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The aim of this paper is twofold: the first aim is to formulate and validate a multi-scale
discrete Boltzmann method (DBM) based on density functional kinetic theory for thermal
multiphase flow systems, ranging from continuum to transition flow regime; the second
aim is to present some new insights into the thermo-hydrodynamic non-equilibrium
(THNE) effects in the phase separation process. Methodologically, for bulk flow,
DBM includes three main pillars: (i) the determination of the fewest kinetic moment
relations, which are required by the description of significant THNE effects beyond the
realm of continuum fluid mechanics; (ii) the construction of an appropriate discrete
equilibrium distribution function recovering all the desired kinetic moments; (iii) the
detection, description, presentation and analysis of THNE based on the moments of
the non-equilibrium distribution ( f − f (eq)). The incorporation of appropriate additional
higher-order thermodynamic kinetic moments considerably extends the DBM’s capability
of handling larger values of the liquid–vapour density ratio, curbing spurious currents,
and ensuring mass/momentum/energy conservation. Compared with the DBM with only
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first-order THNE (Gan et al., Soft Matt., vol. 11 (26), 2015, pp. 5336–5345), the model
retrieves kinetic moments beyond the third-order super-Burnett level, and is accurate for
weak, moderate and strong THNE cases even when the local Knudsen number exceeds
1/3. Physically, the ending point of the linear relation between THNE and the concerned
physical parameter provides a distinct criterion to identify whether the system is near or
far from equilibrium. Besides, the surface tension suppresses the local THNE around the
interface, but expands the THNE range and strengthens the THNE intensity away from the
interface through interface smoothing and widening.

Key words: multiphase flow, gas/liquid flows, kinetic theory

1. Introduction

Multiphase flows with phase transitions and heat transfer are ubiquitous in natural and
industrial processes, such as atmospheric phenomena, material and food processing,
petrochemical engineering and bio-medicine, as well as life sciences (Brennen 2005;
Bernaschi, Melchionna & Succi 2019; Zang et al. 2019; Wu, Liu & Wang 2021b).
Therefore, establishing accurate, reliable and efficient models and computational strategies
for predicting their flow behaviour will deepen our understanding of the fundamental
and underlying physical mechanisms behind multiphase flows. Besides major academic
significance as complex phenomena far from equilibrium, they also bear essential
industrial value.

Nevertheless, multi-scale modelling and simulation of such a complex system is a
long-standing challenge (Luo, Xia & Monaco 2009; Bernaschi et al. 2019; Zang et al.
2019). The challenge arises from the common and unique features of these fluids:
(i) complex multi-scale structures and their cross-scale correlations, such as particles,
bubbles, droplets and clusters; (ii) rich and abundant evolving interfaces, such as material
and mechanical interfaces; (iii) complex forces, relaxations and responses, such as
gradient, interparticle and external forces, and the nonlinear coupling among them; (iv)
competition between various spatiotemporal scales and kinetic modes, such as growth,
deformation, breakup, cavitation, boiling and even turbulence.

In general, a multiphase flow system is in a global or local thermo-hydrodynamic
non-equilibrium (THNE) state with fluctuations (Parsa & Wagner 2020), including
significant hydrodynamic and thermodynamic non-equilibrium (HNE and TNE,
respectively) effects that may undermine the validity of macroscopic models, such as the
most commonly used Navier–Stokes (NS) equations. Simplifying assumptions, such as
thermal equilibrium across a liquid–vapour interface during phase separation, can lead to
erroneous predictions (Persad & Ward 2016). A possible solution for accessing detailed
THNE effects is to use particle-based methods, for example, molecular dynamics or the
direct simulation Monte Carlo method (Liu et al. 2017, 2020). However, the spatiotemporal
scales and geometries that the two schemes can afford are extremely small and highly
idealized compared with those of practical applications.

As a mesoscopic approach and a natural bridge connecting microscopic and
macroscopic models, suitably extended versions of the Boltzmann equation can in
principle describe the complex non-equilibrium thermo-hydrodynamics for the full
spectrum of flow regimes (Chapman & Cowling 1990). However, the nonlinearity,
multi-dimensionality, and integro-differential nature of the collision term pose a
formidable challenge to its direct solution. The difficulty in using the original Boltzmann
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equation has prompted the development of approximate and simplified kinetic models that
relinquish much of its computational complexity while preserving its most relevant physics
in point. The versatile lattice Boltzmann method (LBM) (Benzi, Succi & Vergassola 1992;
Chen & Doolen 1998; Wagner & Yeomans 1998; Succi 2001, 2018; Zheng, Shu & Chew
2006; Sbragaglia et al. 2007; Xu et al. 2012; Guo & Shu 2013; Bernaschi et al. 2019;
Falcucci et al. 2021; Huang et al. 2021a; Bhairapurada, Denet & Boivin 2022; Wei et al.
2022) and the recently developed discrete Boltzmann method (DBM) (Gan et al. 2015,
2018, 2019; Lai et al. 2016; Lin et al. 2017; Zhang et al. 2019, 2021; Chen et al. 2020; Xu
et al. 2021a,b,c) belong precisely to this class of modern non-equilibrium methods.

As for the LBM research, there are two complementary branches. The first is a
physics-inspired construction method, while the second is a numerical scheme for solving
partial differential equations, such as the wave equation (Yan 2000; Lai & Ma 2011),
convection–diffusion equation (Du & Liu 2020; Chen et al. 2021b), Poisson equation
(Chai & Shi 2008), Laplace equation (Zhang, Yan & Dong 2009), Fisher equation (Succi
2014), Burgers equation (Elton 1996; Duan & Liu 2007; Liu & Shi 2011), Benjamin–Ono
equation (Lai & Ma 2010), Korteweg–de Vries equation (Wang 2017b; Lan, Hu
& Guo 2019), Klein–Gordon–Zakharov equation (Wang 2019), Zakharov–Kuznetsov
equation (Wang 2017a, 2020), Ginzburg–Landau equation (Zhang & Yan 2010, 2014),
Kuramoto–Sivashinsky equation (Otomo, Boghosian & Dubois 2018) and Schrödinger
equation (Succi 2001; He & Lin 2020). These two branches build on similar, yet not
equal, construction rules. The DBM was developed from the first branch and represents a
mesoscopic modelling method for fluid flows.

Although the original Boltzmann equation and its approximations work only for dilute
gas systems, they can be extended to multiphase flow regimes after incorporating the
non-ideal gas effects through a variety of approaches. Actually, both the LBM and
the DBM are particularly promising in the area of multiphase and multi-component
flows, mainly on account of their kinetic nature, directly inherited from the Boltzmann
equation, which facilitates the inclusion of microscopic physical interactions as compared
to numerical methods based on continuum models.

To date, many LBMs for multiphase flows have been proposed, including the
chromodynamic model Gunstensen et al. (1991), the pseudo-potential model (Shan &
Chen 1993, 1994), the free-energy model (Swift, Osborn & Yeomans 1995; Swift et al.
1996; Xu, Gonnella & Lamura 2003, 2004), the kinetic-theory-based model (He, Shan &
Doolen 1998; He, Chen & Zhang 1999), the forcing model (Sofonea et al. 2004; Gonnella,
Lamura & Sofonea 2007), the phase-field model (Rasin, Miller & Succi 2005), the
entropic kinetic model (Mazloomi M, Chikatamarla & Karlin 2015; Montessori et al. 2017;
Wöhrwag et al. 2018) and the unified collision model (Luo, Fei & Wang 2021). Although
the models are proposed from different perspectives, their common point is the inclusion
of interparticle interactions at the mesoscopic scale. The interparticle interactions are
the underlying engine behind the complex THNE features of multiphase flows. The
aforementioned models and their revised versions have been applied successfully to the
study of fundamental phenomena and mechanisms of multiphase flows in science and
engineering, ranging from droplet evaporation (Ledesma-Aguilar, Vella & Yeomans 2014;
Safari, Rahimian & Krafczyk 2014; Zarghami & Van den Akker 2017; Qin et al. 2019;
Fei et al. 2022) to droplet deformation, breakup, splashing and coalescence (Wagner,
Wilson & Cates 2003; Wang et al. 2015a; Wang, Shu & Yang 2015b; Chen & Deng
2017; Wen et al. 2017, 2020; Liu et al. 2018; Liang et al. 2019; Yang et al. 2022b),
collapsing cavitation (Chen, Zhong & Yuan 2011; Falcucci et al. 2013; Kähler et al. 2015;
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Sofonea et al. 2018; Yang et al. 2020, 2022a), acoustics levitation (Zang 2020), nucleate
boiling (Li et al. 2016, 2018; Fei et al. 2020), ferrofluid and electro-hydrodynamic flows
(Falcucci et al. 2009; Hu, Li & Niu 2018; Liu, Chai & Shi 2019), hydrodynamic instability
(Zhang et al. 2001; Fakhari & Lee 2013; Liang et al. 2014, 2016a; Liang, Shi & Chai 2016b;
Yang, Zhong & Zhuo 2019; Tavares et al. 2021), dendritic growth (Rasin et al. 2005; Rojas,
Takaki & Ohno 2015; Sun et al. 2016a,b), heat and mass transfer in porous media (Chen
et al. 2015; Chai et al. 2016, 2019; Liu et al. 2016; He et al. 2019), Rayleigh–Bénard
convection (Pelusi et al. 2021), active fluid (Cates et al. 2008; Doostmohammadi et al.
2016; Carenza et al. 2019; Negro et al. 2019), isotropic turbulence (Perlekar et al. 2014;
Milan et al. 2020), solid–liquid–vapour phase transition and phase ordering under various
conditions (Osborn et al. 1995; Gonnella, Orlandini & Yeomans 1997; Corberi, Gonnella
& Lamura 1998; Kendon et al. 1999; Sofonea et al. 2004; Gonnella et al. 2010; Coclite,
Gonnella & Lamura 2014; Wang et al. 2017; Ambruş et al. 2019; Busuioc et al. 2020; Chen
et al. 2021c; Huang, Wu & Adams 2021b).

Notwithstanding significant progress, the highly non-equilibrium interfacial thermo-
hydrodynamics, which is strongly associated with the growth kinetics and morphological
evolution of systems, is seldom reported and still poorly understood. This topic has
presented a challenge to the important front of trans-scale modelling and simulation of
multiphase flows.

Recently, we have demonstrated that the DBM offers a novel systematic scheme and a set
of convenient and efficient tools for describing, measuring and analysing simultaneously
THNE effects that cannot be described adequately by traditional hydrodynamic models
(Xu et al. 2012; Gan et al. 2015, 2018; Lai et al. 2016; Zhang et al. 2019, 2021, 2022a;
Chen et al. 2020, 2022a; Liu et al. 2022). The DBM was developed from a branch
of the LBM that aims to describe the non-equilibrium flows from a more fundamental
level and is no longer based on the simple ‘propagation + collision’ lattice gas evolution
scenario. The key point of the DBM is to ensure that the properties to be studied do
not change with model simplification and use the non-conservative kinetic moments of
( f − f (0)) to describe the system state and extract TNE and THNE information (Xu,
Zhang & Zhang 2018a; Xu et al. 2021a,b,c), where f is the distribution function, and
f (0) is the equilibrium distribution function. Therefore, the simplified Boltzmann-like
equation and kinetic moment relations that are not compliant with non-equilibrium
statistical physics are prohibited in the DBM. Further, the DBM uses non-conservative
kinetic moments of ( f − f (0)) to open a phase space where the origin corresponds to
the thermodynamic equilibrium state, and other points correspond to specific THNE
states. The phase space and its subspaces provide a graphic geometric description of
non-equilibrium states. Evidently, each non-conservative kinetic moment of ( f − f (0))

provides its specific contribution to the overall departure from local equilibrium. Hence,
as explained above, the choice of the non-equilibrium moments to be retained is dictated
by the specific problem at hand.

Methodologically, the DBM belongs to the general framework of non-equilibrium
statistical physics, i.e. a specific form of coarse-graining as applied to the physics of fluids
beyond the hydrodynamic level. Specifically, the THNE effects presented by the DBM
have permitted us to recover the main features of the distribution function (Lin et al. 2014;
Su & Lin 2022), to capture various interfacial phenomena (Lin et al. 2014; Lai et al.
2016; Gan et al. 2019), to investigate entropy-increasing mechanisms and their relative
importance (Zhang et al. 2016, 2019), and to clarify some of the fundamental mechanisms
of the fine structures of shock waves, contact discontinuities and rarefaction waves beyond
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the reach of molecular dynamics (Gan et al. 2018; Qiu et al. 2020, 2021; Bao et al.
2022). Kinetic features, such as the unbalancing and mutual conversion of internal energy
at different degrees of freedom, provide appropriate criteria for determining whether or
not higher-order TNE effects should be considered in the modelling, and which level
of DBM should be adopted (Lin et al. 2014; Gan et al. 2015, 2018). In plasma physics,
kinetic features have been used to distinguish plasma shock wave from shock wave in
ordinary neutral flow (Liu et al. 2022). These findings and observations shed light on the
fundamental mechanisms of various compressible flow systems.

As for the more complicated multiphase case, in 2015, we proposed a DBM with a more
realistic equation of state (EOS) to study the HNE and TNE manifestations induced by
interparticle and gradient force during phase transition (Gan et al. 2015). We found that the
maximum of TNE strength can be used as a physical criterion to discriminate the stages of
spinodal decomposition and domain growth. In 2019, we further found that the maximum
of entropy production rate can be used as another physical criterion to discriminate the
two stages (Zhang et al. 2019), whereas these models are suitable only for cases with
weak non-equilibrium effects, or cases in which the Knudsen number is sufficiently small,
including phase separation with a slow quenching rate, shallow quenching depth, limited
liquid–vapour density ratio, weak viscous stress and heat flux, but wide interface width.

Two prominent reasons account for the insufficiency of the model far from equilibrium.
First, constitutive relations are strictly associated with TNE measures, accounting for the
coupling of distinct lengths or time scales, and ultimately determining the accuracy of
the hydrodynamic model. Given that few kinetic moments are satisfied by the discrete
equilibrium distribution function (DEDF), the model in the previous study (Gan et al.
2015) is consistent only with Onuki’s model (Onuki 2005, 2007) for Carnahan–Starling
fluid in the hydrodynamic limit with linear constitutive relations, that is, Newton’s law of
viscosity and Fourier’s law of heat conduction. Nevertheless, linear constitutive relations
result only from the first-order deviation from the thermodynamic equilibrium, and are
inadequate for cases with substantial HNE and TNE effects. Second, although higher-order
TNE measures and their evolution can be extracted from this DBM (Gan et al. 2015),
whether or not they are accurate enough should be carefully estimated, preserved and
improved.

In this study, we aim to develop a higher-order DBM for the multi-scale modelling
of multiphase flow systems ranging from continuum to transition flow regimes. All the
inspiring works on higher-order mesoscopic models for non-equilibrium ideal gas flows
(Philippi et al. 2006; Shan, Yuan & Chen 2006; Zhang, Shan & Chen 2006; Ansumali
et al. 2007; Chikatamarla & Karlin 2009; Xu 2014; Montessori et al. 2015; Ambruş &
Sofonea 2016; Coreixas et al. 2017; Yang et al. 2018; Li, Shi & Shan 2019; He et al. 2021;
Shi & Shan 2021; Shi, Wu & Shan 2021; Zhang et al. 2022a) are out of the scope of
the present work, although they can be extended into multiphase flow systems with the
approaches listed above. Instead, through Chapman–Enskog multi-scale expansion, we
first establish the relationships between TNE measures and the generalized constitutive
relations for viscous stress and heat flux beyond the Burnett level; we formulate specific
expressions with second-order accuracy for viscous stress, heat flux and other higher-order
TNE and THNE quantities that are strictly associated with the evolution of constitutive
relations. Moreover, we determine all the fewest required kinetic moments that the DEDF
should satisfy, and construct three DBMs for multiphase flows near equilibrium and
far from equilibrium by inversely solving the required kinetic moments with efficient
discrete velocity models. Finally, we demonstrate theoretically and numerically that the
capability of the DBM in describing TNE and THNE effects, as well as its multi-scale
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predictive capability, depends on the kinetic moments specifically recovered by the
DEDF.

2. DBM for multiphase flows far from equilibrium

In this section, we first reconsider what the original Boltzmann Bhatnagar–Gross–Krook
(BGK) model (Bhatnagar, Gross & Krook 1954) describes, and place the BGK model
frequently used for various non-equilibrium flows in the proper theoretical perspective
for the description of non-dilute systems. Then we focus on the establishment of the
links among the Boltzmann–BGK equation, extended hydrodynamic models and THNE
phenomena; we determine the necessary kinetic moments to measure THNE effects
and discretize phase space using a moment-matching approach. Finally, we present the
application of DBMs to multiphase flows far from equilibrium.

2.1. Discrete formulation of density functional kinetic theory
Extended hydrodynamics or generalized hydrodynamics models consider non-equilibrium
effects through nonlinear constitutive relations. Correspondingly, high-order kinetic
models consider non-equilibrium effects via higher-order distribution functions deviating
from equilibrium. As a result, they are expected to be applicable to flows in the slip and
transition flow regimes where the NS equations perform poorly (Struchtrup 2005; Gao &
Sun 2014). A popular strategy for deriving such models is to perform a Chapman–Enskog
multi-scale expansion. In a multiphase system, the starting point is the Boltzmann–BGK
equation, supplemented by an appropriate interparticle force (Gonnella et al. 2007):

∂tf + v · ∇f = −1
τ

[ f − f (0)] + I, (2.1)

where f (0) = (ρ/2πT) exp[−v∗ · v∗/2T] in the two-dimensional case, with ρ, T and v∗
the local density, temperature and thermal velocity, respectively. Here, v∗ = v − u, with v

the particle velocity, and u the fluid velocity. Finally, I indicates the kinetic formulation of
interparticle force accounting for the non-ideal gas effects.

At this stage, it is important to point out that the original BGK equation (Bhatnagar et al.
1954) assumes that the net effect of collisions is to relax the velocity distribution function
towards a local equilibrium distribution f (0), over a microscopic velocity-independent
characteristic timescale τ . As a result, it describes molecular collisions in an
averaged statistical form, with the only constraint of preserving mass/momentum/energy
conservation, as well as the H-theorem, to secure convergent evolution towards a local
equilibrium. Strictly speaking, the BGK model is valid only close to equilibrium, i.e.
Kn � 1 and f � f (0), thus covering only a very small portion of the full kinetic space.

To study the kinetic behaviour of non-ideal fluids far from equilibrium, one needs to
account for interparticle interactions beyond binary collisions, as well as non-equilibrium
effects triggered by strong inhomogeneities. This can be achieved by resorting to a
mean-field theory formulation (Stanley 1971), or, more precisely, to a density functional
kinetic theory (DFKT) (Succi et al. 2021). The role of DFKT is twofold: (1) include the
effects of the intermolecular interaction potential, omitted by the Boltzmann equation; (2)
extend the application scope of the BGK model to non-equilibrium phenomena beyond
hydrodynamics. In a pictorial form (see figure 1), one could say that DFKT provides an
‘analytic continuation’ of the BGK model to regions of kinetic phase space not covered by
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Boltzmann equation

Original BGK

BGK-like model in
kinetic method

Figure 1. Schematic diagram of the application scopes of the Boltzmann equation, the original BGK model,
and a BGK-like model in the kinetic method.

the original Boltzmann equation itself. Here, BGK-like refers to various families of model
Boltzmann equations based on single and multi-time relaxation approximations.

In addition, the BGK-like models used widely in the study of complex fluids include
several other physical modelling improvements, for example: relaxation times related to
local macroscopic quantities (Li & Zhang 2004; Li et al. 2015) and collision frequency
(Struchtrup 1997); pseudo-equilibrium distribution functions that contain non-equilibrium
information (Holway 1966; Shakhov 1968; Shan et al. 2006; Gao & Sun 2014; Watari
2016); internal degrees of freedom (Rykov 1975) and even quantum vibrational energy
(Wu et al. 2021a); and appropriate kinetic boundary conditions (Wagner & Pagonabarraga
2002; Sbragaglia & Succi 2005; Sofonea & Sekerka 2005; Toschi & Succi 2005; Benzi
et al. 2006; Chikatamarla, Ansumali & Karlin 2006; Chen, Zhang & Zhang 2013). These
improved models permit to capture a wider range of Knudsen numbers and a higher degree
of non-equilibrium.

The multi-scale multiphase DFKT is expected to contribute to the area of materials
science for energy–environment applications (Succi et al. 2020) and medical purposes
(Xu et al. 2018b; Li et al. 2022). For instance, it may help us: to understand the
non-equilibrium transport processes of multiphase flow in proton exchange membrane fuel
cells for obtaining better performance, and lower cost, emission and noise (Chen, Kang &
Tao 2021a); to investigate the non-equilibrium nucleate boiling mechanism and design
suitable surface structures for enhancing nucleate boiling heat transfer efficiency (Biferale
et al. 2012; Li et al. 2018, 2020; Fei et al. 2020); to optimize heat source location (Dai et al.
2020) and improve the latent heat thermal energy storage rate (Ren 2019; Tian et al. 2022);
to conduct mesoscale simulations of blood flow (Dupin, Halliday & Care 2006; Yan et al.
2012), and generation, transmission and diffusion of bioaerosols (He et al. 2022).

In the present paper, as a specific example of DFKT, the mean-field force I takes the
following form for a liquid–vapour system:

I = −[A + B · v∗ + (C + Cq)v
∗ · v∗] f (0). (2.2)

The coefficients in (2.2) are designed so as to recover the thermo-hydrodynamic equations
proposed by Onuki (Onuki 2005) by using the following contributions of the force term I
to mass, momentum and energy equations at the second order in Knudsen number:

∫ ∞

−∞
I dv = A + 2(C + Cq)T, (2.3)
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−∞
Iv dv = −ρTB, (2.4)

∫ ∞

−∞
I
v · v

2
dv = −2ρT2(C + Cq) − ρTB · u. (2.5)

As a result, A = −2(C + Cq)T , indicates that the forcing term guarantees mass
conservation, and B = (1/ρT)[∇(PCS − ρT) + ∇ · Λ] describes two contributions of I
to the fluid momentum. One comes from the difference between the non-ideal gas EOS
and the ideal gas EOS, and the other comes from the contribution of density gradient
to pressure tensor Λ = K ∇ρ ∇ρ − K(ρ ∇2ρ + |∇ρ|2/2)I − [ρT ∇ρ · ∇(K/T)]I , with
I the unit tensor, and K the surface tension coefficient. Here, we choose
the Carnahan–Starling EOS (Carnahan & Starling 1969) as the non-ideal one,
PCS = ρT((1 + η + η2 − η3)/(1 − η)3) − aρ2 with η = bρ/4, which offers a more
accurate representation for hard sphere interactions than the van der Waals
EOS. A more realistic EOS, such as the Redlich–Kwong (Redlich & Kwong
1949) or the Peng–Robinson (Peng & Robinson 1976), could be incorporated
conveniently into the DBM through modifying the extra force term I for
modelling improvement. Here, C = (1/2ρT2){(PCS − ρT)∇ · u + Λ : ∇u + aρ2 ∇·
u + K[−1

2 (∇ρ · ∇ρ)∇ · u − ρ ∇ρ · ∇(∇ · u) − ∇ρ · ∇u · ∇ρ]} represents a partial
contribution of I to energy. The term Cq = (1/2ρT2)∇ · [2qρT ∇T] permits us to tune
the heat conductivity independently of the dynamic viscosity (non-unit Prandtl number).

Constructing the density, momentum and energy kinetic moments of (2.1) and
recomposing the time derivative, results in the following extended hydrodynamics
equations:

∂tρ + ∇ · (ρu) = 0, (2.6)

∂t(ρu) + ∇ · (ρuu + Π + Δ2) = 0, (2.7)

∂teT + ∇ · [eTu + Π · u + Δ3,1 + κ2 ∇T] = 0, (2.8)

where Π = PCSI + Λ is the non-viscous stress, eT = ρT − aρ2 + K |∇ρ|2/2 + ρu2/2 is
the total energy density, and κ2 = 2ρTq is an additional heat conductivity originated from
Cq and designed to tune the Prandtl number. Also, Δ2 and Δ3,1 are typical non-equilibrium
measures related to the generalized constitutive relations.

Without loss of generality, two sets of non-equilibrium measures can be defined (Xu
et al. 2012; Gan et al. 2015):

Δm,n = Mm,n( f − f (0)) =
∫ ∞

−∞

(
1
2

)1−δm,n

( f (1) + f (2) + · · · )vv · · · v︸ ︷︷ ︸
n

(v · v)(m−n)/2 dv,

(2.9)

Δ∗
m,n = M∗

m,n( f − f (0))

=
∫ ∞

−∞

(
1
2

)1−δm,n

( f (1) + f (2) + · · · )v∗v∗ · · · v∗︸ ︷︷ ︸
n

(v
∗·v∗)(m−n)/2 dv, (2.10)

where Δm,n and Δ∗
m,n are the mth-order tensors contracted to nth-order ones, and δm,n is

the Kronecker delta function. Here, (m − n)/2 is an integer, and when m = n, Δm,n and
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DB multi-scale modelling of non-equilibrium multiphase flows

Δ∗
m,n are referred to simplistically as Δm and Δ∗

m, respectively. Also, Δm,n describes the
combination effects of HNE and TNE, which are usually called the thermo-hydrodynamic
non-equilibrium (THNE) effects, and Δ∗

m,n reflects molecular individualism on top of
organized collective motion, describing only the TNE effects; Δm,n − Δ∗

m,n depicts the
HNE effects, as a supplemental description of macroscopic quantity gradients. Term
Mm,n (M∗

m,n) is the non-central (central) kinetic moment, and f (j) represents the jth-order
derivation from f (0). The decomposition relations among THNE and TNE measures are
derived and displayed in Appendix A:

Δ2 = Δ∗
2,

Δ3,1 = Δ∗
3,1 + Δ∗

2 · u,

Δ3 = Δ∗
3 + (uαΔ∗

2βγ + uβΔ∗
2αγ + uγ Δ∗

2αβ)eαeβeγ ,

Δ4,2 = Δ∗
4,2 + Δ∗

3,1u + uΔ∗
3,1 + Δ∗

3 · u + Δ∗
2 · uu + uΔ∗

2 · u + u2

2
Δ∗

2.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.11)

Here, Δ∗
2 and Δ∗

3,1 are also referred to as the non-organized moment flux (NOMF) and
non-organized energy flux (NOEF), respectively. Compared with the NS and Burnett
equations, Δ∗

2 and Δ∗
3,1 correspond to more generalized viscous stress and heat flux, which

contain all hierarchical TNE effects induced by ( f − f (0)), instead of only f (1) at the NS
level and f (1) + f (2) at the Burnett level. The links among the Boltzmann equation, the
extended hydrodynamic equations and TNE measures have been established so far. Terms
Δ∗

3 and Δ∗
4,2 are the flux of viscous stress and the flux of heat flux, respectively.

However, Δ∗
2 and Δ∗

3,1 are primarily unknown. To obtain the explicit constitutive
relations, we perform Chapman–Enskog expansion on both sides of (2.1) by introducing
expansions

f = f (0) + f (1) + f (2) + · · · , (2.12)

∂t = ∂t1 + ∂t2 + · · · , (2.13)

∇ = ∇1, I = I1, (2.14a,b)

where ∂tj , ∇j and Ij are jth-order terms in Knudsen number ε. Substituting (2.12)–(2.14)
into (2.1), and equating terms that have the same orders in ε, gives

ε1 : ∂t1 f (0) + ∇1 · ( f (0)v) = −1
τ

f (1) + I1, (2.15)

ε2 : ∂t2 f (0) + ∂t1 f (1) + ∇1 · ( f (1)v) = −1
τ

f (2). (2.16)

Performing the velocity moments with the collision invariant vector (1, v, v2/2) on the
two sides of (2.15) leads to the following useful relations between the temporal derivative
∂t1 and the spatial derivative ∇1 at ε1 level:

∂t1ρ = −∇1 · (ρu), (2.17)

∂t1u = −TB − ∇1T − T
ρ

∇1ρ − u · ∇1u, (2.18)

∂t1T = −2(C + Cq)T2 − T ∇1 · u − u · ∇1T. (2.19)

From (2.15), we can obtain f (1) = −τ [∂t1 f (0) + ∇1 · ( f (0)v) − I1]. Using (2.17)–(2.19),
and after some straightforward but rather tedious algebraic manipulation, we acquire the
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following relations between thermodynamic forces and fluxes:

Δ
∗(1)
2 =

∫ ∞

−∞
f (1)v∗v∗ dv = −μ[∇u + (∇u)T − I∇ · u], (2.20)

Δ
∗(1)
3,1 =

∫ ∞

−∞
1
2

f (1)v∗ · v∗v∗ dv = −κ1 ∇T. (2.21)

Equations (2.20) and (2.21) indicate that the first orders of NOMF and NOEF are exactly
the viscous stress tensor and the heat flux at the NS level, respectively; μ = ρTτ is the
viscosity coefficient, and κ1 = 2ρTτ is the heat conductivity. Similarly, we have

Δ
∗(1)
3 =

∫ ∞

−∞
f (1)v∗v∗v∗ dv = −ρTτ(∂αTδβγ + ∂βTδαγ + ∂γ Tδαβ)eαeβeγ , (2.22)

Δ
∗(1)
4,2 =

∫ ∞

−∞
f (1)v∗v∗ v∗ · v∗

2
dv = −3ρT2τ [∇u + (∇u)T − I ∇ · u]. (2.23)

Deeper TNE effects can be accessed by considering the contributions of f (2), and
clarifying relations between ∂t2 and ∇1 at ε2 level according to procedures similar to those
listed in (2.17)–(2.19). Specifically, from (2.16), we acquire

f (2) = −τ [∂t2 f (0) + ∂t1 f (1) + ∇1 · ( f (1)v)]

= −τ ∂t2 f (0) + τ 2 ∂2
t1 f (0) + τ 2 ∂t1[∇1 · ( f (0)v)] − τ 2 ∂t1I1

+ τ 2∇1 · [∂t1 f (0)v + ∇1 · ( f (0)vv) − I1v]. (2.24)

It is clear that f (2) can also be expressed in terms of f (0). As a result, non-conservative
non-equilibrium moments can finally resort to those of f (0), which triggers the requirement
of the higher-order kinetic moments of f (0). The second-order non-organized moment flux
reads

Δ
∗(2)
2 = M∗

2( f (2)) =
∫ ∞

−∞
f (2)v∗v∗ dv. (2.25)

To obtain an explicit expression, relations between ∂t2 and ∇1 at ε2 level should be
clarified. Performing the velocity moments with the collision invariant vector (1, v, v2/2)

on the two sides of (2.16) leads to the following useful relations between the temporal
derivative ∂t2 and the spatial derivative ∇1 at ε2 level:

∂t2ρ = 0, (2.26)

ρ ∂t2u = −∇1 · Δ
(1)
2 , (2.27)

∂t2(ρT + 1
2ρu2) = −∇1 · Δ

(1)
3,1. (2.28)

Using (2.26)–(2.28) to replace the temporal derivative ∂t2 by spatial derivative ∇1 at ε2

level, and after some laborious algebraic manipulation, we acquire expression for Δ
∗(2)
2 .

Likewise, analytical expressions for Δ
∗(2)
3,1 , Δ

∗(2)
3 and Δ

∗(2)
4,2 can be obtained, as illustrated

in Appendix B. The derivation of these expressions is a tough task, so we resort to the
software Maple 18.
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DB multi-scale modelling of non-equilibrium multiphase flows

Furthermore, multiplying (2.1) by v∗v∗ and 1
2v∗ · v∗v∗, and integrating over the whole

velocity space, we obtain the time-evolution equations for viscous stress and heat flux:

∂tΔ
∗
2 + ∂tM∗

2( f (0)) + ∇ · [M∗
3( f (0)) + M∗

2( f (0))u + Δ∗
3 + Δ∗

2u] = −1
τ

Δ∗
2 + M∗

2(I),

(2.29)

∂tΔ
∗
3,1 + ∂tM∗

3,1( f (0)) + ∇ · [M∗
4,2( f (0)) + M∗

3,1( f (0))u + Δ∗
4,2 + Δ∗

3,1u]

= −1
τ

Δ∗
3,1 + M∗

3,1(I). (2.30)

Equations (2.29) and (2.30) suggest that obtaining the expressions of higher-order TNE
quantities, such as Δ∗

3 and Δ∗
4,2, enhances our understanding of the evolution mechanisms

of nonlinear constitutive relations.
To summarize, higher-order constitutive relations of second-order accuracy for viscous

stress and heat transfer can be formulated as Δ∗
2 = Δ

∗(1)
2 + Δ

∗(2)
2 , Δ∗

3,1 = Δ
∗(1)
3,1 + Δ

∗(2)
3,1 ,

which are expected to noticeably improve the macroscopic modelling. Meanwhile,
higher-order TNE measures with second-order accuracy, Δ∗

3 = Δ
∗(1)
3 + Δ

∗(2)
3 , Δ∗

4,2 =
Δ

∗(1)
4,2 + Δ

∗(2)
4,2 , offer more abundant non-equilibrium scenarios from different aspects and

are useful in elucidating the evolutions of higher-order constitutive relations.
In fact, the theoretical expressions of Δ∗

3 and Δ∗
4,2 are also constitutive relations, which

are omitted in the NS equations. In the case of quasi-continuous and near-equilibrium,
it is not a big problem if they are omitted. However, as the degree of discretization
and thermodynamic non-equilibrium increase, ignoring Δ∗

3 and Δ∗
4,2 leads to substantial

errors. Furthermore, the analytical expressions for THNE with second-order accuracy,
Δ2 = Δ

(1)
2 + Δ

(2)
2 , Δ3,1 = Δ

(1)
3,1 + Δ

(2)
3,1, Δ3 = Δ

(1)
3,1 + Δ

(2)
3,1 and Δ4,2 = Δ

(1)
4,2 + Δ

(2)
4,2, can

be acquired from (2.11).

2.2. Discretization of particle velocity space
The velocity space discretization is a critical step in DBM modelling. The above
expressions for TNE measures (see Appendix B) have been derived from (2.1) with a
continuous equilibrium distribution function f (0). To conduct numerical simulation, it
is required to construct a discrete velocity model (DVM) vi to discretize the particle
velocity space, and formulate the DEDF f (0)

i satisfying all the needed kinetic moments,
where i = 1, 2, 3, . . . , N, with N the total number of discrete velocities. Chapman–Enskog
analysis demonstrates that f (0)

i should satisfy the seven kinetic moments (Gan et al. 2015)
M0, M1, M2,0, M2, M3,1, M3, M4,2 in the recovery of the targeted hydrodynamic
equations at the NS level. In cases with fixed specific heat ratio, M0, M1, M2, M3, M4,2
are independent. In the recovery of the targeted hydrodynamic equations at the Burnett
level, f (0)

i should further satisfy M4 and M5,3 (Gan et al. 2018). In the recovery of the
targeted hydrodynamic equations beyond the Burnett level and description of all the TNE
measures displayed in Appendix B with second-order accuracy, f (0)

i should satisfy more
higher-order non-equilibrium moments, as listed in table 1. Among them, M0, M1, M2,
M3, M4, M5, M6,4 and M7,3 are independent (see Appendix C).
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TNE Required higher-order kinetic moments

Δ
∗(1)
3 M4 M5

Δ
∗(1)
3,1 M5,1

Δ
(1)
4,2 M5,3 M6,2

Δ
∗(2)
2 M4 M5,3

Δ
∗(2)
3 M4 M5 M5,3 M6,4

Δ
∗(2)
3,1 M5,1 M5,3 M6,2

Δ
∗(2)
4,2 M5,3 M6,2 M6,4 M7,3

Table 1. Higher-order kinetic moment relations required for deriving the analytical expressions of TNE
measures, where the blue terms are independent constraint relations.

Here, ‘satisfy’ means that the required kinetic moments of f (0)
i , originally in integral

form, can be calculated in discrete summation form

Φn( f (0)) =
∫ ∞

−∞
f (0)Ψ dv =

∑
i

f (0)
i Ψ i, (2.31)

with Ψ = [1, v, vv, vvv, vvvv, vvvvv, 1
2v · vvvvv, 1

2 (v · v)2vvv]T. Equation (2.31) can
be rewritten in matrix form as

Φn = Ψ · f (0), (2.32)

where Φn = (M0, M1, M2, M3, M4, M5, M6,4, M7,3)
T = (M0, M1x, M1y, . . . ,

M7,3yyy)
T is the set of moments of f (0). Also, f (0) = ( f (0)

1 , f (0)
2 , . . . , f (0)

30 )T and Ψ =
(C1, C2, . . . , C30) is a 30 × 30 matrix bridging the DEDF and the kinetic moments
with C i = (1, vix, viy, . . . ,

1
2v4v3

ix,
1
2v4v2

ixviy,
1
2v4vixv

2
iy,

1
2v4v3

iy)
T. Naturally, f (0) can be

calculated as (Gan et al. 2013)

f (0) = Ψ −1 · Φn, (2.33)

where Ψ −1 is the inverse matrix of Ψ . Here, a two-dimensional DVM with 30 discrete
velocities, drawn in schematically figure 2, is used to discretize the velocity space and to
ensure the existence of Ψ −1:

(vix, viy) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cyc : c(±1, 0) for 1 ≤ i ≤ 4,

c(±1, ±1) for 5 ≤ i ≤ 8,

cyc : 2c(±1, 0) for 9 ≤ i ≤ 12,

2c(±1, ±1) for 13 ≤ i ≤ 16,

cyc : 3c(±1, 0) for 17 ≤ i ≤ 20,

3c(±1, ±1) for 21 ≤ i ≤ 24,

c(3, 1), c(1, 3) for i = 25, 26,

c(−2, 1), c(−3, −2) for i = 27, 28
c(−1, −2), c(2, −1) for i = 29, 30,

(2.34)

where ‘cyc’ indicates cyclic permutation. The selection of v25, . . . , v30 is highly flexible
and thus guarantees the existence of Ψ −1 and optimizes the stability of the model. Then
the discrete coarse-grained evolution equation reads

∂tfi + vi · ∇fi = −1
τ

[ fi − f (0)
i ] + Ii. (2.35)
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18 26
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22

2 5

Figure 2. Schematic of the D2V30 discrete velocity model, where v1, v2, . . . , v24 are symmetric vectors, and
v25, v26, . . . , v30 are non-symmetric ones, designed to guarantee the existence of Ψ −1.

It is necessary to point out the following.

(i) The most important step in DBM modelling and simulation is the calculation of f (0)
i .

The Maxwell distribution satisfies an infinite number of moment relations. Requiring
f (0)
i to satisfy all the moment relations is impractical. Which moment relations are

necessary depends on the kinetic properties to be studied, a choice that is typically
dictated by the intensity of the non-equilibrium effects to be described.

(ii) The capability of describing non-equilibrium effects relies on the kinetic moment
relations that the DBM retrieved correctly. Therefore, by satisfying different kinetic
moments, we can systematically construct DBMs for TNE effects at various levels
that correspond to different coarse-grained models and own different application
ranges. For instance, besides the D2V30 DBM, we propose D2V13, D2V15 and
D2V16 multiphase models, and examine their performances in the subsequent
section. Here, the D2V13 (D2V15) model adopts the former 13 (15) discrete
velocities of the D2V30 model. The D2V16 model indicates the one proposed
in (Gan et al. 2013) for compressible flows with a flexible specific heat ratio.
While considering only the translational degrees of freedom, the D2V16 model will
degenerate into the D2V13 model. Independent kinetic moments retrieved by these
models are exhibited in table 2.

(iii) For the same set of grids, the computational cost of the model is proportional to the
number of discrete velocities. So, theoretically, the computational cost of the D2V30
model is twice that of the D2V15 model. Compared with the standard multiphase
lattice Boltzmann model, such as the well-known Shan–Chen D2Q9 model (Wang
et al. 2009), the computational cost of the D2V30 model is about 4.4 times that of
the D2Q9 model, greater than the ratio of the number of discrete velocities of the
two DVMs, 30/9. This originates from the more concise external force term of the
Shan–Chen model.
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(iv) The complexity of corresponding hydrodynamic equations increases sharply with
the degree of TNE, whereas that of the DBM does not have a significant increase.
We can formulate the DBM with the desired order of accuracy by incorporating more
needed kinetic moments into Φn, and perform simulations without knowing the
exact form of the hydrodynamic equations. For example, the D2V30 model satisfies
8 moment relations listed in table 2, and describes viscous stress and heat flux
with third-order accuracy. If one wants to achieve fourth-order accuracy, then the
physical model needs to further satisfy higher-order moment relations M6 and M7,5.
Then the independent ones are M0, M1, M2, M3, M4, M5, M6 and M7,5. For a
two-dimensional case, these moment relations have 34 independent components,
so a D2V34 model is sufficient to discretize the phase space. Compared with the
D2V30 model, the computational cost of the D2V34 model is increased by only
13.33 %.

(v) The Chapman–Enskog expansion acts as a bridge between the kinetic description
given by the DBM and continuum mechanics non-conserved macroscopic
dissipation and the conserved variables. Through it, we can determine directly
and strictly the minimal physical requirements, and confirm the invariable moment
sets Φn for modelling a given non-equilibrium state. We also point out that from
the perspective of perturbation theory, conducting Chapman–Enskog multi-scale
analysis corresponds to imposing a disturbance on the equilibrium system. The
convergence of Chapman–Enskog multi-scale expansion corresponds to the system
returning to its equilibrium state. If the disturbance is too strong, such as due to the
emergence of very steep gradients, leading to the divergence of the Taylor expansion
of the distribution function, then the disturbance may trigger new structures or
modes, and the Chapman–Enskog analysis fails. Fortunately, in the multiphase flow
system, due to the existence of the interface with a certain width, the gradient of
the macroscopic quantity is more gentle than that in the high-speed compressible
single-phase system, especially in the low-speed multiphase flow with large surface
tension.

(vi) Strictly speaking, the discretization of continuous space inevitably brings
non-physical symmetry breaking, and is a source of physical and numerical
inaccuracies in the description of the system. Coarse-grained physical modelling
is inherently a trade-off. The properties to be studied must be preserved during
model simplification, beyond scope of the given study can be sacrificed. Of the many
options available to meet the research needs of the current problem, the simplest
or most economical is often the first choice. The moment matching approach,
shown in (2.31), affords the minimal discrete velocity sets for solving Φn, because
the number of discrete velocities just equals the number of independent kinetic
moment relations. Therefore, physically, the DBM proposed in this way features the
highest computational efficiency. These outstanding advantages make the DBM a
particularly appealing methodology for investigating non-equilibrium flows. We can
also build a more symmetrical DVM by increasing the number of discrete velocities.
For example, we can construct a DVM through Hermite expansion (Shan et al. 2006;
Zhang et al. 2006; Gan et al. 2008; Li et al. 2019; Shi et al. 2021) so that the
DVM has better spatial symmetry at the cost of increasing the number of discrete
velocities. In this paper, we have chosen the simplest form matching the relevant
physical constraints for the problems at hand.

(vii) For bulk flow far from the boundary, the DBM includes three main pillars, described
in the Abstract. For near-wall flow, the mechanism for THNE may be greatly
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DVMs Satisfied independent kinetic moments

D2V13 M0, M1, M2, M3, M4,2
D2V15 M0, M1, M2, M3, M4,2, M5,1
D2V16 M0, M1, M2,0, M2, M3,1, M3, M4,2
D2V30 M0, M1, M2, M3, M4, M5, M6,4, M7,3

Table 2. Discrete-velocity models and corresponding independent kinetic moments.

different from that for bulk flow, and consequently, a fourth pillar, construction of
kinetic boundary conditions, is necessary. A DBM for slip flow is referred to in
Zhang et al. (2022b).

(viii) The present work belongs to the category of single-component miscible
multiphase flow. There are several works on DBM modelling and simulation of
multi-component miscible fluid flows (Lin et al. 2016, 2017, 2021; Zhang et al.
2020). The extension of the present work to a multi-component immiscible fluid
system is currently under consideration. For multi-component immiscible fluid
flows, self-aggregation still occurs between different phases, and surface tension still
exists between different components. The core of DBM modelling for immiscible
multiphase flow is the incorporation of (a) intermolecular interaction in the same
component, and (b) intermolecular interaction between different components.

3. Numerical simulations and analysis

In this section, we first validate DBMs at various levels via three benchmarks
related to the equilibrium properties in bulk regions. We then evaluate carefully the
multi-scale predictive capability of the DBMs by investigating THNE features around
the liquid–vapour interface. Finally, we study the effects of relaxation time and surface
tension coefficient on thermal phase separation from the non-equilibrium aspects. In
all simulations, we set a = 2 and b = 0.4; then the critical density and temperature are
ρc = 1.30444 and Tc = 1.88657, respectively. To improve the numerical stability and
accuracy, the windowed fast Fourier transform (FFT) scheme with 16th-order precision
(Gan et al. 2011, 2012b, 2015) is utilized to discretize the spatial derivatives, and the
second-order Runge–Kutta scheme is used to calculate the temporal derivative. Notably,
the periodic boundary condition is imposed inherently in the x and y directions because
of the adoption of the FFT scheme. For a system with non-periodic boundary conditions,
the FFT scheme can also be applied as long as the mirror operation is performed on the
non-periodic boundary (Gan et al. 2012a), at the cost of doubling the calculation amount.
All the parameters used here are dimensionless. Please refer to Zhang et al. (2019) for
recovery of the actual physical quantities from the numerical results.

3.1. Verification and validation

3.1.1. Liquid–vapour coexistence curve
Here, the liquid–vapour coexistence curve test is used to check if the newly constructed
DBMs can reproduce the correct equilibrium thermodynamics of the Carnahan–Starling
system. For the problem considered, the initial conditions are (ρ, T, ux, uy) =
(ρl, 1.82, 0.0, 0.0) if Nx/4 < x ≤ 3Nx/4, otherwise (ρ, T, ux, uy) = (ρv, 1.82, 0.0, 0.0),
where ρl = 1.9643 and ρv = 0.7569 are the theoretical liquid and vapour coexisting
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Figure 3. Comparisons of the coexisting densities predicted by various DBMs and Maxwell construction.

densities at T = 1.82. Parameters are τ = 10−4, K = 1.5 × 10−4, Pr = 0.01, Nx × Ny =
128 × 1, c = 1.25, Δt = 3 × 10−5 and Δx = Δy = 4 × 10−3 for the D2V13, D2V15 and
D2V30 models. But in the D2V16 model, the minimum spatial step that stabilizes the
simulation is Δx = Δy = 5 × 10−3. The initial temperature drops by 0.01 when a steady
state has been reached, i.e. |(u2

x + u2
y)

1/2|max < 10−6. Figure 3 displays the phase diagrams
calculated from the DBM simulations and Maxwell construction. In each panel, the two
sets of results are in good agreement with each other. However, the maximum density ratio
Rmax = ρmax/ρmin and the lowest reduced temperature Trmin = Tmin/TC that each model
can undergo are quite different.

The more the moment relations maintained by the DBM, the larger the maximum
density ratio and the lower the minimum reduced temperature that the model can attain.
Specifically, in the D2V13 model, Rmax = 278.9 with the maximum relative error in
density ε = |ρDBM − ρExact|/ρExact = 0.48 % in the vapour branch (εmax = 0.28 % for the
D2V30 model under the same density ratio), whereas in the D2V30 model, Rmax can reach
up to 404.1 and Trmin reduces to 0.53 with ε = 1.12 % in the vapour branch.

There are several reasons that account for the fact that the incorporation of higher-order
kinetic moments improves the density ratio that the model can sustain. First, physically, the
incorporation of higher-order moment relations makes the DBM model more approximate
to the continuous Boltzmann–BGK equation with an external force term; that is, the
model is more physical. Second, the incorporation of higher-order moment relations
makes the DBM more accurate in describing non-equilibrium effects, which greatly
affects the computational accuracy and stability, as shown in figure 11. Third, the
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Figure 4. (a) Time evolutions of the maximum velocity umax calculated from various DBMs. (b) Time
evolutions of the entropy increase rate.

higher-order model is more capable of ensuring the positive entropy increase rate during
the evolution process, with the entropy growth rate defined as (Zhang et al. 2019)
dS/dt = ∫

(Δ∗
3,1 · ∇(1/T) − (1/T)Δ∗

2 : ∇u) dr. Fourth, the incorporation of higher-order
moment relations is equivalent to adopting more discrete velocities to discretize the phase
space. As the number of discrete velocities increases, the fluctuations of distribution
function δf and the spatial gradient of distribution function ∇f decrease, which makes
the higher-order model more stable. Lots of numerical examples suggest that the stability
improvement of the higher-order model compared to lower-order ones is effective not only
for static (or quasi-static) tests, but also for dynamic cases.

3.1.2. Spurious velocity
Figure 4 illustrates the time evolutions of the maximum velocity umax for an initially
non-equilibrium planar interface, obtained from various DBM simulations performed
using the procedure and parameters exhibited in figure 3, except that the initial temperature
is suddenly quenched from 1.45 to 1.10, and the relaxation time is τ = 2 × 10−4. The
spurious velocity, located mainly around the liquid–vapour interface, refers to the residual
velocity, which cannot be further reduced after a long period of evolution (Wagner 2003).
Specifically, for the D2V30 model, spurious velocity refers to the remaining current when
t > 120 in figure 4. The decay before t < 120 is a physical process decided by the initial
condition.

Discarding the early-time transient regime and the very-late-time regime, where umax
stays almost unchanged, we find that umax decreases with time t approximately as
umax ∼ 10−γ t. But the exponent of the D2V30 model (γ � 0.1) is considerably larger
than that of other models (γ ∼ 0.061 ± 0.003). When t > 120.0, umax decays to a
negligible value 10−12 in the D2V30 simulation under the combined effects of NOMF
and NOEF. Figure 4(b) shows time evolutions of entropy increase rate for the decaying
process. When the system temperature is fixed, the entropy increase rate reduces to
dS/dt = − ∫

(1/T)Δ∗
2 : ∇u dr. The slope of the entropy increase rate reflects the speed

at which the system tends towards equilibrium, which is qualitatively consistent with
figure 4(a). The larger the slope of the entropy increase rate, the faster the decay in umax.
Compared with lower-order models, a faster decay in umax obtained from the D2V30 model
is due to a more accurate viscous stress that the model recovers. These findings suggest
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Figure 5. Variations in ρ, ρu and eT in a thermal phase separation process obtained from D2V16 and D2V30
DBMs.

that the retrieval of higher-order kinetic moments in physical modelling makes the DBM
more powerful in inhibiting spurious currents.

3.1.3. Conservativeness of the new model
To examine the conservativeness of the new model, we monitor variations in ρ, ρu
and eT in a thermal phase transition process in figure 5. The initial conditions are
(ρ, T, ux, uy) = (1.5 + Δ, 1.0, 0.0, 0.0), where Δ is a random noise of the amplitude
0.001 acting as heterogeneous nuclei and accelerating the kinetic process. The remaining
parameters are Nx = Ny = 128, τ = 10−3, K = 5 × 10−5 and Pr = 0.1. Even when the
system is quenched instantaneously to a completely unstable state, the two models
maintain Δρ and Δ(ρu) to machine accuracy. Meanwhile, it is found that δ(ρu) is
two orders of magnitude lower than δ(ρ). This is because: (a) δ(ρu) = u δρ + ρ δu;
(b) different from the isothermal phase separation process, the release of latent heat
causes the changing of local temperature. The freedom in temperature results in a more
detailed and stricter local mechanical and thermodynamic equilibrium, consequently
hampering the full development of velocity, especially for the case with large viscosity.
The mean velocity umean is approximately of the order of 10−2 throughout the simulations
that we considered. So uδρ ∼ 10−15. (c) Furthermore, it is reasonable that variations
in ρ(t) and ρu(t) are proportional to their fluctuations, δρ ∝ (ρmax − ρmin) ∼ o(1)

and δu ∝ (umax − umin) ∼ o(10−2), so δu is two orders of magnitude lower than δρ.
Then ρ δu ∼ 10−15.

In our simulations, the average energy density eT = ρT − aρ2 + K |∇ρ|2/2 + ρu2/2 =
−3.000015. Different from Δρ and Δ(ρu), ΔeT(t) oscillates and grows persistently
during the whole procedure mimicked by the D2V16 model. Two reasons account for
the oscillation and growth in ΔeT(t). First, the appearance of numerous liquid–vapour
interfaces in the spinodal decomposition stage induces macroscopic quantity gradients
and accumulated spatial discretization errors. Second, the resulting macroscopic quantity
gradients serve as sources of HNE and TNE that may threaten the validity of the
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lower-order DBM. The maximum deviation of eT(t) is 0.01 for the D2V16 model, while it
is O(10−6) for the D2V30 model, demonstrating that the D2V30 model is more effective
in maintaining energy conservation and more capable of handling typical non-equilibrium
processes. These variations are indicators of model accuracy that significantly affect the
phase morphology, flow field distribution and stability of simulation.

The results for two-dimensional lattices with 13, 15, 16 and 30 velocities indicate
that increasing the order of approximation of the lattice Boltzmann equation enhances
performance in maintaining thermodynamic consistency, energy conservation, and
inhibiting spurious currents.

3.2. Multi-scale model and trans-scale ability
In the DBM modelling, there exist two sets of macroscopic variables, the conservative
set (ρ, ρu, eT ) and the non-conservative counterpart (Δm,n and Δ∗

m,n, m − n ≥ 2), which
vary in diverse time and length scales. Compared with the slowly varying conservative
variables, the THNE quantities are quickly varying non-conservative ones, with extremely
short relaxation times of the order of 10−10 s (Myong 1999). In this subsection, we evaluate
carefully the multi-scale predictive capability of the DBMs for describing THNE features.
Specifically, we determine whether or not the DBM can correctly capture the fast-changing
THNE characteristics around an evolving liquid–vapour interface. Indeed, understanding
precisely the fine structure and the specific status of non-equilibrium state between
two phases at coexistence is of central importance in a variety of fields, because these
non-equilibrium characteristics determine the transport efficiency of mass and energy
across an interface, as well as the growth dynamics and morphological behaviours.

To date, significant progress has been made by pioneers in the non-equilibrium
effects of multiphase flows. Frezzotti et al. comprehensively studied the rich array
of non-equilibrium effects of multiphase flows through solving numerically the
Enskog–Vlasov equation by direct simulation Monte Carlo (Enskog-Vlasov DSMC) and
through the molecular dynamics (MD) method (Frezzotti, Gibelli & Lorenzani 2005;
Frezzotti 2011; Frezzotti & Rossi 2012; Frezzotti et al. 2018; Frezzotti, Barbante & Gibelli
2019), including the non-equilibrium structure of the liquid–vapour interface, velocity
slip at the liquid–vapour boundary, non-equilibrium evaporation, and non-equilibrium
stress. In addition to microscopic MD and mesoscopic DSMC, recently, the extended
macroscopic moment method, in particular the regularized moment method (Struchtrup
& Torrilhon 2003; Struchtrup 2005; Chen et al. 2016; Torrilhon 2016), derived as
approximations of the Boltzmann equation by means of the order-of-magnitude method,
has been developed rapidly and extended to the field of multiphase flows (Struchtrup
et al. 2017; Struchtrup & Frezzotti 2022) by Struchtrup et al. In Struchtrup et al. (2017),
the macroscopic evaporation boundary conditions for regularized 13 (R13) moment
equations have been derived from microscopic interface conditions of the Boltzmann
equation, which extends the application range of the R13 equation to multiphase flows
in the transition regime. More recently, in Struchtrup & Frezzotti (2022), a set of 26
moment equations for the Enskog–Vlasov equation has been derived by using the Grad
moment method, which provides a computationally efficient and functionally unified
approach for ideal and non-ideal fluid flows far from equilibrium. Besides, the coupled
constitutive relations theory was developed to capture the remarkable rarefaction effects
at small scales in the liquid–vapour phase transition processes (Rana et al. 2021).
Meanwhile, the rarefaction effects in a head-on collision of two identical droplets are
investigated via various lattice Boltzmann models with different degrees of precision
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(Chen et al. 2022b). It is found that the rarefaction effects enhance the conversion
from free energy to kinetic energy, and accelerate droplet coalescence. Parsa et al.
presented an original and fundamental molecular dynamics lattice gas (MDLG) approach
connecting lattice Boltzmann methods to physical reality (Parsa & Wagner 2017, 2020;
Czelusniak et al. 2020; Pachalieva & Wagner 2021; Parsa, Kim & Wagner 2021). The
key implementation of MDLG is an embedded coarse-graining procedure, i.e. mapping
an MD simulation onto a lattice Boltzmann framework. It permits us to study any
system that can be simulated with MD, including the non-ideal system with significant
non-equilibrium fluctuations (Parsa & Wagner 2020), since the collision operator is
informed by an underlying MD simulation. This approach can be considered as an
optimal LBM or a more realistic coarse-grained fluctuating method. We stress that these
microscopic (MD), mesoscopic (DSMC, LBM and DBM proposed here) and macroscopic
(high-order moment method, extended hydrodynamics or generalized hydrodynamics
models) models/methods, with different starting points and different emphases, have their
own strengths and insights, and complement each other, but cannot replace each other. In
addition, the developments of these methods have stages.

Although extensive experimental and theoretical studies have been designed and
developed in the past decades to address this issue (Weeks 1977; Evans 1979; Bedeaux
1986; Onuki 2002; Aarts, Schmidt & Lekkerkerker 2004; Lang & Leiderer 2006; Bu,
Kim & Vaknin 2014; Jaensson & Vermant 2018), the early stage of the liquid–vapour
transition, i.e. the spinodal decomposition stage, where non-equilibrium effects are much
more pronounced than the latter domain growth stage, still needs further investigations
from the viewpoint of non-equilibrium thermodynamics. Early studies tend to focus on
conserved quantities and slow variables, because these characteristics are relatively stable
and easy to grasp (Osborn et al. 1995; Gonnella et al. 1997, 2007, 2010; Succi 2001; Xu
et al. 2003; Sofonea et al. 2004; Onuki 2007, 2002; Gan et al. 2011, 2012b; Coclite et al.
2014). The study of these conserved quantities and slow variables provides a basis for the
study of fast-changing behaviour that is particularly relevant to the early stage of spinodal
decomposition, a process still far from being completely understood.

The reason is that these fast-varying and complex THNE quantities springing up in
the spinodal decomposition stage are difficult to measure and analyse. Moreover, related
experiments are costly and time-consuming. Theoretical analysis is usually limited to cases
with numerous simplifying assumptions and generalizations, such as the local equilibrium
assumption, given small deviations from the equilibrium state and linear relationship
between fluxes and forces. How to overcome these limitations is a core problem in physical
modelling (Gurtin & Voorhees 1996; Vilar & Rubi 2001; Schweizer, Öttinger & Savin
2016; Rana et al. 2021).

The definition of any non-equilibrium strength depends on the perspective of the study.
Complex systems need to be investigated from multiple perspectives. If we look at the
system from N angles, then there are N kinds of non-equilibrium strengths. Therefore,
if the N kinds of non-equilibrium strengths are taken as components to introduce a
non-equilibrium strength vector, then it should be more accurate and specific. Below,
we use the four-component vector STHNE = (Δ2, Δ3,1, Δ3, Δ4,2), whose analytical
expressions have been derived, to describe roughly the strength of non-equilibrium.

3.2.1. Weak THNE case
According to the analytical formulas listed in Appendix B and § 2.1, four explicit factors
control the intensities and structures of THNE manifestations, i.e. the relaxation time τ ,
the fluid velocity u, the gradient force, and the interparticle force caused by gradients
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Figure 6. Profiles of hydrodynamic quantities calculated from the D2V30 model at three representative
instants: 0, 20 and 500 iterations.

of macroscopic quantities. The latter are affected implicitly by the initial state and
the duration of evolution, for example, the initial density distribution, the quenching
temperature, the surface tension coefficient, and the Prandtl number. Therefore, by
adjusting these aspects, we can design scenarios with weak, moderate and strong THNE
strengths.

First, we investigate the weak THNE case. The initial state is the equilibrium density
profile ρinitial(x) at T = 1.74, as shown in figure 6(c). The parameters are K = 2.7 × 10−5,
Δt = 2 × 10−5 and Δx = Δy = 5 × 10−3; others are consistent with those in figure 3.
When simulation starts, the system is suddenly quenched to T = 1.0. The profiles of
hydrodynamic quantities, including the chemical potential (Wagner 2006; Wen et al. 2017,
2020) μCS = RT[(3 − bρ/4)/(1 − bρ/4)3 + ln ρ + 1] − 2aρ − K ∇2ρ, calculated from
the D2V30 model at representative instants, are shown in figure 6, where φn represents
the macroscopic quantity after n iterations. The following results have been obtained.
(i) The instantaneous decrease in temperature results in the emergence of steep gradients
in both pressure PCS and chemical potential μCS near the liquid–vapour interfaces (see
figure 6a). (ii) The pressure and chemical potential gradients drive the vapour phase across
the interface towards the liquid phase (see figures 6b,c), contributing to the decrease
(increase) in vapour (liquid) density, and the appearance of remarkable velocity around
the interface. After 20 iterations, the maximum velocity along the x direction, ux−max, is
approximately 0.04, but it exceeds 0.80 after 500 iterations. (iii) With the development of
phase separation, latent heat is released locally to and absorbed by the surrounding liquid
and vapour phases, respectively. These processes lead to violent changes in temperature
and local mechanical imbalance. The maximum temperature difference between the two
phases ΔTmax is negligible at the very beginning of the procedure, but reaches 0.6Tinitial at
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t = 0.01 (500 iterations), which is the largest difference from an isothermal case at a fixed
temperature.

Figure 7 portrays the specific THNE manifestations Δ2xx, Δ3,1x, Δ3xxx, and Δ4,2xx for
figure 6 at t = 4 × 10−4 (20 iterations), where the D2V13 model at the NS level (left
column), the D2V15 model at the NS level (middle column), and the D2V30 model beyond
the third-order super-Burnett level (right column) have been adopted. For the convenience
of comparisons, analytical solutions with the first- and second-order accuracies are plotted
by solid lines. Figure 7 shows the following general characteristics when the system
deviates from thermo-hydrodynamic equilibrium. (i) THNE effects concentrate primarily
in the interfacial regions, where the interparticle force and gradient force dominate, and
disappear in the same manner as the gradients of macroscopic quantities vanish in the
liquid and vapour bulk phases. (ii) Owing to the limited action time of the gradient force
and interparticle force, THNE effects are not fully developed until this moment. (iii) The
first-order THNE, Δ(1)

m,n ∝ τ , is always larger than the second-order THNE, Δ(2)
m,n ∝ τ 2,

demonstrating that Δ(1)
m,n is the principal part of Δm,n and, to some extent, the effectiveness

of the lower-order coarse-grained model. (iv) It is interesting to find that |Δ(1)
m,n + Δ(2)

m,n| is
not larger than |Δ(1)

m,n|, i.e. the second-order THNE invariably acts as negative feedback on
the first-order one, and weakens the total THNE intensity.

Beyond the aforementioned commonalities, the following distinctive performances
among various models should be examined thoroughly. It is clear that even with such
a feeble THNE, the simulation results of the D2V13 and D2V15 models do not match
well, with either the first-order or the second-order theoretical solutions. More explicitly,
the two lower-order models overestimate the THNE level tremendously, especially on the
vapour side and for the xxx component of Δ3. The discrepancies possess peak values
approximately at the locations where the gradient of the most associated physical quantity
reaches its local maximum (minimum).

Two key factors are responsible for the failure of the lower-order DBM in capturing
THNE accurately. On the one hand, to fully describe a given non-equilibrium quantity
Δ

(j)
m,n, the number of the required kinetic moments retrieved exactly by the discrete

equilibrium distribution function f (0)
i increases with increasing m, i.e. the rank of

Δm,n. As shown in table 1, in the formulation of Δ
(1)
3,1, f (0)

i should satisfy the moment

M5,1; when deriving Δ
(1)
4,2, f (0)

i should satisfy higher-order moments M5,3 and M6,2.

On the other hand, additional moment constraints on f (0)
i need to be selected and

guaranteed with increasing j, i.e. the order of accuracy of Δm,n. Concretely, a first-order
accuracy in the description of Δ3 can be achieved by maintaining M4 and M5; while
realizing a second-order accuracy in the description of Δ3, f (0)

i should further retain the
additional thermodynamic one, M6,4 (M5,3 in table 1 is not independent of M5). Table 2
manifests that both the D2V13 and D2V15 models cannot hold these necessary constraint
relationships, even just for the first-order accurate descriptions of Δ

(1)
3,1 and Δ

(1)
4,2. Among

these THNE quantities, the correct description of Δ3 and Δ4,2 requires the retrieval of the
highest-order moment relations. Thus, as expected, the worst simulation results appear in
figures 7(c.i), (c.ii), (d.i) and (d.ii), provided by the two lower-order models.

Compared with the D2V13 model, the supplemental moment M5,1, which is necessary
for the formulation of Δ

(1)
3,1 and maintained by the D2V15 model, plays a fairly

negligible role in improving the numerical precision of Δ3,1x, because the second-order
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Figure 7. Weak case: THNE manifestations calculated from DBMs at various levels and theoretical analysis.
Here, t = 4 × 10−4 (20 iterations) and τ = 10−4.

non-equilibrium effects Δ(2)
m,n cannot be neglected in contrast to the first-order Δ(1)

m,n
during the early stage of spinodal decomposition. Under this condition, considering the
first-order THNE effects only is not recommended. Indeed, at the beginning of the phase
separation, the gradients of temperature and velocity approximately equal zero. As a result,
Δ

(1)
2xx � 0, and Δ

(2)
2xx can be simplified to (T2/ρ)(∂xρ)2 − T2(∂2ρ/∂x2) − ρT2∂xBx. These

higher-order terms in Δ
(2)
2xx do not appear in classical hydrodynamics, but are essential for

modelling a system far from equilibrium (Struchtrup 2005; Struchtrup & Frezzotti 2022).
Other non-equilibrium measures can be analysed similarly. That is, interparticle force and
density gradient force first trigger the second-order THNE, and afterwards, stimulate the
first-order THNE through enlarging velocity and temperature gradients. To evaluate under
which circumstances the higher-order THNE should be taken into account, a characteristic
dimensionless parameter, called the relative THNE strength RTHNE = |Δ(j+1)

m,n /Δ
(j)
m,n|, may

be introduced for the estimation of the relative importance of the (j + 1)th-order THNE
effects to the jth-order ones. The RTHNE for Δ2xx, Δ3,1x, Δ3xxx and Δ4,2xx at the positions
where these non-equilibrium measures take extreme values, are 0.250, 0.349, 0.212 and
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0.252, respectively. At earlier times, such as after 15 iterations, RTHNE is as high as
0.50. Therefore, higher-order DBMs with at least second-order accuracy for Δm,n are
undoubtedly needed, even for cases with faint non-equilibrium effects. Tables 1 and
2 indicate that the D2V30 model satisfies all the needed kinetic moment relations.
Consequently, the D2V30 results are consistent with the theoretical analysis at the second
order of accuracy. In particular, the remarkable deviations in figures 7(c.i) and (c.ii)
disappear in figure 7(c.iii).

3.2.2. Moderate THNE case
As time evolves, the degree of phase separation becomes pronounced, with extended
phase-separating regions and prominent gradients of macroscopic quantities (see dash-dot
lines in figure 6). The non-equilibrium manifestations at the same instant, exhibited in
figure 8, indicate that the system enters into the moderate THNE stage. Compared with
figure 7, the most distinctive difference in figure 8 is the enormous growth in Δm,n,
approximately 10–1000 times larger than in the weak case. For each kind of THNE
quantity, the first-order analytical solution (denoted by green dots) overlaps with the
second-order one (denoted by red solid lines), illustrating that Δ(2)

m,n is negligible compared
with Δ(1)

m,n. Correspondingly, the relative THNE strengths RTHNE for Δ2xx, Δ3,1x, Δ3xxx
and Δ4,2xx are as small as 0.006, 0.002, 0.018 and 0.016, respectively. For Δ2xx, good
agreements between simulations and theoretical solutions are depicted in figures 8(a.i)
and (a.ii). This is understandable because either of the D2V13 and D2V15 models is a
sufficient description of Δ

(1)
2xx. Nevertheless, for Δ3,1x, owing to the lack of indispensable

kinetic moment M5,1 in the D2V13 model, distinct discrepancies are found in figure 8(b.i),
but are absent in figure 8(b.ii), obtained from the D2V15 model that meets the constraint
of M5,1. Similarly, for Δ3xxx and Δ4,2xx, the D2V13 and D2V15 results mismatch the
theoretical profiles, because of the deficiencies in the necessary high-order moments M4,
M5 and M6,2. By contrast, as shown in the third column of figure 8, the D2V30 results
coincide excellently with the theoretical results, regardless of the relative non-equilibrium
intensity. We also stress that if we focus only on the hydrodynamic quantities and
constitutive relations (related to Δ2 and Δ3,1), but not the evolution of the constitutive
relations (related to Δ3 and Δ4,2), then the D2V15 model is reliable and acceptable when
RTHNE is small enough.

3.2.3. Strong THNE case
To further examine the multi-scale ability of the models, we increase the strength of
THNE measures by straightforwardly increasing the relaxation time τ in figure 9. In
addition, another way to control the THNE strength is by adjusting the quenching
depth T/TC, which indirectly affects the non-equilibrium intensity by changing the
gradients of hydrodynamic quantities. With the increasing of THNE intensity, deviations
between lower-order DBM simulations and theoretical solutions become extraordinarily
conspicuous (see the first and second columns of figure 9). The relative THNE strengths
RTHNE for Δ2xx, Δ3,1x, Δ3xxx and Δ4,2yy rapidly reach up to 0.213, 0.248, 0.169 and 0.239,
respectively, manifesting the importance of the second-order THNE and the urgent need
for a higher-order DBM. The D2V30 model meets the minimum physical requirements
in describing accurately the concerned THNE quantities. Therefore, the reasonable
agreements between D2V30 simulations and corresponding theoretical solutions in the
weak, moderate and strong THNE cases demonstrate comprehensively that the D2V30
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Figure 8. Moderate case: non-equilibrium manifestations calculated from DBMs at various levels and
theoretical analysis. Here, t = 0.01 (500 iterations) and τ = 10−4.

DBM is indeed a multi-scale model and possesses better trans-scale ability than the D2V13
and D2V15 models.

To assess the application range of the DBM more completely, we resort to the Knudsen
number, a dimensionless parameter generally used to characterize non-equilibrium or
rarefaction degree of flows, and classify various flow regimes. The Knudsen number
Kn = λ/L is defined as the ratio of the mean free path λ = csτ to a characteristic length
that we focus on, L = Θ/|∇Θ|, where cs is the local speed of sound, and Θ is a
physical quantity. The maximum Knmax values calculated by density for cases with weak,
moderate and strong THNE effects are 0.008, 0.015 and 0.141, respectively, all beyond the
application scope of NS equations. Evidently, the applicable range of the D2V30 model
has been extended into the early transition regime.

3.3. Effects of relaxation time on TNE
In this subsection, we investigate the multi-scale limit of the D2V30 model through
exploring whether the model can correctly reproduce higher-order constitutive relations
for multiphase flows over a wide range of relaxation times and Knudsen numbers.

951 A8-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

84
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.844


Y. Gan, A. Xu, H. Lai, W. Li, G. Sun and S. Succi

0.08

0.06

0.03

0

–0.03

–0.06

0.4

0.2

0

–0.2

–0.4

0.1

0

–0.1

–0.2

0.04

–0.04

0

(a)

(b)

(c)

(d )

Δ
4
,2
yy

Δ
3
xx
x

Δ
3
,1
x

Δ
2
xx

D2V13

mnΔ(1)

+mnΔ(1)
mnΔ(2)

D2V15

mnΔ(1)

+mnΔ(1)
mnΔ(2)

D2V30

mnΔ(1)

+mnΔ(1)
mnΔ(2)

(i) (ii) (iii)

(i) (ii) (iii)

(i) (ii) (iii)

28

0.06

–0.06

0

32 36 40

(i) (ii) (iii)

0 32 64

x
96 128/0 32 64

x
96 128/0 32 64

x
96 128

Figure 9. Strong case: non-equilibrium manifestations calculated from DBMs at various levels and
theoretical analysis. Here, t = 0.006 (300 iterations) and τ = 10−3.

Essentially, the accurate description of constitutive relations is of fundamental importance
to the simulation of highly non-equilibrium multiphase flows (Struchtrup 2005). It is the
constitutive relations that determine directly the multi-scale ability and accuracy of a
model. For this purpose, in figure 10, we exhibit the effects of relaxation time τ on the
two typical TNE manifestations: viscous stress (left column) and heat flux (right column)
at t = 0.01, where the initial conditions and parameters in figure 7 are used, except for
K = 5 × 10−5. To be seen is that the magnitudes of Δ∗

2xx and Δ∗
3,1x, and the discrepancies

between DBM simulations and the second-order theoretical solutions, increase as τ

increases. Specifically, for the case with τ = 3 × 10−3, excellent coincidences can be
observed between the two counterparts. When τ increases to 4 × 10−3, good agreements
can be found, whereas when τ further increases to 5 × 10−3, noticeable oscillations and
distinctions, labelled by green rectangles, emerge around the interfaces in figures 10(c.i)
and (c.ii), respectively.

Apart from the relative TNE intensity RTNE = |Δ∗(j+1)
m,n /Δ

∗(j)
m,n |, the aforementioned TNE

discrepancy between DBM simulation and theoretical solution, κDis = Δ∗
DBM − Δ∗

Exact,
or the relative TNE discrepancy RDis = |(Δ∗

DBM − Δ∗
Exact)/Δ

∗
Exact| can be regarded as
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Figure 10. Effects of relaxation time on typical TNE manifestations: viscous stress (left column) and heat
flux (right column).

a non-equilibrium criterion for assessing the effectiveness of a coarse-grained model
and appropriateness of the coarse-graining process, as shown in § 2. In real simulations,
only when RTNE or RDis is negligibly small is the proposed DBM physically sufficient
and appropriate. Otherwise, a higher-order DBM that considers higher-order TNE effects
should be adopted. Thus from this point of view, the critical relaxation time for the D2V30
model is τC = 4 × 10−3 with respect to this standard test. When τ > τC, the present
model is ineffective and unacceptable, and contributions of high-order departures from
equilibrium distribution function f (j) (j > 2) should be considered in physical modelling.

Figure 11 further demonstrates that higher-order constitutive relations are necessary for
obtaining accurate hydrodynamic quantities and fine structures of material and mechanical
interfaces as the degree of non-equilibrium deepens (τ = 4 × 10−3), where ϕM − ϕN
represents the hydrodynamic quantity difference calculated from models with M and N
discrete velocities. The maximum relative error in the velocity profile is 28.4 % at this
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Figure 11. Hydrodynamic quantities calculated from the D2V30 model, and the corresponding differences
among the D2V30, D2V15 and D2V13 models at t = 0.01 when τ = 4 × 10−3.

moment, typically located at the highly non-equilibrium regime, but quickly reaches up to
70.0 % after 200 iterations with the accumulation of errors. This kind of error, belonging to
the physical modelling aspect, cannot be reduced or eliminated by improving the accuracy
of the algorithm. The inaccuracy of the D2V13 and D2V15 models is due to the crucial
missing of some necessary higher-order moments required for recovering f (j) (j ≥ 2).

Subsequently, we illustrate the effects of relaxation time on the slowly and quickly
varying variables in figure 12. Figures 12(a,b) demonstrate how relaxation time τ affects
the maximum viscous stress Δ∗

2xx−max and the maximum heat flux Δ∗
3,1x−max. Clearly,

τ strengthens the intensities of Δ∗
2xx−max and Δ∗

3,1x−max in the same manner. The
relationship between Δ∗

2xx−max (Δ∗
3,1x−max) and τ can be divided into two stages: linear and

nonlinear. When τ ≤ τ0, Δ∗
2xx−max (Δ∗

3,1x−max) increases linearly with τ , Δ∗
2xx−max = B2τ

(Δ∗
3,1x−max = B4τ); when τ > τ0, the linearization is no longer valid, and the dependence

of Δ∗
2xx−max (Δ∗

3,1x−max) on τ can be fitted by Δ∗
2xx−max = A1 + B1τ

2/3 (Δ∗
3,1x−max =

A3 + B3τ
2/3), manifesting the necessity of higher-order constitutive relations for a system

far away from equilibrium. The fitting parameters are A1 = −0.006, B1 = 4.889, B2 =
45.000, A3 = −0.014, B3 = 8.231 and B4 = 69.291. Of course, the ending point of the
linear constitutive relations provides a distinct criterion to identify whether the system
is near or far from equilibrium. Figure 12(c) shows distributions of the local Knudsen
number Kn(x) with various τ . Similar to the behaviours of THNE, Kn(x) becomes more
pronounced in the interfacial region, and reaches its maximum at the point at which the
gradient of quantity attains its peak value; it vanishes exponentially in the bulk of the liquid
and vapour regions. The maximum interface Knudsen number Knmax calculated from
density exceeds 1/3, indicating that the D2V30 model is valid in the transition flow regime.
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Figure 12. Effects of relaxation time on the maximum viscous stress (a), the maximum heat flux (b),
distributions of the local Knudsen number (c), the maximum Knudsen number (d), distributions of viscous
stress (e), distributions of heat flux ( f ), the Knudsen number calculated from viscous stress (g), and the
Knudsen number calculated from heat flux (h).

Different from the ideal gas system and the effects of surface tension, the relaxation time
τ only enlarges the amplitude of Kn, but does not extend the non-equilibrium region,
or broaden the characteristic length scale of a system, resulting in the approximately
linear dependence of Knmax(ρ, T, Pcs, ux) on τ , as shown in figure 12(d). This is because
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the slowly varying variables appear to be slightly affected (for ux(x), see the legend of
figure 12d) or basically unaffected (for ρ(x), T(x), PCS(x), not shown here) by relaxation
time until this moment, but noteworthily smoothed by the surface tension coefficient (see
figures 13c,d). From this perspective, the interface Knudsen number calculated from the
slowly varying quantity cannot be viewed as a qualified parameter to characterize the
non-equilibrium behaviours at the early stage of phase separation.

To solve this issue, we therefore resort to the quickly varying quantities, i.e. the
TNE measures, and Knudsen numbers calculated from them. Figures 12(e) and 12( f )
show effects of the relaxation time on viscous stresses and heat fluxes, where symbols
represent DBM simulation results, and solid lines indicate the corresponding theoretical
estimates. As shown in figures 12(e,f ), the relaxation time substantially improves the
magnitudes of TNE measures and changes their structures. The characteristic length
scales are extraordinarily sensitive to relaxation time, position and time. Figures 12(g,h)
suggest that the relaxation time significantly enhances the maximum Knudsen numbers
calculated from viscous stress, Knmax(Δ

∗
2xx) (figure 12g), and heat flux, Knmax(Δ

∗
3,1x)

(figure 12h). The KnTNE ∼ τ relation behaves qualitatively similarly to the one between
Δ∗

2xx−max (Δ∗
3,1x−max) and τ . The moderate growth in KnTNE when τ > τ0 results from the

second-order TNE effect that restrains the total TNE intensity.

3.4. Effects of surface tension on TNE
Here, the focus is on how and to what extent surface tension affects the dynamic patterns
and TNE features. Figures 13(a) and 13(b) show the viscous stresses and heat fluxes at
t = 0.01 for cases with various surface tension coefficients K, where symbols stand for
simulation results, and solid lines represent the corresponding second-order analytical
solutions. The initial conditions and other parameters are the same as those in figure 9. As
shown, the surface tension effects are threefold, restraining the local TNE intensity near the
interface, but expanding the TNE range and strengthening the TNE intensity away from the
interface (see the solid lines and the red arrows in legends for details), through interface
smoothing and extending. This result can also be verified by figures 13(c,d), where the
maximum of Kn decreases but the region with non-zero Kn increases with K, as a result
of the capillary wave broadening. When K varies in the interval [3 × 10−5, 18 × 10−5],
the dependence of Knmax(ρ) and Knmax(T) on K can be fitted by Knmax(ρ) = A9 + B9/K
and Knmax(T) = A10 + B10/K, respectively, with A9 = 0.013, B9 = 3.422 × 10−6, A10 =
−0.003, and B10 = 1.588 × 10−6. The high sensitivity of density profile to surface tension
coefficient (see the legend of figure 13d) is due mainly to the Λ term in (2.2) that is linearly
proportional to K.

Accordingly, as plotted in figures 13(e, f ), the maxima of Δ∗
2xx and Δ∗

3,1x decrease
synchronously with K approximately as Δ∗

2xx−max = A11 + B11/K1/2 and Δ∗
3,1−max =

A12 + B12/K, with A11 = −0.023, B11 = 4.667 × 10−4, A12 = 0.008 and B12 = 3.711 ×
10−6. In other words, large resistances to mass and heat transfers appear at the interface,
and increase with the surface tension coefficient. The suppressive effect of surface tension
on heat flux is much stronger than that on viscous stress at a small Prandtl number.
We further examine the effects of surface tension on TNE in terms of the capillary
number Ca, which denotes the ratio between viscous force and interfacial tension,
Ca = μuC/σ , with uC the characteristic velocity, and σ the interfacial tension between
liquid and vapour phases. For a planar interface, σ can be computed specifically as
σ = K

∫ ∞
−∞(∂ρ/∂z)2 dz. Figures 13(g,h) show relations among TNE measures and the
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Figure 13. Effects of surface tension coefficient on the distributions of viscous stress (a), heat flux (b), the
local Knudsen number (c), the maximum of Knudsen numbers calculated from density and temperature (d),
the maximum viscous stress (e), and the maximum heat flux ( f ). Also, the relation between the maximum
viscous stress and the maximum Capillary number (g), and the relation between the maximum heat flux and
the maximum Capillary number (h).

maximum capillary number Camax. Clearly, Δ∗
2xx−max and Δ∗

3,1x−max increase with

increasing Camax. The two relations can be fitted by Δ∗
2xx−max = A13 + B13 Ca1/2

max and
Δ∗

3,1−max = A14 + B14 Camax, with fitting parameters A13 = −0.021, B13 = 3.761, A14 =
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−0.007 and B14 = 249.513. The diametrically opposite trends in figures 13(e) and 13(g)
(also figures 13( f ,h)) are due to the inverse relation between Camax and K, Camax ∼ K−1.

4. Conclusions and remarks

From the perspective of kinetic theory, the transport properties of a flowing system are
described by the distribution function f or by the full sequence of its kinetic moments. The
conservative kinetic moments of f include the density, momentum and energy. Acquisition
of these conservative kinetic moments is equivalent to knowing only the equilibrium
distribution function f (0), namely perfect fluids free from dissipative effects. How and to
what extent the system deviates from the thermodynamic equilibrium remains completely
unknown at this stage.

To know the distribution function f is equivalent to knowing all the kinetic moments
of f , which is neither possible nor necessary for the vast majority of situations. Which
kinetic moments need to be known for multi-scale modelling of complex flows is the
first key question that the DBM endeavours to address. The second is how to detect,
describe, present and analyse THNE states. Along this line, we present a framework for
constructing multi-scale discrete Boltzmann models for thermal multiphase flows ranging
from continuum to transition flow regimes. The DBM is a straightforward and efficient
kinetic moment-matching method, for bulk flow, whose basic framework consists of three
fundamental steps: (i) establishment of the formal links with the modified continuous
Boltzmann–BGK equation, the extended hydrodynamic equations and the sought
thermo-hydrodynamic non-equilibrium (THNE) phenomena under consideration; (ii)
formulation of the THNE measures; and (iii) discretization of the particle velocity space
for the construction of the discrete equilibrium distribution function. In addition, phase
space manifolds spanned by the independent components of non-conservative kinetic
moments of ( f − f (0)) are introduced to describe the corresponding non-equilibrium states
and effects. The concept of metric distance from the origin in such phase space is extended
to describe intuitively the non-equilibrium depth. The concept of metric distance between
two points in such phase space is extended to describe intuitively the difference between
two states. For near-wall flow, one more step, construction of kinetic boundary conditions,
is needed.

In the case of the validity of Chapman–Enskog theory, step (ii) permits us to select
the minimum physical requirements for describing the THNE quantities of interest to
the desired order of accuracy, that is, it determines the fewest required kinetic moments
Φn = (M0, M1, . . . , Mn)

T that the discrete equilibrium distribution function should
retrieve during the coarse-grained physical modelling process. It also provides valuable
byproducts: higher-order constitutive relations and the most relevant higher-order THNE
manifestations that are expected to improve the macroscopic modelling and enhance the
understanding of dynamic constitutive relations.

The set of the fewest kinetic moments offers a unique perspective to investigate
the non-equilibrium behaviour of the ‘mesoscale’ or ‘dilemma’ situations where the
continuum modelling fails and the molecular dynamics method lacks sufficient power
to reach up to the scales of interest. The research perspective and modelling accuracy
depend on the specific elements of moment sets, and can be adjusted and improved
in time. For instance, to access stronger non-equilibrium effects, one needs to include
more higher-order moment relations into Φn, so that the discrete Boltzmann model
becomes more consistent with the continuous Boltzmann equation far from equilibrium.
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Importantly, the computational complexity of the DBM increases only mildly in the
process, as opposed to the case of generalized hydrodynamics, such as the Burnett or
the super-Burnett equations.

As model examples, two-dimensional discrete Boltzmann models with 13, 15 and
30 discrete velocities at Navier–Stokes and beyond Burnett levels have been proposed
and evaluated. It is found that the incorporation of additional higher-order kinetic
moments helps to enhance the liquid–vapour density ratio that the model can hold, to
curb spurious currents around the interface, and to ensure better mass, momentum and
energy conservation in phase-separating systems. The multi-scale predictive capability
of the discrete Boltzmann model to describe THNE features increases with the number
of independent kinetic moments included by the model. As fast-varying variables,
the thermodynamic and THNE measures provide more detailed information on the
non-equilibrium multiphase flow system than methods based on macroscopic conserved
quantities alone, thereby shedding new light on these complex states of flowing matter
far from equilibrium. For example, the present work helps in preparing the cognitive
basis for subsequent experimental research, and provides theoretical guidance for further
experimental design, observation and analysis.

Future work includes: a more complete comparison among DBM results, high-order
moment method (Struchtrup & Frezzotti 2022), particle-based method (Frezzotti et al.
2018, 2019) and experimental results; the incorporation of the external force in a more
fundamental way; the construction of appropriate kinetic boundary conditions (Struchtrup
et al. 2017; Zhang et al. 2022b); and consideration of the case with faster phase
separation, say the phase transition time scale is comparable to the molecular thermal
relaxation.
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Appendix A. Determination of the relations among THNE and TNE measures

According to the definitions in (2.9) and (2.10), Δm,n describes the combination effects
of thermodynamic non-equilibrium (TNE) and hydrodynamic non-equilibrium (HNE),
which are usually called the thermo-hydrodynamic non-equilibrium (THNE) effects; Δ∗

m,n
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reflects molecular individualism on top of organized collective motion, describing only the
TNE effects. Next, we list the relations among them:

Δ∗
2 = M∗

2( f − f (0)) =
∫ ∞

−∞
( f − f (0))v∗v∗ dv

=
∫ ∞

−∞
( f − f (0))(v − u)(v − u) dv

=
∫ ∞

−∞
( f − f (0))(vv − vu − uv + uu) dv

= Δ2 −
∫ ∞

−∞
( f − f (0))vu dv −

∫ ∞

−∞
( f − f (0))uv dv +

∫ ∞

−∞
( f − f (0))uu dv

= Δ2 −
[∫ ∞

−∞
( f − f (0))v dv

]
u − u

[∫ ∞

−∞
( f − f (0))v dv

]
+

[∫ ∞

−∞
( f − f (0)) dv

]
uu.

(A1)

It is well known that
∫ ∞
−∞( f − f (0)) dv = 0 and

∫ ∞
−∞( f − f (0))v dv = 0, so

Δ∗
2 = Δ2. (A2)

We have

Δ∗
3,1 = M∗

3,1( f − f (0)) =
∫ ∞

−∞
( f − f (0))v∗ v∗ · v∗

2
dv

=
∫ ∞

−∞
( f − f (0))(v − u)

v2 − 2v · u + u2

2
dv

=
∫ ∞

−∞
( f − f (0))v

v2 − 2v · u + u2

2
dv −

∫ ∞

−∞
( f − f (0))u

v2 − 2v · u + u2

2
dv.

(A3)

It is clear that
∫ ∞
−∞( f − f (0))(v2/2) dv = 0, hence

Δ∗
3,1 =

∫ ∞

−∞
( f − f (0))v

(
v2

2
− v · u + u2

2

)
dv

= Δ3,1 −
∫ ∞

−∞
( f − f (0))v

(
v · u − u2

2

)
dv

= Δ3,1 −
[∫ ∞

−∞
( f − f (0))vv dv

]
· u

= Δ3,1 − Δ∗
2 · u. (A4)

Similarly,

Δ∗
3 = M∗

3( f − f (0)) =
∫ ∞

−∞
( f − f (0))v∗v∗v∗ dv

=
∫ ∞

−∞
( f − f (0))(v − u)(v − u)(v − u) dv
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=
∫ ∞

−∞
( f − f (0))(vvv − vuv − uvv + uuv − vvu + vuu + uvu − uuu) dv

=
∫ ∞

−∞
( f − f (0))(vvv − vuv − uvv − vvu) dv

= Δ3 −
∫ ∞

−∞
( f − f (0))(vuv + uvv + vvu) dv

= Δ3 −
∫ ∞

−∞
( f − f (0))vuv dv − uΔ∗

2 − Δ∗
2u

= Δ3 − (uαΔ∗
2βγ + uβΔ∗

2αγ + uγ Δ∗
2αβ)eαeβeγ (A5)

and

Δ∗
4,2 = M∗

4,2( f − f (0)) =
∫ ∞

−∞
( f − f (0))v∗v∗ v∗ · v∗

2
dv

=
∫ ∞

−∞
( f − f (0))(v − u)(v − u)

(
v2

2
− v · u + u2

2

)
dv

=
∫ ∞

−∞
( f − f (0))(vv − vu − uv + uu)

(
v2

2
− v · u + u2

2

)
dv

=
∫ ∞

−∞
( f − f (0))(vv − vu − uv)

(
v2

2
− v · u + u2

2

)
dv

=
∫ ∞

−∞
( f − f (0))

(
vv

v2

2
− vu

v2

2
− uv

v2

2

)
dv

−
∫ ∞

−∞
( f − f (0))(vvv · u − vuv · u − uvv · u) dv +

∫ ∞

−∞
( f − f (0))vv

u2

2
dv

= Δ4,2 − Δ3,1u − uΔ3,1 − Δ3 · u +
∫ ∞

−∞
( f − f (0))(vuv · u) dv + uΔ2 · u + u2

2
Δ2

= Δ4,2 − (Δ∗
3,1 + Δ∗

2 · u)u − u(Δ∗
3,1 + Δ∗

2 · u)

−
[
Δ∗

3 +
∫ ∞

−∞
( f − f (0))vuv dv + uΔ∗

2 + Δ∗
2u

]
· u

+
∫ ∞

−∞
( f − f (0))(vuv · u) dv + uΔ2 · u + u2

2
Δ2

= Δ4,2 − Δ∗
3,1u − uΔ∗

3,1 − Δ∗
3 · u − Δ∗

2 · uu − uΔ∗
2 · u − u2

2
Δ∗

2. (A6)

951 A8-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

84
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.844


Y. Gan, A. Xu, H. Lai, W. Li, G. Sun and S. Succi

Appendix B. Expressions for the first- and second-order TNE measures

Δ
∗(1)
2αβ

Δ
∗(1)
2xx = −ρTτA1,−1

Δ
∗(1)
2xy = −ρTτa1,1

Δ
∗(1)
2yy = −Δ

∗(1)
2xx

Δ
∗(1)
3,1α

Δ
∗(1)
3,1x = −2ρTτ∂xT

Δ
∗(1)
3,1y = −2ρTτ∂yT

Δ
∗(1)
3αβγ

Δ
∗(1)
3xxx = −3ρTτ∂xT

Δ
∗(1)
3xxy = −ρTτ∂yT

Δ
∗(1)
3xyy = −ρTτ∂xT

Δ
∗(1)
3yyy = −3ρTτ∂yT

Δ
∗(1)
4,2αβ

Δ
∗(1)
4,2xx = −3ρT2τA1,−1

Δ
∗(1)
4,2xy = −3ρT2τa1,1

Δ
∗(1)
4,2yy = −Δ

∗(1)
4,2xx

Δ
∗(2)
2αβ

Δ∗2
2xx/τ

2 = −(2C1A1,−1 + B1,−1)ρT2 − [D1,−1

+Γ (ux)1,−1 + Γ (uy)1,−1]ρT

−T2F(ρ)1,−1 + ρΓ (T)1,−1 + T2

ρ
Γ (ρ)1,−1

Δ∗2
2xy/τ

2 = −(2C1a1,1 + b1,1)ρT2 − (d1,1 + 2E1,1)ρT

−2T2λ(ρ) + 2ρθ(T) + 2T2

ρ
θ(ρ)

Δ
∗(2)
2yy = −Δ

∗(2)
2xx

Δ
∗(2)
3,1α

Δ∗2
3,1x/τ

2 = −4ρT3∂xC1 − [A1,−1Bx + a1,1By + 12C1∂xT

+F(ux)1,−1 + 2λ(uy)]ρT2 + (A1,−3∂xT + a1,3∂yT)2ρT
Δ∗2

3,1y/τ
2 = −4ρT3∂yC1 − [a1,1Bx − A1,−1By + 12C1∂yT

−F(uy)1,−1 + 2λ(ux)]ρT2 + (a3,1∂xT + A−3,1∂yT)2ρT

Δ
∗(2)
3αβγ

Δ∗2
3xxx/τ

2 = −6ρT3∂xC1 − [A1,−1Bx + 6C1∂xT + 2λ(uy)]3ρT2

+(A1,−2∂xT + ∂yux∂yT)6ρT
Δ∗2

3yyy/τ
2 = −6ρT3∂yC1 − [A−1,1By + 6C1∂yT + 2λ(ux)]3ρT2

+(A−2,1∂yT + ∂xuy∂xT)6ρT

Δ
∗(2)
3xxy = 2Δ

∗(2)
3,1y − Δ

∗(2)
3yyy

Δ
∗(2)
3xyy = 2Δ

∗(2)
3,1x − Δ

∗(2)
3xxx

Δ
∗(2)
4,2αβ

Δ∗2
4,2xx/τ

2 = −(4C1A1,−1 + B1,−1)3ρT3

−[D10,−2 + Γ (ux)1,−5 + Γ (uy)1,−5 + 4e1,−1 − F(T)7,1]ρT2

+3ρTΓ (T)7,1 − 3T3F(ρ)1,−1 + 3T3

ρ
Γ (ρ)1,−1

Δ∗2
4,2xy/τ

2 = −(4C1a11 + b1,1)3ρT3 − [d1,1 + E1,1 − λ(T)]6ρT2

+18ρTθ(T) − 6T3λ(ρ) + 6T3

ρ
θ(ρ)

Δ∗2
4,2yy/τ

2 = (4C1A1,−1 + B1,−1)3ρT3

+[D2,−10 + Γ (ux)5,−1 + Γ (uy)5,−1 + 4e−1,1 + F(T)1,7]ρT2

+3ρTΓ (T)1,7 + 3T3F(ρ)1,−1 − 3T3

ρ
Γ (ρ)1,−1
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Here, Am,n = m∂xux + n∂yuy, am,n = m∂xuy + m∂yux, Bm,n = m∂xBx + n∂yBy, bm,n =
m∂xBy + n∂yBx, Dm,n = mBx∂xT + nBy∂yT , dm,n = mBy∂xT + nBx∂yT , Em,n = m∂xux∂yux +
n∂xuy∂yuy, em,n = m∂xux∂yuy + n∂xuy∂yux, θ(·) = ∂x(·)∂y(·), λ(·)
= (∂2/∂y∂x)(·), F(·)m,n = m(∂2/∂x2)(·) + n(∂2/∂y2)(·), Γ (·)m,n = m[∂x(·)]2 + n[∂y(·)]2,
C1 = C + Cq.

Appendix C. Independent kinetic moments required to fully characterize the first-
and second-order TNE measures

Mm Independent kinetic moments

M0 M0 = ρ

M1
M1x = ρux
M1y = ρuy

M2

M2xx = ρ(T + u2
x)

M2xy = ρuxuy
M2yy = ρ(T + u2

y)

M3

M3xxx = ρux(3T + u2
x)

M3xxy = ρuy(T + u2
x)

M3xyy = ρux(T + u2
y)

M3yyy = ρuy(3T + u2
y)

M4

M4xxxx = ρ(3T2 + 6Tu2
x + u4

x)

M4xxxy = ρuxuy(3T + u2
x)

M4xxyy = ρ(T + u2
x)(T + u2

y)

M4xyyy = ρuxuy(3T + u2
y)

M4yyyy = ρ(3T2 + 6Tu2
y + u4

y)

M5

M5xxxxx = ρux(15T2 + 10Tu2
x + u4

x)

M5xxxxy = ρuy(3T2 + 6Tu2
x + u4

x)

M5xxxyy = ρux(3T + u2
x)(T + u2

y)

M5xxyyy = ρuy(3T + u2
y)(T + u2

x)

M5xyyyy = ρux(3T2 + 6Tu2
y + u4

y)

M5yyyyy = ρuy(15T2 + 10Tu2
y + u4

y)

M6,4

M6,4xxxx = 1
2 ρ[18T3 + 3T2(u2 + 16u2

x) + 2Tu2
x(3u2 + 5u2

x) + u2u4
x ]

M6,4xxxy = 1
2 ρuxuy[24T2 + T(3u2 + 10u2

x) + u2u2
x ]

M6,4xxyy = 1
2 ρ[6T3 + Tu2(9T + u2) + u2

xu2
y(10T + u2)]

M6,4xyyy = 1
2 ρuxuy[24T2 + T(3u2 + 10u2

y) + u2u2
y ]

M6,4yyyy = 1
2 ρ[18T3 + 3T2(u2 + 16u2

y) + 2Tu2
y(3u2 + 5u2

y) + u2u4
y ]

M7,3

M7,3xxx = 1
2 ρux[144T3 + 16T2(3u2 + 5u2

x) + Tu2(3u2 + 20u2
x) + u4u2

x ]
M7,3xxy = 1

2 ρuy[48T3 + 16T2(u2 + 5u2
x) + Tu2(u2 + 20u2

x) + u4u2
x ]

M7,3xyy = 1
2 ρux[48T3 + 16T2(u2 + 5u2

y) + Tu2(u2 + 20u2
y) + u4u2

y ]
M7,3yyy = 1

2 ρuy[144T3 + 16T2(3u2 + 5u2
y) + Tu2(3u2 + 20u2

y) + u4u2
y ]
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