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The paper presents a conceptual mathematical model for Alzheimer’s disease (AD). According to
the so-called amyloid cascade hypothesis, we assume that the progression of AD is associated with
the presence of soluble toxic oligomers of beta-amyloid. Monomers of this protein are produced
normally throughout life, but a change in the metabolism may increase their total production and,
through aggregation, ultimately results in a large quantity of highly toxic polymers. The evolution
from monomeric amyloid produced by the neurons to senile plaques (long and insoluble polymeric
amyloid chains) is modelled by a system of ordinary differential equations (ODEs), in the spirit of
the Smoluchowski equation. The basic assumptions of the model are that, at the scale of suitably
small representative elementary volumes (REVs) of the brain, the production of monomers depends
on the average degradation of the neurons and in turn, at a much slower timescale, the degradation
is caused by the number of toxic oligomers. To mimic prion-like diffusion of the disease in the
brain, we introduce an interaction among adjacent REVs that can be assumed to be isotropic or
to follow given preferential patterns. We display the results of numerical simulations which are
obtained under some simplifying assumptions. For instance, the amyloid cascade is modelled by
just three ordinary differential equations (ODEs), and the simulations refer to abstract 2D domains,
simplifications which can be easily avoided at the price of some additional computational costs. Since
the model is suitably flexible to incorporate other mechanisms and geometries, we believe that it can
be generalised to describe more realistic situations.
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1 Introduction

Alzheimer’s disease (AD), a neurodegenerative disease with a huge social and economic impact,
is the prevalent form of late-life dementia [36]. The biomedical knowledge about the AD-
pathology is rapidly growing, as witnessed by a vast literature, but the aetiology, the mechanisms
and the progression of the AD-pathology, as well as their relationship to clinical and cognitive
manifestations, are still far from understood. The trajectories of AD-progression in the patient’s
brain are highly stereotyped but vary individually. The lack of full understanding of the patho-
physiology of AD-progression, its insidious onset and the clinical heterogeneity and variability in
speed and pattern progression severely complicates the rigorous characterisation and prognosis
of the disease and hampers informed, data-driven clinical intervention.

In this context, there is a pressing need to find and validate biomarkers to track and predict
disease progression. Several biomarkers are currently under investigation: genetic analysis
(Apolipoprotein E status, presenilin and amyloid precursor protein (APP)), cerebrospinal
fluid homogenates (CSF tau protein, amyloid Aβ42 protein), imaging (atrophy, glucose
Positron Emission Tomography (PET) for hypometabolism, AV45-PET for amyloid, T807- or
AV1451-PET for tau) and cognitive tests (Alzheimer’s Disease Assessment Scale cognitive,
Auditory-Verbal Learning Test and Mini-Mental State Exam).

In this paper, we use the in silico approach, based on mathematical modelling and computer
simulations, and supplementary to the huge amount of in vivo and in vitro research (see [29,
15, 59, 45, 19, 1, 34, 26, 5, 7, 10]; we refer in particular to [10] for a comprehensive updated
overview of mathematical approaches in the literature).

The general idea is to develop a highly flexible model of the interplay between the excess of
Aβ42 protein in the central nervous system (CNS) and the progression of the disease, focussing
on the early stage of the disease where there is still hope to intervene and stop the further devel-
opment of the disease. Flexibility of the model is essential: it means that one can test several
modelling hypotheses based on medical input and easily adapt the model to new medical insight.

Roughly speaking, the Aβ protein is normally produced during life by neurons in the CNS
through intramembranous proteolysis of APP, a large trans-membrane protein involved in signal
transduction pathways [47]. By unknown and partially genetic reasons, some neurons – referred
to as malfunctioning neurons – present an unbalance between produced and cleared Aβ. This
ultimately leads to the presence of highly toxic oligomers of, among other isoforms, Aβ40 and
Aβ42. For the sake of simplicity, from now on we shall write Aβ.

More precisely, Aβ oligomers are subject to two different phenomena:

• agglomeration, leading eventually to the formation of long, insoluble amyloid fibrils, which
accumulate in spherical microscopic deposits known as senile plaques;

• diffusion through the microscopic tortuosity of the brain tissue.

In addition, recently it has been proposed that neuronal damage spreads in the neuronal net
through a neuron-to-neuron prion-like propagation mechanism [9, 53].

Agglomeration can be articulated in several steps [12, 48]: initial seeds, soluble small
oligomers, protofibrils and insoluble polymers, and amyloid fibrils with a β-sheet conforma-
tion. However, this level of description is beyond the scope of our model, as will be explained in
detail in the next section. The connection between Aβ and AD relies on the fact that, as is largely
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accepted, Aβ amyloid plays an important role in the process of the cerebral damage (the so-
called amyloid cascade hypothesis [39]). In particular, some soluble Aβ42 oligomers have been
suggested as the principal cause of neuronal death and eventually dementia [60].

Soluble Aβ shows a multiple neurotoxic effect: it induces a general inflammation that activates
the microglia which in turn secretes proinflammatory innate cytokines [31] and, at the same
time, increases intracellular calcium levels [29], which ultimately leads to apoptosis and neuronal
death.

Although senile plaques are associated with AD, their presence is not strictly related to the
severity of the disease. High levels of soluble Aβ correlate better with the presence and degree
of cognitive deficits than plaque statistics. Indeed, diffuse amyloid plaques are commonly present
in the brains of cognitively intact elderly people. Some authors (see, for instance, [32]) overturn
the traditional perspective and claim that large aggregates of Aβ can actually be inert or even pro-
tective to healthy neurons. Analogously, Aβ monomers have been shown to lack neurotoxicity
[56] and have in fact been suggested to be neuroprotective [63, 28].

In the present paper, we introduce a model to describe the toxic effect of beta-amyloid on neu-
rons. Proceeding in the spirit of mean field approximation, we divide a given cerebral region into
a number of smaller subregions. In each of them, we write a system of ODEs to describe the evo-
lution of the number of beta-amyloid monomers, oligomers and plaques. These equations depend
on the average health state of the neurons in the subregion under consideration, which is updated
at given times (say every half a year, a relatively ‘long’ period which reflects the slow evolution
of the disease). The updating depends on both the amount of toxic oligomers which are present
in the subregion itself and the average health state in neighbouring subregions. We present some
numerical simulations to illustrate the behaviour of solutions and their parameter dependence.

We stress again that the present model only takes into account the evolution of the Aβ and
ignores the role played by the microglia in neuronal death and in the formation of senile plaques.
For these aspects, we refer, for instance, to [42] and [19]. In the same spirit, we ignore also the
progressive degeneration of the brain due to ageing.

The paper is organised as follows. In Section 2, we briefly review some of the mathematical
models of AD and in Section 3, we present the basic model. In Section 4, we discuss a specific
example of the model and present numerical simulations. We also provide the corresponding
source MATLAB codes, which are available in GitHub repository at the URL: https://github.
com/LucaMeacci/Alzheimer_MathModel_Ejam. Finally, in the Appendix, existence, positivity
and asymptotic behaviour of the example introduced in Section 4 are discussed.

2 Mathematical modelling

The mathematical model of aggregation and diffusion of Aβ analysed in the present paper
is based on the so-called Smoluchowski coagulation equations, originally introduced by
Smoluchowski [57] in 1917 to describe the binary coagulation of colloidal particles moving
according to Brownian motion. Subsequently, these equations were used to model a variety of
phenomena such as the evolution of a system of solid or liquid particles suspended in a gas (in
aerosol science), polymerisation (in chemistry), aggregation of colloidal particles (in physics),
formation of stars and planets (in astrophysics), red blood cell aggregation (in haematology)
and behaviour of fuel mixtures in engines (in engineering). Moreover, several additional phys-
ical processes have been subsequently incorporated into the model (diffusion, fragmentation,
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condensation, influence of external fields, see, e.g., [16, 40, 62]). We refer also to [17, 18] and
[1, 5, 7, 23, 35] for a more exhaustive account of the literature on the Smoluchowski system.

In spite of the large literature on applications of Smoluchowski equations in many branches of
science, in the field of biomedical research, their use seems to be rather limited. Here, we only
consider the applications of coagulation equations to mathematical models related to AD. For
different approaches, in particular to prion-like diffusion and role of the tau protein, we refer the
reader to [10].

As far as we know, Murphy and Pallitto [45, 49] were the first ones who used Smoluchowski
equations to describe Aβ-agglomeration, starting from an in vitro approach. More recently, a sys-
tematic approach to the modelling of Aβ-agglomeration and the formation of senile plaques was
carried on in a series of papers [1, 25, 5, 8, 7, 23, 24, 22, 11, 14]. In [1, 25, 11], the authors con-
sider a model at microscopic scale. They use suitable Smoluchowski-type equations to describe
the diffusion and agglomeration of soluble Aβ-oligomers of different lengths in small portion
of the cerebral parenchyma, of the size of the soma of a single neuron (from 4 to 100 µm) and
the formation of plaques, identified with insoluble assemblies of very long polymers. Some other
phenomena were also included in the model, such as fragmentation of long polymers [25] and
clearance of Aβ from the CSF [11].

A macroscopic model was proposed in [5, 8]. The authors couple the set of truncated
Smoluchowski equations already used in [1] to a kinetic-type transport equation that models the
spreading of neuronal damage, including the possibility of spreading through neuron-to-neuron
prion-like transmission. The model takes into account both the microscopic phenomena of dif-
fusion and aggregation of the Aβ peptide, characterised by a short timescale (of a few days, the
time needed for the formation of the senile plaques: see [42]) and the macroscopic spreading of
the disease and the associated cerebral atrophy in large parts of the brain, with a long timescale
(of several years, the time needed for the development of the disease). Remarkably, the model
involves mathematical quantities (concentration of plaques, neuronal damage) that have a precise
counterpart in terms of clinically observed parameters through PIB-PET (Pittsburgh compound-
B, to detect senile plaques: see, e.g., [13]) and FDG-PET (fluorodeoxyglucose PET, to evaluate
the brain metabolism of both glucose and oxygen: see, e.g., [43]).

Finally, the papers [7, 23, 24, 22] are dedicated to the transition from the microscopic scale to
the macroscopic scale, through different mathematical procedures: [7] adapts arguments from
modern Boltzmann-type kinetic theory for multi-agent systems [50], while [23, 24, 22] rely
on homogenisation procedures (in [23, 24], neurons are assumed to be periodically distributed,
whereas [22] introduces randomness of the distributions of neurons and the onset of the disease).

Recently, the production of the Aβ and then the onset of AD have been associated with the
tau protein, a prion-like intra-neuronal protein (see, e.g., [38]; we refer to [58] for a careful
overview of the subject). Therefore, also the mathematical modelling of prion-like proteins could
be relevant to Aβ modelling. We refer, for instance, to [30, 34, 52], but we refer once more to
[10] for an exhaustive panorama of the literature.

In most of the previous papers, the diffusion of the amyloid as well as the (possible) prion-
type infection is assumed to be uniform, whereas it has been observed that, if we are looking to a
real macroscopic model, the disease diffuses between different regions of the brain according to
the anatomical connection strength between them. To describe this kind of diffusion, a network
model has been introduced in [41, 53, 54, 20, 55, 61, 21].
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3 The model

As we explained in the Introduction, our basic assumption is that the progression of AD is related
to the evolution of the amount of Aβ in the cerebrospinal fluid (CSF). Amyloids are produced as
monomers by neurons, diffuse in the CSF (with a diffusivity that decreases with their size) and
may aggregate and polymerise, producing longer polymeric chains. In polymerisation [16, 40,
62], the use of the Smoluchowski equation can be described as follows. For k ∈N, let Pk denote
a polymer of length k, formed by k identical units (monomers). If the polymers are sufficiently
close, they can merge into a single polymer whose length equals the sum of the lengths of the
two (only binary reactions are considered). The merge of a polymer of size k with a polymer of
size j can be written as

Pk + Pj −→ Pk+j.

We postulate that there exists a number n such that polymers of length < n are soluble and
those of length ≥ n are immobile. In the spirit of the dynamics of continuous media, we adopt
a strategy of mean field approximation and divide the cerebral region under consideration in
a sufficiently large number of elements (representative elementary volumes (REV)). A more
precise discussion on the dimension of the REV will be presented when we will introduce the
concept of ‘cerebral degradation’. We denote by wi(t) the number of soluble amyloid polymers
of length i (i < n) contained in the given REV at time t, while Wn(t) will denote the total number
of immobile particles in the REV.

For the sake of simplicity, we assume that there exists a constant K > 0 which does not depend
on i and j such that the aggregation rate Ri, j of two soluble polymers of length i and j is given by

Ri, j =
⎧⎨
⎩

Kwiwj if i, j < n, i �= j

1
2 Kwi(wi − 1) ≈ 1

2 Kw2
i if i, j < n, i = j.

(3.1)

Similarly, assuming that two immobile polymers do not merge, we postulate that the aggregation
rate for a soluble and an immobile polymer is given by

Ri,n = Rn,i = K∗wiWn if i < n. (3.2)

Since the probability of merging is smaller if one of the two polymers is immobile, we assume
that K∗ < K.

The evolution of the number of monomers in a given REV is described by the differential
equation

dw1

dt
= −Kw1

n−1∑
j=1

wj − K∗w1Wn + � − M1w1, (3.3)

where � > 0 is the production rate of monomers and M1 > 0 their mortality, that is, the clearance
due to both the phagocytic activity of the microglia and the possible reabsorption by blood vessels
(see [51, 2]). The evolution of the number of oligomers, ws(t) with 1 < s < n, is described by

dws

dt
= K

2

∑
i+j=s

wiwj − Kws

n−1∑
j=1

wj − K∗wsWn − Msws. (3.4)
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Finally, the differential equation for the number of immobile aggregates is

dWn

dt
= K

2

∑
i+j≥n; i, j<n

wiwj − MnWn. (3.5)

The next step is to model the progression of AD. We associate the average degree of malfunc-
tioning of the neurons in each REV with a parameter a ranging from 0 to 1; a = 0 means that
this portion of the brain is healthy, while a = 1 corresponds to complete degeneration. At this
point, we discuss the dimension of the REV. It should be large enough to contain a sufficiently
large number of neurons so that it makes sense to define the quantity a as the average degree
of malfunctioning of the neurons contained in the REV. On the other hand, the dimensions of
the REV are to be taken small enough so that the variation of a over the macroscopic scale of
the cerebral region is identifiable. Ideally, the experimental resolution of the FDG-PET, exten-
sively discussed in [44], should suggest how to choose the size of the REV, which could very
well depend on the part of the brain under consideration. In reality, the size of the REV is also
determined by computational costs, an issue which becomes of critical importance in the case
of 3D simulations. For each REV, we assume that a is a nondecreasing function of time, and its
variation is essentially due to two different effects:

– a local effect, due to the level of toxicity of the amyloids in the REV itself;
– a non-local effect, induced by degradation of the adjacent REVs.

Concerning the local effect, the current opinion is that, while monomers are innocuous, neu-
rons degenerate if the concentration of soluble toxic oligomers exceeds a given threshold. The
relative influence γi > 0 of each oligomer is still under investigation, but we can define the
quantity

D =
n−1∑
i = 2

γiwi, (3.6)

and assume that degradation occurs when D exceeds a threshold value D∗ > 0.
Since the typical timescale of degradation is much slower than that of aggregation, it is reason-

able to assume that there exists T > 0 such that a is constant in each of the time intervals (0, T),
(T , 2T), (2T , 3T), . . . , and update the value of a at the times T , 2T , 3T , etc. Typically, (0, T) can
be thought of as a period of half a year.

Based on these considerations, we postulate for the local effect the relation

a(t) = a(mT) + θ [D(mT) − D∗]+ for mT < t ≤ (m + 1)T , (3.7)

where [·]+ means the positive part and θ is a given positive constant.
To model the non-local effect, we assume that the REVs in which we divide the cerebral region

under investigation are cubes of equal size stacked in such a way that each of them has faces in
common with its neighbours. We define the neighbourhood of an REV (located in the interior
of the region) as formed by the 26 cubes that have at least one vertex in common with it. If we
consider the region embedded in a ‘virtual frame’ formed by cubes where a is constantly equal
to zero, the definition applies to every REV to be considered. At this point, we update the value
of a in the following way:

a(t) = a(mT) + σ
∑

[ak(mT) − a(mT)]+ for mT < t ≤ (m + 1)T , (3.8)
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where the sum ranges over the 26 cubes in the neighbourhood of the given REV, and σ is a given
positive constant. Condition (3.8) can be easily generalised. For example, we could assume that
the influence of the neighbours is different in different directions, that is, substituting the sum on
the RHS by

∑
σk[ak(mT) − a(mT)]+.

Combining (3.7) and (3.8), we obtain the law by which we update the value of a in each REV
of the region at times T , 2T , 3T , etc.

The final step in the modelling consists in specifying how the level of degeneration influences
the dynamics of the amyloids. The influence is twofold: on the one side, the degeneration leads to
the reduction of the number of ‘active’ neurons, but, on the other side, it also causes an increased
production of monomers by each neuron. Combining the two effects, we can postulate that the
number of monomers produced in the REV per unit time is given by

� = A(1 − a)(1 + βa), (3.9)

where A is the number of monomers produced in a healthy REV and β > 1 is a prescribed con-
stant. It is known that, during the disease, the maximum production of amyloid can be of 4–6
times larger than in a healthy brain (see, e.g., [19]). Accordingly, we choose β = 15.

4 A specific example

To test the model, we consider the following simplified situation: we divide the total population
of amyloids into just three subpopulations: monomers, toxic oligomers and immobile aggregates
(a larger number of subpopulations just requires a more cumbersome notation and only leads to
a slight increase in computing time and a less transparent visualisation of the results).

We rescale wi (i = 1, 2, 3) by a number N to be chosen and define

X (t) = w1(t)

N
, Y (t) = w2(t)

N
, Z(t) = w3(t)

N
.

According to [46], the mass of a monomer is about 4.5 kDa, that is, about 8 × 10−12

nanograms. We choose N = 1011, corresponding to the order of magnitude of the number of
monomers in a nanogram, so that X represents, in order of magnitude, the mass of monomers in
nanograms in the REV. For the evolution of the amyloids, we choose one day as the unit time.

Setting k = K N , k∗ = K∗N and λ = �/N , the differential equations (3.3–3.5) take the form⎧⎪⎪⎨
⎪⎪⎩

X ′ = −kX 2 − kXY − k∗XZ − M1X + λ

Y ′ = 1
2 kX 2 − kXY − kY 2 − k∗YZ − M2Y

Z′ = 1
2 kY 2 + kXY − M3Z.

(4.1)

The production rate � is given by (3.9) where the constant A represents the production rate in
a healthy tissue. Rescaling yields

λ = λ0(1 − a)(1 + βa) with λ0 = A/N .

We observe that the production rate λ0 depends on the total number of REVs used to describe
the brain. Here, we assume that we have about 500 REVs of equal size. Choosing λ0 = 2 cor-
responds to a daily monomer production of 2 nanograms in each REV and 1000 nanograms in
a healthy brain. Quantification of the monomer production in the brain is rather controversial in
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FIGURE 1. Solution of system (4.1) with a = 0.

the literature. For example, Karran et al. [39] mention an estimate of 4000 nanograms per day,
whereas Bateman et al. [4] mention only 60 nanograms. In this context, our choice of λ0 seems
reasonable.

We choose the remaining constants in (4.1).

Mi Assuming that the daily clearance amounts to 1%, we take Mi = 10−2 for i = 1, 2, 3.
k, k∗ Although in the literature, there are various attempts to give explicit formulas for k and

k∗ [45, 49, 27], we believe that their choice remains rather arbitrary. In the simulations
below, we choose k = 10−4 and k∗ = 5 × 10−6. In this context, we stress that our example
is rather conceptual and speculative, and mainly aimed to illustrate the potentiality of the
model.

Solving the system, for example, with initial data X (0) = Y (0) = Z(0) = 0 we find the solution
when a = 0, displayed in Figure 1.

The graphs suggest that there exist equilibrium values reached within a few months even when
the initial data are far from equilibrium. Referring to the Appendix for some additional comments
on system (4.1), we just note that the system can be scaled: if the volume of the REV is divided
by a factor m, then dividing λ by m and multiplying k and k∗ by m, the asymptotic values of X ,
Y and Z are also divided by m.

4.1 Dynamics of AD: Local effect

Now we simulate the dynamics of AD. Assume that the threshold D∗ (that in this particular case
is a value Y ∗) for the normalised number of toxic oligomers in a single REV is Y ∗ = 22.

First, we describe the degradation taking into account just the local effect based on (3.7).
This is just a test of the model and would refer to the abstract situation in which the initial
malfunctioning of the neurons affects all the REVs in the same way (thus canceling every prion-
like transmission). We set θ = 10−3 and assume that at a given time (taken as t = 0), in each
REV a jumps to a value 0.02 and therefore λ = 2.548. We take T as 180 days, that is, we update
the value of a twice a year. The results are displayed in Figures 2, 3 and 4. More precisely,
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FIGURE 2. Progression of the average degradation a of neurons in an REV (local effect) when the onset of
the disease takes place at t = 0 (a(0) = 0.02).

FIGURE 3. Evolution of the (normalised) number of toxic oligomers in the REV during the progression of
the disease.

Figure 2 represents the evolution of the degradation a; Figure 3 shows the normalised number
of toxic oligomers in each REV; Figure 4 shows how the production rate of monomers in each
REV evolves with time. In these graphs, t is expressed in years after the onset of the disease. In
the early stage of the disease, the shape of the curve appearing in Figures 3 and 4 fits the clinical
data presented in the literature (see [37], Figure 6, and also [5], Figure 3). On the other hand,
the decrease in the concentration of Aβ is well known in clinical practice: quoting from [3],
‘meta-analyses suggest that AD can be differentiated from other dementias by the detection of
lower concentration of Aβ1−42. . . ’. Moreover, low concentration of Aβ42 in CSF is listed among
diagnostic criteria and differential diagnosis of AD from other dementias.

We point out that the stability of the model (more precisely of a similar model) is discussed in
detail in [6].
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FIGURE 4. Evolution of the average monomer production in the REV during the progression of the disease.

FIGURE 5. Non-local effect in a 2D model. Screenshots at different times (t = 10, t = 12.5, t = 15, t = 17.5
years). The initial situation is such that only one REV (of coordinates (6, 6)) has an initial malfunctioning
index a = 0.02.
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FIGURE 6. An example of non-isotropic propagation. Screenshots at different times (t = 10, t = 12.5,
t = 15, t = 17.5 years). The initial situation is such that only one REV (of coordinates (6, 6)) has an initial
malfunctioning index a = 0.02.

4.2 Including the non-local effect

To simplify the numerical simulation and the visualisation of the results, from now on we con-
sider a 2D model: a square grid of 20 × 20 REVs. The setting of the parameters, for uniformity,
will be the same as before: Mi = 10−2, k = 10−4 and k∗ = 5 × 10−6. In addition to the local effect
(3.7) (with θ = 10−3), we will take into account the prion-like propagation modelled by (3.8)
starting with the case of isotropic propagation with σ = 0.05. As initial condition, we assume,
for instance, that a = 0 in each REV with the exception of the square with coordinates (6, 6),
where we put a = 0.02. Figure 5, which contains the screenshots at 10, 12.5, 15 and 17.5 years,
shows the progressive degradation of the tissue.

To conclude this section, we consider a case in which the propagation is anisotropic. In the fol-
lowing example case, we set the same initial condition of the previous example, that is, a = 0.02
in the region of coordinates (6, 6) and a = 0 otherwise. But in this case, just to be specific, we
assume that the propagation (corresponding to a value of σ = 0.2) in the directions NE–SW and
E–W is 20 times larger than the propagation in the other directions, in the half-left-part and
half-right-part of the brain, respectively. In Figure 6, we can see the particular behaviour of the
propagation of the disease as visualised through the screenshots at 10, 12.5, 15 and 17.5 years.
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5 Conclusions

We have proposed a relatively simple model for the so-called amyloid cascade hypothesis for
AD and its effect on the state of degradation of neurons. Dividing a portion of the brain into
sufficiently small subregions and averaging the state of degradation in each subregion, we have
formulated a system of OEDs for the number of monomeric and oligomeric beta-amyloid poly-
mers and the insoluble amyloid plaques. The typical timescale of the amyloid peptides evolution
is much faster than that of the evolution of the state of degradation of the neurons. The latter
process can take into account a prion-like diffusion of the disease. We have also presented some
numerical results in 2D to illustrate the behaviour of the solutions. A MATLAB implementation
of the mathematical model to simulate the results presented in this work is available in GitHub
at the URL: https://github.com/LucaMeacci/Alzheimer_MathModel_Ejam.

The key point of the model is its high level of flexibility. Additional features could be
implemented in the model. For instance,

• diffusion of soluble amyloid within the cerebral parenchyma;
• toxic effect of phosphorylated τ protein inside neurons and its interaction with β-amyloid;
• more realistic anatomy of the brain;
• clearance of the amyloid due to the continuous production and removal of the CSF.

The possibility of including different phenomena in the model is particularly important since
the role of the various mechanisms in the development of AD is not yet well understood. In other
words, numerical simulations can be used to test different modelling hypotheses.
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A Appendix

A.1 Global existence of solutions of system (4.1)

We consider the system (4.1) with positive initial data X (0), Y (0), Z(0). It is easy to show that
the system has a global positive solution. Indeed, we show that X , Y and Z are bounded. For this
purpose, we consider the system⎧⎪⎪⎨

⎪⎪⎩
X ′ = −kX 2 − kXY − k∗XZ − M1X + λ

Y ′ = 1
2 kX 2 − kXY − kY 2 − k∗YZ − M2Y

Z′ = 1
2 kY 2 + kXY − M3Z,

with positive Cauchy data X (0), Y (0), Z(0). Then X (t) > 0, Y (t) > 0, Z(t) > 0 as long as the
solution exists.

In addition

X ′ ≤ −kX 2 + λ − k∗XZ ⇒ X (t) ≤ α := max

{
X (0),

√
λ

k

}

Y ′ ≤ kα2 − kY 2 − k∗YZ ⇒ Y (t) ≤ β := max {Y (0), α}

Z′ ≤ 1

2
kβ2 + kαβ − M3Z,

so that also Z is bounded.

A.2 Equilibrium solutions

Let us consider the equilibrium solutions of system (4.1), that is, the solutions of the algebraic
system ⎧⎪⎪⎨

⎪⎪⎩
0 = −kX 2 − kXY − k∗XZ − M1X + λ

0 = 1
2 kX 2 − kXY − kY 2 − k∗YZ − M2Y

0 = 1
2 kY 2 + kXY − M3Z.

(A1)

We shall prove that system (4.1) has an equilibrium solution

X ≡ X0 > 0 Y ≡ Y0 > 0 Z ≡ Z0 > 0. (A2)

In addition, this solution is unique among all positive equilibrium solutions of (A1).

Existence of equilibrium solutions: Solutions of system (A1) satisfy Z = k
2M3

Y 2 + k
M3

XY and⎧⎨
⎩

−kX 2 − kXY − k∗X
(

k
2M3

Y 2 + k
M3

XY
)

− M1X + λ = 0

1
2 kX 2 − kXY − kY 2 − k∗Y

(
k

2M3
Y 2 + k

M3
XY

)
− M2Y = 0,
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that is, a system of 2 quadratic equations in X :⎧⎪⎨
⎪⎩

(
1 + k∗

M3
Y

)
X 2 +

(
Y + k∗

2M3
Y 2 + M1

k

)
X − λ

k = 0

X 2 − 2
(

Y + k∗
M3

Y 2
)

X − 2Y 2 − k∗
M3

Y 3 − 2M2
k Y = 0.

The positive solutions of the quadratic equations are

X = X1(Y ) =
−

(
Y + k∗

2M3
Y 2 + M1

k

)
+

√(
Y + k∗

2M3
Y 2 + M1

k

)2 + 4λ
k

(
1 + k∗

M3
Y

)
2

(
1 + k∗

M3
Y

)
and

X = X2(Y ) = Y + k∗

M3
Y 2 +

√(
Y + k∗

M3
Y 2

)2

+ 2Y 2 + k∗

M3
Y 3 + 2M2

k
Y .

Observe that X2(Y ) is strictly increasing,

X2(0) = 0, X2(∞) = ∞, X1(0) = −M1

2k
+ 1

2

√(
M1

k

)2

+ 4λ

k
> 0,

and

X1(Y ) = Y + k∗
2M3

Y 2 + M1
k

2
(

1 + k∗
M3

Y
)

⎛
⎜⎜⎝−1 +

√√√√√√1 +
4λ
k

(
1 + k∗

M3
Y

)
(

Y + k∗
2M3

Y 2 + M1
k

)2

⎞
⎟⎟⎠

= Y + k∗
2M3

Y 2 + M1
k

2
(

1 + k∗
M3

Y
)

⎛
⎜⎝

4λ
k

(
1 + k∗

M3
Y

)
2

(
Y + k∗

2M3
Y 2 + M1

k

)2

⎞
⎟⎠ (1 + o(1)) → 0 as Y → ∞.

Hence, the curves X = X1(Y ) and X = X2(Y ) have at least one intersection point (X0, Y0), which
corresponds to an equilibrium solution (X0, Y0, Z0), where Z0 = k

2M3
Y 2

0 + k
M3

X0Y0.

Uniqueness of equilibrium solutions: Let us notice preliminarily that a solution (X0, Y0, Z0) of
system (A1) such that X0 > 0, Y0 > 0, Z0 > 0 satisfies (A2).

The last equation gives

M3Z = 1

2
kY 2 + kXY .

Replacing in (A1), we have⎧⎪⎪⎨
⎪⎪⎩

0 = −kX 2 − kXY − k∗
M3

X
(

1
2 kY 2 + kXY

) − M1X + λ

0 = 1
2 kX 2 − kXY − kY 2 − k∗

M3
Y

(
1
2 kY 2 + kXY

) − M2Y

0 = 1
2 kY 2 + kXY − M3Z.

(A3)

Multiplying the first equation by −Y and the second by X , we obtain
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⎪⎪⎩

0 = kX 2Y + kXY 2 + k∗
M3

XY
(

1
2 kY 2 + kXY

) + M1XY − λY

0 = 1
2 kX 3 − kX 2Y − kXY 2 − k∗

M3
XY

(
1
2 kY 2 + kXY

) − M2YX

0 = 1
2 kY 2 + kXY − M3Z.

(A4)

Summing up the two first equations in (A4), we get

λY = kX 2Y + kXY 2 + kk∗

2M3
XY 3 + kk∗

M3
X 2Y 2 + M1XY

+ 1

2
kX 3 − kX 2Y − kXY 2 − kk∗

2M3
XY 3 − kk∗

M3
X 2Y 2 − M2YX ,

(A5)

and eventually

Y
(
λ + (M2 − M1)X

) = k

2
X 3.

Since X > 0, necessarily, λ + (M2 − M1)X > 0. Consider now the function

f (X ) =
k
2 X 3

λ + (M2 − M1)X
,

defined on the interval

I := {X > 0 , λ + (M2 − M1)X > 0}.
We notice now that f ′(X ) > 0 in I , since

3k

2
X 2

(
λ + (M2 − M1)X

) − k

2
X 3(M2 − M1)

= kX 3(M2 − M1) + 3kλ

2
X 2 = kX 2

(
X (M2 − M1) + 3λ

2

)
>

λ

2
> 0.

Thus, by contradiction, if (X0, Y0, Z0) and (X1, Y1, Z1) are different solutions of (A1) with
0 < X0 < X1, we have 0 < Y0 < Y1. Then the first equation of (A3) gives

λ = kX 2
0 + kX0Y0 + k∗

M3
X0

(1

2
kY 2

0 + kX0Y0
) + M1X0

< kX 2
1 + kX1Y1 + k∗

M3
X1

(1

2
kY 2

1 + kX1Y1
) + M1 = λ,

yielding a contradiction.
To be specific, we substitute the values Mi = 10−2, k = 10−4 and k∗ = 5 × 10−6, as in our

simulations and we find that X1(Y ) is decreasing and that the intersection of the two curves
X = X1(Y ) and X = X2(Y ) corresponds to the values found in Figure 1 of Section 4, as it can be
seen in Figure A.1.

Stability of equilibrium solutions: For sake of simplicity, from now on we assume M1 = M2 =
M3 =: M . In order to prove the asymptotic stability of the equilibrium solution, we have to prove
that the eigenvalues of the Jacobian matrix
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FIGURE A.1. Graphs of the curves X = X1(Y ) and X = X2(Y ) with Mi = 10−2, k = 10−4 and k∗ = 5 × 10−6.

⎛
⎝−2kX − kY − k∗Z − M −kX −k∗X

kX − kY −kX − 2kY − k∗Z − M −k∗Y
kY kX + kY −M

⎞
⎠ (A6)

of the map defined by (A1), evaluated at the critical point (X , Y , Z), have negative real parts,
keeping in mind that X > 0, Y > 0, Z > 0. In other words, we have to prove that the characteristic
polynomial of the Jacobian matrix of (A1) is a so-called Hurwitz polynomial (see, e.g., [33],
Chapter II, Theorem 4.2). We write the characteristic polynomial in the form

−λ3 + aλ2 + bλ + c. (A7)

An elementary computation shows that c < 0, so that the polynomial (A7) has a real nega-
tive solution. In order to prove that the remaining solutions have negative real part, we apply
to (A7) the so-called Routh–Hurwitz criterion (see, e.g., [33], Chapter II, Theorem 6.1). It is
straightforward to see that a < 0, b < 0, so that we have but to show (see equation (6.1) in
[33]) that

ab + c > 0. (A8)

A cumbersome but elementary computation shows now that

ab + c = k2(9k − k∗)X 3 + 21k3X 2Y + 18k3XY 2 + 6k3Y 3 + 3k2k∗X 2Y

+ 15k2k∗X 2Z + 6k2k∗XY 2 + 26k2k∗XYZ

+ 2k2k∗Y 3 + 13k2k∗Y 2Z + 24k2MX 2 + 44k2MXY + 22k2MY 2 + 2kk∗2XYZ

+ 9kk∗2XZ2 + kk∗2Y 2Z + 9kk∗2YZ2 + 4kk∗MXY

+ 30kk∗MXZ + 2kk∗MY 2 + 30kk∗MYZ + 24kM2X + 24kM2Y

+ 2k∗3Z3 + 10k∗2MZ2 + 16k∗M2Z + 8M3 > 0,

provided k ≥ 1
9 k∗.
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Table A.1. Dependence of Ŷ on the values chosen for k

k Ŷ

10−4 20.26
0.5 × 10−4 20.51
2 × 10−4 18.00

Table A.2. Dependence of Ŷ on the values chosen for M

M Ŷ

10−2 20.26
0.5 × 10−2 29.62
2 × 10−2 9.06

Thus, the equilibrium solution of the system (A1) with positive Cauchy data is asymptotically
stable when k ≥ 1

9 k∗. This condition is coherent with the choice of k, k∗ in Figure A.1, that is,
k∗ = k

20 .

A.3 Parameter dependence

Here, we sketch a numerical investigation on the dependence of the model on the values chosen
for the parameters k and Mi. In particular, we show how their variations influence the val-
ues of the asymptotic value of Y (that will be denoted by Ŷ ) which is the key factor in the
evolution of AD.

We have already noted that multiplying k and k∗ by a factor m and dividing λ by the same
factor, then X , Y and Z are also divided by m. Maintaining the same relationship between k and
k∗ as in our simulations (k∗ = k/20) we see that doubling or dividing by 2 the value of k does
not induce a relevant variation in Ŷ (see Table A.1).

On the other hand, as evident from the data in Table A.2, the dependence on M (which, as in
our simulations, is the common value of M1, M2 and M3) is much more critical.
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