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The propagation characteristics of linear waves in high-energy-density magnetoplasmas
are investigated using a relativistic magnetohydrodynamic model based on the framework
of relativistic quantum theory. Based on the covariant Wigner function approach, a
relativistic quantum magnetohydrodynamic model is established. Starting from the
relativistic quantum magnetohydrodynamic equations and the Maxwell equations, the
dispersion equation for relativistic quantum magnetoplasmas is derived. The contributions
of both quantum effects and relativistic effects are shown in the dispersion relations for
perpendicular, parallel propagation with respect to a background magnetic field. Results
show that the corrections of both quantum effects and relativistic effects are significant
when choosing the plasma parameters of laser-based plasma compression schemes.
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1. Introduction

High-energy-density plasmas have been considered for a long time, mainly in the
context of astrophysics, such as the interior of giant planets (Tajima & Dawson 1979;
Modena et al. 1995), the atmospheres of neutron stars (Amiranoff et al. 1998) and
the interior of massive white dwarfs (Schroeder, Whittum & Wurtele 1999). With the
development of modern laser technology, it is possible to obtain multi-petawatt laser power
in the laboratory, which has made studies of high-energy-density plasmas more popular
in intense laser–solid-density plasma interaction experiments (Markowich, Ringhofer &
Schmeiser 1990; Jung 2001; Opher et al. 2001; Bingham, Mendonca & Shukla 2004;
Marklund & Shukla 2006), laser-based inertial plasma fusion (Kremp et al. 1999; Ali
et al. 2007) and the next generation of laser-based plasma compression (LBPC) schemes
(Brodin, Marklund & Manfredi 2008).

In high-energy-density plasmas, the number density of electrons can be as high as
1023–1030 cm−3, and the thermal de Broglie wavelength of electrons is similar to or
larger than the average interparticle distance of electrons (i.e. λ3

Bn0 ≥ 1). Under such
circumstances, since the Pauli exclusion principle indicates that fermions must occupy
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different energy levels, the distribution function of electrons changes from Boltzmann to
Fermi–Dirac and classical thermal pressure changes to the degeneracy pressure. When the
size of the system becomes comparable to the interparticle distance, electron tunnelling
effects become important due to Heisenberg’s uncertainty principle.

In superdense astrophysical objects, which have electron number density of the order of
1028–1030 cm−3, the electron Fermi energy is no longer negligible compared to the electron
mass energy and the speed of an electron on the Fermi surface becomes comparable
to the speed of light in vacuum. Meanwhile, with the development of laser technology,
the intensity of lasers is able to reach the multi-petawatt domain. In the laser–plasma
interaction, the oscillation velocity of electrons is close to the speed of light when the
laser intensity reaches 1018 W cm−2. Under such circumstances, the relativistic motion
effects of electrons should be considered. When the laser intensity reaches 1024 W cm−2,
ions begin to show relativistic motion and the relativistic motion effects of ions should
also be considered (Tamburini et al. 2010).

Therefore, the physical nature of high-energy-density plasmas is actually that of
relativistic quantum plasmas, and it is necessary to establish a relativistic quantum
model to describe the physical processes in high-energy-density plasmas. Studies of
relativistic quantum plasmas began with the pioneering theoretical works of Tsytovich
(1961), Jancovici (1962) and Lindhard (1954), who derived expressions of the longitudinal
and transverse response functions for non-degenerate and completely degenerate electron
gases. These results were extended using the Wigner function approach (Tenreiro & Hakim
1977; Hakim & Heyvaerts 1978; Hakim & Sivak 1982; Diaz Alonso & Hakim 1984) and
quantum plasmadynamics (Melrose, Weise & McOrist 2006; Melrose 2008). Based on the
covariant Wigner function approach, a relativistic quantum magnetohydrodynamic model
was established and the relativistic quantum correction to laser wakefield acceleration was
investigated by Zhu & Ji (2010). Meanwhile, the propagation of electromagnetic waves and
electron plasma waves in relativistic quantum plasmas was investigated using a relativistic
quantum kinetic model (Zhu & Ji 2012).

In this paper, we investigate the propagation characteristics of linear waves in
high-energy-density magnetoplasmas using the relativistic quantum magnetohydro-
dynamic model that was put forward by us previously. The paper is organized as follows.
In § 2, the simplified derivation of the relativistic quantum magnetohydrodynamic model
based on the covariant Wigner function approach is presented. In § 3, starting from the
relativistic quantum hydrodynamic equations and the Maxwell equations, the dispersion
equation for relativistic quantum magnetoplasmas is deduced. In § 4, the contributions
of both quantum effects and relativistic effects are shown in the dispersion relation for
perpendicular, parallel propagation with respect to a background magnetic field. In § 5,
the contributions of the Bohm potential, the Fermi statistics pressure and the relativistic
effects are quantitatively calculated with real plasma parameters.

2. Relativistic quantum magnetohydrodynamic model

In this article, the physical system we analyse is the electron plasma. Since the mass
of ions is much more than that of electrons, ions are treated as a stationary neutralizing
background, and only the motion of electrons is considered. Since electrons are fermions,
there will appear an electron spin current and a spin force acting on them due to the Bohr
magnetization. However, for most plasmas, the spins of electrons are essentially randomly
oriented, and the spin quantum effects are negligible. On the other hand, in a highly
magnetized or low-temperature plasma, the spin effects can be appreciable (Marklund
& Brodin 2007; Shukla & Eliasson 2011).
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The covariant Wigner function approach for relativistic quantum plasmas was put
forward by Hakim & Heyvaerts (1978). In the weak relativistic approximation and
neglecting the spin contribution, a relativistic quantum kinetic model has been established
as (Zhu & Ji 2010)

pλ∂λ f (x, p)− e
c

Fμ

λp
λ ∂

∂pμ
f (x, p) = 0, (2.1)

where

f (x, p) = 1
(2π�)4

∫
d4R exp(−iπ · R/�)

〈
ψ̄

(
x + 1

2
R
)
ψ

(
x − 1

2
R
)〉
, (2.2)

with πμ = pμ + eAμ/c, ψ and ψ̄ are Dirac’s fields obeying the Dirac equation and the
brackets 〈· · · 〉 represent a quantum statistical average.

In order to derive a fluid model, we introduce the definitions of four-current Jλ(x) and
momentum-energy tensor Tνλ as

Jλ(x) = − e
m

∫
d4ppλf (x, p) (2.3)

and

Tνλ = 1
m

∫
d4ppνpλf (x, p). (2.4)

Taking moments of (2.1) and using (2.3) and (2.4), the covariant forms of the relativistic
quantum hydrodynamic equations are obtained as

∂λJλ = 0 (2.5)

and

∂λTνλ = 1
c

Fν
λJ
λ. (2.6)

By introducing the momentum-energy tensor Tνλ of perfect fluids

Tνλ = −Pηνλ +
(

P
c2

+ mn
)

UνUλ, (2.7)

where P and Uν = (γ c, γu) are the pressure and four-dimensional velocity of the electron
fluids, the three-dimensional vector forms of relativistic quantum magnetohydrodynamic
equations are obtained from (2.5) and (2.6) as

∂t(γ n)+ ∇ · (γ nu) = 0 (2.8)

and

∂u
∂t

+ u · ∇u = − enc2

(P + mnc2)γ

(
E + u

c
× B − 1

c2
uu · E

)

− c2

(P + mnc2)γ 2

(
∇P + β

c
∂P
∂t

)
, (2.9)

where γ = 1/
√

1 − (u/c)2 is the relativistic factor and β = u/c. The pressure term P in
(2.9) may be decomposed into a classical part PC and a quantum part PQ. Under the weak
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relativistic approximation P � mnc2, PC and PQ can be written as (Manfredi & Haas 2001;
Haas 2011)

PC = mn0v
2
Fe

5

(
n
n0

)3

, (2.10)

PQ = �
2

2m

[
(∇√

n)2 − √
n∇2√n

]
. (2.11)

Inserting the expressions of classical pressure and quantum pressure into (2.9), we have

∂u
∂t

+ u · ∇u = − e
mγ

(
E + u

c
× B − 1

c2
uu · E

)
− 3nv2

Fe

5n2
0γ
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2m2γ 2

{
∇
(∇2√n√

n

)
− β

cn
∂t[(∇

√
n)2 − √

n∇2√n]
}
. (2.12)

The second and third terms on the right-hand side of (2.12) are the Fermi statistics pressure
gradient and Bohm potential with the correction of relativistic factor. When setting β
equal to zero, (2.12) degenerates to the non-relativistic quantum magnetohydrodynamic
equation. When setting � → 0 and β → 0, the classical magnetohydrodynamic equation
is recovered.

3. Dispersion equation of relativistic quantum plasmas

We assume that every quantity ϕ (representing u, E, B, n) in (2.12) has the following
form:

ϕ = ϕ0 + ϕ1, (3.1)

where ϕ0 is the unperturbed value and ϕ1 � ϕ0 is a small perturbation. Plasma equilibrium
is assumed as E0 = 0, u0 = 0, k = (k, 0, 0) and B0 = (B0 cos θ, 0,B0 sin θ), where θ is
the angle between wavevector and external magnetic field. By the above assumption, we
can obtain the basic linearized momentum equation

∂u1

∂t
= − e

mγ

(
E1 + u1

c
× B0

)
− 3v2

Fe

5n0γ 2
∇n1 + �

2

4m2n0γ 2
∇∇2n1 (3.2)

and the continuity equation

∂n1

∂t
+ n0∇ · u1 = 0. (3.3)

The electromagnetic fields E1 and B1 in (3.2) satisfy the linearized Maxwell equations:

∇ × E1 = −1
c
∂B1

∂t
, (3.4)

∇ × B1 = 1
c
∂E1

∂t
− 4πen0

c
u1. (3.5)
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Supposing the perturbations are proportional to exp[i(k · r − ωt)], (3.2) and (3.3) become

− iωu1 = − e
mγ

(
E1 + u1

c
× B0

)
− 3iv2

Fen1

5n0γ 2
k − i�2k2n1

4m2n0γ 2
k (3.6)

and

n1 = k · u1

ω
n0. (3.7)

The three components u1x, u1y and u1z of the fluid velocity u1 can be written as

u1x = − ie
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,
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(3.8)

where ωc = eB0/γmc is the relativistic Larmor frequency for electrons,

Δ = 3k2v2
Fe

5ω2γ 2
+ �

2k4

4m2ω2γ 2
(3.9)

is the relativistic quantum correction and

Ω2 = ω2 − ω2
c cos2 θ − ω2

c

1 −Δ
sin2 θ. (3.10)

The dispersion equation for plasmas can be derived from the linearized Maxwell
equations as

Det
∣∣∣∣kk − k2Î + ω2

c2
ε̂

∣∣∣∣ = 0. (3.11)

The current density and the dielectric permeability of the medium are given by

j = −en0u1 = σ̂ · E1 (3.12)

and

ε̂ = Î + 4πi
ω
σ̂ . (3.13)

According to (3.11)–(3.13), the dispersion equation for relativistic quantum magneto-
plasmas can be obtained as
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p
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(3.14)

where ω̃2
p = 4πn0e2/mγ is the effective relativistic plasma frequency.
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4. Dispersion relation of linear waves

In this section, the dispersion relations are discussed in the following cases: propagating
without external magnetic field, propagating parallel to the background magnetic field and
propagating perpendicular to the background magnetic field.

4.1. Without external magnetic field (B0 = 0)
When there is no external magnetic field, the dispersion equation (3.14) reduces to

Det

∣∣∣∣∣∣∣∣∣
ω2 − ω̃2

p

1 −Δ
0 0

0 −k2c2 + ω2 − ω̃2
p 0

0 0 −k2c2 + ω2 − ω̃2
p

∣∣∣∣∣∣∣∣∣
= 0. (4.1)

By solving (4.1), we can obtain the dispersion relation of electron plasma waves in
relativistic quantum plasmas as

ω2 = ω̃2
p + 3k2v2

Fe

5γ 2
+ �

2k4

4m2γ 2
. (4.2)

When setting γ → 1, (4.2) is degenerated to the dispersion relation for electron plasma
waves in non-relativistic quantum plasmas, and the well-known dispersion relation for
Langmuir oscillation in classical cold plasmas will be derived from (4.2) by setting γ → 1
and � → 0. Equation (4.2) also indicates that Langmuir oscillations can propagate in cold
plasmas due to quantum effects.

The second solution of (4.1) is

ω2 = ω̃2
p + k2c2, (4.3)

which is the dispersion relation of electromagnetic waves in relativistic quantum
plasmas. When setting γ → 1, (4.3) is reduced to the well-known dispersion relation for
electromagnetic waves in classical plasmas. Equation (4.3) indicates that Fermi statistics
pressure and Bohm potential do not affect the dispersion relation of electromagnetic
waves.

4.2. Parallel propagation (θ = 0)
When the wavevector k is parallel to the external magnetic field B0, the dispersion equation
(3.14) becomes

Det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω2 − ω̃2
p

1 −Δ
0 0

0 −k2c2 + ω2

(
1 − ω̃2

p

ω2 − ω2
c

)
iω̃2

p
ωcω

ω2 − ω2
c

0 −iω̃2
p
ωcω

ω2 − ω2
c

−k2c2 + ω2

(
1 − ω̃2

p

ω2 − ω2
c

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(4.4)
By solving (4.4), we can obtain the dispersion relation for electron plasma waves
propagating parallel to the external magnetic field in relativistic quantum plasmas as

ω2 = ω̃2
p + 3k2v2

Fe

5γ 2
+ �

2k4

4m2γ 2
. (4.5)
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Comparing (4.2) and (4.5), it is found that the electron plasma waves propagating parallel
to the external magnetic field have the same dispersion relation as those propagating
without an external magnetic field. Therefore, we can conclude that the dispersion relation
of electron plasma waves is not affected by the parallel external magnetic field.

The second solution of (4.4) is

k2c2

ω2
= 1 − ω̃2

p

ω(ω ± ωc)
, (4.6)

which is the dispersion relation of the left-handed wave (L wave) and the right-handed
wave (R wave) in relativistic quantum plasmas, respectively. When setting γ → 1, (4.6)
reduces to the well-known dispersion relation for L wave and R wave in non-relativistic
magnetoplasmas. Equation (4.6) also indicates that Fermi statistics pressure and Bohm
potential do not affect the propagation of L waves and R waves.

4.3. Perpendicular propagation (θ = π/2)
When the wavevector k is perpendicular to the external magnetic field B0, the dispersion
equation (3.14) becomes

Det

∣∣∣∣∣∣∣∣∣∣∣∣∣

ω2

[
1 − ω̃2

p

ω2(1 −Δ)− ω2
c

]
iω̃2

p
ωcω

ω2(1 −Δ)− ω2
c

0

−iω̃2
p

ωcω

ω2(1 −Δ)− ω2
c

−k2c2 + ω2

[
1 − ω̃2

p(1 −Δ)

ω2(1 −Δ)− ω2
c

]
0

0 0 −k2c2 + ω2 − ω̃2
p

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(4.7)

The first solution of (4.7) is

ω2 = ω̃2
p + k2c2, (4.8)

which is the dispersion relation of the ordinary wave (O wave) in relativistic quantum
magnetoplasmas. Comparing (4.3) and (4.8), we can conclude that the dispersion relation
of electromagnetic waves is not affected by the perpendicular external magnetic field,
since the electromagnetic waves propagating perpendicular to the external magnetic field
have the same dispersion relation as those propagating without an external magnetic field.
Equation (4.8) also indicates that quantum effects do not affect the propagation of O waves.

The second solution of (4.7) is

k2c2

ω2
= 1 − ω̃2

p

ω2

ω2(1 −Δ)− ω̃2
p

ω2 − ω̃2
h

, (4.9)

which is the dispersion relation of the extraordinary wave (X wave) in relativistic quantum
magnetoplasmas, and

ω̃2
h = ω̃2

p + ω2
c + 3k2v2

Fe

5γ 2
+ �

2k4

4m2γ 2
(4.10)

is the dispersion relation of relativistic upper hybrid waves. By setting γ → 1 and � → 0,
(4.9) and (4.10) are degenerated to the well-known dispersion relations of X wave and the
upper hybrid oscillation in classical magnetoplasmas, respectively.
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5. Discussion and conclusion

High-energy-density plasmas widely exist in the interior of white dwarf stars, intense
laser–solid-density plasma interaction experiments as well as the next generation of LBPC
schemes. It is expected that the electron number density can reach 1028 cm−3 and the
temperature of electrons approximately 10 keV in LBPC schemes. In this section, we
adopt the parameters of LBPC schemes for quantitative calculation, and the parameters
are chosen as n0 = 3 × 1028 cm−3, T = 10 keV and B0 = 105 Gs.

In quantum plasmas, since the de Broglie wavelength λB of electrons becomes
comparable to, or even larger than, the average interparticle distance of electrons (i.e.
λ3

Bn0 ≥ 1), quantum effects are expected to play a crucial role in plasma dynamics. From
the expression λ3

Bn0 ≥ 1, we have

n0

T3/2
≥ 1016 cm−3 K−3/2. (5.1)

Obviously, the parameters of LBPC schemes satisfy the quantum condition λ3
Bn0 ≥ 1 and

the weak relativistic condition v2
F/c

2 � 1.
Since electrons are fermions (spin-1/2 quantum particles), there will appear an electron

spin current and a spin force acting on electrons due to Bohr magnetization. In a highly
magnetized or low-temperature plasma (i.e. μBB0/KBT ≥ 1), the spin effects can be
appreciable. Noting that μBB0/KBT ≡ �ωce/mv2

th, the spin effects are important if

B0

T
≥ 8.1 × 1011 Gs keV−1. (5.2)

Obviously, the parameters of LBPC schemes do not meet the above condition, and the spin
effect can be ignored.

The contributions of quantum effects and relativistic effects to the dispersion relation
of electron plasma waves are shown in figure 1. It is found that the Langmuir oscillations
can propagate in cold plasmas due to quantum effects, and the relativistic effect reduces
the frequency of plasma waves. The quantum-corrected term can reach 10−1 when the
wavenumber of electron plasma waves is 5 × 108 cm−1, and the relativistic-corrected term
is 6 × 10−2 when the electron number density is n0 = 3 × 1028 cm−3.

Figure 2 shows the dispersion relation of R and L waves in classical and relativistic
quantum magnetoplasmas. The relativistic effect reduces the frequency of R and L waves,
and the relativistic-corrected term reaches 10−2 when the electron number density is n0 =
3 × 1028 cm−3. Since the Fermi degeneracy pressure and the Bohm potential are parallel
to the wavevector k, they have no effect on the dispersion relation of L and R waves, which
are transverse waves.

Figure 3 presents the dispersion relation of X waves in classical, non-relativistic
quantum and relativistic quantum plasmas. Since the X wave is an electromagnetic
wave composed of partial transverse wave and longitudinal wave, both relativistic and
quantum effects can modify the dispersion relation of X waves. Calculations show that
the corrections of both quantum effects and relativistic effects are significant in LBPC
schemes.

In summary, we present a theoretical investigation of the propagation of linear waves
in relativistic quantum plasmas by applying the relativistic quantum kinetic model. The
dispersion relations of plasma waves, electromagnetic waves, L waves, R waves, O waves
and X waves are derived. Research shows that Langmuir oscillations can propagate in
cold plasmas due to quantum tunnelling effects and Fermi statistical pressure. It is also
found that quantum effects do not affect the dispersion of electromagnetic waves, L
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FIGURE 1. The solid line is the dispersion relation of Langmuir oscillation in classical cold
plasmas, the (upper) dashed line is the dispersion relation of the electron plasma wave in
non-relativistic quantum plasmas and the (lower) dashed line is the dispersion relation of
the electron plasma wave in relativistic quantum plasmas. The plasma parameters are: n0 =
3 × 1028 cm−3, ωp = 9.77 × 1018 s−1 and vF = 1.11 × 1010 cm s−1.

k

p
/

FIGURE 2. The solid line is the dispersion relation of R and L waves in classical plasmas and
the dashed line is the dispersion relation of R waves in relativistic quantum plasmas. The plasma
parameters are: n0 = 3 × 1028 cm−3 and B0 = 105 Gs.
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FIGURE 3. The solid line is the dispersion relation of X waves in classical plasmas, the dotted
line is the dispersion relation of X waves in non-relativistic quantum plasmas and the dashed line
is the dispersion relation of X waves in relativistic quantum plasmas. The plasma parameters are:
n0 = 3 × 1028 cm−3 and B0 = 105 Gs.

waves, R waves and O waves, because they are all transverse waves. Since the X wave
is an electromagnetic wave composed of partial transverse wave and longitudinal wave,
the quantum effects can modify the dispersion relation of X waves. The contribution of
relativistic effects is reflected in the reduction of the effective plasma frequency. Numerical
evaluation indicates that the corrections produced by quantum effects and relativistic
effects are significant and observable in LBPC schemes. This theoretical research may be
useful for comprehending the propagation properties of the high-frequency waves in dense
astrophysical objects, and also provide important reference for the experimental study of
the intense laser–solid-density plasma interaction.
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