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Abstract

In this paper we use the method of conjugate duality to investigate a class of stochastic
optimal control problems where state systems are described by stochastic differential
equations with delay. For this, we first analyse a stochastic convex problem with delay
and derive the expression for the corresponding dual problem. This enables us to obtain
the relationship between the optimalities for the two problems. Then, by linking stochastic
optimal control problems with delay with a particular type of stochastic convex problem,
the result for the latter leads to sufficient maximum principles for the former.
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1. Introduction

There are many real-world problems providing applications for stochastic optimal control
formulations. Examples include the quadratic loss minimization problem in portfolio opti-
mization, and the consumption and investment problem in economics. It is well known that
Markovian optimal control problems can be solved by using either the method of dynamic
programming or the stochastic maximum principle, the two methods having been developed
separately and independently. In particular, the stochastic maximum principle typically involves
a so-called Hamiltonian (function), and a corresponding system of adjoint stochastic differential
equations; the optimal control can be expressed in terms of the maximum of the Hamiltonian,
analogous to deterministic cases which were originally studied by Pontryagin. We refer the
reader to [21, Chapter 3] for the general theory of the (Markovian) stochastic maximum
principle.

Often, there is a need to extend these Markovian models to allow for time-lag or time delay
effects. See, for example, [8] for delayed models in estimating volatility of the price of a financial
security. Also, although the efficient-market hypothesis states that current prices of assets reveal
all the necessary information from the market, investors often take the historic performance
of assets into consideration and use past information in modelling the wealth processes of
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portfolios. In such circumstances, if one uses stochastic delay differential equations (SDDEs) to
model the state system, the corresponding portfolio optimization problem becomes a stochastic
optimal control problem with (time) delay (see [3]). In contrast to Markovian optimal control
problems, for control problems where the state systems are described by SDDEs, the backward
equation of the value function, obtained by using the Bellman principle in the context of
dynamic programming, depends on the initial path of the state process, and so it is generally
infinite-dimensional. Note that, although recently developed functional Itô calculus (see [5]
and [6]) may be applied to the delayed trajectory, the classical Itô formula cannot be applied to
such a trajectory, Hence, it is generally difficult to obtain a corresponding finite-dimensional
Hamilton–Jacobi–Bellman equation to solve the problem, except for some special cases. See,
for example, [10] and [11].

Nevertheless, the Markovian stochastic maximum principle has been generalized to several
stochastic control problems when state systems are described by various SDDEs; see [4],
and [12]–[14] and the references therein. The types of delay considered in these problems are
usually either just discrete or both discrete and exponential moving average, noting that, if there
is only an exponential moving average delay involved in a stochastic control problem, then it
can be transferred to a higher-dimensional control problem with discrete delay. For example,
for stochastic control problems with discrete delay, the authors of [4] and [12] established
sufficient maximum principles under different models and assumptions, where the associated
adjoint equations were introduced and described by anticipated backward stochastic differential
equations (BSDEs) first studied by Peng and Yang [15]. Sufficient maximum principles for
stochastic control problems with both discrete and exponential moving average delays were
obtained in [13] and [14]. However, the results of [13] and [14] are very different: in [13], the
associated adjoint processes satisfy a triple of classical BSDEs with a restriction that one of
them needs to be identically zero, while in [14] the associated adjoint process satisfies a single
anticipated BSDE, but with a different Hamiltonian. As noted in [12], the restriction in [13] in
effect reduces the control problem to a finite-dimensional one. Necessary maximum principles
under various models have been studied by many authors; see, for example, [4], [12], and [14].
All these results are proved mainly by using results and techniques of stochastic calculus.

The conjugate duality method for analysing convex problems in the calculus of variations has
played an important role in the study of classical optimal control problems. In the deterministic
case, Rockafellar [17] used the concept of conjugate convex functions, described in his previous
work [16], and the conjugate duality method to derive the corresponding dual problem and
then to obtain the conditions for optimality. After reformulating the control problem as a
convex problem, Rockafellar obtained a sufficient maximum principle for the control problem,
involving the Hamiltonian and associated adjoint equation. We refer the reader to [18] and [19]
for the method of conjugate duality and its applications in control theory. In [1] and [2], Bismut
generalized the work of Rockafellar [17] to Markovian convex and control problems. The
method of conjugate duality has also been generalized to study deterministic convex problems
with delay in [20], where the corresponding dual problem and the condition for optimality of
the convex problems were obtained in [20]. However, these results have not been connected to
maximum principles for stochastic optimal controls with delay.

In this paper, departing from various stochastic calculus approaches used in studying stochas-
tic control problems with delay in the literature, we generalize the results of [1] on Markovian
control problems and of [20] on deterministic convex problems with delay. In particular, we
extend the method of conjugate duality to study stochastic optimal control problems with either
just discrete delay or both discrete and exponential moving average delays. For this and for
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Conjugate duality with delay 1013

clarity, we first investigate the stochastic convex problem with discrete delay: for given convex
functions L and l, minimize

�(X) = E

[∫ T

0
L(t, X(t), X(t − δ), Ẋ(t), HX(t)) dt

]
+ E[l(X(T ))],

where X ranges through a certain family of Itô processes, Ẋ and HX denote, respectively,
the drift and diffusion coefficients of X, and δ ∈ (0, T ) is a given deterministic length of
delay. We assume that X(t) = x0(t) for t ∈ [−δ, 0] for a given deterministic continuous
function x0. Note that, equivalently, we could maximize � if L and l were concave, for
example, replacing L and l by −L and −l. We investigate the corresponding dual problem
and the conditions for optimization of the above problem. As noted in [20], the dependence
on X(t − δ) in the convex problem results in its dependence on future values in its ‘dual’
process. Unlike the deterministic case, the ‘time’ cannot be reversed in the stochastic case. The
novelty in our approach to overcome this difficulty lies in the use of conditional expectations
in the characterization of dual processes and the use of the martingale representation theorem
to identify them as solutions to BSDEs. Then we consider stochastic optimal control problems
with just discrete delay. We connect stochastic control problems with delay with stochastic
convex problems. This allows us to use the conditions for optimality of the convex problems to
prove sufficient maximum principles for stochastic control problems with delay. In particular,
we derive the Hamiltonian and the associated adjoint equations and express the sufficient
maximum principles in terms of them, where the adjoint equations are anticipated BSDEs.
Finally, with fairly straightforward modifications, we extend our results in both the stochastic
convex and control problems to allow the model to include both discrete and exponential moving
average delays. Although it is not included in the paper, the approach that we take can easily
be extended further to include a Lévy jump measure or regime-switching in stochastic convex
problems with delay. This can then be used to obtain stochastic maximum principles in the
corresponding control problems.

To be able to use the results in stochastic convex problems with delay, we require some extra
conditions on the functions involved. Some of these conditions are stronger than those obtained
using the stochastic calculus approach in the literature. Apart from these technical conditions,
if only a discrete delay is involved, our result on the sufficient maximum principle is similar
to those in [4] and [12] when their models are restricted to ours. Note that some apparent
differences in the signs of some functions involved are the consequence of our problem being
minimization and those in these papers being maximization. However, if both types of delay
are involved, our result improves those in [14] and in [13], when the model in the latter is jump-
free. Moreover, our approach of using the conjugate duality method unifies the Hamiltonian
and the associated adjoint equations involved in the maximum principles for control problems
with either just discrete delay or with both discrete and exponential moving average delays:
those for the former are a special case for the latter.

The remainder of the paper is organized as follows. In Section 2 we describe the setting for the
stochastic convex problem with (discrete) delay. In Section 3 we use conditional expectations
to characterize dual processes and the martingale representation theorem to link them with the
solutions of BSDEs. This enables us to derive the corresponding dual problem and, using the
method of conjugate duality, obtain conditions for optimality. In Section 4 we concentrate on
stochastic optimal control problems with discrete delay. We show how they can be reformulated
as the convex problems described in Section 2. Then the application of the conditions for
optimality obtained in Section 3 leads to sufficient maximum principles for the stochastic
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control problem with discrete delay. We also give an example to show how the results in the
previous section can be used to obtain the optimal control. In Section 5, by modifying our
previous arguments, we extend our results to stochastic control problems with both discrete
and exponential moving average delays.

2. A stochastic convex problem with discrete delay

Let (�, F , P) be a complete probability space and T ∈ (0, ∞) be a fixed time horizon.
For a fixed positive integer m, write B(t) = B(ω, t) for a standard m-dimensional Brownian
motion and {F (t)}t∈[0,T ] for the filtration generated by B such that the usual conditions hold
(see [9, Definition 2.25]).

In addition to m, we also fix an integer n > 0 and introduce the following four functional
spaces, where we have suppressed ω for notational simplicity.

(i) L
2(F (T ); R

n): the space of F (T )-measurable, R
n-valued random variables X for

which the norm
‖X‖2 = {E[|X|2]}1/2

is finite.

(ii) L
2∞
F ([0, T ]; R

n): the space of F (t)-progressively measurable, R
n-valued stochastic

processes X for which the norm

‖X‖2∞ =
{
E

[
ess sup
0≤t≤T

|X(t)|2
]}1/2

is finite.

(iii) L
21
F ([0, T ]; R

n): the space of F (t)-progressively measurable, R
n-valued stochastic

processes X for which the norm

‖X‖21 =
{

E

[(∫ T

0
|X(t)| dt

)2]}1/2

is finite.

(iv) L
22
F ([0, T ]; R

n×m): the space of F (t)-progressively measurable, R
n×m-valued stochas-

tic processes H for which the norm

‖H‖22 =
{

E

[∫ T

0
|H(t)|2 dt

]}1/2

is finite, where elements in R
n×m are represented by n × m matrices and so |H(t)|2 =

〈H(t), H(t)〉 = tr(H(t)	H(t)).

In what follows, we simply write the above functional spaces as L
2, L

2∞
F , L

21
F , and L

22
F ,

respectively, and, as above, suppress ω in functions and stochastic processes for notational
simplicity, unless it is necessary for clarity.

Write X = L
21
F × L

22
F , let δ ∈ (0, T ) be fixed, and x0 ∈ C([−δ, 0]; R

n) be a given initial
deterministic continuous function. Note that

max−δ≤t≤0
|x0(t)|2 < ∞.
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We identify (Ẋ, HX) ∈ X with the continuous F (t)-adapted stochastic process X : � × [−δ,

T ] → R
n defined by

X(t) = X(ω, t) =

⎧⎪⎨
⎪⎩

x0(t), t ∈ [−δ, 0],

x0(0) +
∫ t

0
Ẋ(s) ds +

∫ t

0
HX(s) dB(s), t ∈ [0, T ].

(2.1)

Here the representation of X by (Ẋ, HX) ∈ X is unique up to indistinguishability (see [9, Def-
inition 1.3]). Note that, since it is continuous, X is F (t)-progressively measurable. Moreover,
we define the delayed stochastic process Xδ associated with X by

Xδ(t) = X(t − δ), t ∈ [0, T ].
Proposition 2.1. For X defined by (2.1), we have Xδ ∈ L

2∞
F and X(T ) ∈ L

2.

Proof. By Doob’s maximal inequality (see [9, p. 14]), the definition of X implies that
X ∈ L

2∞
F when it is restricted to [0, T ]. Then, by noting that

sup
0≤t≤T

|Xδ(t)|2 ≤ 2
{

max−δ≤t≤0
|x0(t)|2 + sup

0≤t≤T

|X(t)|2
}

and that |X(T )|2 ≤ sup0≤t≤T |X(t)|2, the required results follow. �

Although the domain for X defined by (2.1) is [−δ, T ] for fixed ω ∈ �, for simplicity, we
shall in the following regard X as being in L

2∞
F as its path in [−δ, 0] is fixed.

Let L : �×[0, T ]×R
n ×R

n ×R
n ×R

n×m → R∪{∞} and l : �×R
n → R∪{∞} be two

given functions. Define functions IL on L
2∞
F × L

2∞
F × L

21
F × L

22
F and Jl on L

2, respectively,
by

IL(X, Y, Z, H) = E

[∫ T

0
L(t, X(t), Y (t), Z(t), H(t)) dt

]
and Jl(X) = E[l(X)].

To ensure that L and l are measurable, and that IL and Jl are strictly greater than −∞, not
identically ∞, and are convex, as well as to be able to apply the conjugate duality method to IL

and Jl , we make the following assumptions throughout this paper.

Assumption 2.1. (i) We assume that L and l are not identically infinite; when they are finite, L
is a lower semicontinuous convex function on R

n×R
n×R

n×R
n×m for any (ω, t) ∈ �×[0, T ],

and l is a lower semicontinuous convex function on R
n for any ω ∈ �.

(ii) We assume that L is F ∗ × B(Rn) × B(Rn) × B(Rn) × B(Rn×m)-measurable and l is
F × B(Rn)-measurable, where F ∗ denotes the completion of F × B([0, T ]) with respect to
dP ⊗ dt .

Note that, in the presence of (i), condition (ii) is equivalent to L and l being ‘normal convex
integrands’, a concept introduced in [16] (see also [17, p. 180]). Assumption 2.1 ensures that,
for any (X, Y, Z, H) ∈ L

2∞
F × L

2∞
F × L

21
F × L

22
F and XT ∈ L

2,

L(ω, t, X(ω, t), Y (ω, t), Z(ω, t), H(ω, t)) and l(ω, XT (ω))

are F ∗- and F -measurable, respectively.
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Assumption 2.2. (i) There exist (X, Y, Z, H) ∈ L
21
F × L

21
F × L

2∞
F × L

22
F and an R-valued

F (t)-progressively measurable stochastic process τ1 satisfying

E

[∫ T

0
|τ1(t)| dt

]
< ∞,

such that, for any (x, y, z) ∈ R
n×3 and h ∈ R

n×m,

L(t, x, y, z, h) ≥ 〈(x, y, z, h), (X(t), Y (t), Z(t), H(t))〉 − τ1(t), dP ⊗ dt-a.s.,

where we abbreviate almost surely to a.s.

(ii) There exist X ∈ L
2 and an R-valued F (T )-measurable random variable ϑ1 satisfying

E[|ϑ1|] < ∞, such that, for any x ∈ R
n,

l(x) ≥ 〈x, X〉 − ϑ1, dP-a.s.

Assumption 2.3. (i) There exist (X, Y, Z, H) ∈ L
2∞
F × L

2∞
F × L

21
F × L

22
F and an R-valued

F (t)-progressively measurable stochastic process τ2 satisfying

E

[∫ T

0
|τ2(t)| dt

]
< ∞,

such that
L(t, X(t), Y (t), Z(t), H(t)) ≤ τ2(t), dP ⊗ dt-a.s.

(ii) There exist X ∈ L
2 and an R-valued F (T )-measurable random variable ϑ2 satisfying

E[|ϑ2|] < ∞, such that
l(ω, X) ≤ ϑ2, dP-a.s.

Proposition 2.2. Under Assumptions 2.1 and 2.2 for L and l, we have IL > −∞, Jl > −∞,
that both IL and Jl are not identically infinite, and that both IL and Jl are convex.

The proof of Proposition 2.2 is essentially the same as the proof for the deterministic case
of [17, Proposition 1]. Hence, we omit it here.

Now, for given L, l, x0, δ, and for X defined by (2.1), we define a function � of X in terms
of IL and Jl by

�(X) = IL(X, Xδ, Ẋ, HX) + Jl(X(T )). (2.2)

It follows directly from Proposition 2.2 that � > −∞ and that � is convex.
For such a function �, we define, in a similar fashion to delay-free convex problems, the

stochastic convex problem with discrete delay as follows.

Definition 2.1. The stochastic convex problem with discrete delay associated with L and l is
to find X̄ ∈ X realizing

inf
X∈X

�(X), (2.3)

where X is identified with (Ẋ, HX) using (2.1). We refer to the function � and problem (2.3) as
the primal function and problem, respectively. Any X ∈ X such that �(X) < ∞ will be called
a feasible solution of this primal problem. Moreover, any feasible solution X̄ that achieves the
infimum in (2.3) will be called an optimal solution to the primal problem.

https://doi.org/10.1017/apr.2017.32 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.32


Conjugate duality with delay 1017

Note that, if � is identically infinite, no X ∈ X will be regarded as an optimal solution. Note
also that our setting-up and definition of the primal function and problem bear a similarity to
those studied in [1]. However, the extra delayed variable Xδ introduced in the primal function
and problem is a function of X, and so the methods and results of [1] cannot be applied directly
to our problem.

Moreover, similarly to that for the corresponding deterministic convex problem with delay
studied in [20, p. 172], we define a family of perturbed functions F of � on X, parameterized
by (θ, ξ, η) ∈ L

2 × L
2∞
F × L

2∞
F , by

Fθ,ξ,η(X) = IL(X + ξ, Xδ + η, Ẋ, HX) + Jl(X(T ) − θ). (2.4)

Compared with the perturbed functions used for the delay-free deterministic convex problem
in [17, Section 7] and for the Markovian convex problem in [1, Definition III-1], the function F

here depends on an extra parameter η to take account of the delayed variable Xδ in IL.
Accordingly, a family of perturbed optimization problems parameterized by (θ, ξ, η) is to

find X̄ ∈ X realizing
inf
X∈X

Fθ,ξ,η(X).

This results in the corresponding optimal value function φ on L
2 × L

2∞
F × L

2∞
F defined by

φ(θ, ξ, η) = inf
X∈X

Fθ,ξ,η(X). (2.5)

In particular, the relationship between F and � yields

φ(0, 0, 0) = inf
X∈X

F0,0,0(X) = inf
X∈X

�(X).

Clearly, F is a composition of � with a certain affine mapping. Thus, F is greater than −∞
and is a convex function of X, which implies the convexity of φ.

Proposition 2.3. The optimal value function φ defined by (2.5) is a convex function on L
2 ×

L
2∞
F × L

2∞
F .

3. The dual problem and conditions for optimality

We now apply a duality approach of convex analysis to obtain the corresponding dual problem
to the primal problem given by Definition 2.1 and to relate the optimality of (2.3) with minimizers
of the corresponding dual problem.

3.1. Pairings and conjugate convex functions

The fundamental notion for applying the conjugate duality method is the concept of paired
linear spaces, or simply paired spaces, associated with a particular duality pairing, or simply
pairing, which is an R-valued bilinear form defined on the paired spaces. Following the
convention described in [19, p. 13], when we say that two linear spaces are paired spaces, then
a pairing has been specified and these two spaces are respectively equipped with compatible
topologies (see [19]) with respect to that pairing.

Throughout this paper, we shall pair the Euclidean space R
n with itself via the Euclidean

inner product. To derive the dual problem to (2.3), we pair L
2 with itself via the pairing defined

by
〈〈XT , X∗

T 〉〉 = E[〈XT , X∗
T 〉]; (3.1)
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pair L
22
F with itself via the pairing defined by

〈〈H, H ∗〉〉 = E

[∫ T

0
〈H(t), H ∗(t)〉 dt

]
; (3.2)

pair L
21
F with L

2∞
F via the pairing defined by

〈〈X, X∗〉〉 = E

[∫ T

0
〈X(t), X∗(t)〉 dt

]
. (3.3)

Since � is defined in terms of the functions L and l, to derive its dual we let, for any fixed
(ω, t) ∈ � × [0, T ], L∗ and l∗ be the usual conjugate convex functions of L and l with respect
to the pairing given by the Euclidean inner product. A similar argument to that used for [17,
Theorem 2] shows that, since L and l satisfy Assumptions 2.1–2.3, L∗ and l∗ also satisfy
the corresponding Assumptions 2.1–2.3. Moreover, since all four spaces defined in Section 2
are decomposable (see [16, p. 532]), by Proposition 2.2, the conjugate duality given by [16,
Theorem 2] can be generalized directly to relate IL∗ and Jl∗ to IL and Jl as follows, where IL∗
and Jl∗ are defined similarly to IL and Jl , respectively.

Proposition 3.1. Under Assumptions 2.1–2.3, IL and IL∗ are the conjugate convex functions
of each other with respect to the pairing, between the product spaces L

2∞
F × L

2∞
F × L

21
F × L

22
F

and L
21
F × L

21
F × L

2∞
F × L

22
F , induced directly from (3.2) and (3.3). Similarly, Jl and Jl∗ are

the conjugate convex functions of each other with respect to the pairing (3.1).

Noting that φ defined by (2.5) is convex by Proposition 2.3, the conjugate convex function φ∗
of φ, with respect to the pairing induced from (3.1) and (3.3) between L

2 × L
2∞
F × L

2∞
F and

L
2 × L

21
F × L

21
F , is given by

φ∗(θ∗, ξ∗, η∗) = sup
(θ,ξ,η)∈L2×L

2∞
F ×L

2∞
F

{〈〈(θ, ξ, η), (θ∗, ξ∗, η∗)〉〉 − φ(θ, ξ, η)}. (3.4)

Then any solution to the optimization problem

inf
(θ∗,ξ∗,η∗)∈L2×L

21
F ×L

21
F

φ∗(θ∗, ξ∗, η∗)

is related to the optimality of our primal problem (2.3). To see this, setting (θ, ξ, η) = (0, 0, 0)

on the right-hand side of (3.4), we have

φ∗(θ∗, ξ∗, η∗) ≥ −φ(0, 0, 0) = − inf
X∈X1

�(X) for all (θ∗, ξ∗, η∗) ∈ L
2 × L

21
F × L

21
F ,

(3.5)
which implies that

inf
(θ∗,ξ∗,η∗)∈L2×L

21
F ×L

21
F

φ∗(θ∗, ξ∗, η∗) + inf
X∈X

�(X) ≥ 0. (3.6)

In particular, if there exist (θ̄∗, ξ̄∗, η̄∗) ∈ L
2 × L

21
F × L

21
F and X̄ ∈ X such that the equality in

(3.6) holds, then

0 ≤ φ∗(θ̄∗, ξ̄∗, η̄∗) + �(X) = −�(X̄) + �(X) for all X ∈ X,

i.e. X̄ is an optimal solution to the primal problem (2.3).
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3.2. The dual problem

For the Markovian convex problem studied in [1], the corresponding φ∗ has been expressed
in terms of the corresponding IL∗ and Jl∗ in a similar manner to that for the corresponding
primal function in terms of IL and Jl . Unfortunately, the introduction of the extra parameter η∗
in (3.4) to pair with η in (2.5), due to the delayed variable Xδ , makes this no longer the case; a
phenomenon clear from the deterministic convex problem with delay studied in [20].

To find an expression for φ∗, we write P = L
2 × L

21
F and, for (PT , Ṗ ) ∈ P, define the

continuous F (t)-adapted stochastic process P by

P(t) = E

[
PT −

∫ T

t

Ṗ (s) ds

∣∣∣∣ F (t)

]
, t ∈ [0, T ]. (3.7)

Clearly, P(0) is a constant. By the martingale representation theorem, there exists a unique
HP ∈ L

22
F such that, for t ∈ [0, T ],

P(t) = PT −
∫ T

t

Ṗ (s) ds −
∫ T

t

HP (s) dB(s), dP-a.s. (3.8)

as {F (t)}t∈[0,T ] is generated by B. Moreover, by Doob’s maximal inequality, it follows from
(3.8) that, if (PT , Ṗ ) ∈ P, then P ∈ L

2∞
F . As for X ∈ X, we shall identify P with (PT , Ṗ ) ∈ P

using (3.7). However, unlike X, the identification (3.7) is implicit and it results in the explicit
identification of P with (PT , Ṗ , HP ) ∈ L

2 × L
21
F × L

22
F by (3.8). Moreover, this explicit

identification of P shows that P is the solution of a stochastic differential equation with a
terminal, rather than an initial, condition, i.e. P is the solution to a BSDE. Note that the
corresponding P in the deterministic convex problem with delay studied in [20, Proposition 3.1],
which follows an ordinary differential equation with a terminal condition, can be equivalently
expressed as the solution of an ordinary differential equation with a fixed initial condition, in a
similar manner to that for X in the corresponding primal problem described in [20, p. 167]. The
identification of P here described by a BSDE is not equivalent to the identification for X given
by (2.1). The process P ∈ P defined in such a way plays an important role in our derivation
of the expression for φ∗ as given in the following theorem, which generalizes the result [20,
Proposition 3.1] for the deterministic convex problem with delay.

Theorem 3.1. Suppose that Assumptions 2.1–2.3 hold. For any given (θ∗, ξ∗, η∗) ∈ L
2 ×

L
21
F × L

21
F , let (PT , Ṗ , Q̇) ∈ P × L

21
F be defined by

PT = θ∗, Ṗ (t) = ξ∗(t) + E[η∗(t + δ) 1[0,T −δ](t) | F (t)], Q̇(t) = η∗(t), (3.9)

where 1A denotes the indicator function of set A, and identify P by (3.7) with (PT , Ṗ ) ∈ P.
Then � : P × L

21
F → R ∪ {∞}, defined by

�(P, Q̇) = IL∗(Ṗ − E[Q̇(· + δ) 1[0,T −δ](·) | F (·)], Q̇, P, HP ) + Jl∗(−PT )

+ E[〈PT , x0(0)〉] − E

[∫ δ

0
〈Q̇(t), x0(t − δ)〉 dt

]

− E

[∫ T

0
〈Ṗ (t), x0(0)〉 dt

]
, (3.10)

satisfies �(P, Q̇) = φ∗(θ∗, ξ∗, η∗), where HP is specified by (3.8).
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Proof. First, by Jensen’s inequality and Fubini’s theorem, the fact that η∗ is in L
21
F implies

that E[η∗(· + δ)1[0,T −δ](·) | F (·)] ∈ L
21
F , so that Ṗ defined by (3.9) is in L

21
F .

Using (2.5) and F defined by (2.4), we can rewrite φ∗ given by (3.4) as

φ∗(θ∗, ξ∗, η∗) = sup
(Ẋ,HX)∈X, (θ,ξ,η)∈L2×L

2∞
F ×L

2∞
F

{
E

[∫ T

0
(〈ξ(t), ξ∗(t)〉 + 〈η(t), η∗(t)〉) dt

]

+ E[〈θ, θ∗〉] − IL(X + ξ, Xδ + η, Ẋ, HX)

− Jl(X(T ) − θ)

}
. (3.11)

Then setting θ ′ = X(T ) − θ , ξ ′ = X + ξ , and η′ = Xδ + η, it follows from (3.11) that

φ∗(θ∗, ξ∗, η∗) = sup
θ ′∈L2

{E[〈θ ′, −θ∗〉] − Jl(θ
′)}

+ sup
(Ẋ,HX)∈X

(ξ ′,η′)∈L
2∞
F ×L

2∞
F

{
E

[∫ T

0
〈(ξ ′(t), η′(t)), (ξ∗(t), η∗(t))〉 dt

]

+ E[〈X(T ), θ∗〉] − IL(ξ ′, η′, Ẋ, HX)

− E

[∫ T

0
(〈X(t), ξ∗(t)〉 + 〈Xδ(t), η

∗(t)〉) dt

]}
. (3.12)

To simplify this, we use the relationship between X and Xδ to rewrite the final term on the
right-hand side of (3.12) as

E

[∫ T

0
(〈X(t), ξ∗(t)〉 + 〈Xδ(t), η

∗(t)〉) dt

]

= E

[∫ T

0
〈X(t), ξ∗(t) + η∗(t + δ) 1[0,T −δ](t)〉 dt

]

+ E

[∫ T

0
〈x0(t − δ) 1[0,δ](t), η∗(t)〉 dt

]

= E

[∫ T

0
〈X(t), ξ∗(t) + E[η∗(t + δ)1[0,T −δ](t) | F (t)]〉 dt

]

+ E

[∫ δ

0
〈x0(t − δ), η∗(t)〉 dt

]
. (3.13)

On the other hand, using (3.8) for P and applying the Itô formula to 〈P(t), X(t)〉, we obtain

E[〈X(T ), PT 〉] − 〈x0(0), P (0)〉 = E

[∫ T

0
〈Ẋ(t), P (t)〉 dt

]
+ E

[∫ T

0
〈X(t), Ṗ (t)〉 dt

]

+ E

[∫ T

0
〈HX(t), HP (t)〉 dt

]
, (3.14)

recalling that P(0) is a constant. Similarly, by applying the Itô formula to 〈P(t), x0(0)〉, we
have

〈x0(0), P (0)〉 = −E

[∫ T

0
〈x0(0), Ṗ (t)〉 dt

]
+ E[〈x0(0), PT 〉]. (3.15)
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Then replacing PT and Ṗ in (3.14) and in (3.15) by their definitions in (3.9), these two equations
lead to

E

[∫ T

0
〈X(t), ξ∗(t) + E[Q̇(t + δ)1[0,T −δ](t) | F (t)]〉 dt

]
= E[〈X(T ), θ∗〉 − 〈x0(0), θ∗〉]

− E

[∫ T

0
〈(Ẋ(t), HX(t)), (P (t), HP (t))〉 dt

]

− E

[∫ T

0
(〈x0(0), η∗(t) + E[Q̇(t + δ) 1[0,T −δ](t) | F (t)]〉) dt

]
, (3.16)

the left-hand side of which is equal to the first term of the right-hand side of the second equality
in (3.13). Finally, we substitute (3.13) into (3.12), using (3.16) and Proposition 3.1, to obtain

φ∗(θ∗, ξ∗, η∗) = sup
(Ẋ,HX)∈L

21
F ×L

22
F

(ξ ′,η′)∈L
2∞
F ×L

2∞
F

{〈〈(ξ ′, η′, Ẋ, HX), (ξ∗, Q̇, P, HP )〉〉 − IL(ξ ′, η′, Ẋ, HX)}

+ sup
θ ′∈L2

{〈〈θ ′, −θ∗〉〉 − Jl(θ
′)} + E[〈x0(0), θ∗〉]

− E

[∫ δ

0
〈x0(t − δ), Q̇(t)〉 dt

]

− E

[∫ T

0
〈x0(0), ξ∗(t) + E[Q̇(t + δ)1[0,T −δ](t)|F (t)]〉 dt

]
= IL∗(Ṗ − E[Q̇(· + δ) 1[0,T −δ](·) | F (·)], Q̇, P, HP ) + Jl∗(−PT )

+ E[〈PT , x0(0)〉] − E

[∫ δ

0
〈Q̇(t), x0(t − δ)〉 dt

]

− E

[∫ T

0
〈Ṗ (t), x0(0)〉 dt

]
,

as required. �

Although the relationship we obtained between � and φ∗ bears some similarity to that
between the corresponding functions obtained in [20] for the deterministic convex problem
with delay, our proof is different from that of [20]. In particular, we need to deal with the issue
of an anticipated (or time advanced) variable.

Using (3.9), we can rewrite the pairing 〈〈(θ, ξ, η), (θ∗, ξ∗, η∗)〉〉 in terms of (P, Q̇) as

〈〈(θ, ξ, η), (P, Q̇)〉〉 = 〈〈(θ, ξ, η), (PT , Ṗ − E[Q̇(· + δ)1[0,T −δ](·) | F (·)], Q̇)〉〉

= E

[∫ T

0
〈ξ(t), Ṗ (t) − E[Q̇(t + δ)1[0,T −δ](t) | F (t)]〉 dt

]

+ E[〈θ, PT 〉] + E

[∫ T

0
〈η(t), Q̇(t)〉 dt

]
, (3.17)

where P is identified with (PT , Ṗ ) via (3.7). This generalizes the pairing for the deterministic
convex problem with delay given in [20, p. 183]. Then using the pairing (3.17) and Theorem 3.1,
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we can rewrite �(P, Q̇) given by (3.10) as

�(P, Q̇) = sup
(θ,ξ,η)∈L2×L

2∞
F ×L

2∞
F

{〈〈(P, Q̇), (θ, ξ, η)〉〉 − φ(θ, ξ, η)}.

By using Proposition 3.1 and noting Proposition 2.2, we see that � is strictly greater than −∞
and is convex.

Definition 3.1. Define � as a stochastic convex dual function of �. The corresponding
stochastic convex dual problem to (2.3) over P × L

21
F is to find (P̄ , ˙̄Q) ∈ P × L

21
F realizing

inf
(P,Q̇)∈P×L

21
F

�(P, Q̇). (3.18)

Similarly to the primal problem defined by Definition 2.1, any (P, Q̇) ∈ P × L
21
F such that

�(P, Q̇) < ∞ will be called a feasible solution of the dual problem. we shall call a feasible
solution (P̄ , ˙̄Q) which achieves the infimum in (3.18) an optimal solution to the dual problem.

Unlike the classical convex problem, although we call � the dual to �, the space P × L
21
F

on which � is defined is not the paired space, with respect to the pairing defined in Section 2,
to the space X on which � is defined on account of the fact that the convex problems we study
also depends on Xδ . The reason that � is called the dual to � will become clear in the next
subsection.

If there is no delay in the model, corresponding to δ = 0, Xδ is identical with X and so there
exists a function L̂ : � × [0, T ] × R

n × R
n × R

n×m → R ∪ {∞} satisfying the corresponding
Assumptions 2.1–2.3 such that L(ω, t, x, x, z, h) = L̂(ω, t, x, z, h). Then the optimal value
function φ, corresponding to L̂ and l, depends only on (θ, ξ). Hence, Theorem 3.1 yields that
P = (PT , Ṗ ) ∈ P is identical with (θ∗, ξ∗), so that �(P ) = φ∗(θ∗, ξ∗), and

�(P ) = I
L̂∗(Ṗ , P , HP ) + Jl∗(−PT ) + E[〈PT , x0(0)〉] − E

[∫ T

0
〈Ṗ (t), x0(0)〉 dt

]
.

Applying the same technique as that in (3.15) to the last two terms on the right-hand side of the
above equation, we obtain

�(P ) = I
L̂∗(Ṗ , P , HP ) + Jl∗(−PT ) + 〈P(0), x0(0)〉,

recovering the dual function given by [1, Definition II-1] with fixed initial value P(0).

3.3. Relationship between the optimalities for dual problems

The following relationship between the primal function � and its dual function � is a direct
consequence of (3.5) and Theorem 3.1.

Proposition 3.2. For any X = (Ẋ, HX) ∈ X and (P, Q̇) ∈ P × L
21
F ,

�(X) + �(P, Q̇) ≥ 0. (3.19)

We now use stochastic calculus to obtain the relationships between the optimal solutions of
the primal and its dual problems as follows. This result generalizes [1, Theorem IV-2] for the
Markovian convex problems. In particular, the third equivalent condition given below provides
the crucial basis in the next section for us to derive the Hamiltonian and the associated adjoint
equation for stochastic optimal control problems with discrete delay.
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Theorem 3.2. For any given X̄ ∈ X and (P̄ , ˙̄Q) ∈ P × L
21
F , the following three statements are

equivalent.

(i) First,
�(X̄) + �(P̄ , ˙̄Q) = 0. (3.20)

(ii) Second, X̄ and (P̄ , ˙̄Q) are the respective optimal solutions to the primal problem (2.3)
and its dual problem (3.18), and the equality in (3.19) is attained.

(iii) Finally,

L∗(t, ˙̄P(t) − E[ ˙̄Q(t + δ)1[0,T −δ](t) | F (t)], ˙̄Q(t), P̄ (t), HP̄ (t))

+ L(t, X̄(t), X̄δ(t),
˙̄X(t), HX̄(t)) − 〈 ˙̄Q(t), X̄δ(t)〉

− 〈 ˙̄P(t) − E[ ˙̄Q(t + δ)1[0,T −δ](t) | F (t)], X̄(t)〉
− 〈(P̄ (t), HP̄ (t)), ( ˙̄X(t), HX̄(t))〉

= 0, dP ⊗ dt-a.s. (3.21)

and
l(X̄(T )) + l∗(−P̄T ) + 〈P̄T , X̄(T )〉 = 0, dP-a.s., (3.22)

where HP̄ is specified by P̄ via (3.8).

Note that if ∂L and ∂l denote the subdifferential sets of L and l, conditions (3.21) and (3.22)
are, respectively, equivalent to

( ˙̄P(t) − E[ ˙̄Q(t + δ)1[0,T −δ](t) | F (t)], ˙̄Q(t), P̄ (t), HP̄ (t))

∈ ∂L(t, X̄(t), X̄δ(t),
˙̄X(t), HX̄(t)), dP ⊗ dt-a.s.

and
−P̄ (T ) ∈ ∂l(X̄(T )), dP-a.s.

(see [17, p. 207]).

Proof. (i)⇐⇒(ii). Suppose that (3.20) holds. Then the equality in (3.19) is attained.
Moreover, it follows from (3.19) that (P̄ , ˙̄Q) is an optimal solution to (3.18) and that X̄ is
an optimal solution to (2.3).

Conversely, if X̄ and (P̄ , ˙̄Q) are optimal solutions to (2.3) and (3.18), respectively, then
(3.20) follows by combining (3.19) with the assumption that the equality therein is attained.

(i)⇐⇒(iii). Suppose that (3.21) and (3.22) hold for the given X̄ and (P̄ , ˙̄Q). Taking the
integral of the left-hand side of (3.21) over [0, T ], adding the left-hand side of (3.22) and then
taking the expectation, we have (3.20) using (2.2) for � and (3.10) for �.

Conversely, it follows from (2.2) and (3.10) that (3.20) is equivalent to

E

[∫ T

0
A1(t) dt

]
+ E[A2] = 0, (3.23)

where A1 is the process defined by the left-hand side of (3.21) and A2 is the random variable
defined by the left-hand side of (3.22). Since, for fixed (ω, t) ∈ � × [0, T ], L∗ and l∗ are the
conjugate convex functions of L and l, respectively, A1 and A2 are nonnegative. Then (3.23)
implies that A1(t) = 0, dP ⊗ dt-a.s., and A2 = 0, dP-a.s., so that both (3.21) and (3.22) hold.
This completes the proof. �
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4. A stochastic optimal control problem with discrete delay

Having obtained the conditions for optimality of the stochastic convex problem with delay,
we now turn our attention to the stochastic optimal control problem with discrete delay.

Let U ⊂ R
r be a convex set, where r > 0 is a given integer; b : [0, T ]×R

n ×R
n ×U → R

n

and σ : [0, T ]×R
n ×R

n ×U → R
n×m be two given measurable functions and the continuous

F (t)-adapted state process X : � × [−δ, T ] → R
n be described by the controlled SDDE

dX(t) = b(t, X(t), Xδ(t), u(t)) dt + σ(t, X(t), Xδ(t), u(t)) dB(t), t ∈ [0, T ],
X(t) = x0(t), t ∈ [−δ, 0], (4.1)

where x0, Xδ , and δ are as defined in Section 2 and u : � × [0, T ] → U is an F (t)-adapted
control process. For given continuous functions G : [0, T ]×R

n×R
n×U → R and g : R

n → R,
the cost functional J associated with controlled SDDE (4.1) is defined by

J (u) = E

[∫ T

0
G(t, X(t), Xδ(t), u(t)) dt + g(X(T ))

]
.

Let U denote the space of admissible controls u for which controlled SDDE (4.1) admits a
unique strong solution {X(t)}t∈[−δ,T ] and the cost functional J is finite.

Definition 4.1. The stochastic optimal control problem with discrete delay associated with
controlled SDDE (4.1) and the cost functional J is to find ū ∈ U realizing

inf
u∈U

J (u). (4.2)

We shall call ū an optimal control.

Note that this optimal control problem is a special case of the stochastic optimal control
problems considered in [4] and [12], where the models also included the discrete delayed
control uδ .

4.1. Reformulation of the problem

To use the results for the stochastic convex problem with delay, obtained in the previous
section, to study control problem (4.2), we link problem (4.2) with a particular convex problem
(2.3) as follows. For (ω, t, x, y, z, h) ∈ � × [0, T ] × R

n × R
n × R

n × R
n×m, define the set

C = C(t, x, y, z, h) by

C(t, x, y, z, h) = {u ∈ U | z = b(t, x, y, u) and h = σ(t, x, y, u)}. (4.3)

Using C, take the functions L and l, respectively, in the primal function (2.2) to be

L(t, x, y, z, h) =
{

infu∈C G(t, x, y, u) if C �= ∅,

∞ otherwise,
(4.4)

and
l(x) = g(x). (4.5)

With L and l so defined, control problem (4.2) becomes a particular stochastic convex prob-
lem (2.3).
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If r = n and if b and σ are both affine functions of (x, y, u), the corresponding C defined
above contains a single element, determined by n(1+m) linear equations, if it is not empty. Then
the expression for the corresponding L simplifies. Moreover, under appropriate assumptions on
the coefficients of these affine functions and on G and g, including the convexity of G and g, it
can be checked that the corresponding problem (2.3) satisfies the requiredAssumptions 2.1–2.3.
In the following example, we demonstrate that this connection makes it possible to express an
optimal control ū of (4.2) in terms of solutions to the corresponding dual problem.

Example 4.1. For simplicity, we set n = m = 1. Suppose that U = R; that b(t, x, y, u) and
σ(t, x, y, u) in (4.1) are given by

b(t, x, y, u) = a1(t)x + b1(t)y + c1(t)u, σ (t, x, y, u) = a2(t)x + b2(t)y + c2(t)u,

where ai , bi , and ci are given R-valued continuous functions on [0, T ] and c1(t)
2 + c2(t)

2 �= 0
for all t ∈ [0, T ]; and that

G(t, x, y, u) = 1
2c3(t)u

2 and g(x) = a3x
2,

where c3 : [0, T ] → R+ is continuous and a3 > 0 is a constant. Then, Assumptions 2.1–2.3
are satisfied and the corresponding stochastic convex primal problem (2.3) is

inf
X∈X

{
E

[∫ T

0

1

2
c3(t)u

2(t) dt

]
+ E[g(X(T ))]

}
, (4.6)

subject to

Ẋ(t) = a1(t)X(t) + b1(t)Xδ(t) + c1(t)u(t), dP ⊗ dt-a.s.,

HX(t) = a2(t)X(t) + b2(t)Xδ(t) + c2(t)u(t), dP ⊗ dt-a.s.,
(4.7)

where X is identified with (Ẋ, HX) ∈ X via (2.1).
For P identified with (PT , Ṗ ) ∈ P via (3.7), since l(x) = g(x),

l∗(−PT ) = P 2
T

4a3
.

Similarly, (4.4) for L yields

L∗(t, Ṗ (t) − E[Q̇(t + δ)1[0,T −δ](t) | F (t)], Q̇(t), P (t), HP (t))

= sup
(x,y)∈R2

{x(Ṗ (t) − E[Q̇(t + δ)1[0,T −δ](t) | F (t)]) + yQ̇(t)

+ (a1(t)x + b1(t)y)P (t) + (a2(t)x + b2(t)y)HP (t)}
+ sup

u∈R

{
u(c1(t)P (t) + c2(t)HP (t)) − 1

2c3(t)u
2} for (P, Q̇) ∈ P × L

21
F , (4.8)

where HP is specified by P via (3.8) and PT = −2a3X(T ) by (3.22). To find an explicit
expression for L∗ in (4.8), we take the derivatives, with respect to x and y, respectively, of the
function within the first bracket on the right-hand side of (4.8). We find that the corresponding
derivatives are 0 if and only if

Ṗ (t) = E[Q̇(t + δ)1[0,T −δ](t)|F (t)] − a1(t)P (t) − a2(t)HP (t),

Q̇(t) = −b1(t)P (t) − b2(t)HP (t).
(4.9)
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Similarly, taking the derivative, with respect to u, of the function within the second bracket on
the right-hand side of (4.8), we see that the corresponding derivative is 0 if and only if

u = 1

c3(t)
{c1(t)P (t) + c2(t)HP (t)}. (4.10)

This yields
L∗(t, Ṗ (t) − E[Q̇(t + δ)1[0,T −δ](t) | F (t)], Q̇(t), P (t), HP (t))

=
⎧⎨
⎩

1

2c3(t)
{c1(t)P (t) + c2(t)HP (t)}2 if (4.9) holds,

∞ otherwise.

Now, if (u, X, P, Q̇) is such that u satisfies (4.10); X is identified with (Ẋ, HX), where
(Ẋ, HX) is defined by (4.7); and P is identified with (−2a3X(T ), Ṗ ), where (Ṗ , Q̇) satisfies
(4.9), then it can be verified that the two equalities in Theorem 3.2(iii) hold for such (u, X, P, Q̇).
Thus, by Theorem 3.2, u is an optimal control for the control problem corresponding to (4.6).

Note that, if we replace g in Example 4.1 by g(x) = a3x, the above argument and derivation
can be repeated except that l∗(−PT ) becomes 0. Then the modification to the result is that
PT = −a3 rather than −2a3X(T ). Since PT becomes a constant, the corresponding HP is 0
and P is deterministic (see [4]). Thus, the corresponding optimal u is also deterministic and
given by u = c1(t)P (t)/c3(t).

For more general b, σ , G, and g, to ensure that the set C is not empty and that the link
of stochastic control problem (4.2) to stochastic convex problem (2.3) enables us to apply
Theorem 3.2, we make the following assumptions.

Hypothesis 4.1. The functions b and σ are continuous with respect to (t, u) ∈ [0, T ] × U;
and are Lipschitz continuous with respect to (x, y) ∈ R

n × R
n with the Lipschitz constant

independent of (t, u) ∈ [0, T ] × U. Moreover, there exists a constant c1 > 0 such that, for
f (t, x, y, u) = b(t, x, y, u) or σ(t, x, y, u),

|f (t, 0, 0, u)| ≤ c1 for all (t, u) ∈ [0, T ] × U. (4.11)

Hypothesis 4.2. We say that g is a convex function of x. Moreover, there exist constants
c2 ∈ R and c3 > 0 such that

c2 ≤ G(t, x, y, u) ≤ c3(1 + |x|2 + |y|2) for all (t, x, y, u) ∈ [0, T ] × R
n × R

n × U,

c2 ≤ g(x) ≤ c3(1 + |x|2) for all x ∈ R
n.

We now show that, under these two hypotheses, L and l defined by (4.4) and (4.5) satisfy
Assumptions 2.1–2.3, except for the convexity requirement for L.

It is straightforward to verify that, under these hypotheses, L and l so defined are lower
semicontinuous and are not identically infinite. Moreover, the argument for the Markovian
control problems of [1, p. 393] can be generalized to show that the conditions of Assump-
tion 2.1(ii) for L and l are satisfied. Thus, except for the required convexity of L, all conditions
in Assumption 2.1 are satisfied by L and l. We now show, in the following proposition, that the
remaining two assumptions are also satisfied.

Proposition 4.1. Under Hypotheses 4.1 and 4.2, the functions L and l defined, respectively,
by (4.4) and (4.5) satisfy Assumptions 2.2 and 2.3.
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Proof. By Hypothesis 4.2, G and g are bounded below, which implies that L and l are
bounded below. Hence, L and l satisfy Assumption 2.2.

On the other hand, Hypothesis 4.1 implies that, for any given û ∈ U, there exists a unique
F (t)-adapted solution X̂ to (4.1) such that X̂, X̂δ ∈ L

22
F (see [4, Theorem 2.2]). Hence,

Ĉ = C(t, X̂(t), X̂δ(t),
˙̂
X(t), H

X̂
(t)) �= ∅,

where

˙̂
X(t) = b(t, X̂(t), X̂δ(t), û(t)), H

X̂
(t) = σ(t, X̂(t), X̂δ(t), û(t)), dP ⊗ dt-a.s.

In particular, by the Cauchy–Schwarz inequality, (4.11) and the fact that X̂, X̂δ ∈ L
22
F together

imply that ˙̂
X ∈ L

21
F and H

X̂
∈ L

22
F .

Since Ĉ is not empty and since Hypothesis 4.2 holds, we have

L(t, X̂(t), X̂δ(t),
˙̂
X(t), H

X̂
(t)) = inf

u∈Ĉ
G(t, X̂(t), X̂δ(t), u)

≤ c3(1 + |X̂(t)|2 + |X̂δ(t)|2), dP ⊗ dt-a.s.

and
l(X̂(T )) = g(X̂(T )) ≤ c3(1 + |X̂(T )|2), dP-a.s.

Thus, taking τ2 and θ2 inAssumption 2.3 to be c3(1 + |X̂(t)|2 + |X̂δ(t)|2) and c3(1 + |X̂(T )|2),
respectively, we see that τ2 and θ2 satisfy the required conditions, so that L and l satisfy
Assumption 2.3. �

Turning to the convexity of L, which is not guaranteed by Hypotheses 4.1 and 4.2, but is
required for Assumption 2.1, the following proposition gives a sufficient condition for it to hold.

Proposition 4.2. Let H : [0, T ] × R
n × R

n × U × R
n × R

n×m → R be defined by

H(t, x, y, u, p, h) = 〈b(t, x, y, u), p〉 + 〈σ(t, x, y, u), h〉 − G(t, x, y, u). (4.12)

If H is concave with respect to (x, y, u) then L defined by (4.4) is a convex function with respect
to (x, y, z, h).

Proof. Let

L̃(t, x, y, z, h) = inf
u∈U

{
sup

(p,hp)∈Rn×Rn×m

{〈(z, h), (p, hp)〉 − H(t, x, y, u, p, hp)}
}
. (4.13)

Then (4.12) for H yields

L̃(t, x, y, z, h)

= inf
u∈U

{
G(t, x, y, u)

+ sup
(p,hp)∈Rn×Rn×m

{〈(z − b(t, x, y, u), h − σ(t, x, y, u)), (p, hp)〉}
}
. (4.14)

ForC = C(t, x, y, z, h) as defined in (4.3), ifC = ∅, then (z−b(t, x, y, u), h−σ(t, x, y, u)) �=
(0, 0) and so the supremum in (4.14) is infinite, which implies that L̃ = ∞. Otherwise,
L̃(t, x, y, z, h) = infu∈C G(t, x, y, u). Hence, L̃ = L, where L is defined by (4.4).
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Since H is linear in (p, hp), 〈(z, h), (p, hp)〉 − H(t, x, y, u, p, hp) is convex in (u, p, hp)

by the assumption. Then the order of the supremum and the infimum on the right-hand side of
(4.13) can be exchanged (see [18, Corollary 37.2.2]) so that

L(t, x, y, z, h) = sup
(p,hp)∈Rn×Rn×m

{〈(z, h), (p, hp)〉 − Ĥ(t, x, y, p, hp)}, (4.15)

where Ĥ(t, x, y, p, hp) = supu∈UH(t, x, y, u, p, hp). Since U is a convex set, it is easy to
check that Ĥ is concave in (x, y) and convex in (p, hp). Therefore, (4.15) implies that L is
convex in (x, y, z, h), as required. �

To end this subsection, we use an example to demonstrate that there are indeed stochastic
control problems where at least one of b and σ is not an affine function of (x, y, u), but which
can be reformulated as stochastic convex problems studied in the previous sections.

Example 4.2. We assume that n = m = r = 1. Suppose that U = (0, 2π ]; that

b(t, x, y, u) = sin(x + y + u), σ (t, x, y, u) = y;
and that G(t, x, y, u) = |x + sin(x + y + u)| and g(x) = x2. The functions so chosen satisfy
Hypotheses 4.1 and 4.2. Moreover,

C(t, x, y, z, h) = {u ∈ (0, 2π ] | z = sin(x + y + u) and h = y}
and C(t, x, y, z, h) �= ∅ if and only if |z| ≤ 1. This yields

L(t, x, y, z, h) =
{

|x + z| if |z| ≤ 1 and h = y,

∞ otherwise.

Clearly, L is a convex function of (x, y, z, h). Hence, by Proposition 4.1, as well as the
discussion prior to it, the stochastic control problem associated with b, σ , G, and g defined here
is transformed into a stochastic convex problem of the type studied in the previous sections.�

4.2. Stochastic maximum principles

We now use Theorem 3.2, in particular conditions (3.21) and (3.22), to derive the sufficient
conditions for optimality, as well as the expressions for the Hamiltonian and associated adjoint
equation, for problem (4.2).

For control problem (4.2), define the processes (P, HP ) ∈ L
2∞
F × L

22
F by the following

anticipated BSDE:

dP(t) = −
{

∂H

∂x
(t) + E

[
∂H

∂y
(t + δ) 1[0,T −δ](t)

∣∣∣∣ F (t)

]}
dt

+ HP (t) dB(t), t ∈ [0, T ),

P (T ) = −∂g

∂x
(X(T )),

(4.16)

where H is defined by (4.12), where we have used the shorthand notation

∂H

∂x
(t) = ∂H

∂x
(t, X(t), Xδ(t), u(t), P (t), HP (t))
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and similarly for the partial derivative (∂H/∂y)(t + δ), and where we assume the necessary
differentiability of H .

Note that, if δ = 0 so that there is no delay in the model, H defined by (4.12) is independent
of y, corresponding to Xδ . Then the corresponding H and (4.16) are termed as the (stochastic)
Hamiltonian (function) and the adjoint equation due to their link with the deterministic cases
(see [21, Chapter 3]). We adopt them for our model and the following result justifies this usage.

Theorem 4.1. Assume that Hypotheses 4.1 and 4.2 hold and that L defined by (4.4) is convex
with respect to (x, y, z, h). In addition, assume that U is compact and that the functions
b, σ , and G are continuously differentiable with respect to (x, y) and that g is continuously
differentiable with respect to x. Suppose that X̄ ∈ X and (P̄ , ˙̄Q) ∈ P × L

21
F together satisfy

(3.21) and (3.22) with L and l being defined by (4.4) and (4.5), respectively. Then it is necessary
that there exists a ū ∈ U realizing (4.2). Moreover,

(i) X̄ is the unique strong solution of controlled SDDE (4.1) with u in the functions b and σ

replaced by ū;

(ii) (P̄ , HP̄ ) is a solution of the adjoint equation (4.16), replacing (X, Xδ, u) by (X̄, X̄δ, ū),
where HP̄ is specified by P̄ via (3.8);

(iii) dP ⊗ dt-a.s.,

H(t, X̄(t), X̄δ(t), ū(t), P̄ (t), HP̄ (t)) = max
u∈U

H(t, X̄(t), X̄δ(t), u, P̄ (t), HP̄ (t)),

(4.17)
where H is defined by (4.12).

Proof. Given that control problem (4.2) has been reformulated as the corresponding primal
problem (2.3), with L defined by (4.4) being convex, Assumptions 2.1–2.3 are satisfied by refor-
mulated problem (2.3). Moreover, under the given conditions, it follows from Theorem 3.2(ii)
that X̄ is a solution of the corresponding primal problem (2.3).

By (3.21),

L∗(t, ˙̄P(t) − E[ ˙̄Q(t + δ)1[0,T −δ](t) | F (t)], ˙̄Q(t), P̄ (t), HP̄ (t))

= 〈X̄(t), ˙̄P(t) − E[ ˙̄Q(t + δ)1[0,T −δ](t) | F (t)]〉
+ 〈X̄δ(t),

˙̄Q(t)〉 + 〈( ˙̄X(t), HX̄(t)), (P̄ (t), HP̄ (t))〉
− L(t, X̄(t), X̄δ(t),

˙̄X(t), HX̄(t)), dP ⊗ dt-a.s., (4.18)

where ( ˙̄X, HX̄) is defined by (2.1) withX replaced by X̄ and whereHP̄ is specified by P̄ via (3.8).
On the other hand, using (4.4) for L and using the definition of conjugation functions, L∗ in
(4.18) can also be expressed, in terms of b, σ , and G, as

L∗(t, ˙̄P(t) − E[ ˙̄Q(t + δ)1[0,T −δ](t) | F (t)], ˙̄Q(t), P̄ (t), HP̄ (t))

= sup
(x,y)∈Rn×Rn

max
u∈U

{〈 ˙̄P(t) − E[ ˙̄Q(t + δ)1[0,T −δ](t) | F (t)], x〉

+ 〈 ˙̄Q(t), y〉 + 〈P̄ (t), b(t, x, y, u)〉
+ 〈HP̄ (t), σ (t, x, y, u)〉 − G(t, x, y, u)}. (4.19)
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Since U is compact, (4.18) and (4.19) together imply that, for the given X̄ and (P̄ , ˙̄Q), it is
necessary that there is a ū ∈ U such that ( ˙̄X, HX̄) has the expression

˙̄X(t) = b(t, X̄(t), X̄δ(t), ū(t)), HX̄(t) = σ(t, X̄(t), X̄δ(t), ū(t)), dP ⊗ dt-a.s.
(4.20)

and that the ‘sup max’ in (4.19) is attained at (X̄(t), X̄δ(t), ū(t)), dP ⊗ dt-a.s. Noting the fact
that X̄ is a solution of the corresponding primal problem (2.3), (4.20) implies that ū is an optimal
control for control problem (4.2) and that X̄ is the unique solution to (4.1) with u replaced by ū,
i.e. (i) holds.

Using (4.12) for H , it also follows from (4.18) and (4.19) that

H(t, X̄(t), X̄δ(t), ū(t), P̄ (t), HP̄ (t)) = max
u∈U

H(t, X̄(t), X̄δ(t), u, P̄ (t), HP̄ (t)),

i.e. (iii) holds.
To show (ii), we note first that, using (4.12) for H again, (4.18) and (4.19) together imply

further that, dP ⊗ dt-a.s.

〈X̄(t), ˙̄P(t) − E[ ˙̄Q(t + δ)1[0,T −δ](t) | F (t)]〉
+ 〈X̄δ(t),

˙̄Q(t)〉 + H(t, X̄(t), X̄δ(t), ū(t), P̄ (t), HP̄ (t))

= max
(x,y)∈Rn×Rn

{〈x, ˙̄P(t) − E[ ˙̄Q(t + δ)1[0,T −δ](t) | F (t)]〉

+ 〈y, ˙̄Q(t)〉 + H(t, x, y, ū(t), P̄ (t), HP̄ (t))}.
Since b, σ , and G are differentiable with respect to (x, y), by taking the derivatives with respect
to x and y of the function within the bracket on the right-hand side of the above equation, the
fact that the maximum in the above equation is attained at (X̄(t), X̄δ(t)), dP ⊗ dt-a.s., implies
that

˙̄P(t) = −∂H̄

∂x
(t) + E[ ˙̄Q(t + δ)1[0,T −δ](t) | F (t)], dP ⊗ dt-a.s. (4.21)

and
˙̄Q(t) = −∂H̄

∂y
(t), dP ⊗ dt-a.s., (4.22)

where H̄(t) = H(t, X̄(t), X̄δ(t), ū(t), P̄ (t), HP̄ (t)). Replacing ˙̄Q in (4.21) using (4.22) yields

˙̄P(t) = −∂H̄

∂x
(t) − E

[
∂H̄

∂y
(t + δ) 1[0,T −δ](t)

∣∣∣∣ F (t)

]
, dP ⊗ dt-a.s. (4.23)

Similarly, by (3.22), we have

l∗(−P̄T ) = 〈−P̄T , X̄(T )〉 − l(X̄(T )), dP-a.s.

Since l∗ is the conjugate convex function of l and since l = g, the above, together with the
definitions of conjugate functions, imply that

〈−P̄T , X̄(T )〉 − g(X̄(T )) = sup
x∈Rn

{〈x, −P̄T 〉 − g(x)}, dP-a.s.
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Taking the derivative, with respect to x, of the function within the bracket on the right-hand
side of the above equation, we see that P̄T must satisfy the condition

P̄T = −∂g

∂x
(X̄(T )), dP-a.s. (4.24)

Now, since P̄ = (P̄T , ˙̄P) ∈ P, using (3.8), (4.23), and (4.24) yields

P̄ (t) = −∂g

∂x
(X̄(T )) +

∫ T

t

{
E

[
∂H̄

∂y
(s + δ)1[0,T −δ](s)

∣∣∣∣ F (s)

]
+ ∂H̄

∂x
(s)

}
ds

−
∫ T

t

HP̄ (s) dB(s), dP-a.s.,

i.e. (ii) holds. �

Note that, rather than defining them, the proof of the above theorem uses the techniques
of conjugate duality to derive the Hamiltonian H and the associated adjoint equation for
problem (4.2). If δ = 0, the Hamiltonian H is independent of y, which corresponds to
the delayed variable, and then adjoint equation (4.16) reduces to a classic BSDE studied in [21,
Chapter 3].

Recall that, by Proposition 4.2, the concavity condition on the Hamiltonian H implies the
required convexity of L. Under such a concavity condition on H , the proof of Theorem 4.1
can be modified to give the following sufficient maximum principle.

Theorem 4.2. In addition to Hypotheses 4.1 and 4.2, we assume further that the functions b, σ ,
and G are continuously differentiable with respect to (x, y), that g is continuously differentiable
with respect to x, and that H(t, x, y, u, p, h) is concave with respect to (x, y, u). Let ū ∈ U, X̄

be the solution to controlled SDDE (4.1) associated with ū, and (P̄ , HP̄ ) be the solution to
adjoint equation (4.16) associated with (ū, X̄). If (ū, X̄, P̄ ) satisfies (4.17) then ū is an optimal
solution for the control problem (4.2).

Proof. For the given ū, X̄, and (P̄ , HP̄ ), we have P̄T , ˙̄P , and ˙̄Q respectively defined by
(4.24), (4.21), and (4.22). Under the given conditions, P̄T ∈ L

2, ˙̄P ∈ L
21
F , and ˙̄Q ∈ L

21
F .

It follows from (3.8) and from the uniqueness of the martingale representation that P̄ is identified
with (P̄T , ˙̄P) ∈ P via (3.7). Furthermore, given that (ū, X̄, P̄ ) satisfies (4.17), the argument in
the proof of Theorem 4.1, together with the given concavity of H , shows that, for such (P̄ , ˙̄Q),
the ‘sup max’ in (4.19) is attained at (X̄, X̄δ, ū), i.e. (3.21) holds. Similarly, the proof of
Theorem 4.1 also shows that (3.22) holds. Thus, the required result follows from Theorem 3.2,
completing the proof. �

Comparing with [4], [12], and [14], the above sufficient stochastic maximum principle is
proved using the method of conjugate duality, for which we require Hypotheses 4.1 and 4.2.
Otherwise, the other conditions set in the theorem are similar to those required in [4, Theo-
rem 3.2] and the result is similar to those of [4], [12], and [14] when their models are restricted
to ours.

5. The inclusion of exponential moving average delay

The methods and results obtained in the preceding sections can be extended to include an
exponential moving average delay, in addition to the discrete delay Xδ , in the model. That is,
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the continuous F (t)-adapted state process X is described by the controlled SDDE

dX(t) = b(t, X(t), Xa(t), Xδ(t), u(t)) dt

+ σ(t, X(t), Xa(t), Xδ(t), u(t)) dB(t), t ∈ (0, T ],
X(t) = x0(t), t ∈ [−δ, 0],

(5.1)

where x0, Xδ , δ, and u are defined as before and Xa denotes the exponential moving average
delay of X given by

Xa(t) =
∫ 0

−δ

eλsX(t + s) ds, t ∈ [0, T ].

The functions G and g may also depend, respectively, on Xa and Xa(T ), and the associated
optimal control problem is to find ū ∈ U realizing

inf
u∈U

Ja(u), (5.2)

where

Ja(u) = E

[∫ T

0
G(t, X(t), Xa(t), Xδ(t), u(t)) dt + g(X(T ), Xa(T ))

]
.

Note that this type of stochastic control problem with delay was studied in [13], where the
authors obtained a sufficient condition for the maximum principle using methods of stochastic
calculus.

As in [7], we introduce the state process V : � × [0, T ] → R
n defined by

dV (t) = {X(t) − λV (t) − e−λδXδ(t)} dt, t ∈ [0, T ],

V (0) = v0 =
∫ 0

−δ

eλsx0(s) ds.
(5.3)

Then V (t) = Xa(t) and so the combined SDDE for W = (X, V ), given by (5.1) with Xa

replaced by V and (5.3), is equivalent to the original controlled SDDE (5.1) for X. In terms
of this new combined SDDE, the stochastic optimal control problem associated with (5.1)
becomes a stochastic optimal control problem with discrete delay, where its drift and diffusion
coefficients are independent of Vδ .

To derive the adjoint equations and the stochastic maximum principle for the stochastic
optimal control problem associated with (5.1), and to improve the results of [13] and [14],
we modify our previous conjugate duality approach to extend it to W = (X, V ). For this,
in addition to X ∈ X, we identify (V̇ , HV ) ∈ X with the continuous F (t)-adapted stochastic
process V : � × [0, T ] → R

n defined by

V (t) = v0 +
∫ t

0
V̇ (s) ds +

∫ t

0
HV (s) dB(s)

in a similar fashion to the identification of X with (Ẋ, HX) ∈ X. At the same time, take La

and la to be modifications of L and l in Section 2, so that they depend also on (V , V̇ , HV ) and
on V (T ), respectively. Then the corresponding stochastic convex problem with discrete delay
is to find (X̄, V̄ ) ∈ X × X realizing

inf
(X,V )∈X×X

�a(X, V ), (5.4)
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where
�a(X, V ) = ILa (X, V, Xδ, Ẋ, V̇ , HX, HV ) + Jla (X(T ), V (T )).

Adapting the arguments in Section 3, in addition to P = (PT , Ṗ ) ∈ P, we require another
continuous F (t)-adapted stochastic process P a to pair with V ∈ X, where P a : � × [0, T ] →
R

n is identified with (P a
T , Ṗ a) ∈ P in the same sense thatP is identified with (PT , Ṗ )using (3.7).

Assuming that La and la satisfy the appropriately modified Assumptions 2.1–2.3, the argument
for the proof of Theorem 3.1 can be used to obtain the dual problem to (5.4) in order to realise

inf
(P,P a,Q̇)∈P×P×L

21
F

�a(P, P a, Q̇), (5.5)

where

�a(P, P a, Q̇) = IL∗
a
(Ṗ − E[Q̇(· + δ) 1[0,T −δ](·) | F (·)], Ṗ a, Q̇, P, P a, HP , HP a )

+ Jl∗a (−PT , −P a
T ) − E

[∫ T

0
〈Q̇(t), x0(t − δ) 1[0,δ](t)〉 dt

]

− E

[∫ T

0
(〈Ṗ (t), x0(0)〉 + 〈Ṗ a(t), v0〉) dt

]
+ E[〈(PT , P a

T ), (x0(0), v0)〉]

and where HP a ∈ L
22
F is obtained by applying the martingale representation theorem to P a ∈ P

as for HP obtained from P via (3.8). Since the combined SDDE is independent of Vδ , the
inclusion of P a in �a does not result in the dependence of �a on an additional Qa as was the
case for the inclusion of Q in �. The expression for �a then enables us to modify the proof of
Theorem 3.2 to obtain the following equivalent conditions for optimality of this new stochastic
convex problem.

Theorem 5.1. For any given (X̄, V̄ ) ∈ X × X and (P̄ , P̄ a, ˙̄Q) ∈ P × P × L
21
F , the following

three statements are equivalent.

(i) First,
�a(X̄, V̄ ) + �a(P̄ , P̄ a, ˙̄Q) = 0.

(ii) Second, (X̄, V̄ )and (P̄ , P̄ a, ˙̄Q)are the respective optimal solutions to the primal problem
(5.4) and its dual problem (5.5), and

inf
(X,V )∈X×X

�a(X, V ) = − inf
(P,P a,Q̇)∈P×P×L

21
F

�a(P, P a, Q̇).

(iii) Finally,

L∗
a(t,

˙̄P(t) − E[ ˙̄Q(t + δ)1[0,T −δ](t) | F (t)], ˙̄P a(t), ˙̄Q(t), P̄ (t), P̄ a(t), HP̄ (t), HP̄ a (t))

+ La(t, X̄(t), V̄ (t), X̄δ(t),
˙̄X(t), ˙̄V (t), HX̄(t), HV̄ (t)) − 〈 ˙̄Q(t), X̄δ(t)〉

− 〈 ˙̄P(t) − E[ ˙̄Q(t + δ) 1[0,T −δ](t) | F (t)], X̄(t)〉 − 〈(P̄ (t), HP̄ (t)), ( ˙̄X(t), HX̄(t))〉
− 〈 ˙̄P a(t), V̄ (t)〉 − 〈(P̄ a(t), HP̄ a (t)), (

˙̄V (t), HV̄ (t))〉
= 0, dP ⊗ dt−a.s.

and

la(X̄(T ), V̄ (T )) + l∗a (−P̄T , −P̄ a
T ) + 〈(P̄T , P̄ a

T ), (X̄(T ), V̄ (T ))〉 = 0, dP-a.s.
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Returning to the optimal control problem (5.2), by adapting the technique for the proof of
Theorem 4.1, we see similarly that Theorem 5.1 implies the following extension of Theorem 4.1
to have a sufficient condition for the optimality of (5.2), involving the Hamiltonian Ha of
problem (5.2) defined by

Ha(t, x, y, z, u, p, r, hp, hr) = 〈b(t, x, y, z, u), p〉 + 〈x − λy − e−λδz, r〉
+ 〈σ(t, x, y, z, u), hp〉 − G(t, x, y, z, u),

and associated adjoint equations.

Theorem 5.2. Under the modified conditions to those in Theorem 4.1, suppose that (X̄, V̄ ) ∈
X×X and (P̄ , P̄ a, ˙̄Q) ∈ P×P×L

21
F together satisfy the two equalities given in Theorem 5.1(iii)

with La and la being defined using G and g in a similar manner to that specified in Section 4.
Then it is necessary that there is a ū ∈ U realising (5.2). Moreover,

(i) X̄ is the unique strong solution of the controlled SDDE (5.1) with u in the functions b

and σ replaced by ū;

(ii) (P̄ , HP̄ ) and (P̄ a, HP̄ a ) are solutions of the following adjoint equations, replacing
(X, Xa, Xδ, u) by (X̄, X̄a, X̄δ, ū):

dP(t) = −
{

∂Ha

∂x
(t) + E

[
∂Ha

∂z
(t + δ) 1[0,T −δ](t)

∣∣∣∣ F (t)

]}
dt

+ HP (t) dB(t), t ∈ [0, T ), (5.6)

P(T ) = −∂g

∂x
(X(T ), Xa(T )),

and

dP a(t) = −∂Ha

∂y
(t) dt + HP a (t) dB(t), t ∈ [0, T ], (5.7)

P a(T ) = −∂g

∂y
(X(T ), Xa(T )),

where HP̄ and HP̄ a are, respectively, specified by P̄ and P̄ a via (3.8);

(iii) dP ⊗ dt-a.s.,

Ha(t, X̄(t), X̄a(t), X̄δ(t), ū(t), P̄ (t), P̄ a(t), HP̄ (t), HP̄ a (t))

= max
u∈U

Ha(t, X̄(t), X̄a(t), X̄δ(t), u, P̄ (t), P̄ a(t), HP̄ (t), HP̄ a (t)). (5.8)

Note that the adjoint equations derived here are different from those defined in [13]: instead
of the adjoint equations for a triple of stochastic processes in [13], we have those for paired
stochastic processes. In addition, instead of a classic controlled BSDE as in [13], one of the
adjoint equations here is described by an anticipated BSDE. Note also that the Hamiltonian and
adjoint equations here are both different from those defined in [14].

Similarly, we can generalize Theorem 4.2 to obtain the following sufficient stochastic
maximum principle for control problem (5.2). In particular, it requires weaker assumptions
than those of [13, Theorem 2.2] and [14, Theorem 3.1], of which our result is therefore a
generalization.
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Theorem 5.3. In addition to modified Hypotheses 4.1 and 4.2, we assume further that the
functions b, σ , and G are continuously differentiable with respect to (x, y, z), that g is
continuously differentiable with respect to (x, y), and that Ha(t, x, y, z, u, p, r, hp, hr) is
concave with respect to (x, y, z, u). Let ū ∈ U, X̄ be the solution to the controlled SDDE
(5.1) associated with ū, and (P̄ , HP̄ ) and (P̄ a, HP̄ a ) be the solutions to the adjoint equations
(5.6) and (5.7) associated with (ū, X̄). If (ū, X̄, P̄ , P̄ a) satisfies (5.8) then ū is an optimal
solution for control problem (5.2).

We note that, if (5.1) is independent of Xa , then the Hamiltonian and the associated adjoint
equations involved in the maximum principles for control problem (5.2) coincide with those
obtained in Section 4 for the corresponding control problem with just discrete delay. Hence,
our results in Section 4 become a special case of those for the optimal control problems with
both discrete and exponential moving average delays.

Finally, we complete the paper by considering the following simple control problem with
both discrete and exponential moving average delays. Note that it usually cannot be solved
using the results of either [14] or [13] as, for the former, g needs to be independent of y and,
for the latter, the parameters need to satisfy the constraints

f3e−λδ = b1(t)a3, b1(t) �= 0, and
e−λδf1(t)

b1(t)
− λ = a1(t) + b1(t)e

λδ

to ensure that one of the adjoint processes there be identically 0.

Example 5.1. As in Example 4.1, we set n = m = 1. Suppose that U = R; then

b(t, x, y, z, u) = a1(t)x + f1(t)y + b1(t)z + c1(t)u,

σ (t, x, y, z, u) = a2(t)x + f2(t)y + b2(t)z + c2(t)u;
and that

G(t, x, y, z, u) = 1
2c3(t)u

2 and g(x, y) = a3x + f3y,

where a1, a2, a3, b1, b2, c1, c2, and c3 are as given in Example 4.1, f1 and f2 are R-valued
continuous functions, and f3 ∈ R is a constant.

Similarly to Example 4.1, it can be verified that this control problem can be reformulated as
a particular convex problem, where the corresponding Assumptions 2.1–2.3 are satisfied. The
Hamiltonian for this problem is given by

Ha(t, x, y, z, u, p, r, hp, hr) = {a1(t)x + f1(t)y + b1(t)z + c1(t)u}p
+ {a2(t)x + f2(t)y + b2(t)z + c2(t)u}hp

+ {x − λy − e−λδz}r − 1
2c3(t)u

2,

which satisfies the concavity condition required by Theorem 5.3. The associated paired adjoint
processes are

dP(t) = −{a1(t)P (t) + P a(t) + a2(t)HP (t)

+ E[{b1(t)P (t + δ) − e−λδP a(t + δ) + b2(t)HP (t + δ)} 1[0,T −δ](t) | F (t)]} dt

+ HP (t) dB(t), t ∈ [0, T ],
P (T ) = −a3,
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and
dP a(t) = −{f1(t)P (t) − λP a(t) + f2(t)HP (t)} dt + HP a (t) dB(t), t ∈ [0, T ],
P a(T ) = −f3.

By taking the derivative, with respect to u, of Ha , we find that

ū(t) = 1

c3(t)
{c1(t)P̄ (t) + c2(t)HP̄ (t)}

is an optimal control for the problem, where (P̄ , HP̄ ), together with (P̄ a, HP̄ a ), is the solution
of the paired adjoint equations. It can be verified that the pair of adjoint equations in this
example admits a unique solution. In particular, since P(T ) and P a(T ) are both constants,
HP (t) = HP a (t) ≡ 0. Hence, this delayed control problem has a deterministic solution.
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