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Abstract

Variable annuities have become popular retirement and investment vehicles due to their attractive guar-
antee features. Nonetheless, managing the financial risks associated with the guarantees poses great
challenges for insurers. One challenge is risk quantification, which involves frequent valuation of the
guarantees. Insurers rely on the use of Monte Carlo simulation for valuation as the guarantees are too
complicated to be valued by closed-form formulas. However, Monte Carlo simulation is computationally
intensive. In this paper, we empirically explore the use of tree-based models for constructing metamodels
for the valuation of the guarantees. In particular, we consider traditional regression trees, tree ensembles,
and trees based on unbiased recursive partitioning. We compare the performance of tree-based models to
that of existing models such as ordinary kriging and generalised beta of the second kind (GB2) regression.
Our results show that tree-based models are efficient in producing accurate predictions and the gradient
boosting method is considered the most superior in terms of prediction accuracy.
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1. Introduction

A variable annuity (VA) is a tax-deferred retirement vehicle that is created by insurance companies
to address concerns many people have about outliving their assets. VA policies typically contain
guarantees, which include guaranteed minimum death benefit (GMDB), guaranteed minimum
accumulation benefit (GMAB), guaranteed minimum income benefit (GMIB), and guaranteed
minimum withdrawal benefit (GMWB) (Hardy, 2003). These guarantees provide policyholders
downside protection during significant declines in the financial market. As a result, these are
financial guarantees that cannot be adequately addressed by traditional actuarial approaches. For
example, during a bear market when stock prices are falling, insurance companies can expect to
lose large sums of money on their portfolios of VA policies.

Dynamic hedging is adopted by many insurance companies to mitigate the financial risks asso-
ciated with VA guarantees. An important step of dynamic hedging is to quantify the risks, which
involves calculating the fair market values of the guarantees. Since the guarantees are complex,
their fair market values cannot be determined explicitly or in closed form. In practice, insurance
companies resort to Monte Carlo simulation to calculate the fair market values of guarantees.
While Monte Carlo simulation is flexible and can handle any types of guarantees, it is compu-
tationally intensive. Using Monte Carlo simulation to calculate the fair market values of a large
portfolio of VAs can take days or weeks.
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To speed up the valuation of VA portfolios based on Monte Carlo simulation, metamodelling
techniques have been proposed in the past few years. See Gan & Lin (2015), Gan & Valdez (2017a),
Hejazi et al. (2017), Gan (2018), Xu et al. (2018), Dang et al. (2019), Liu & Tan (2020), Gweon
et al. (2020), Lin & Yang (2020), and Feng et al. (2020). Metamodelling techniques involve build-
ing a predictive model based on a small number of representative VA policies in order to reduce
the number of policies that are valued by Monte Carlo simulation. Specifically, a metamodelling
technique consists of the following four components:

1. Select a small number of representative VA policies;

2. Use Monte Carlo simulation to calculate the fair market values of the representative policies;

3. Build a predictive model, called a metamodel, based on the representative policies and their
fair market values; and

4. Use the predictive model to estimate the fair market value for every VA policy in the portfolio.

Since only a small number of VA policies are valued by Monte Carlo simulation and the predictive
model is much faster than Monte Carlo simulation, metamodelling techniques have the potential
to reduce the valuation time significantly.

In the past, ordinary kriging (Gan, 2013), universal kriging (Gan & Lin, 2017), generalised beta
of the second kind (GB2) regression model (Gan & Valdez, 2018), and neural networks (Hejazi
& Jackson, 2016; Xu et al., 2018) have been used to build various types of metamodels. Kriging
is a family of estimators used to interpolate spatial data. Advantages of kriging methods include
producing accurate aggregate results at the portfolio level and requiring only a few parameters to
estimate. However, kriging methods have the disadvantages that they require a large number of
distance calculations and assume normal distribution of the response variable. The GB2 regres-
sion model has the advantage that it can handle highly skewed data, but estimating parameters
poses quite a challenge. Neural networks have several advantages: they can approximate any com-
pactly supported continuous function arbitrarily well; they can model data that has non-linear
relationships between variables; and they can handle interactions between variables. From a meta-
modelling perspective, however, we intend to select a small number of representative samples from
the entire portfolio. Neural networks perform better by learning from a larger training dataset,
which can be challenging for our purposes.

In this paper, we study the use of tree-based models to predict the fair market value of the guar-
antees embedded in a VA policy. Originating in early 1960s, tree-based models are data mining
algorithms that repeatedly partition the space of the explanatory variables to create a tree struc-
ture in predicting the response variable. Using survey data, Morgan & Sonquist (1963) developed
the very first naive regression tree algorithm called the Automatic Interaction Detection (AID).
Nowadays, tree-based models have become an attractive alternative predictive tool for building
classification and regression models. Tree-based models possess the following properties:

e Tree-based models are considered as non-parametric models, and thus do not require to

specify the form of the explanatory variables to the response variable.

Tree-based models can handle missing data automatically.

Tree-based models can handle categorical variables naturally.

Tree-based models can capture non-linear effects and handle interactions between variables.

Tree-based models can perform and assess variable importance (Breiman et al., 1984;

Ishwaran, 2007).

e Tree-based models, especially single tree models, can be interpreted straightforwardly by
visualising the tree structure.

These advantages have encouraged us to explore and demonstrate the promising use of tree-based
models as an alternative to various metamodels for the efficient valuation of large portfolios of VA
products. This paper provides additional details to enhance predictive performance of tree-based
models, for example, hyperparameter tuning.
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This paper has been structured as follows. In Section 2, we discuss the concept of tree-based
models and their extensions. Here, we also describe another framework of binary splitting gen-
erally called unbiased recursive partitioning; conditional inference trees and their extension fall
in this category. Section 3 provides details of parameter tuning, which is an important process
in building tree-based models that helps significantly improve prediction accuracy. In particular,
methods used in this paper include cross-validation and optimisation. In Section 4, we summarise
the synthetic dataset used in our empirical investigation and perform preliminary data explo-
ration. Furthermore, we compare the performance of various tree-based models, as well as other
metamodels, in terms of predictive accuracy and computational efficiency. A menu of tree-based
models is presented for purposes of being comprehensive. Section 5 concludes the paper with
some remarks.

2. Tree-based Models

In this section, we present several tree-based models. To that end, we let the response variable
be denoted as Y, the sample space as ) (which can be multivariate as well), and let n denote the
number of observations. The ith sample with p-dimensional explanatory variables is denoted as
X; = (xi1, X2 - . . » Xjp), which is sampled from the space X = &7 x ... x X),. Each observation in
the dataset can form a learning sample denoted by L,,:

n
Ly ={Yi xi1, X2 . - > Xip}i—y

2.1. Classification and Regression Tree (CART)
The Classification and Regression Tree (CART) algorithm (Breiman et al., 1984) uses greedy
search called recursive binary partition to create a tree structure. The algorithm includes growing
and pruning steps. It can easily handle missing data by utilising “surrogate” splitting, which finds
an alternative explanatory variable that mimics the explanatory variable that contains missing val-
ues. The surrogate splitting process also provides variable importance at each node by measuring
the decrease of the error function. Breiman et al. (1984) obtained conditions for all recursive par-
titioning techniques to be Bayes risk consistent. In conventional terms, the trees obtained by the
algorithm are called classification trees when the response variable is categorical and are called
regression trees when the response variable is continuous.

Here, we briefly formulate the process in the regression framework. For details, refer to Quan
& Valdez (2018). The algorithm divides the explanatory variable space X" into disjoint M regions,

Ry, Ry, . . ., Ry, and assigns a constant c,, as the predicted value for region R,
M
f(Xi|0) =T(X;;0)= > cmlg,, (X))
m=1

where ® = {R,,, cm}jr\n’le.
Under the sum of squared errors (SSE) loss function, the best or optimal ¢, is the average of
i in the region Ry,. In other words, the algorithm optimises the following objective function L(T)

with penalty:

M
D)= Y (i—tw) +aM

m=1 x;€R,;,

The tuning parameter @ > 0 governs the trade-off between the size of the tree and its goodness
of fit to the data. Estimation of & can be achieved by cross-validation, which is explained in a later
section.
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2.2. Ensemble methods

Ensemble methods combine several models to help improve prediction accuracy. Two popu-
lar ensemble methods for regression trees are: (a) bagging and random forests and (b) gradient
boosting.

2.2.1. Bagging and random forests

Bagging (Breiman, 1996) uses an ensemble of sufficiently deep CART trees, {T(X; ©p),
b=1,2,.., B}, without pruning. These trees are built on B bootstrap samples of the training
dataset and for prediction, we take the average of B regression trees to get the prediction:

B
1
ﬁm=E;ﬂxm)

Random forests (Breiman, 2001) reduce correlation between the CART trees by selecting the
best split from a random subset of explanatory variables at each node of a tree. In effect, the average
prediction of multiple regression trees is expected to have lower variance than a single individual
regression tree. Larger random sets of explanatory variables can improve the predictive capability
of individual trees, but it can also increase the correlation between trees and void any gains from
averaging multiple predictions. The bootstrap resampling of the data for training each tree also
increases the variation between the trees. The accuracy of random forests depends on the strength
of each individual tree and a measure of the dependence between them.

2.2.2. Gradient boosting

Gradient boosting (Freund & Schapire, 1997), or sometimes called gradient boosted regression
trees, grows trees by sequentially putting more weights on the residuals from previous trees. The
boosted tree is a sum of such trees:

B
fBX) =) Ty(X; Oy)

b=1

where Tj,(X; ®p) are the regression trees. B is the number of iterations or the number of additive
trees. In each step b, for b=1,. .., B, we need to find the regression ®; based on the following
optimisation problem:

N
Op =argmin Y  L(yi fy—1(Xi) + Tp(Xis ©p))

O =1

where O = {R,;5, cmb}%zl.

The loss function L can be the squared error loss function. For other differentiable loss func-
tions, the above optimal solution can be obtained using numerical optimisation via gradient
boosting. See Friedman (2001).

An alternative boosting algorithm, which is not as attractive for our empirical dataset, is delta
boosting. However, for generalised linear models, Lee & Lin (2018) demonstrated that delta boost-
ing outperforms the gradient boosting algorithm using claims data on collision coverage for
vehicle insurance from a Canadian insurer.

2.3. Unbiased recursive partitioning

CART algorithms described above employ recursive binary partition. This greedy search causes
some drawbacks. One drawback is overfitting, which can be resolved using a pruning process by
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applying cross-validation. Another drawback is the resulting bias in variable selection, especially
when the explanatory variables present many possible splits or missing values. This latter draw-
back is harder to remedy. Strobl et al. (2009) illuminated the bias in variable selections with
many categorical and numerical variables or, even more unintuitively, many missing values. These
explanatory variables are artificially preferred in recursive binary partition algorithms. See Strobl
et al. (2007). This evidence alerts us to investigate variable selection and interpretations in VA
valuation, especially when many benefit riders are present.

2.3.1. Conditional inference trees

As a remedy for the bias drawback, Hothorn et al. (2006) introduced a conditional inference
framework for unbiased recursive partitioning, which has stopping criteria based on the statis-
tical permutation test in Strasser & Weber (1999). Unbiased recursive partitioning framework
can be applied to univariate continuous or discrete regression, censored regression, classification,
ordinal regression, and multivariate regression. In this paper, we focus on univariate continuous
regression. The conditional inference trees algorithm has been shown that the predictive accuracy
is comparable to that produced by CART.

Guelman et al. (2014) applied conditional inference trees to personalised cross-sell marketing
of insurance products, by building personalised treatment learning to select profitable policy-
holders. In particular, the objective of the marketing campaign was to determine the group of
customers with existing auto insurance policies that should be optimally targeted to be offered an
additional home insurance policy.

The main difference between CART and conditional inference trees algorithm is the variable
selection at each split and the stopping criterion. To explain the details, we need to define a few
terms. The conditional distribution of a statistic, F(Y|X), measures the association between the
response variable and the explanatory variables.

It is possible that some explanatory variables x;; are missing in real life data. The tree-based
model ultimately finds membership for observations and assigns them to the terminal node,
Ryy. To define this membership for each observation, we introduce the vector of case weights
denoted by w= (w1, ..., wy,). Hence, for each terminal node, R,,, we have a vector of case
weights w= (wy, ..., w,). The weight, w;, can be any positive value if it is an observation in
the specific terminal node. Without loss of generality, we can restrict the weight value to either
one or zero. Define symmetric group, S(L,, w), as all possible permutations of observations
with weight one. For example, if w; =1, w, =0, w3 =1, wa=ws=...=w, =0, then S(L,, w)
= {(Y1, %11, %12, - - -, X1p)> (Y3, %31, %32, - - -, x3p), (Y3, X11, X125+ -+ 5 X1p)5 (Y1, X31, X32, - -+ 5 X3p) ).

We now briefly describe unbiased recursive binary splitting. First, under a specific vector of
case weights, apply statistical hypothesis test to determine if there is any dependency between
the response variable and the explanatory variables. If there is a dependency, then find the most
significant (strongest association) explanatory variable to perform the split and update the case
weights. If there is no dependency, then stop the process.

In formulating the process, the null hypothesis is that all the explanatory variables are
independent of the response variable

AP
Ho=n_, H

where H{) : F(Y|X,j) = F(Y). Then use the conditional distribution of linear statistics in the per-
mutation test (Strasser & Weber, 1999). Under Hy and given all permutations of the response
variable, the conditional expectation u; € RPi4 can be derived as follows (Hothorn et al., 2006):

= E(Tx, (L W)IS(Lrs W)

= vec ((Z ng](xl])) E(h|8(£n, w))T) (1)
i=1
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where

n
B(HIS(L W) = —r— 3 wih(Yi, (Y1, Ya, ... V)
dimy Wi i—1
The linear statistic, Tx (L, w), can be standardised since Tx (L, w) — u. is asymptotically
normal under Hy and conditioned on the symmetric o-fields S(L,, w). See Strasser & Weber
(1999). There are a few ways of standardisation (Hothorn et al. (2006)). One way is based on
the maximum of the absolute values of the standardised linear statistics defined by

(Tx — )k

Zmax(Tx 11, T) = diag(x )12

k=1,2,...,.pq

Another way is based on the quadratic form defined by

Zquad(Tx> 1, B.) = (Tx, — )2 (Tx — )"

where £ is the Moore-Penrose inverse of ¥ which may be computationally intensive. The
Moore-Penrose inverse is the most common type of pseudoinverse. See Moors (1920) and
Penrose (1955). For the case of the quadratic form, the test statistic asymptotically follows a
chi-squared distribution with rank(X ) degrees of freedom.

Since the test statistic z(Tx , i, ) cannot be compared directly due to possibly difference of
scale in the explanatory variables, we use the p-value to choose the most significant explanatory
variable. We select explanatory variable, Xj«, that has the smallest p-value, Pj« = arg min Pj, where

j=Leop

P] = PH{) (Z(TX]> :u]a E]) = Z(th, /’L]; EJ)|S(£;/,, W))

and tx; € RP/ is the observed test statistic from the dataset.

After picking the best explanatory variable X;«, we then find the best splitting point according
to the splitting criterion. This criterion can be a simple binary split like CART, or a multiway split
as in O’Brien (2004).The permutation test framework can be used to find the best split point.

Given a predefined significance level, «, if the null hypothesis, Hy, cannot be rejected, then
stop the binary splitting process. Here, the p-value for the null hypothesis can be calculated using
the Bonferroni-adjusted p-value(l — (1 — P;)?) or min-p-value resampling. For more advanced
multiple testing, we refer the reader to Westfall & Young (1993).

The level of significance, o, controls the tree size. It can be tuned using cross-validation and
this process can be similar to tree pruning in CART. In detail, one would initially set higher sig-
nificance level, o, which leads to a larger tree, and then prune the terminal node by setting a
lower significance level, a* < «. The significance level can be predetermined according to a toler-
ance based on some actuarial expertise. Moreover, the significance level can be interpreted in the
traditional statistical sense of balancing the Type I and Type II errors.

2.3.2. Conditional random forests
Random forests variable importance provides essential interpretation for the ensemble tree-based
models although it is not reliable to perform variable selection according to variable impor-
tance scores. This is especially true for cases where the explanatory variables vary in the scale
of measurement or number of categories. See Strobl et al. (2007). On the other hand, conditional
random forests are created based on conditional inference trees that can provide unbiased variable
selection.

The framework of conditional random forests is very similar to that of random forests. The
conditional inference trees are built on the bootstrap sample or subsample of the original dataset.
The random subset of the explanatory variables is considered at each split. However, there are few
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differences between conditional random forests and random forests. First, after building all the
conditional inference trees, the final ensemble model averages the observation weights extracted
from each tree. It is a different aggregation scheme from the random forests which simply averages
the prediction. Second, conditional random forests can extensively model censored, multivariate,
as well as ordered response variable. Third and finally, when explanatory variables vary in their
scale of measurement and the number of categories, which is very typical of a dataset, the condi-
tional random forests can provide unbiased variable selection and variable importance based on
conditional inference trees that use subsamples without replacement.

3. Parameter Tuning of Tree-based Models

As noted in the previous section, the tree-based model hyperparameter tuning (optimisation)
usually involves cross-validation to perform model selection. Table 1 lists some common tuning
hyperparameters for tree-based models. The unbiased recursive binary splitting framework can
be implemented in both party and partykit.

3.1. Cross-validation

Cross-validation was introduced to fix the overoptimistic prediction accuracy on the same dataset
that model trained. In other words, it is an attempt to avoid overfitting. See Mosteller & Tukey
(1968), Stone (1974), and Geisser (1975).

Cross-validation is a way to examine tree-based model performance on hypothetical validation
dataset when an exact validation set is not available. In detail, the dataset is separated into two
disjoint parts: training dataset and validation dataset. The model is built on the training dataset
and the prediction performance is examined on the validation dataset.

Various splitting strategies lead to different cross-validation techniques. Data splitting requires
certain assumptions. For example, data are identically distributed and there must be indepen-
dence between training dataset and validation dataset. If these assumptions are not satisfied, then
some modifications are needed for the cross-validation. See Opsomer et al. (2001) and Leung
(2005). Usually for insurance datasets, time dependency and outliers are present. It requires extra
attention when we apply general cross-validation to perform model selection.

In the holdout method (Devroye & Wagner, 1979), the dataset is separated only once, and
typically the validation dataset is smaller than the training dataset. The holdout method can be
considered as the simplest cross-validation. While the holdout method suffers from a drawback
that the results highly depend on data split, it is because the data in the validation dataset may
have important information and this information is left out when we train model. In other words,
the data segment easily leads to bias in the result. To deal with this issue, other cross-validation is
discussed later.

Unlike the holdout method, other cross-validation generally splits dataset several times and
averages prediction accuracy on validation dataset. The question arises on how to split the dataset.
There are two types of splitting: exhaustive data splitting and partial data splitting.

3.1.1. Exhaustive cross-validation

Exhaustive cross-validation methods contain training and testing on all possible ways to divide
the original dataset into a training dataset and a validation dataset. See Stone (1974), Allen (1974),
Geisser (1974), and Shao (1993). There are two popular exhaustive cross-validation:

e Leave-one-out. Each data point is withdrawn from the original dataset and used as valida-
tion data. Obviously, it needs n runs. Leave-one-out cross-validation provides nearly unbiased
estimation while it suffers from high variance.

https://doi.org/10.1017/51748499521000075 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499521000075

102 Zhiyu Quan et al.

Table 1. R packages for tree-based models with their tuning hyperparameters

R package Description
rpart Classification and regression tree (CART)
cp Complexity parameter
mmspht " Minimumnumber of observationsin anode in orderto
be considered for spllttlng
maxdepth TR depth ofany S
randomForest Bagging and random forests
mtry Number of explanatory variables randomly sampled as
candidates at each split
| nodes‘ﬁe lllllllllllllllllllllllllll Minimum number of observations in the ter‘rh‘lhé‘l nodes iiiiiii
ntree O Numberoftreestosg grow/bootstrap samples
gbm Gradient boosting
n.trees Number of trees to fit/iterations/basis functions
in the additive expansion
Cinteractiondepth ~ Maximum depth of variable interactions(1 implies an additive model,
2 means a model with up to two- -way |nteract|0ns)
n. mmobsmnode S Minimum number of observations in the terminal nodes
shrmkage R 'Shrinkage parameter(learning rate orstep size reduction)
party/partykit Conditional inference trees
teststat Type of the test statistic to be applied for variable selection
| splltétét vvvvvvvvvvvvvvvvvvvvvvvvvvv Type of the test statistic to be applled for spllt pomtselectlon
testtype The way to compute the distribution of the test statlstlc
‘alpha e mSlgmflcance o por
mmspht S Minimumsum ofwe|ghtsmanode|n orderto
be considered for splitting
party/partykit Conditional random forests
mtry Number of explanatory variables randomly sampled as

candidates at each split

ntree Number of trees to grow/bootstrap samples

e Leave-p-out. Here p data points are withdrawn from the original dataset and it takes (IZ ) runs.
In practice, for large dataset, exhaustive cross-validation is computationally intensive.

3.1.2. Non-exhaustive cross-validation

Non-exhaustive cross-validation apply partial data splitting. One well-known non-exhaustive
cross-validation is k-fold cross-validation (Geisser, 1975). In k-fold cross-validation, the original
dataset is segmented into k equal sized subsamples. In each run, one of the k subsamples is held
out as validation dataset and model is built on the remaining k — 1 subsamples. In total, there are
k runs with each subsample selected only once as validation dataset. This process assures all the
data points have a chance to belong in the training dataset and the validation dataset. This method
takes the average of the prediction results on the k validation datasets.

When k is equal to the number of the dataset, the k-fold cross-validation becomes the leave-
one-out cross-validation. It is an open question to choose the best k for the k-fold cross-validation.
If the number k is selected, then the size of the training set is fixed as well as the number of splits.
The bias of the k-fold cross-validation decreases with k since larger k leads to a larger training
set. On the other hand, the variance of the k-fold cross-validation increases with k since a larger
k leads to a larger number of validation procedure (i.e. more runs). Practically, the number k is
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often chosen to be between 5 and 10. Ten-fold cross-validation has been shown to provide good
model selection and point estimation. See Kohavi (1995).

Additional cross-validation techniques and statistical properties of cross-validation are dis-
cussed in Arlot & Celisse (2010) and Leung (2005).

3.2. Hyperparameter optimisation

3.2.1. Grid search

Grid search is the most traditional way to optimise hyperparameters. It is an exhaustive search-
ing process on the manually specified subset of hyperparameter space. The selection of the best
combination of hyperparameters is usually based on the cross-validation. Determining the sub-
set involves setting bounds and discretisation that requires expertise on the model. Grid search is
computationally intensive due to the explosive number of combinations of hyperparameters. For
example, if one model has p parameters and each parameter has ¢ choices, then the subset contains
¢? combinations. Fortunately, grid search is essentially parallel since evaluating each combination
of the hyperparameters is independent of each other. This makes grid search feasible given enough
computational power.

3.2.2. Random search

Random search is to randomly search the grid of hyperparameters that is manually specified and it
has similar performance compared to the grid search. It can outperform the grid search given the
same computation constraint and time, especially when only a small number of hyperparameters
affects the final performance of the model (Bergstra & Bengio, 2012). In other words, if the close-
to-optimal region of hyperparameters occupies at least 5% of the search space, then a random
search with a certain number of trials (typically 40-60 trials) will be able to find that region with
high probability. Like grid search, it can be made parallel. When compared to grid search, random
search requires less number of trials and allows including prior knowledge of how to sample.

3.2.3. Bayesian optimisation
Bayesian hyperparameter tuning establishes knowledge about the association between the hyper-
parameter settings and model performance tos improve selection for the next hyperparameter
settings. Unlike previously discussed tuning methods, the selection of the following hyperparam-
eter settings is no longer independent of the prior selection. In other words, it is sequential. Hence
it cannot be easily made parallel. The hyperparameter tuning becomes an optimisation problem.
There are several sequential global optimisation methods for finding the hyperparameter set-
ting that maximise the model generalisation performance. One of the most popular techniques
is Bayesian optimisation. Bayesian optimisation models generalisation performance as a sample
from a Gaussian Process (GP) (Snoek et al., 2012), and creates a regression model to formalise the
relationship between the model performance and the model hyperparameters.

Specifically, let function f: — R model hyperparameter setting 4 € # to a prediction accu-
racy of

hoptimal = arg max f (h)
heH

within a domain h € R which is a bounding box. d is the number of tuning hyperparameters.
The function f is a realisation of a GP with mean p and covariance kernel K, i.e., f ~ GP(u, K).
The Bayesian optimisation assumes the prediction follows the normal distribution. After choosing
the kernel function K, we can compute the mean and variance for this normal distribution. For
further details, see Snoek et al. (2012) and Martinez-Cantin (2014).
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There are also a few other automatic hyperparameter optimisation techniques: gradient-based,
evolutionary and those based on tree-structured Parzen estimator. Gradient-based optimisation
computes the gradient with respect to hyperparameters and then optimises the hyperparameters
using gradient descent. See Bergstra et al. (2011) and Larsen et al. (1996).

4. Applications to VA Valuation

In this section, we demonstrate the application of tree-based models to address a computational
problem arising from the valuation of variable annuity products. We use the hierarchical k-means
algorithm (Nister & Stewenius, 2006) to select the representative VA policies.

4.1. Data description

The dataset is a synthetic dataset that contains 190,000 VA policies. For details, see Gan & Valdez
(2017b). We select 680 VA contracts from the dataset as training dataset, select 340 VA contracts
as validation dataset and preform prediction on the 190,000 VA contracts. We select validation
dataset to speed up the hyperparameter tuning process and model selection. Some summary
statistics of the training dataset are provided in Table 2.

4.2. Hyperparameter optimisation results

As shown in Table 6, the tree-based models have less computational time. Everything comes with
a price. Since building the tree-based models needs to perform hyperparameter tuning, it involves
more techniques than traditional statistics methods. As mentioned in Section 3.2, hyperparameter
optimisation can be achieved with three schemes. In this section, we provided the grid search
results, which provide the best prediction results amongst the three schemes. For results produced
by the other two efficient optimisation schemes, readers are referred to Appendix A.

For all the model calibration, we train the model on the training dataset (680 VA contracts).
Since the dataset is not large, it allows us to perform grid search and ten-fold cross-validation. All
the hyperparameters mentioned below are resulted from the grid search method.

For the regression tree, we grow a full tree using recursive binary splitting with a minimum
number of five observations in a region for a split to be attempted. Then we prune this fully grown
tree using cost-complexity pruning with “one standard deviation rule” regularisation parameter
of 1.084e-02.

In detail, as mentioned in Table 1, we tune two common tuning hyperparameters “cp” and
“minsplit” for the regression tree base on the training dataset using ten-fold cross-validation. As
described in Section 3.2.1, the manually specified subset of hyperparameter space is the combi-
nation of “cp” which has ranged from 0.001 to 1 by the increment of 0.001 and “minsplit” which
has ranged from 2 to 10 by the increment of 1. This subset has 9,000 combinations. With ten-fold
cross-validation, the computation is heavy while it is feasible since our training dataset is small.
We choose the optimal hyperparameter setting based on the minimum cross-validation error. The
grid search results are shown in Table 3. Then compare prediction accuracy between the pruned
tree which has minimum cross-validation and the pruned tree with “one standard deviation rule”
on the validation dataset. Finally, we find the optimal hyperparameter setting as mentioned above.
For the rest of the tree-based models, we will not report the detailed process of the grid search.

Figure 1 shows the regression tree plot. The first split is the product type and the following
splits use the guaranteed benefit amount. The product type is the most important variable for the
regression tree. At each split, if observations meet the split condition, then the algorithm assigns
them to the left nodes, otherwise, the algorithm assigns them to the right. In each node, we have
information about the number of observations and the prediction. The darker green colour means
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Table2. Summary statistics of the variables for the training dataset. Dollar amounts are in thousands (’000s)
Response variables Description Min. First Q Mean Median  Third Q Max.
fmv Fair market value —68.37 —5.55 64.63 11.7 64.84  1210.32
Continuous variables  Description
gmbialance GMWB balance 0 0 27.8 0 0 422.26
gbAmt  Guaranteed benefitamount 5188 18398 32329 30689 43736  920.62
Fundvaluel ~ Accountvalueofthefirstfund 0 0 3202 1262 4676  629.89
‘FundValue2 ~ Accountvalueofthesecondfund ~ 0 0 3654 1608 5631 57159
FundValue3 Account value of the third fund 0 0 26.78 11.81 36.64 458.78
‘FundValue4  Accountvalueofthefourthfund 0 0 258 1048 3829  539.36
Fundvalues  Accountvalueofthefifthfund 0 0 2229 1054 3471 42592
‘FundValues  Accountvalueofthesixthfund 0 0 3715 1964 5396  654.64
FundValue7 Account value of the seventh fund 0 0 28.78 12.88 42.56 546.89
‘FundValue8 ~ Accountvalueoftheeighthfund 0 0 3127 1559 4624  529.57
FundValued  Accountvalueoftheninthfund 0 0 3193 139 4517 59944
FundValuelo ~ Accountvalueofthe 10thfund 0 0 326 1386 4509 51043
age Age of the pollcyholder 34.52 42.86 50.29 51. 36 57.21 64.46
T matuntymyears s e e e e
Categorical variables  Description Proportions(%)
gender.M Male policy holder 64.71
'genderF e pollcy e
productType.ABRP  Indicate type GMAB with return of premium 882
productType.ABRU Indicate type GMAB with annual roll-up 4.26
HproductType ey Ind|catetypeGMABW|th e
'productType DBAB' - 'I'ndvi'céte'typ'e R bl
productType.DBIB  Indicate type GMDB + GMIB with annual ratchet 588
productType.DBMB Indicate type GMDB + GMMB with annual ratchet 5.74
HproductType e i type DB ofprem|um B
'productType.DBRU' R type R e W S
”prvoducvt"rypeD'BSvU " Indicate type GMDB with annual ratchet 4.41
productType. DBWB Indicate type GMDB + GMWB with annual ratchet 4.41
HproductType e i type e ofprem|um o
.productType.IBRU " indicate type GMIB with annual roll- up 4Tl
”prvoducvt"rypetlvBSU' " Indicate type GMIB with annual ratchet 4.85
productType.MBRP Indicate type GMMB with return of premlum 4.56
“productType By i type B w0 S
'productType.MBSU' . Indlcatetype e
prpductTypetWBRP Indicate type GMWB with return of premium v 4.12
productType.WBRU Indicate type GMWB with annual roll-up 3.97
“productType was IndlcatetypeGMWBW|thannual N

the larger the value of the prediction. We can also observe that the following nodes depend on the
previous splits and this is how the tree-based model detects interaction automatically.

Figure 2 shows the out-of-bag (OOB) error according to the number of trees in bagged trees.
We can see that the OOB error stabilises after approximately 150 number of trees. Based on our
experience, the OOB error stabilises after 200-300 number of trees for the most of the datasets.
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Table 3. Grid search results

cp minsplit MinXerror
1 0.004 5 0.1126494
4 ” 0.1603 ” 5” » 0.1139710
8 0.1604 ” 7” » 0.1168061

65
n=680 100%

productType = ABRP,ABSU,DBAB,DBIB,DBMB,DBRP,DBRU,DBSU,DBWB,IBRP,|IBSU,MBRP,MBSU,WBRP,WBRU,WBSU

335
n=97 14%

L gbAmt < 497e+3 ... .
: :

20
n=583 86% :

productType = ABRP,DBRP,DBRU,DBSU,DBWB,|IBRP,MIBRP,WBRP,WBRU,WBSU :
5 :

58 528
=223 33% ; =37 5%

gbAmt < 446e+3 productType = IBRU,MBRU
gbAmt < 283e+3 :
: :
718
n=13 2%
. age >= 55..E
426 i
n=165 24% n=24 4%

102 299 467
n=360 53% n=58 9% n=29 4% n=5 1%

Figure 1. A regression tree. Dollar amounts are in thousands ('000s).

The bagged trees grows individual trees on the 200 bootstrap samples with 5 minimum numbers
of observation at terminal nodes.

Figure 3 shows that the test error and the OOB error is minimised at 16, suggesting using all
the explanatory variables at each split. In other words, the optimal random forests model is same
as bagging.
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Number of trees vs OOB error
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Figure 2. Determining the optimal number of trees in bagged trees.
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Figure 3. Random Forests tuning with the number of random subsets (m).

In this case, random forests is equivalent to bagged trees. Indeed, such a result may appear quite
surprising. One way to explain the outcome is the dataset was synthetic dataset which used all the
explanatory variables to create response variable, which is described in Gan & Valdez (2017b).
Each tree requires using the full set of explanatory variables to achieve higher prediction accuracy.
Another way to explain the outcome is missing important explanatory variables like the product
type and guaranteed benefit amount at each split may decrease the prediction accuracy of random
forests. However, as we can see in Figure 3, the marginal decrease in error after 8 of the random
subset is minimal.

The final tuned gradient boosted regression trees has 1,000 iterations, 5 maximum depth of
variable interactions, 5 minimum numbers of observations in the terminal nodes, and a learning
rate of 0.1.

The conditional inference trees applies quadratic test statistics to perform the variable selection
and choose the split point, applies Bonferroni adjustments to compute the distribution of the test
statistic, and sets 0.04 as the significance level for variable selection with five minimum numbers
of observations in the terminal nodes.

Figure 4 shows the simplified conditional inference tree plot. In this figure, the conditional
inference tree is held at the maximum depth of three for the convenience of visualisation. The
final model has indeed more branches and terminal nodes. However, it has the identical structure
with this simplified conditional inference trees for the first few splits. Like the regression tree, the
conditional inference tree also uses the product type at the first split. At each node, it shows the
selected explanatory variable and its significance level. It has a similar structure to the regression
tree, but it can provide the box plot at the terminal nodes thereby allowing the decision maker to
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productType
p<0.001

ABRP, ABSU, DBAB, DBIB, DBMB, DBRP, DBRU, DBSU, DBWB, IBRP, IBSU, MBRP, MBSU,ABRU, IBRU, MBRU3SU

productType
p <0.001

ABRP, DBRP, DBRU, DBSU, DBWSB, IIABSU, DBAB, DBIB, DBMB, IBSU, MBSU <484950.5 >484950.5

(6]
tm gbAmt gbAmt productType
p <0.001 p <0.001 p <0.001 p =0.007

<10.841 >10.841 < 473358 >443358.4 <277039 > 27\7039 ABRU IBRU, MBRU
Node 4 (n = 90) Node 5 (n = 270) Node 7 (n = 165) Node 8 (n = 58) Node 11 (n = 31) Node 12 (n = 29) Node 14 (n = 13) Node 15 (n = 24)
1,200 + 1,200 1,200 1,200 1,200 1,200 1,200 4 T 1,200 +
!
'
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Figure 4. A conditional inference trees.

pick the desired predicted value. For example, we can use other quantiles to assign the predicted
value at the terminal node.

The conditional random forest aggregates several hundreds of the conditional inference trees
with five minimum observations at the terminal nodes. These trees also select the full set of
explanatory variables at each split, which is consistent with the previous situation. In other words,
the conditional inference random forests become conditional inference bagged trees.

In summary, we listed the final hyperparameters settings tuned by grid search and further
constructed the final models based on these hyperparameters. We will discuss these final models
further in the following sections.

4.3. Model performance and computational expense

We apply several validation measures to compare the performance of different tree-based mod-
els. In addition, we compare tree-based models with ordinary kriging and GB2 regression from
previous studies. See Gan (2013) and Gan & Valdez (2018). All validation measures of prediction
accuracy used in this comparison are defined in Table 4. Table 5 provides the numerical details
about the prediction accuracy of these methods on the 190,000 VA contracts. Tree-based models
are traditionally tuned by minimising the MSE. This may have resulted in less desirable values of
ME and PE. However, when evaluating model performance particularly in a business setting, it is
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Table 4. Validation measures

Validation measure Description Interpretation

2 _ Z{V:l i,\7i>

Gini index Gini=1— —— (N —
N—-1 Dim1 Vi
where y is the corresponding to y after
ranking the corresponding predicted valuesy

YV G- y?

Coefficient of Determination RZ=1- 3 Higher R? is better
1
YL (yi =7 > y,-)

whereyis predicted values

Higher Gini is better

L
Concordance Correlation CCC=— P %% Higher CCC is better
o5 +0p + (ug; — py)?
Coefficient Whéreﬂyi a‘nd‘uy,. are the means
”?2,- and o} are the variances
p is the correlation coefficient
e S S
Mean Error ME = N SN G-y Lower |ME| is better
Percentage Error PE = M Lower |PE| is better
1
Mean Squared Error MSE = N Z,’Ll Wi — vi)? Lower MSE is better
Mean Absolute Error MAE = = Z,N:l Vi —yil Lower MAE is better

Table 5. Prediction accuracy of different models

Model Gini R? ccc ME PE MSE MAE

Regression tree (CART) 0.786 0.845 0.917 —1.678 —0.025 3278.578 31.421
Baggedtrees AR 0842 0918 0954 . _2213 _0033 . 1720725 20334
Gradient boosting 0.836 0.942 0.969 —1.311 —0.019 1214.899 19.341
Conditional inferencetrees ~ 0.824  0.869 0930  —0.905 —0013 2754853  26.536
Conditional random forests ~ 0.836  0.892 0940  —1596  —0024 2273385 23219
Ord|nary kr|g|ng e 0815 . 0857 ,,,,, 0912 . 0812 ,,,,,, 0012 3006192 27429
GB2 0.827 0.879 0.930 —0.106 —0.002 2554.246 27.772

best to examine and compare several validation measures. Although the values of ME and PE are
negative for all tree-based models, the absolute values of ME and PE are small and comparable to
those of other models. In addition, gradient boosting performs extremely well in terms of all the
other validation measures.

In order to visually compare model performance, we introduce the heatmap. Figure 5 provides
a heatmap comparing the performance of the models according to the validation measures. The
purpose of this heatmap is for ease of comparison so that it has been organised by rescaling all
the measures so that for each measure, a value of 100 is the best and a value of 0 is the worst.
For Gini, R2, and the CCC index, we know that the higher the value the better, so that for these
measures, we find the highest value in each column and scale it to 100. The smallest value is then
rescaled to 0. Other values between two boundaries are rescaled according to the distance. For all
the other measures, since the smaller its absolute value the better, we multiplicatively invert (take
the reciprocal of) the original absolute value and then apply the same idea of rescaling. We also
colour coded the figure in the sense that dark red represents the worst and dark blue represents the
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Table 6. Computational expenses

Model Computation time (seconds)
Regression tree (CART) 0.13
| Bagged trees Dt 270
Grad|entboost|ng ........................................................... 469 .....................
chnd|t|ona[ |nferen§e trees e 025 S

Bagged e ....
credent bOOStlng .-.-.

value
100

75
Conditional inference trees -

Conditional random forests . ..
Ordinary Kriging - .....
B2 . ....

S & E e F

Figure 5. A heatmap of model performance according to the various validation measures.

50

best. The performance of any model in between is relatively measured according to their degree
of closeness to each of these colours. A similar heatmap for such model comparison has appeared
in Quan & Valdez (2018).

We can find that gradient boosting has the overall best performance. It is worth mentioning
that conditional inference trees has better prediction performance under the mean error and per-
centage error, in comparison to other tree-based models. At the portfolio level, the conditional
inference trees produces good results. Under the two validation measures ME and PE, the GB2
method outperforms other methods.

Table 6 provides details about the computational expenses, which include training time and
prediction time. We find that the tree-based models based on the CART algorithm are more
computationally efficient than the conditional inference framework. The extra computational cost
associated with conditional inference trees can likely be deduced from the additional step of per-
forming hypothesis test at each split. Moreover, tree-based models outperform other previous
methods.
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Regression tree (CART) Bagged trees-%IncMSE Bagged trees-IncNodePurity Gradient boosting
gbAmt- - 25.31 gbAmt{ - 29.81 gbAmt - 35.11 gbAmt - 30.94
age | 1.66 ttm I 3.23 ttm I 5.41
FundValue4 - 12,67
ttm- | 0.23 age I 2.99 age I 4.49
FundValue5 - l 11.87
FundValue6 | 0.23 FundValue3 | 1.35 FundValue9 { | 1.04
FundValue9 - I 114
FundValue2{ | 0.19 FundValue2 | 0.81 FundValue10 | 0.94
FundValue 4 I 987 Fundvalued{ | 0.17 FundValues | 078 FundValues } 087
FundValue1 - I 8.98 FundValue84 0.1 FundValuel | 0.69 FundValue3 ‘ 0.85
age- I 6.56 FundValue74 0.03 FundValue6 ‘ 0.49 FundValue2 ‘ 0.77
ttm- I44 gender{ 0.02 FundValue10 ‘ 0.48 FundValuel ‘0.7
gmwbBalance  0.01 FundValue9 ‘ 0.43 Fundvalue5{ | 0.4
FundValue3- | 2.46
Fundvalue3{ -0.02 FundValue4 ‘ 0.33 Fundvalues { | 0.37
FundValue7 - | 1.56
FundValue5 -0.03 FundValue7 ‘ 0.31 FundValue7{ | 0.35
FundValue2 - | 147
FundValue14 -0.09 FundValues { | 0.21 FundValue4 { | 0.34
FundValue10- | 061 FundValue10  -0.12 gender{  0.13 gender{ | 0.26
FundValue6 - ‘ 0.36 Fundvalue4 -0.13 gmwbBalance{ 0.05 gmwbBalance{ 0.03
b S e S AR S S S . S S
25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 5 75 100
Conditional inference tree Cl tree-Consider Condition Conditional random forests Cforests-Consider Condition
gbAmt 33.41 gbAmt+ I 8.75 gbAmt 33.51 gbAmt I 9.85
tm ‘ 0.48 ttm- | 1.07 ttm ‘ 0.51 tm{ | 0.33
FundValue5{ 0.1 FundValue6{ 0.06 FundValue5{ 0.1 Fundvalue51{ 0.06
age{ 0.06 FundValue54 0.05 age 0.08 gmwbBalance{ 0.01
gmwbBalance{ 0.04 gender{ 0.05 FundValue6{ 0.06 Fundvalue3{ 0
FundValue6{ 0.04 FundValue24{ 0.02 gmwbBalance{ 0.04 genderq 0
FundValue4{ 0.02 FundValue34 0.02 FundValue4{ 0.01 FundValues { 0
FundValue3{ 0.02 FundValue9{ 0.01 Fundvalue3{ 0.01 Fundvalues{ -0.01
FundValue1{ 0.02 gmwbBalance  0.01 Fundvalue1{ 0.01 FundValue10{ -0.02
FundValue9{ 0.01 FundValued{ 0 FundValue10{ 0 FundValue7{ -0.02
FundValue8{ 0 FundValue8{ 0 FundValue8 { 0 FundValue1{ -0.03
FundValue74{ 0 FundValue74 0 FundValue9{ 0 FundValue4{ -0.04
FundValue10 0 FundValue104 -0.07 Fundvalue7{ 0 Fundvalue9{ -0.1
gender{ -0.02 FundValuel4 -0.09 Fundvalue2{ -0.01 FundValue2{ | -0.24
FundValue2{ -0.03 age- | -0.5 gender{ -0.02 ageq | —0.54
0 25 50 75 100 0 25 5 75 100 0 25 50 75 100 0 25 5 75 100
Relative importance Relative importance Relative importance Relative importance

Figure 6. Variable importance for tree-based models (all the explanatory variables).

4.4. Variable importance

Figure 6 shows the variable importance for all five tree-based models. The first three models are
based on the regression trees that are generated by the traditional CART algorithm. The last two
are based on the unbiased conditional inference trees. For random forests (bagged trees), there are
two types of variable importance: one based on %IncMSE and another based on IncNodePurity.
%IncMSE based on the difference in prediction error after a random permutation values of the
explanatory variables on the test set. IncNodePurity can be calculated based on the cumulation
of improvement of the loss at each splitting which inherited from single trees. There are also
two ways to calculate variable importance for conditional inference tree and conditional random
forests. If conditions are considered, the importance of each explanatory variable is computed by
permuting within a grid defined by the explanatory variables that are associated to the response
variable. The resulting variable importance score is conditional in the same sense as beta coef-
ficients in regression models, but it represents the effect of a variable in both main effects and
interactions. We can see that all the tree-based models are able to select the top two important
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Regression tree (CART) Bagged trees Gradient boosting
1 [ 1 1 1 1 1 1 1 1 1 1 1
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Figure 7. Variable importance for tree-based models (categorical explanatory variables).

variables, product type and guaranteed benefit amount, while the order of the subsequent variable
importance is quite different between models. Interestingly, in contrast to the other methods, the
CART did not choose the age of the policyholder and the time to maturity. It is widely recognised
that the CART algorithm has the bias in variable selection and this appears in our dataset since we
have the type of product with many levels. Controversially, conditional inference tree-based mod-
els have a similar selection of variable importance when compared to the bagged trees and gradient
boosted regression trees, even though their structures of selecting the split variable are different.

As in the previous discussion, we note that the product type, which has several categories, as
deemed most important variable in all tree-based models. Figure 7 shows the dummified categor-
ical variable importance for all five tree-based models. The first three are based on the regression
trees that are generated by the traditional CART algorithm. The last two are based on the unbi-
ased conditional inference tree. We observe the similar result that there exists a bias in variable
selection in the traditional framework when compared to the conditional inference framework.
For example, ABRU, MBRU, and IBRU are the most important product type. Gradient boosting is
able to select these same variables.
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Regression tree (CART) Bagged trees Gradient boosting Conditional inference trees Conditional random forests
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Figure 8. Lift curve plots.

4.5. Model performance visualisation

Figure 8 shows the lift curves, which are plotted using ordered predictions of the models and
benchmark fair market values calculated by Monte Carlo simulation according to ranks. The lift
curve is drawn by bining the test sample, 190,000 VA contracts, into 100 segments and taking
the average of the ordered predictions and benchmark fair market values. All the average points
are then connected. If the curve for the benchmark fair market values closely follows that of the
prediction curve, we could say that the model prediction is sound. In examining the lift curve plots
for the various models, we observe that bagged trees, gradient boosting, and conditional random
forests appear to have the most reliable prediction.

To further visualise a comparison of the performance of the various tree-based models, Figure 9
shows a scatter plot between the fair market values calculated by Monte Carlo simulation and
those predicted by metamodels. Beside the scatter plot, we also provide the density plot for both
the predicted values and those calculated by Monte Carlo simulation. Not surprisingly, we see that
single tree-based models only provide few constant predictions. On the other hand, the ensemble
tree-based models provide more smoothed predictions. Overall, gradient boosting provides the
best prediction performance.

5. Concluding Remarks

This paper explores tree-based models and their extensions in developing metamodels for
predicting fair market values of the guarantees embedded in VA contracts. Tree-based models are
increasingly widely used in various disciplines such as psychology, ecology, biology, economics,
and insurance. As demonstrated in this paper, besides computational efficiency and predictive
accuracy, they have many advantages as an alternative predictive tool. First, unlike ordinary
kriging and the GB2 framework, tree-based models are considered as non-parametric models that
do not require distribution assumptions. Second, tree-based models can perform variable selec-
tion by assessing the relative importance. Such variable selection is usually essential in actuarial
science for purposes such as risk classification and collection of risk variables. This paper further
showed how to refine variable selection of a categorical variable with several categories. Third,
tree-based models, especially with single smaller sized trees, are straightforward to interpret by a
visualisation of the tree structure. This visualisation was illustrated both in the case of regression
tree and conditional inference tree. Finally, when compared to other metamodels for prediction
purposes, tree-based models require less data preparation as they preserve the original scale to be
more interpretable.
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Figure 9. Prediction and actual fair market values.

To empirically demonstrate the use of tree-based models as a predictive tool, this paper uses the
synthetic dataset with 190,000 VA contracts as described in Gan & Valdez (2017b). The objective
here is to examine the performance of tree-based models in the valuation of fair market values of
the product guarantees for large portfolios of VA contracts. In doing so, we compare the predic-
tive accuracy of five tree-based models: regression tree (CART), bagged trees, gradient boosting,
conditional inference trees, conditional random forests, as well as two parametric metamodels:
ordinary kriging and GB2 models. For model comparison, we use a training dataset based on
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a representative small sample selected by a clustering algorithm and for computing the model
performance, we use the entire dataset as the test dataset. Broadly speaking, tree-based models
outperform the parametric metamodels considered in this paper and are generally very efficient
in producing more accurate predictions. While in several respects, the gradient boosting ensem-
ble method is considered the most superior amongst all models considered, this paper further
demonstrated the many good qualities of conditional inference trees. Such tree-based models can
be used for other types of insurance and actuarial applications, especially for datasets that contain
categorical explanatory variables with several levels.
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A. Other Hyperparameter Optimisation Results

If the training dataset is significantly big, it is not ideal to perform the grid search. Instead, the
random search or the Bayesian optimisation are preferred in this situation. In this appendix, we
provide the comparison of these two hyperparameter tuning methods.
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Table A.1. Random search and Bayesian optimisation

Model Training MSE Test MSE Runtime
Random search
Regression tree (CART) 3846.0 3717.8 4.6 seconds
| Baggedtrees R
Gradient boosting 2552.6 3061.3 251.1 seconds
il e T e
Conditional random forests 7921 24211 921.3 seconds

Bayesian optimisation

Regression tree (CART) 3609.7 3726.2 1.7 minutes
Baggedtrees S
Gradient boosting 1487.3 1918.2 38.8 minutes
I
T Loy i o

For the random search, we use caret package to perform 50 random searches on hyper-
parameter space for all 5 tree-based models. We select the model with minimum ten-fold
cross-validation root mean squared error (RMSE) and then find the prediction accuracy for each
tree-based model on the whole dataset. Since the random search can be parallel, we use six nodes
with this computer configuration (Operating system: Microsoft Windows 10 Education, 64bit;
Processor: Intel Core i7-7700K at 4.2 GHz, turbo up to 4.5 GHz, 8 MB cache, four cores; Memory:
32 GB).

For the Bayesian optimisation, the GP regression model applies a radial basis kernel to the
covariance function of the multivariate normal prior. The GP regression model needs some initial
set of hyperparameters and its model performance and makes predictions over the bounding
box of the hyperparameters space. In our setting, there are ten initial sets of hyperparameters.
According to this, we can obtain the estimated mean and variance for prediction accuracy
(RMSE). Finally, we perform 50 searches applying the Bayesian optimisation using caret pack-
ageand rBayesianOptimisation package. Again, to be fair in comparison, we select the model
with minimum ten-fold cross-validation RMSE and then find the prediction accuracy for each
tree-based model on the whole dataset. Bayesian optimisation is performed without parallelism.

Table A.1. provides details about the training (680 contracts) mean square error (TrainMSE),
the testing (whole contracts) mean square error (TestMSE), and computational expenses (Time)
which include training time (hyperparameters tuning) and prediction time. We can see that the
Bayesian optimisation is slower than the random search. Bayesian optimisation can provide better
hyperparameter setting in the case of complex situations like gradient boosting with four hyperpa-
rameters. We should point out that the results shown in Table A.1 are based on simple illustration
and comparison of using the random search and Bayesian optimisation to optimise various tree-
based models’ hyperparameters. The prediction results should not be compared directly with
those based on the grid search that are shown in Table 5 since the dimension of the grid is not
comparable.

In practice, for the large-scale dataset, we can apply a few random searches and send results to
the initial setting for the Bayesian optimisation. After performing the Bayesian optimisation, we
can have a better understanding of the dataset and perform the grid search on the hyperparameter
space which is narrowed down by the previous experiment.
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Table B.1. Prediction accuracy of deltas, based on R?

Deltal Delta2 Delta3 Delta4 Delta5
Regression tree (CART) 0.505 0.431 0.273 0.441 0.563
Bagged trees - ‘0 663 - 0.690 - 0 635 ‘ O 733 o 0 729‘
..Gradlent boostmg S .0 705 R ”0635“ R 0 553. R o 75 e o161
”Cond|t|ona|mferen(éetrees R 0.304 R ,.0'450” I 0'276. R 0575 e 0.534
Condltlonal random forests 0.527 0.626 0.507 O 607 0.631
Ordinary kriging 0419 0427 0446 0391 04l

Table B.2. Prediction accuracy of deltas, based on ME

Deltal Delta2 Delta3 Delta4 Delta5
Regression tree (CART) 1.243 0.059 0.739 0.403 0.917
. Baggedtrees e 0712 T 0134 R 0570 e 0992 S 1054
Gradient boostlng 0 551 0.660 0 791 0.851 1 006
‘Condltlonal |nferencetrees - —O 348 HM—O 401».». - 0474 0 512> 0 107
“C0nd|t|onalrandom forests. - 0.268 - .70.248“ - 0.193. - 0 160 - 0370
Y‘Ordmary kngmg _0573 . 0143 o _0059 v_o,132” .,.v.,.v.0'448
GB2 —1.393 —1.608 —1.804 —1.770 —0.848

Table B.3. Prediction accuracy of deltas, based on PE

Deltal Delta2 Delta3 Delta4 Delta5
Regression tree (CART) —0.056 —0.004 —0.049 —0.035 —0.074
i, boss A ..70 032.. R 70010 s 70038 . 70036 . 70086 .
"Grad|ent boostmg R ,_0 025,. R _0043 R ”_o 053. — _0073 T v_o 032 .
‘Condltlonal|nferencetrees 0.016v 0029 B ”—0032” : —0044 W—O 009v
Condltlonal random forests —0.012 0.018 —0.013 —0.014 —0.030
..Ordmary kngmg — 0026 R 70011 i 0005 . 0011 — 70036 .

B. Modelling Partial Greeks of Variable Annuities

The synthetic dataset created in Gan & Valdez (2017b) also contains the partial dollar deltas on five
market indices. We apply the same techniques described in Section 4 to model these five partial
dollar deltas, which were studied by Gan & Lin (2017) and Gan & Valdez (2017a).

Tables B.1, B.2, and B.3 show the prediction accuracy of the tree-based models and traditional
approaches on the 190,000 VA contracts on five dollar deltas. The best performance numbers are
shown in boldface. From these tables, we observe that gradient boosting has consistent good per-
formance in terms of R?. However, bagged trees perform better than gradient boosting for Delta2.
From Tables B.3 and B.2, it can be more challenging to judge the overall best model. Nevertheless,
tree-based models have good prediction performance on the Greeks of VA portfolios with respect
to ME and PE measures.

Cite this article: Quan Z, Gan G and Valdez E (2022). Tree-based models for variable annuity valuation: parameter tuning
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