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In this paper, formulae drawn from the discipline of map projections are applied to provide
simple and accurate solutions for the Inverse and Direct problems on the Great Ellipse.
Distance along the meridional arc of the spheroid as a function of geodetic latitude is

defined in terms of an elliptic integral which will be replaced here with a compact harmonic
series approximation possessing simplicity and high accuracy. Latitude as a function of
distance along the meridional arc will also be obtained via another equally simple inversion

series that also possesses high accuracy. When these two series are applied with their con-
stants modified to suit the section ellipse, they will be shown to provide accurate solutions to
the inverse and direct navigation problems pertaining to the Great Ellipse, and thereby

provide a complete solution that is also simple to implement.
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1. INTRODUCTION. The modern Global Reference Surface (GRS) is a
spheroid generated by the WGS 84 reference ellipse rotated about its minor axis. It
enables navigational track solutions on the Earth’s surface to be determined that
are more precise than those that would be obtained if the Earth was considered as a
true sphere. The intersection of the surface of the spheroid with a plane passing
through its poles produces a meridian ellipse. At any other inclination away from
the poles, the intersection through the centre produces a section ellipse and the
curve at the intersection is a Great Ellipse (GE). Similarly, the intersection of a
sphere and a plane through its centre creates a Great Circle (GC). Mathematics for
GC navigation on the standard navigation sphere have worked well as the basis for
navigation; it has the advantage of being well established and practiced throughout
the maritime community and is also valuable in an instructional setting. Formulae
for GC computation are based on the properties of spherical triangles that enable
solutions to both the inverse problem and the direct or forward problem to be ob-
tained with ease. A limitation of GC navigation is that distances on the sphere
when compared to those obtained for the GE on the spheroid can differ by 0.5% at
worst but are typically less (y0.2%) depending upon position (Earle, 2006).
Differences between azimuth directions on the sphere and the spheroid are known
to be quite small and will be further remarked upon later.
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Navigation is now aided by satellite positioning systems (SPS) and facilitated by
Electronic Chart Display and Information Systems (EDS and ECDIS) which, taken
together, are the new norm. These systems provide high positioning accuracy
and have become critical to the planning and execution of voyages. Uncertainty of
position derived from these systems is now so small as to be on the order of, and
frequently less than, the dimensions of the vessel being steered and so computational
tools commensurate with this level of positioning accuracy are required. These re-
quirements are met with the mathematics of the GE as it applies to the WGS 84
reference datum, which is a common default datum for GPS receivers, but are not
adequately met by use of GC computation.

Transoceanic route planning usually entails establishing an intended GE track
from a set of geographic endpoint coordinates together with coordinates for a number
of intermediate geographic waypoints along the GE. Overall distance is then com-
puted, along with distance and direction between waypoints. Steering between way-
points is done as a series of rhumb line legs chosen to approximate the desired GE
track. In practice, waypoint selection is an operational matter that may at times
require track adjustments to maintain overall operational efficiency. This may be
achieved by adjusting the aspect of the vessel to the prevailing weather and sea state
conditions, taking into account the hull form and freeboard of the vessel. These per-
turbations to the ideal track are outside the scope of this paper though some sense of
their significance to track optimization has been discussed (Martinez de Osés, 2005).

Modern ship bridge automation and technology has simplified much of the effort
in route planning and execution. The process of defining the end points of an intended
track and then determining the overall distance is known as the inverse problem. On
the other hand, the direct or forward problem specifies a point of departure and an
initial azimuth and determines arrival coordinates after travelling a specified distance
along a GE track. At first sight, even though the GE can be established from a single
geographic position, such a solution might be considered to be too open-ended for the
safe conduct of a vessel at sea and may be of little interest to the navigator. The direct
solution benefits the navigator if the practice of route planning requires waypoints
to be set at predetermined separations in distance along an intended GE line between
a departure point and a pre-established destination point. If however, waypoints are
to be separated by divisions in longitude, then having developed the GE from
two geographic positions, the inverse solution provides all the required data.
Mathematical schemes that provide both the inverse and the forward solution for the
GE are known as complete solutions, for which there is a new algorithm (Pallikaris
and Latsas, 2009), that provides a consolidated approach that draws upon the work
of Bowring (Bowring, 1984).

Calculating distance between two points on a great ellipse can be done via a
solution to a line integral using numerical methods. This requires a continuous
mathematical relationship between latitude y (or Q) and longitude h to be defined via
what is called the Equation of the Great Ellipse (EGE) that will be described later.
Although precise numerical evaluation employing an adaptive algorithm is quite
straightforward, it is also possible to calculate distance by an approximate series
formula that possesses very good accuracy. An appeal of the series solution is that
software preparation is simplified somewhat. In the following sections, one such
harmonic series approximation for distance along the meridian ellipse as a function
of geodetic latitude is discussed and results obtained from it compared to results from
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the integral method. After that, the properties of a companion harmonic series in-
version formula that allows distance along the meridian ellipse to be converted back
to geodetic latitude will be discussed. In the sections that follow on, these two series
expressions for the meridian ellipse will be modified for application to the GE on the
section ellipse. This will be done by changing the constant terms in the two series to
account for the reduced ellipticity of the section ellipse. The section ellipse is then the
GE on which distance is to be calculated as a function of an elliptic angle. In the
inversion process, distance along the ellipse will be converted to an elliptic angle and
then into geodetic coordinates. The combination of these two schemes provides the
complete solution.

2. FUNDAMENTAL SOLUTION FOR GE DISTANCE. The square
of a line element of distance ds on the surface of a spheroid is established from a
vector of position X(w, h) and written as:

ds2= Xw

�� ��2(dw)2+ Xhj j2(dh)2 (1)

This is known as the first fundamental form ofX=X(w, h) for which,Xw=hX/hw and
Xh=hX/hh whose magnitudes are known as the fundamental coefficients of the first
order (Lipshutz, 1969), (Massey and Kestelman, 1958). Equation 1 is applicable to
any regular curve on the surface of the ellipsoid; it is definitive and contains no
assumptions; consequently any solution to Equation 1 is therefore a fundamental
solution and is exact. One such line integral solution to Equation 1 (Earle, 2000)
based upon the EGE has been provided for the GE and is recast here as :

s=aa

Zh1

h1

1

1+a tany2 1+
(1+ tany2)(l sin hxm cos h)2

(1+a tany2)2

� �� �1=2
dh (2)

In this equation, a=10800/p is the equatorial radius in geodetic miles for which one
geodetic mile is equal to 1855.324847 metres or 1.001795 nautical miles, |s|=distance
along the GE in the same units, while a=1xe2 where e is the ellipticity of the meri-
dian ellipse. Latitude y is a function of longitude defined by the EGE of Equation 10,
shown later. Although the above expression is exact, it must be solved using nu-
merical methods preferably with an adaptive algorithm. Results obtained later from
Equation 2 will be used to establish a baseline against which other results will be
compared. When distance has been specified, forward solutions for longitude h can
be determined from Equation 2 by means of iteration methods, after which, latitude
can be determined on substituting the solved value of h into the EGE. In the devel-
opments that follow, iteration methods are avoided. For the determination of for-
ward and backward azimuths associated with each position on the spheroid, some of
the solutions previously presented (Earle, 2008) can be readily applied.

3. THE MERIDIAN ELLIPSE. The WGS 84 meridional ellipse has an el-
lipticity e=0.081819191 which when rotated defines the GRS. A quarter section
through the meridian ellipse is illustrated in Figure 1 where OE=equatorial radius a,
ON is the polar axis and r=OP is the radius at P. The position of a point P on the
surface of a spheroid is located by latitude and longitude coordinates. Latitude is
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specified north or south of the equator as geodetic latitude y or geocentric latitude
Q, while longitude h is specified east or west of the prime meridian. The geodetic
latitude y, sometimes called geographic latitude, is the angle between the inward
projected normal to the surface tangent at a point P and the equatorial plane.

Angles w and y are related by tanw=a tany. Distance on the meridian ellipse
from the equator at E to a point at P at latitude y is given in geodetic miles by:

F(y)=aa

Zy
0

djffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1xe2 sin j2)3

p (3)

Equation 3 is easily evaluated numerically and even elementary methods such as
Simpson’s rule will work but may not have sufficient precision, although an algorithm
described in (Williams, 1998) is known to work well. It is preferable however, to use
an adaptive algorithm that adjusts the intervals of the integrand according to the
slope of the function. Overall distance M12 between two latitudes on the meridional
arc in the same hemisphere is that from:

M12=F(y2)xF(y1)

3.1. Series Approximations for the Meridian Ellipse. The function f1(y) below is a
compact harmonic series approximation to Equation 3 for meridional distance
(Snyder, 1987).

f1(y)=a a0y+
X3

n=1

an sin (2ny)

" #
(4)

The coefficients are :

a0=1x
1

4
e2x

3

64
e4x

5

256
e6

a1=x
3

8
e2+

3

32
e4+

45

1024
e6

� �
a2=

15

256
e4+

45

1024
e6

� �
a3=x

35

3072
e6

� �

Figure 1.
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Distance M12 between two latitudes on the meridional arc can be determined using
Equation 4 i.e.

M12=f1(y2)xf1(y1)

Loss of significant digits is reduced for small angular separations if differencing is
applied to Equation 4 resulting in:

M12=a a0(y2xy1)+
X3

n=1

2an cos (n(y2+y1)) sin (n(y2xy1))

" #
(5)

which will be adapted later to give distance on the great ellipse. There is also a
companion harmonic inversion series to Equation 4, described by Snyder and at-
tributed to an earlier work (Adams, 1921) that used the Lagrange Inversion Theorem
to construct the inversion series. It provides geodetic latitude as a function of nor-
malized meridional distance. The condensed form of this harmonic inversion series is :

f2(u)=b0u+
X4

n=1

bn sin (2nu) (6)

the constants for which are:

b0=1

b1=
3

2
e1x

27

32
e31

b2=
21

16
e21x

55

332
e41

b3=
151

96
e31

b4=
1097

512
e41

and

e1=(1x
p
a)=(1+

p
a)

For each value of the normalized distance u= p
2

M
M0
, the function f2(u) returns a value

of geodetic latitude y corresponding to the given meridional distance M. The con-
stant M0 is the meridional distance from the equator to the pole i.e. M0=f1

p
2

� �
or,

equivalently, M0=a(a0 p/2). Both of these series are periodic and can be used over
arcs spanning any interval in the range 0<y<2p.

3.2. Numerical Results for the Meridional Ellipse. Table 1 shows a comparison of
results for meridional arc distance acquired from Equation 3 and Equation 4 for
angles Ly1=180y/p degrees in the range 0<y<p, together with the magnitude of
their maximum difference.

A second evaluation involving Equations 4 (or 5) and 6 has been performed
using angles Ly1=180y/p degrees for the range 0<y<p, which were then applied
to Equation 5 to obtain distance. Results from Equation 5 in geodetic miles were
first normalized as described then applied to Equation 6 to determine corresponding
meridional angles. After converting to degrees, the results from the inversion
provided by Equation 6 then closely replicated the initial angles as Ly2 as shown
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in Table 2 where the magnitude of the maximum difference found among them is also
shown in the bottom row.

From the results in Table 1, meridional distance computed from Equation 4 is seen
to closely match those results from Equation 3 at a level of precision quite adequate
for GE distance to be computed on the section ellipse. Latitude differences in Table 2
show that Equation 4 and thus Equation 5, together with inversion via the series of
Equation 6, return the original values of latitude to within <7r10x9 degrees. After
applying an adjustment to their constant terms, the two meridional equations,
Equations 5 and 6, can be expected to provide inverse and forward solutions for the
GE on the section ellipse with comparable accuracy as will be demonstrated.

4. APPLICATION TO THE GREAT ELLIPSE. A GE as illustrated
in Figure 2 is the locus of all points at the intersection of the surface of a spheroid
and an inclined plane that passes through its centre. From a node such as N1 where
the GE crosses the equator, the path of the GE rises in latitude up to a turning
point called the vertex (V). From the vertex it then turns back to the equator cross-
ing it at the next node N2 180x from the first. It then proceeds towards the vertex
in the opposite hemisphere, then on towards the starting node. The GE is a section
ellipse and is seen to resemble an inclined version of the meridional ellipse but

Table 1.

Comparison of Calculated Results on the Meridional Arc from Equations 3 and 4 – Geodetic Miles

Angle Ly1 deg. By Eq. 3 By Eq. 4

0 0 0

30 1789.50516619 1789.5051662

60 3586.47318918 3586.47318959

90 5390.95121149 5390.95121161

120 7195.4292338 7195.42923363

150 8992.3972568 8992.39725702

180 10781.90242299 10781.90242322

Maximum Difference: 4.1r10x7 miles.

Table 2.

Comparison of Angles using Inversion Formula Equation 6

Ly1 Ly2 by Eq. 6

0 0

30 30.0000000002

60 60.0000000068

90 90.0000000019

120 119.9999999971

150 150.0000000036

180 180.0000000039

Maximum Difference: 6.8r10x9 degrees
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passes through the vertexes instead of the poles and has reduced ellipticity. Figure 2
shows a section of the GE in the northern hemisphere upon which P is a point de-
fined by geocentric coordinates Q,h. Geodetic latitude corresponding to Q is y and
geocentric latitude of the vertex is Qv.

Figure 2 also shows the angle N1OP=wk that lies in the plane of the ellipse and is
known as the geocentric great elliptic angle (GEA). Associated with the geocentric
GEA is the geodetic GEA yk. At the vertex V, the line OV makes a right angle with
the equatorial line N1 O N2.

4.1. Equation of the Great Ellipse. In Figure 3, P1 and P2 correspond to two
position vectors X1 and X2 defined in terms of their geocentric latitude and

Figure 2.

Figure 3.
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longitude; each has the form:

X=r(w)x

for which

x=[̂ii cos w cos h+bjj cos w sin h+bkk sin w] (7)

r(w)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a

(1xe2 cosw2)

r
and

a=(1xe2)

Geocentric latitudes and longitudes for P1 and P2 are w1, h1 and w2, h2 which
are then inserted as appropriate into Eq.7 for each vector. Since the two
vectors X1 and X2 are constants, then their cross product also contains constants,
that is :

x12=
X1rX2

X1rX2j j (8)

which is perpendicular to the plane of the GE containing P1, P2 and the centre. The
three constant components are:

[̂iim bjjn ckpkp]=x12 (9)

An arbitrary vector X=X(w, h) in the plane of the section ellipse defined by any other
position along the GE must satisfy the condition that X.x12=0. The solution deter-
mined for this condition is the equation of the great ellipse (EGE), written here with
l=m=p and m=n=p as:

tany=x(l cosh+m sinh)=a (10)

The EGE relates latitude to longitude for all points along the ellipse and is required
for Equation 2. The zeros of Equation 10 where w=0, determine the longitudes
of the two nodes as hn= tanx1 xl=m

	 

tp, while longitudes of the two vertexes

occur at hv= tanx1 m=l
� �

tp where the geocentric vertex latitudes are

wv=tarctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2+m2

q
. The azimuth angle c0 between the GE and the meridian on

crossing the equator at a node is related to the vertex latitude wv by c0=
p
2xwv.

4.2. The Great Elliptic Angle (GEA). For the section ellipse shown in Figure 3 to
be a replica of the meridian ellipse, its own ellipticity must be replaced with a smaller
value ek (0fekfe) given by:

ek=
esinwvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1xe2 coswv
2)

p (11)

A seen in Figure 3, the geocentric GEA wk1 of position P1 is the angle between Xn and
X1 defined by:

coswk1=
Xn �X1

Xnj j X1j j (12)
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Similarly for P2 :

coswk2=
Xn �X2

Xnj j X2j j (13)

The corresponding geodetic GEA for P1 is yk1 given by:

yk1=arcos
ak coswk1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1x(1xak2) coswk12)
p" #

(14)

Similarly for P2

yk2=arcos
ak coswk2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1x(1xak2) coswk22)
p" #

(15)

where ak=1xek.
For an arbitrary vector X=X(w, h) defined by any position P on the GE, the geo-
centric GEA is:

coswk=
Xn �X
Xnj j Xj j (16)

and the corresponding geodetic GEA is:

yk=arcos
ak coswkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1x(1xak2) coswk2)
p" #

(17)

4.3. Great Elliptic Distance (GED). The GED measured along the GE from
the nearest node can be calculated after replacing the constants a, e and y in Eq.3
with ak ek and yk i.e.

Fk(yk)=aak
Zyk
0

djffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1xek2 sin j2)3

p (18)

The distance Dk12 between two positions P1 at yk1 and P2 at yk2 then becomes:

Dk12=Fk(yk2)xFk(yk1) (19)

It is however a simpler matter to also make use of Equation 5 by suitably modifying
the constant terms. This entails redefining the constants an by replacing e therein with
ek so that the an become akn. With the constants so adjusted, the series for distanceDk12
along the GE arc written as a function becomes:

D (yk1,yk2)=a ak0(yk2xyk1)+
X3

n=1

2akn cos (n(yk2+yk1)) sin (n(yk2xyk1))

" #
(20)

4.4. Numerical Evaluation (GED). Numerical results obtained from Equation 20
for GED in geodetic miles have been compared with results from Equation 2 and are
shown in Table 3. The paths chosen for the comparison begin and end at latitudes
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shown in column 1, for which the chosen span of longitude in each case is 1350.
Column 2 contains the calculated results from the line integral of Equation 2, while
column 3 shows results from Equation 20. In the worst case, the difference between
the two schemes amounted to a maximum of 7.7r10x7 miles. From these results, it is
apparent that Equation 20 is a useful alternative for calculating distance along a great
ellipse.

5. GE FORWARD SOLUTION BY INVERSION FORMULA. The
forward solution entails setting a distance to go from a given geographic position
in a specified direction and although the EGE can be determined from a single
position if the azimuth is also specified, by itself such a procedure is least likely to
appeal to the navigator. If a series of waypoint distances are specified for a solution
to the EGE established from two geographic end points, then the latitudes and
longitudes of each successive waypoint can be determined from the forward
solution set out as follows.

Application of the inversion formula of Equation 6 to the GE requires that the
constants bn therein be replaced by bkn which are obtained on replacing e1 with ek1 in
the series for bn where now:

ek1=(1x
p
ak)=(1+

p
ak)

So then:

fk2(u)=bk0u+
X4

n=1

bkn sin (2nu) (21)

When distances between waypoints have been set, then the geocentric GEA to each
waypoint from the node can be determined from Equation 21. But first, it is necessary
to add the distance Dge1 between the nearest node and yk1 to the given distance Dge

between the departure point at yk1 and the point or waypoint whose overall angular
distance yk is to be found.

Table 3.

Latitude of

end points

Distance for a Longitude Span of 1350

By Eq. 2 By Eq. 20

10 7858.03917478 7858.03917478

20 7230.82881558 7230.82881558

30 6380.90025519 6380.90025522

40 5412.90323528 5412.90323526

50 4380.09849551 4380.09849528

60 3309.72931666 3309.72931610

70 2216.98965645 2216.98965572

80 1111.43623522 1111.43623468

Maximum Difference =7.7r10x7 Miles
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So with

D0=D 0,
p

2

	 

(22)

Dge1=D(0,yk1) (23)

The required normalized GED is then:

D=
p

2

Dge1+Dge

D0

� �
(24)

From Equation 21 the corresponding geodetic GEA is obtained as:

yk=fk2(D) (25)

and the corresponding geocentric GEA is:

wk=arctan(ak tanyk) (26)

It is then a simple matter using spherical formulae, to recover the geocentric latitude
we corresponding to each GEA i.e.

we=arcsin( sinwk sinwn) (27)

followed by the geodetic latitude ye from:

ye=arctan
tanwe

a

� �
(28)

Forward azimuth ce on the GE at each waypoint is also recovered on using:

ce=arctan( tan cs cos (yexwe)) (29)

in which cs is the forward azimuth on the sphere given by:

cs=arcsin
coswv

coswe

� �
(30)

When required, the reverse or back azimuth cr at each waypoint is readily determined
as it is the supplement of the forward azimuth i.e. cr+ce=p. As remarked in the
introduction section, the azimuth difference between the GC and the GE is small ;
analysis shows that if the term cos(yexwe) is ignored, then it can be demonstrated
that the difference between these azimuths is no greater than e4=16 or 1.6r10x4

degrees.
Intervals of longitude D, between successive waypoints and the longitude of the

nearest node hn, are recovered upon using:

D= arcsin
sinwe sin cs

sinwv

� �
(31)

Or

D= arcsin
tanwe

tanwv

� �
(32)
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Adding these differences to the longitude of the node at hn gives the longitude of each
waypoint i.e.

h=hn+D (33)

Equations 27 through 32 are simple solutions to the spherical triangle located in the
northern hemisphere. A variety of alternative expressions also exists (American
Practical Navigator, 1981) and can be found in several other standard references as
well.

In the following subsections, a baseline solution to the GE is first established that
gives distance and azimuth over a wide span of longitude that contains a number of
waypoints equi-spaced in longitude. Distance solutions obtained from the baseline
are then applied to the equations of this section so as to recover as closely as possible
the baseline data and thereby assess the accuracy and versatility of the inverse and
forward solution methods described.

5.1. Baseline of Numerical Results. In this sub-section, a baseline solution for a
GE track is established, against which results from a forward solution obtained using
the expressions in this section have been compared. The baseline was established
from the line integral solution using Equation 2 for distance plus Equation 17 of
Earle, (2008) for azimuth (alternatively, Equation 35 therein could also have been
used). A number of intermediate waypoints equi-spaced in longitude were placed
between two widely separated end points, followed by the computation of their dis-
tances and azimuths. These results are shown in Table 4 and set out as follows.
Column 1 is the range of longitude from a departure at 0xE up to a destination at
135xE with eight intermediate waypoints stepped in 15x intervals for a track begin-
ning and ending at 10xN. Column 2 is the geodetic latitude on the GE computed from
the EGE of Equation 10 converted to degrees. Column 3 is the distance to each point
along the track in geodetic miles from Equation 2, while column 4 contains the for-
ward azimuth at each waypoint in degrees.

5.2. The Forward Solution-Numerical Results. The same geographic endpoint
pairs used for Table 4 were next used to re-establish the GE track on the section
ellipse using the formulae of sub-sections 4.1 and 4.2. The geodetic GEAs corre-
sponding to each waypoint position were also recalculated together with new values

Table 4.

Baseline Data – Line Integral

Longitude Latitude

Waypoint

distance (Eq. 2) Azimuth

0 10 0 67.38820301

15 15.66858083 939.99671019 70.72118754

30 20.07984165 1835.8395491 75.32445915

45 23.05901735 2691.40799092 80.83608643

60 24.55199666 3519.6728419 86.8861351

75 24.55199666 4338.36633288 93.1138649

90 23.05901735 5166.63118386 99.16391357

105 20.07984165 6022.19962568 104.67554085

120 15.66858083 6918.04246459 109.27881246

135 10 7858.03917478 112.61179699
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for distance from Equation 20. After using Equation 24 to normalize the results for
distance from Equation 20, these normalized distance values were then inserted into
the inversion formula Equation 21 via Equation 25, which allowed new geodetic
GEAs to be recovered. New values of geocentric GEA were then recovered via
Equation 26, after which, latitudes, azimuths and longitudes, corresponding to the
baseline data set were determined anew from Equations 27 through 33.

In Table 5, the results from the forgoing steps are set out as follows. Longitude in
column 1 is the value recovered using Equations 32 and 33 after using Equations 21
through 28 to obtain the latitudes shown in column 2. Column 3 shows the given
distances derived from Equation 20, while azimuth values in column 4 are the values
recovered from Equation 29. These results summarized in Table 5 are seen to closely
replicate the baseline data of Table 4.

The final row of Table 5 shows maximum differences found in each column for the
recovered data when compared with its baseline counterpart in Table 4. Other tests
over several variants of the exercise showed similar results. For example, for baseline
latitude beginning and ending at 80xN, the resulting maximum differences for
columns 1, 2, 3, and 4 of Table 5 became 1.54r10x8, 3.7r10x11, 5.4r10x7 and
1.5r10x8 respectively.

6. CONCLUDING REMARKS. A closed form harmonic series approxi-
mation for determining distance between points on a great ellipse has been de-
scribed and demonstrated. It is found to be a useful alternative to an established
integral expression for distance and also found to give accurate results. A com-
panion inversion harmonic series has also been demonstrated that converts elliptic
distance into a geodetic GEA, from which the geodetic position coordinates for
waypoints on the GE were constructed along with azimuth directions. These two
series are seen to be simple, direct and computationally efficient. They provide ac-
curacies for distance in the sub-metre range that are commensurate with the current

Table 5.

Data Recovered via Inversion

Recovered

Longitude

Recovered

Latitude

Given

Waypoint

Distance (Eq. 20)

Recovered

Azimuth

x0 10 0 67.38820301

15 15.66858083 939.99671019 70.72118754

30 20.07984165 1835.8395491 75.32445915

45 23.05901735 2691.40799092 80.83608643

60 24.55199666 3519.6728419 86.8861351

75 24.55199666 4338.36633288 93.1138649

90 23.05901735 5166.63118386 99.16391357

105 20.07984165 6022.19962568 104.67554085

120 15.66858083 6918.04246459 109.27881246

135 10 7858.03917478 112.61179699

Maximum Differences Compared to Table 4

7r10x12 1.7r10x13 2.6r10x10 2.7r10x12
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levels of accuracy achieved by satellite positioning systems, while at the same time,
they provide a complete solution to the Great Ellipse.
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