices of the relator, according to
the orientation of the edges (cf. [20, § 4.1]).

Let ϕ : M → K be a reduced diagram. We analyse first the interior vertices of
degree 3. It is easy to see that vertices of degree 3 only correspond to intersections
of faces in the diagram which are mapped to three different relators that form a
triangle in the graph Γ. Since they are three different relators, the length of the
three pieces involved is 1. If the labels of the edges in the triangle are p, q and r,
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Figure 2. Interior vertex of degree 4.

then the equation for the condition τ ′ is the following:

1 + 1
2p

+
1 + 1
2q

+
1 + 1
2r

� 3 − 2.

That is, 1/p+ 1/q + 1/r � 1, which is exactly the necessary and sufficient condition
for the Artin group to be two-dimensional.

Now we prove that condition τ ′ is always satisfied in interior vertices of degree
greater than or equal to 4 (for any Artin group, not necessarily two-dimensional).
Note that such an interior vertex v can be a terminal vertex or it can be inside of
one of the sides of the 2-cells containing it. For example, in figure 2, v is a terminal
vertex of r1 and r4, and it is on one of the sides of r2 and r3.

If not all of the 2-cells incident to v are mapped to the same relator, at least four of
them will share an edge incident to v with a cell corresponding to a different relator.
In figure 2, r1 shares an edge with r4, and r2 with r3. Since cells corresponding to
different relators intersect at paths of length at most 1, at least four of them will have
a piece of length 1. Also, the longest piece in a 2-cell with boundary of length 2n is
n− 1, and therefore the summands in condition τ ′ can be at most (2n− 2)/2n. In
conclusion, if there are 2-cells incident to the vertex which are mapped to different
relators, there are at least four summands in the equation for condition τ ′ which
are less than or equal to 1

2 , and every other summand is smaller than 1. Then
condition τ ′ is satisfied.

We analyse now the case that the vertex has degree greater than or equal to 4 and
all the 2-cells are mapped to the same relator. Observe that if a 2-cell contains v in
one of its sides, the summand corresponding to that 2-cell is at most 1

2 . Therefore
there are at most three of such 2-cells, and the rest have to contain v as a terminal
vertex. If a 2-cell f contains v as a terminal vertex, then the two adjacent 2-cells
to f contain the vertex on a side. This implies that we can reduce ourselves to the
cases where v has degree 4, 5 or 6.

We look at the orientation of the edges incident to v, traversing them in clockwise
order. If we pass by a 2-cell that has v as a terminal vertex, the orientation of these
edges is preserved, and if not, it is reversed. Therefore the number of 2-cells having
v on one of its sides is even. Therefore, when v has degree 5 or 6, there are at least
four 2-cells that have v on a side.

It only remains to check the case where v has degree 4, two of the 2-cells contain
it as a terminal vertex and the other two on a side. This situation is illustrated
in figure 3. Let l1, l2, l3, l4 be the lengths of the pieces involved and let 2n be the
length of the relator.

https://doi.org/10.1017/prm.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.7


Generalized small cancellation conditions 551

Figure 3. Vertex with degree 4 with the 2-cells mapping to the same relator.

Here condition τ ′ can be rewritten as:

l1 + l2
2n

+
l2 + l4

2n
+
l3 + l4

2n
+
l1 + l3

2n
=

2l1 + 2l2 + 2l3 + 2l4
2n

� 2.

Since l1 + l2 � n and l3 + l4 � n, condition τ ′ is satisfied. �

Remark 2.3. Combined with theorem 3.2, theorem 2.2 implies that the standard
presentation PΓ of an Artin group is aspherical (i.e. AΓ is two-dimensional) if and
only if PΓ is diagrammatically reducible (DR, for short). Recall that a presentation
P with no proper powers is DR if all spherical diagrams over P are reducible. Note
that being DR is in general a stronger condition than being aspherical (see [13,14]).

Let F be a free group on a finite set of generators X. Let W ⊂ F be a finite subset
of words, and let Γ be a finite simple graph with vertex set W and a labelling on
the edges by integers m � 2. We can consider the presentation PΓ,F with generators
X, and a relation

vwvwv · · ·︸ ︷︷ ︸
m factors

= wvwvw · · ·︸ ︷︷ ︸
m factors

for every pair of words v, w ∈W connected by an edge labelled m. We denote
by AΓ,F the group presented by PΓ,F . This is obviously a generalization of the
definition of an Artin group. The following result generalizes theorem 2.2 for the
groups AΓ,F under certain restrictions on the words and the labelling of the edges.

Theorem 2.4. The presentation PΓ,F satisfies τ ′ provided that all the edges in
Γ are labelled by the same integer m � 3, and the words in W have all the same
length, are cyclically reduced and do not share letters (i.e. every generator appears
at most in one of the words of W ).

Proof. Let n be the length of the words in W . Let ϕ : M → K be a reduced diagram
and let v be an interior vertex of degree at least 3. Let k = d(v) and let f1, . . . , fk

be the 2-cells of M incident to v, numbered clockwise. Note that, since the words
in W do not share letters, there is a subset D(fi) of distinguished vertices of the
boundary of fi which is characterized by the following property: D(fi) splits the
word written in the boundary of fi into words which belong either to W or to W−1

(here W−1 denotes the set of the inverses of the words in W ). Let xi (resp. yi) be
the (possibly empty) word read counterclockwise (resp. clockwise) in the boundary
of fi, starting at v and ending at the first occurrence of a vertex which belongs to
D(fi) (see figure 4). Note that |xi| + |yi| ≡ 0 (mod n). Here |x| denotes the length
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Figure 4. Mismatches around an interior vertex.

of the word x. The mismatch between fi and fi+1 is defined as |yi+1| − |xi| ∈ Z/nZ.
If the mismatch is nonzero we say that there is a proper mismatch between fi and
fi+1. Let s be the number of proper mismatches around v.

If there are no proper mismatches, then the proof that condition τ ′ is satisfied is
analogous to that of theorem 2.2. If there is a proper mismatch between two faces,
their intersection has length less than n. Note that the length of a piece is at most
n(m− 1), and the length of the relators is 2nm. Therefore, if s � 2, condition τ ′ is
satisfied. Therefore, we only need to show that s 	= 1. Suppose that there is exactly
one proper mismatch, say between f1 and fk. Then the following holds:

|y1| 	≡ |xk| (mod n),

|yi+1| ≡ |xi| (mod n) for 1 � i � k − 1,

|xi| ≡ −|yi| (mod n) for 1 � i � k.

It follows that |x1| 	≡ (−1)k|x1| (mod n). This is a contradiction if k is even. Now we
study the case where k is odd and s = 1. It is easy to see that if one of the xi or yi is
empty, then there are at least two proper mismatches, so we can assume that no xi or
yi is empty. Since the words in W do not share letters, there exists w ∈W such that
for each 1 � i � k, the word y−1

i xi equals w or w−1. Again, we can assume that the
unique proper mismatch is between f1 and fk. If there exists 1 � i � k − 1 such that
y−1

i xi = y−1
i+1xi+1, since xi = yi+1, we deduce that y−1

i xi+1 = w2 or y−1
i xi+1 = w−2.

This is a contradiction because w is cyclically reduced. Then y−1
i xi = (y−1

i+1xi+1)−1

for every 1 � i � k. However this cannot happen since k is odd. Therefore s � 2. �

One-relator groups

In [4] the first two authors introduced a small cancellation condition (T ′) to study
hyperbolicity of one-relator groups. Condition τ ′

< generalizes condition (T ′) to
any presentation and theorem 3.4 provides an alternative and simpler proof of
[4, theorem 3.1] for one-relator groups.

Example 2.5. The following one-relator presentation does not satisfy conditions
C(6) nor T (4), but it is τ ′. It also does not fall under the hypothesis of [4, theorem
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3.1] since it is C ′( 1
2 ), but not C ′( 1

4 ):

〈a, b | a3b4a3b4(b4a3b4a3)−1〉

Cyclic presentations

The claims in the following examples can be verified using the GAP [35] package
SmallCancellation [29].

Example 2.6. The following cyclic presentation of a superperfect group satisfies
condition τ ′

< but is not C(6) nor T (4):

〈x0, x1, x2, x3, x4 | x−1
i+4x

−1
i+1x

−1
i (xi+4xi+1)2 for i = 0, . . . , 4〉

Example 2.7. The following cyclic presentation of a superperfect group satisfies
condition τ ′ − C ′( 1

2 )

〈x0, . . . , x6 | xi+1x
−1
i xi+6x

−1
i+1xix

−1
i+6x

−1
i+2 for i = 0, . . . , 6〉

Then by theorem 4.2 this group has a quadratic Dehn function. However the group
is not τ ′

<, nor C(6), C(4) − T (4) or C(3) − T (6).

3. Non-positive curvature, diagrammatic reducibility and hyperbolicity

We recall first some basic notions on combinatorial curvature. Given a combinatorial
2-complex K, we can assign a real number w(c) to the corners, which we think of as
angles. This assignment is a weight function for the complex. A finite combinatorial
2-complex together with such a weight function is called an angled complex (see
[13, 37, 38]).

Let K be an angled complex. If v is a vertex of K, its curvature is defined as

κ(v) = 2π − πχ(lkv) −
∑
c�v

w(c).

Here χ(lkv) denotes the Euler characteristic of the link of v, and the sum is taken
over all corners at v. The curvature of a face f is defined as

κ(f) = 2π − π�(∂f) +
∑
c∈f

w(c),

where the sum is taken over all the corners in f and �(∂f) is the number of edges
in the boundary of f . The following result can be found in [1, 38].

Theorem 3.1 (Combinatorial Gauss–Bonnet theorem). Let K be an angled
2-complex. Then ∑

f∈faces(K)

κ(f) +
∑

v∈vertices(K)

κ(v) = 2πχ(K).
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Assignment of weight functions

Let P be a presentation satisfying condition τ ′ or τ ′
<. Given a reduced diagram

f : M → KP over P , we define the following weight function in M . The weight of
a corner c at an interior vertex v is w(c) = π − ((�1(c) + �2(c))/�r(c))π (recall that
there are no interior vertices of degree 2). The weight of a corner c at a vertex
v ∈ ∂M of degree 2 is w(c) = π. If c is a corner at a vertex v ∈ ∂M of degree
greater than 2, we define �1(c) and �2(c) similarly as we did with interior vertices
(the lengths of the incident edges obtained if we remove the vertices of degree 2)
and w(c) = π − ((�1(c) + �2(c))/�r(c))π.

With this assignment, the curvature of the faces of M is 0, and the curvature of
the interior vertices is non-positive if P satisfies condition τ ′, and strictly negative
if P satisfies condition τ ′

<.
We will show that presentations satisfying condition τ ′ and without proper pow-

ers are DR and that finitely presented τ ′
< − C(3)-groups are hyperbolic. Given a

2-complex M , we denote by V(M), E(M) and F(M) the number of vertices, edges
and faces of M respectively.

Theorem 3.2. If a presentation P satisfies condition τ ′ and has no proper powers,
then it is DR.

Proof. Since P has no proper powers, our notion of reduced spherical diagram
over P coincides with that of [13]. Therefore, in order to prove that P is DR, we
only have to verify that there are no reduced spherical diagrams over P . Suppose
ϕ : M → KP is a reduced spherical diagram. We have the following identities:

E(M) =
1
2

∑
v∈vertices(M)

d(v),

F(M) =
1
2

∑
v∈vertices(M)

d′F (v).

The first one is clear, since every edge is incident to two vertices. The second one
is deduced from the fact that in the right-hand side of the second equality we are
summing two times the length of each relator, divided by the length of each relator.
That is, we are summing 2 for each face. Then

2 = V(M) − E(M) + F(M)

= V(M) − 1
2

∑
v∈vertices(M)

d(v) +
1
2

∑
v∈vertices(M)

d′F (v) � 0,

where the last inequality holds because all the vertices in the sphere are interior
vertices. This is a contradiction, and therefore P is diagrammatically reducible. �

Equations over groups

Recall that a system of equations over a group G with unknowns x1, x2, . . . , xn

is a set {wj(x1, x2, . . . , xn)}j of words in G ∗ F (x1, . . . , xn). Here F (x1, . . . , xn)
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is the free group with basis {x1, x2, . . . , xn}. The letters of wj which lie in G
are the coefficients of wj . The (non-necessarily reduced) word rj in the alpha-
bet {x1, x

−1
1 , x2, x

−1
2 , . . . , xn, x

−1
n } obtained by deleting the coefficients of wj is

the shape of wj , and the word rj considered as an element of the free group
F (x1, x2, . . . , xn) is called the content of wj . We say that the system has a solution
in an overgroup of G if there exists a group H which contains G as a subgroup and
elements h1, h2, . . . , hn in H such that

wj(h1, h2, . . . , hn) = 1 ∈ H

for every j. The Kervaire–Laudenbach conjecture states that for any group G,
a unique equation w with a unique unknown x has a solution in an overgroup of
G if w is non-singular, which means that the total exponent of x is non-zero. The
so called Kervaire–Laudenbach–Howie conjecture generalizes this to an arbitrary
finite number n of unknowns and a non-singular system of m equations (in this
case, non-singular means that the rank of the m× n matrix of total exponents is
equal to m).

Let S be a system of equations w1, w2, . . . , wm over a group G. Let P be the
presentation 〈x1, x2, . . . , xn|r1, r2, . . . , rm〉 whose generators are the unknowns of S
and its relators are the shapes of the equations wj . A well-known result by Gersten
[13] states that if P is DR, then S has a solution in an overgroup of G.

In the case of one equation w with many unknowns, by a result attributed to
Pride, for any coefficient group G, if the shape of w is cyclically reduced (and non-
trivial) then the equation has a solution in an overgroup of G (see [13, corollary
5.7]). Recently Klyachko and Thom [21] proved that one equation in two variables
with coefficients in a hyperlinear groupG can be solved overG if its content does not
lie in [F2, [F2, F2]]. Here F2 denotes the free group generated by the two unknowns.
More recently Barmak and Minian analysed some cases which are not covered by
the result of [21] by applying a test that is not based on curvature (see [2, § 7]).

From the results above we deduce the following.

Proposition 3.3. Let k, l,m ∈ N and w1(x1, . . . , xk), w2(y1, . . . , yl), w3(z1, . . . ,
zm) be cyclically reduced words of the same length in the unknowns xi, yj , zs. Then
for any p � 2, the presentation

P = 〈x1, . . . , xk, y1, . . . , yl, z1, . . . , zm |(w1w2)p(w2w1)−p, (w2w3)p(w3w2)−p,

(w3w1)p(w1w3)−p〉
is DR. Therefore for any group G, any system of equations modelled by P has a
solution in an overgroup of G.

Proof. The presentation P corresponds to a presentation of type PΓ,F where Γ is a
triangle with vertices w1, w2 and w3 and whose three edges are labelled by 2p. Now
the result follows from theorems 2.4 and 3.2 and from Gersten’s result mentioned
above. �

Hyperbolicity

We now show that the strict metric condition τ ′
< implies hyperbolicity.
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Theorem 3.4. Let G be a group which admits a finite presentation satisfying
conditions τ ′

< and C(3). Then G is hyperbolic.

Proof. We show that a finite presentation P satisfying conditions τ ′
< and C(3) has

a linear isoperimetric inequality. Note that it suffices to consider non-singular disk
diagrams.

Let ϕ : M → KP be a non-singular reduced disk diagram. We assign weights to
the corners in M as we did before. Then, by the Combinatorial Gauss–Bonnet
theorem,

2π =
∑

v∈vertices(M)

κ(v) +
∑

f∈faces(M)

κ(f) =
∑

v∈vertices(M)

κ(v).

Since P satisfies τ ′
<, then κ(v) < 0 for every interior vertex v, and since P is finite,

by corollary 5.3 there is a constant N < 0, which is independent of the diagram,
such that κ(v) � N for every interior vertex v. Also, for every boundary vertex v,
it holds that κ(v) < π since the weights in M are non-negative. Then

2π � V◦(M)N +
∑

v∈vertices(∂M)

κ(v)

� V◦(M)N + V(∂M)π

= V(M)N + �(∂M)(π −N),

where V◦(M) denotes the number of interior vertices of M , and �(∂M) is the length
of the boundary. The last equality holds because M is non-singular. Then,

−V(M)N � �(∂M)(π −N) − 2π

and therefore

V(M) � �(∂M)
π −N

−N +
2π
N
.

Now, since P satisfies condition C(3), the number of faces can be linearly bounded
by the number of vertices in the diagram. Consequently, the number of faces in the
diagram is linearly bounded by the length of its boundary. �

4. Quadratic Dehn function and conjugacy problem

In this section, we will show that a finitely presented group which admits a presen-
tation P satisfying conditions τ ′ and C ′( 1

2 ) and such that all relators of P have
the same length r, has a quadratic Dehn function and solvable conjugacy problem.

Let ϕ : M → KP be a diagram over P . The boundary layer L of M consists of
every vertex in the boundary of M , every edge incident to a vertex in the boundary,
and every open face with a vertex in the boundary. Note that L is usually not a
combinatorial complex. Let M1 = M\L be the complement of the boundary layer.
Note that M1 is a subcomplex of M . The following lemma will be used to prove
the main result of this section.
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Figure 5. At the left the complex M . At the right the complex B constructed from M in
the proof of lemma 4.1.

Lemma 4.1. Let P be a presentation satisfying conditions τ ′ − C ′( 1
2 ) and such that

all its relators have length r, and let ϕ : M → KP be an annular or disk diagram
over P . Then

V(∂M1) � V(∂M) − rχ(M).

Proof. We had previously removed interior vertices of degree 2 from the diagrams.
We subdivide the boundary of M1 reintroducing the vertices of degree 2. We still
denote this diagram by M .

For the vertices of M of degree greater than 2, we assign weights to the corners
as before, and for vertices of degree 2, both weights are equal to π. With this
assignment, every face has curvature 0 and all interior vertices have non-positive
curvature, since P satisfies τ ′ (see the paragraph after theorem 3.1). Note that
κ(v) = 0 for interior vertices of degree 2.

In what follows, we can assume without loss of generality that M is non-singular,
since we are going to bound the length of the boundary of M1 in terms of the length
of the boundary of M . Since P is C ′( 1

2 ) we may assume that each boundary 2-cell
f has at least two edges which are not on the boundary of M , for otherwise we
can remove f decreasing the length of the boundary and without changing M1. In
particular this reduction allows us to assume that M1 	= ∅.

We consider the complex B constructed by taking the disjoint union of the
0-cells, 1-cells and 2-cells (now closed) of the boundary layer of M and identi-
fying the boundaries of the closed 2-cells but only in the vertices and edges of the
boundary layer of M (see figure 5).

We omit vertices of degree 2 in the cell structure of B. Note that �(∂B) = �
(∂M) + �(∂M1). If M is a disk, B is a planar and connected combinatorial complex,
so its Euler characteristic is less than or equal to 1 = χ(M). If M is an annulus, B
may have more than one connected component, but none of them would be a disk,
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since they all have a disconnected complement. Therefore its Euler characteristic is
less than or equal to 0 = χ(M).

We separate its vertices into two sets: V1 will denote the set of vertices of B
that are in the boundary of M , and V2 the set of remaining vertices of B. Since P
satisfies condition τ ′, by Gauss–Bonnet we have

2πχ(M) �
∑
v∈V1

κ(v).

Also by Gauss–Bonnet, we have∑
v∈vertices(B)

κ(v) = 2πχ(B).

Therefore ∑
v∈V2

κ(v) � 0.

Now since each boundary 2-cell has at least two edges which are not on the boundary
of M we have

V1 +
∑
v∈V2

∑
c�v

1 = V(B) + E(B) − �(∂B) = V2 +
∑
v∈V1

∑
c�v

1 − V◦(B).

Now putting everything together

2πχ(M) �
∑
v∈V1

κ(v) −
∑
v∈V2

κ(v)

=
∑
v∈V1

(
π −

∑
c�v

(
π − �1(c) + �2(c)

r
π

))

−
∑
v∈V2

(
π −

∑
c�v

(
π − �1(c) + �2(c)

r
π

))

=
∑
v∈V1

∑
c�v

�1(c) + �2(c)
r

π −
∑
v∈V2

∑
c�v

�1(c) + �2(c)
r

π

=
2V(∂M) − 2V(∂M1)

r
π.

It follows that

V(∂M1) � V(∂M) − rχ(M). �

Theorem 4.2. Let P be a presentation satisfying conditions τ ′ − C ′( 1
2 ) and such

that all its relators have length r, then P has a quadratic Dehn function. Moreover,
if P is finite the group G presented by P has solvable conjugacy problem.
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Proof of the quadratic Dehn function. Let ϕ : M → KP be a reduced disk diagram.
We show that V(M) � (1/r)V(∂M)2 by induction in the number of interior vertices
of M . We have

V(M) = V(M1) + V(∂M)

� 1
r
V(∂M1)2 + V(∂M)

� 1
r
(V(∂M) − r)2 + V(∂M)

=
1
r
V(∂M)2 − 2V(∂M) + r + V(∂M)

� 1
r
V(∂M)2.

The first inequality follows by induction, and the second one follows from lemma
4.1. Finally, since P satisfies C ′( 1

2 ), each face of M has at least three sides. Then
we can bound the number of faces of M by the number of vertices of M , obtaining
the desired quadratic isoperimetric inequality. �

It follows that the finitely generated groups which admit presentations satisfying
the hypotheses of theorem 4.2 have solvable word problem. This will be used to
prove that they also have solvable conjugacy problem.

We attack the conjugacy problem following the strategy of [23, § V.7]).

Remark 4.3. Let P = 〈X | R〉 be a finite presentation of a group G with solvable
word problem. Suppose that all the relators have the same length r. Let w1 and
w2 be words in the free group F (X). We write w1 ∼ w2 if there exists a word b
in F (X) with |b| < r such that bw1b

−1w−1
2 = 1 in G. Here |b| denotes the length

of the word b. Since the word problem is solvable, the relation ∼ is decidable.
Now let u and v be cyclically reduced words in F (X) and let d = |u| + |v|. Take
W = {w ∈ F (X), |w| � d}. Note that W is finite since X is finite. Note also that
the set W depends on the lengths of u and v and that u, v ∈W . We write u ∼ v if
there exist words w1, . . . , wk in W such that u ∼ w1 ∼ · · · ∼ wk ∼ v. Equivalently,
∼ is the transitive closure in W of the relation ∼. Note that this relation is also
decidable since W is finite. In order to prove that the conjugacy problem is solvable
it suffices to prove that if two words u, v ∈ F (X) are conjugate in G, then u ∼ v.

We will also use the following result of Schupp [23, § V.7]. Let A be an annular
diagram and L its boundary layer. The diagram A1 = A\L (the complement of
L in A) may be disconnected, but it has at most one annular component. A simply
connected component of A1 is called a gap. Let K1, . . . ,Kn be the gaps. Then H =
A\(L ∪⋃n

i=1Ki) is the annular component of A1, assuming there is any. Let σ and
τ be the outer and inner boundaries of H. A pair (D1,D2) of faces (not necessarily
distinct) in A is called a boundary linking pair if σ ∩ ∂D1 	= ∅, ∂D1 ∩ ∂D2 	= ∅, and
∂D2 ∩ τ 	= ∅.
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Lemma 4.4 (Schupp). Let A be an annular diagram having at least one region, and
let H be the diagram obtained by removing its boundary layer and its gaps. If there
are no boundary linking pairs, H is an annular diagram.

Proof of the conjugacy problem. Take u, v ∈ F (X) cyclically reduced and suppose
that they are conjugate in G. Let d = |u| + |v|. By remark 4.3, we only have to
prove that u ∼ v. Let A be an annular diagram with u and v−1 as inner and outer
boundaries. Construct the diagrams A = H0,H1, . . . , Hk, where Hi+1 is obtained
from Hi by removing its boundary layer and its gaps, and let Hk be the first
of such diagrams with a linking pair. By lemma 4.1, �(∂Hi+1) � �(∂Hi) for each
0 � i � k − 1. Therefore, �(∂Hi) � d for every i (and so the boundary labels of ∂Hi

are in the set W ).
Let σi and τi be the outer and inner boundaries of Hi respectively. Let Si be the

subdiagram of M consisting of σi, σi+1 and all the cells of M between these two
paths. Define Ti in the same manner with respect to τi and τi+1. It is clear that
any boundary face of Si intersects both boundaries of Si. So there is a path γi from
σi to σi+1 with a label of length less than or equal to r. Let si and s−1

i+1 be the
labels of σi and σi+1 starting at a given vertex. Then si ∼ si+1. Analogously, we
have ti ∼ ti+1 where t−1

i and ti+1 are the labels of Ti.
The last annulus Hk has a boundary linking pair (D1,D2). We have vertices

v0 ∈ σk ∩ ∂D1, v1 ∈ ∂D1 ∩ ∂D2, and v2 ∈ ∂D2 ∩ τk. Therefore there are paths β1

and β2 from v0 to v1 and from v1 to v2 labelled by words b1 and b2 of length smaller
than or equal to r/2. Let β = β1β2, then its label is a word of length less than r. Let
s be the word read in the outer boundary of Hk starting at v0, and t−1 the word
read in the inner boundary of Hk starting at v2. We have that sb1b2t−1b−1

2 b−1
1 = 1

in G. Then s ∼ t.
Since s0 and t0 are cyclic permutations of u and v respectively, and s and t are

cyclic permutations of sk and tk respectively, we have

u ∼ s0 ∼ s1 ∼ · · · ∼ sk ∼ s ∼ t ∼ tk ∼ · · · ∼ t0 ∼ v. �

A slight modification in the proof of lemma 4.1 allows one to obtain a lower
bound on the length of the words which represent the trivial element in the group
G, even if the relators have different lengths.

Proposition 4.5. Let P = 〈X | R〉 be a presentation of a group G, satisfying condi-
tions τ ′ − C ′( 1

2 ). Let rmin be the length of the shortest relator. Then any nontrivial
word W in the free group generated by X representing the trivial element in G has
length at least rmin. In particular, if P has a relator of length greater than or equal
to 2, then G is nontrivial.

Proof. Let M be a reduced disk diagram. We follow the same steps as in the proof
of lemma 4.1 and we get that

2πχ(M) �
∑
v∈V1

∑
c�v

�1(c) + �2(c)
lr(c)

π −
∑
v∈V2

∑
c�v

�1(c) + �2(c)
lr(c)

π.

In particular since the terms �i(c)/�r(c) in the first sum which do not correspond to
edges in the boundary cancel with terms in the second sum, we have rminχ(M) �
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V (∂M). Therefore, since M is a disk, rmin � V (∂M), which implies that words
representing the trivial element have length at least rmin.

For the second statement, by removing all the relators of length 1 along with the
corresponding generators, we can assume that each relator of P has length at least
2. Note that condition C ′( 1

2 ) guarantees that each of these generators can appear
in only one relator. �

In theorem 4.2 we proved the existence of quadratic Dehn functions and solv-
ability of the conjugacy problem for presentations satisfying conditions τ ′ − C ′( 1

2 ),
provided the relators have the same length. We believe that the result is still valid
without the assumption on the lengths of the relators. We discuss now a strategy
to prove solvability of the word problem for a wider class of groups. Given a presen-
tation P = 〈X | R〉 of a group G, our aim is to obtain a new presentation P ′ of a
group H such that G embeds in H, and such that P ′ satisfies conditions τ ′ − C ′( 1

2 )
and the relators have the same length. By theorem 4.2, this would imply that H,
and therefore G, has solvable word problem. To do so, we will choose a positive
integer nx for some x ∈ X and replace every occurrence of x in the relators by xnx .
If the element x in the group G has infinite order, this corresponds to adding an
nx-th root, or equivalently, to taking the amalgamated product of G with Z along
the subgroup nxZ. If we make these replacements for a finite number of x ∈ X, we
obtain a new presentation P ′ of an overgroup H of G. Of course, it is not always
possible to choose the nx so that all the relators in the new presentation have the
same length and even if this is possible, the presentation P ′ obtained may not sat-
isfy conditions τ ′ − C ′( 1

2 ) (even if P does). The following example illustrates this
technique.

Example 4.6. Consider the following presentation:

P = 〈a, b, c, s, t | tats−1b−1s−1, tbts−1c−2s−1, tc2ts−1a−1s−1〉.

Note that the relators do not have the same length. This presentation does not
satisfy conditions C(5), T (4) nor τ ′. Now, it is easy to see that a and b have
infinite order in the group G presented by P , and by choosing na = 2 and nb = 2,
we obtain the following presentation:

P ′ = 〈a, b, c, s, t | ta2ts−1b−2s−1, tb2ts−1c−2s−1, tc2ts−1a−2s−1〉.

Note that all its relators have the same length. One can verify that P ′ satisfies
conditions τ ′ − C ′( 1

2 ) (although it does not satisfy conditions C(5) nor T (4)). This
implies that G has solvable word problem.

5. Verifying condition τ ′

In this section, we give an algorithm to verify if a finite presentation P = 〈X | R〉
satisfies condition τ ′. Note that a priori it is not clear that such an algorithm
exists, since the definition involves checking something for every possible diagram
over P . The algorithm described here has been implemented in the GAP[35] package
SmallCancellation [29].
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We describe a weighted directed graph Γ(P ). The vertices of this graph are the
tuples (r, p, q) such that

• r ∈ R∗,

• p and q are pieces and

• we can write r = qsp without cancellations.

There is an edge (r, p, q) → (r′, p′, q′) if

• p′ = q−1 and

• r′ 	= r−1.

The weight of this edge is 1 − (|p| + |q|)/|r| (by simplicity, we divide by π the
weights that we considered in § 3). The weight of a cycle is the sum of the weights
of its edges.

Given a diagram ϕ : M → KP , we can fix an orientation in M as explained in § 2.
The corners in the diagram inherit the orientations of the corresponding faces. Note
that if c is a corner at an interior vertex v(c), then (r(c), w1(c), w2(c)) is a vertex
in Γ(P ). Here r(c) denotes the relator read in the boundary of the face, starting
from the vertex v(c) and following the orientation of the face, w1(c) and w2(c) are
the subwords written in the edges of the oriented corner (the first edge being the
one oriented towards v(c)). This remark and the following proposition make clear
why this graph is meaningful.

Proposition 5.1.

(i) Let v be an interior vertex in a reduced diagram ϕ : M → KP . Then there is
a directed cycle γ in Γ(P ) of length at least 3 and weight d(v) − d′F (v).

(ii) Let γ be a directed cycle in Γ(P ) of length at least 3 and weight w. Then there
is a reduced diagram over P and an interior vertex v such that d(v) − d′F
(v) = w.

Proof. We first prove (i). Let v be an interior vertex in a reduced diagram ϕ : M →
KP . Let c1, . . . , cn be the corners around v, numbered clockwise. Then w1(ci+1) =
w2(ci)−1 (indices are modulo n). Since the diagram is reduced we have r(ci+1)−1 	=
r(ci)−1 and therefore there is an edge

(r(ci), w1(ci), w2(ci))
ei−→ (r(ci+1), w1(ci+1), w2(ci+1))

in Γ(P ) with weight 1 − (�1(ci) + �2(ci)/�r(ci). Then the cycle γ = (e1, . . . , en) has
weight d(v) − d′F (v).

We now prove (ii). Let n � 3 and let γ be a cycle in Γ(P ) of length n. By the
first condition for the edges of Γ(P ), the vertices of γ can be named (r1, p1, p

−1
2 ),

(r2, p2, p
−1
3 ), . . . , (rn, pn, p

−1
1 ). For each i we consider the word si such that ri =

p−1
i+1sipi without cancellations. We construct a disk diagram Δ with n+ 1 vertices,

2n edges and n faces as follows. The vertices of Δ will be denoted by v, v1, . . . , vn.
For each i the diagram has an edge vi

ei−→ v which reads pi and an edge vi+1
αi−→ vi
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Figure 6. On the left a cycle γ in Γ(P ), on the right the corresponding diagram
constructed in the proof of part(ii) of proposition 5.1.

which reads si. For each i there is a face fi attached with boundary (e−1
i+1, αi, ei)

which reads ri (starting at v) (see figure 6). By the second condition for an edge
in Γ(P ), the diagram is reduced. Note that by construction, d(v) − d′F (v) is the
weight of γ.

�

Corollary 5.2. A presentation P satisfies condition τ ′ if and only if each directed
cycle in Γ(P ) of length at least 3 has weight greater than or equal to 2. A presen-
tation P satisfies condition τ ′

< if and only if each directed cycle in Γ(P ) of length
at least 3 has weight greater than 2.

Note that corollary 5.2 gives an algorithm to check if a finite presentation satisfies
τ ′, for it is possible to use Dijkstra’s algorithm to find the least weight of a directed
cycle of length at least k in a directed graph with positive edge weights. This can
be done by constructing an auxiliary graph having (k + 1) vertices for each vertex
in the original graph. For more details on this see the implementation in the GAP
package SmallCancellation [29].

From proposition 5.1 we deduce the following result, which is used in the proof
of theorem 3.4.

Corollary 5.3. If a finite presentation P satisfies condition τ ′
< there is a constant

N < 0 such that κ(v) � N for every diagram Δ and every interior vertex v ∈ Δ.

Proof. Since the weights are positive, we can take N to be −π times the minimum
weight of a simple directed cycle of length at least 3 in Γ(P ). Note that, since the
graph Γ(P ) is finite, there is a finite number of such cycles. �

The following examples of groups which do not satisfy τ ′ are consistent with our
conjecture that τ ′ − C ′( 1

2 ) implies a quadratic isoperimetric inequality even if the
presentation has relators of different lengths.
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Example 5.4. The presentations A and B from [36] have unsolvable word problem.
A GAP computation using SmallCancellation shows that these presentations do not
satisfy τ ′.

Example 5.5. From [3] we know the Baumslag–Solitar group BS(p, q) has exponen-
tial Dehn function if |p| 	= |q|. Therefore, by theorem 4.2 the groups BS(n, n+ 1) do
not satisfy τ ′. It can be seen that the minimum of d(v) − d′F (v) for v an interior ver-
tex in a diagram for the usual presentation of BS(n, n+ 1) is 2 − 1/(2n+ 3), which
tends to 2 as n→ ∞. Note that BS(n, n) satisfies τ ′ − C ′( 1

2 ) so by theorem 4.2 one
can verify the well-known fact that these groups have quadratic Dehn function.

Example 5.6. In [3, Lemma 11] a family of groups Mc,d is considered and it is
proved that the Dehn function of Mc,d has order nc+d. We have that M1,1 (which is
a RAAG) satisfies τ ′ − C ′( 1

2 ). Some GAP computations suggest that the minimum
of d(v) − d′F (v) for these groups is 23

20 for any (c, d) 	= (1, 1).

Example 5.7. In [3] it is proved that the Dehn function of the group E = 〈b, s, t |
s−1bs = b2, t−1bt = b〉 is at least 2n. This group does not satisfy τ ′ (the minimum
of d(v) − d′F (v) is 8

5 ).

Example 5.8. In [12, chapter 8] it is shown that the Heisenberg group 〈a, b, z | z =
[a, b], [a, z], [b, z]〉 is not automatic. In [11] it is shown that the Heisenberg group
admits a cyclic presentation

P = 〈x0, x1 | x−1
0 x1x0x

−1
1 x−1

0 x−1
1 x0x1, x

−1
1 x0x1x

−1
0 x−1

1 x−1
0 x1x0〉.

For this presentation the minimum of d(v) − d′F (v) is 0. This implies that the
presentation is not DR, there is a reduced spherical diagram with two 0-cells.

It would be interesting to know more about what the minimum of d(v) − d′F (v)
says about a presentation.
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