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Abstract

Indexed literature (from 2015 to 2020) on artificial intelligence (AI) technologies and machine
learning algorithms (ML) pertaining to disasters and public health emergencies were reviewed.
Search strategies were developed and conducted for PubMed andCompendex. Articles that met
inclusion criteria were filtered iteratively by title followed by abstract review and full text review.
Articles were organized to identify novel approaches and breadth of potential AI applications. A
total of 1217 articles were initially retrieved by the search. Upon relevant title review, 1003
articles remained. Following abstract screening, 667 articles remained. Full text review for rel-
evance yielded 202 articles. Articles that met inclusion criteria totaled 56 articles. Those iden-
tifying specific roles of AI andML (17 articles) were grouped by topics highlighting utility of AI
and ML in disaster and public health emergency contexts. Development and use of AI and ML
have increased dramatically over the past few years. This review discusses and highlights poten-
tial contextual applications and limitations of AI and ML in disaster and public health emer-
gency scenarios.

According to theWorld Health Organization (WHO), a “public health emergency” is defined as
an event or occurrence that threatens the health of the public and poses substantial risk.1 Such
emergencies can include natural disasters, disease outbreaks, or bioterrorism. Responding to a
public health emergency requires rapid decision-making and efficient communication of infor-
mation between government agencies, response organizations, and healthcare facilities.
Understanding situational risk, strengthening governance, enhancing preparedness for effective
response, and investing in measures to enhance resilience are all critical aspects of disaster risk
reduction. The Sendai Framework for disaster risk reduction established by the United Nations
aims to substantially reduce global disaster mortality, reduce direct disaster economic loss, and
substantially reduce disaster damage to critical infrastructure and disruption of basic services by
2030.2 In this vein, prediction/forecast models and preplanned protocols, such as evacuation
planning, have been used to mitigate the consequences associated with these events. With
the rise of artificial intelligence (AI) and machine learning (ML), monitoring of information
during emergent situations and decision-making under time-sensitive conditions have signifi-
cantly enhanced the potential to predict the spread of disease, develop more efficient evacuation
plans, and assist in the distribution of resources to areas in need.

ML models are typically trained on large quantities of representative data for the target task
and subsequently applied to unseen test data without a requirement for explicit programming
and handcrafted decision boundaries. During the training process, these algorithms normally
perform iterative updates to parameters of the model, which is then used to make predictions
and improve at achieving the desired task over time.3 Comparatively, ML is similar to statistics
in that both fields can be used, in principle, to make inferences or predictions. However, stat-
istical models are better suited to infer relationships between variables, whereas ML algorithms
concentrate on making predictions.4 Table 1 describes typical AI/ML algorithms along with
terms thatmay not be familiar to the disaster and public health emergency response community,
defined in the order in which they appear in this review.

This review aims to highlight recent developments in intelligent computing for disaster and
public health emergency scenarios. It will focus on the potential applications and limitations of
AI and ML in emergency evacuation, emergency management and decision-making, informa-
tion processing, and mass casualty prevention.
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Methods

For the purposes of this review, identification of viable sources19-37

followed the methodology of Fernandez-Luque and Imran16 and
Lamy et al.17 The methodology was selected because it was applied
to a parallel review that examined the use of AI and social media in
humanitarian crises.16

The 2 databases included were PubMed and Compendex to
encompass potentially relevant articles from the public health
and engineering fields, respectively. For PubMed, the following
search terms were used, with priority being placed on the terms
(“Artificial Intelligence” OR “Machine Learning”). Several
Medical Subject Headings (MeSH) terms were also used to ensure
that the topic of “Natural Disasters” was completely encompassed
in the search (Table 2). Additional manual searches of cited refer-
ences were cross-referenced with the primary search to capture all
potential sources that pertained to the desired topic. For
Compendex, the following search terms were included (Table 3),
with priority being placed on the terms (“Artificial Intelligence”
OR “Machine Learning”).

Data Sources and Inclusion/Exclusion Criteria

According to the 2018 Artificial Intelligence Index, the current
generation of AI research really began to take hold in 2013. This
follows a major breakthrough for deep learning when researchers
were able to drastically reduce the error in large-scale image rec-
ognition. Focusing upon the most recent advancements in AI,
inclusion criteria captured English language papers published
within the past few years (2015-2020) with available full text per-
taining to AI relevant to disasters or public health emergencies. As
the application of AI and ML in disaster and public health emer-
gency contexts had not yet been sufficiently developed, articles
before the search period were excluded (Figure 1).

Article Selection Process

Articles that met inclusion criteria were filtered iteratively by title
screening followed by abstract review and full-text review. Articles
were organized according to the following unique categories:
Emergency Evacuation, Emergency Management and Decision-
Making, Information Processing, and Violent Mass Casualty
Event Response.

Selected articles with the greatest novelty and highest relevancy
in their respected subcategory were highlighted to identify unique
approaches and the breadth of potential AI/ML disaster and public
health emergency applications. The selection process followed the
PRISMA review article selection methodology and flow diagram.18

Results

A total of 1217 articles were initially retrieved by the search. Upon
relevant title screening, 1003 articles remained. Following abstract
screening, 667 articles remained. Full-text review for relevance
yielded 202 articles. A total of 56 articles met inclusion criteria.
From the final articles identified based on sufficient applications
of AI/ML in disaster responses, several representative articles were
highlighted in each of the organizational categories: Emergency
Evacuation, Emergency Management and Decision-Making,
Information Processing, and Violent Mass Casualty Event
Response, encompassing a total of 17 articles.

Emergency Evacuation

During natural disasters, emergency evacuation considerations are
ever-present. However, evacuation routes can be easily over-
whelmed, and the safety and efficiency of the evacuation plan rely
heavily on organization and cooperation. While modeling is often
used to predict the best evacuation routes, these predictions often

Table 1. AI and ML terms defined in the order that they appear in this review

Term Definition

Random forest An ensemble machine learning algorithm that
combines multiple learners in the form of
nodes and predictors.5

Deep learning A method of machine learning that makes use
of large neural networks. The adjective “deep”
comes from the use of multiple layers in a net-
work.6

Ant colony optimiza-
tion (ACO)

A population-based optimization algorithm
where artificial agents work to solve problems
as efficiently as possible by mimicking the
behavior of real ants.7

Reinforcement learn-
ing

A learning paradigm that is concerned with
how intelligent agents ought to take actions in
an environment in order to maximize the
notion of cumulative reward.8

Adaptive boosting A machine learning meta-algorithm that com-
bines other learning algorithms into a weighted
sum that represents the final output of a
boosted classifier.9

Gradient boosting A machine learning technique for regression
and classification problems. Produces a predic-
tion model in the form of an ensemble of deci-
sion trees.10

Ensemble learning Multiple learning algorithms used to obtain a
better predictive performance than could be
obtained from a single constituent learning
algorithm.10

Constraint program-
ming model

A paradigm used to solve combinatorial search
problems in which the user establishes con-
straints and the constraint solver finds a solu-
tion to them.11

Hierarchical task net-
work planning

An AI approach to automated planning in
which a hierarchical structured network can
give actions to solve a series of tasks.12

Fuzzy logic A logical concept concerned with the formal
principles of approximate reasoning in which
degrees of truth of variable values may be any
real number between and including 0 and 1.13

Semi-supervised
learning

An approach to machine learning that com-
bines labeled data with unlabeled data during
training.6

Artificial intelligence
of things

A network in which sensors and actuators
blend into the human environment and infor-
mation is shared across platforms in order to
develop a common operating picture.14

Binary decision tree A structure that serves as a compressed repre-
sentation of sets or relations. It is often associ-
ated with ‘Boolean functions’ in computer
science, or a graph with several nodes.15

Supervised learning An approach to machine learning that uses
labeled data.6

Active learning An approach to machine learning in which the
learning algorithm can interactively query a
user to label new data points with desired out-
puts.6
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lack the ability to simulate the behavior of people during emer-
gency situations.

ML has been used to model pre-evacuation decision-making.
Using random forest to model and predict people’s emergency
behavior pre-evacuation, 1 study19 aimed to investigate the factors
influencing decision-making in the evacuation process. The results
showcased that random forest provides rich behavioral interpreta-
tions of evacuees by automatically capturing interactions among

independent variables and nonlinearities between the independent
variables and the outcome. Applying their model to investigate fire
evacuations, the researchers were able to illustrate how social and
physical factors (such as seat of the evacuee and group size) can
influence the pre-evacuation decision-making process. With these
interpretations, policy-makers and emergency managers can
extract useful insights to develop more effective evacuation plans.
This model has been shown to provide more accurate results than
the traditional approach (ie, logistic regression).

ML methods have also been used to recognize overall behavior
of an evacuating crowd. By detecting the status of crowd flow and
estimating the occurrence of anomalies during evacuation such as
congestion of evacuation routes or concentrated directional move-
ment, deep learning was used to forecast crowd behavior under
evacuation settings.20

To optimize evacuation, ML can calculate the best routes and
develop mathematical solutions to issues associated with varying
evacuation parameters. Bagloee et al. discussed the issue of contra-
flow, the changing of directions of roads as a traffic control mea-
sure to streamline emergency evacuation. Using an ML algorithm
tailored to the actual traffic network of the city of Sioux Falls, the
most efficient traffic evacuation pathway was calculated based on a
“budget” of roads that could be made contraflow. The application
of this technology could render planning of traffic evacuation
routes easier and faster.21 This model uses a hybrid ofML and opti-
mization algorithms, which was found to outperform some other
ML-exclusive algorithms.

A common algorithm used for evacuation route computation is
the ant colony optimization (ACO) algorithm. In 2014, ACO was
used to calculate the best routes for an evacuation in a tsunami cri-
sis. The model was validated by conducting 2 drills in the coastal
town of Penco, Chile, which was affected by a massive earthquake
and tsunami in 2010. The first drill was held with release of min-
imal information during which the population acted intuitively.
The second drill was conducted using information provided by
the model, channeling people to optimized routes generated by
the ACO algorithm. These results showed that in the event of
an emergency, conventional evacuation routes had longer escape
times compared with those identified by the developed ACO
model.22 On a smaller scale, AI algorithms can be used to direct
evacuations from buildings and other populated venues. A separate
research team used ACO to find the shortest escape route from a
building in the event of a fire, taking into consideration tempera-
ture at the fire site, smoke concentration, and carbon monoxide
concentration.23 While both projects indicate reduced evacuation
time using ACO, these prototypes do not consider other environ-
mental factors like ease of accessibility of roads or damaged infra-
structure, which can significantly impact the determination of the
safest routes in tsunami and fire evacuations. Furthermore, for all
aforementioned papers, these algorithms require extensive map-
ping of terrains for practical application in real-life situations.

Emergency Management and Decision-Making

ACO has also been used for emergency management and distribu-
tion of resources in disaster situations to overcome the vehicle
routing problem presented during the distribution of emergency
resources. One algorithm was designed to find feasible solutions
to quickly and efficiently deploy resource vehicles.24 A mathemati-
cal optimization model proposed by Wang et al. used a new ACO-
based algorithm, which incorporated the idea of a virtual central
“depot,” or resource distribution center for distributing emergency

Table 2. Pubmed search queries

Search
no. Query

No. of
results

1 ((((“artificial intelligence”) OR “machine learning”)
OR “intelligent computing”)) AND “Natural
Disasters“[Mesh]

14

2 (“emergency preparedness”) AND (((“artificial intel-
ligence”) OR “machine learning”) OR “intelligent
computing”)

2

4 (((terror*) OR casualty)) AND (((“artificial intelli-
gence”) OR “machine learning”) OR “intelligent
computing”)

24

5 ((“artificial intelligence“[Title/Abstract] OR
“Machine Learning“[Title/Abstract])) AND Mass
casualty

4

6 (((((Natural disaster) OR Hurricane) OR Flooding)
OR Earthquake)) AND (((“artificial intelligence”) OR
“machine learning”) OR “intelligent computing”)

61

7 ((“Artificial Intelligence“[Title/Abstract] OR
“Machine Learning“[Title/Abstract])) AND emer-
gency) AND “social media”

10

Total 115

Table 3. Compendex search queries

Search
no. Query

No. of
results

1 “artificial intelligence” or “machine learning” AND
“emergency preparedness”

2

2 “artificial intelligence” or “machine learning” AND
“natural disasters”

71

4 “artificial intelligence” or “machine learning” AND
“casualty”

157

5 “artificial intelligence” or “machine learning” AND
“terrorism”

18

6 “artificial intelligence” or “machine learning” AND
“mass shooting” OR “school shooting”

114

8 “artificial intelligence” or “machine learning” AND
“public health emergency”

10

9 “artificial intelligence” or “machine learning” AND
“incident command”

157

10 “artificial intelligence” or “machine learning” (subj,
abstract, title) AND “decision making” AND “emer-
gency preparedness”

81

11 “Artificial Intelligence” OR “Machine Learning” AND
Emergency AND “social media” AND (2020 OR 2019
OR 2018 OR 2017 OR 2016 OR 2015)

281

12 “Artificial Intelligence” or “Machine Learning” AND
Emergency AND “information processing” AND
(2019 OR 2018 OR 2017 OR 2016 OR 2015)

173

13 “Artificial Intelligence” or “Machine Learning” AND
“emergency evacuation” AND (2019 OR 2018 OR
2017 OR 2016 OR 2015)

38

Total 1102
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resources from a stock center during an emergency. The proposed
algorithm proved more efficient than previous vehicle routing
problem optimization models, calculating the best routes in 29
of 33 events (88%).24 Despite its efficiency, this project does not
account for traffic blockages or other disruptions that could affect
the results of the model.

Rapid response in emergency situations is undoubtedly critical.
Accordingly, the rapid calculative ability of ML algorithms can be
useful in establishing decision support systems that aid in the
development of emergency response plans and can be embedded

into an emergency command decision support system.
Hierarchical task network planning is an AI planning technique
used to search for a solution to obtain an initial task network in
the early state. This tool, adapted for the rapid development of
emergency response plans, the coordination of agencies involved
in disaster scenarios, and the preparation of standard operation
procedures, was implemented in a case of typhoon evacuation.
The results showed that the intelligently generated decision-mak-
ing model was flexible and capable of replicating the dynamism
and temporal uncertainty in emergency response situations.25

Figure 1. Study flow diagram.
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Although this model is an extremely useful tool, it cannot be used
in the absence of emergency managers. Like most models dis-
cussed, this decision support paradigm is designed to support
emergency response personnel and improve their ability to make
timely decisions.

Lopez et al. implement a coordinated decision-making agent for
emergency response scenarios. Agent implementation uses
reinforcement learning, an ML technique that enables an agent
to learn from experimenting. For proof of concept, the researchers
created a simulation of an emergency situation and the agent was
tasked with allocation of resources in a way that maximized the
number of people treated at the hospital. The results showed a sig-
nificant increase in decision-making speed when compared with
past projects performed by the same research team.26

Implementation of multiple ML agents in the same model could
be a strategy used for more complex cases.

In contrast with traditional ML methods, deep learning tech-
niques are modern ML approaches that have been on the rise.
Such deep learning techniques have been used to classify images
to identify survivors in debris after an earthquake. Although deci-
sion-making during emergency scenarios is often difficult because
of the lack of actionable information, the application of deep learn-
ing allows for the classification of image data obtained from smart
infrastructures with significantly higher accuracy and the use of
less time and computational resources compared with traditional
ML approaches. Specifically, this research uses convolutional neu-
ral networks and heterogeneous data sources to match the alloca-
tion of emergency resources to individuals in extreme need. The
results showed that deep learning approaches handled noise in data
much more proficiently than their traditional ML counterparts.27

One limitation of this approach is the inability of the classifiers to
identify text data. Such data are addressed more thoroughly in the
next part of this review.

Information Processing

With the rise of social media, information processing to acquire
and decipher potential public health hazards has become an
important tool. Microblogging platforms such as Twitter enable
real-time tracking of events through immediate user updates. In
the case of crisis, reports of casualties, infrastructure damage,
and urgent needs on these social networks can provide important
information in the first few hours of an event, which can help sig-
nificantly reduce both human loss and economic damage.
Recently, a research group used an ML approach to tag and label
data derived from tweets that were shared during emergency sce-
narios. Using this system, they were able to identify tweets that
were relevant to disaster response efforts.28 This filtering tool
makes use of online ML, which processes data as a sequential
stream, allowing for updating of the model continuously as new
labeled data become available. Such a tool can help to appropriately
alert humanitarian organizations and first responders to pertinent
information during disaster situations. Nevertheless, access to data
in this system is limited by social media tokens (ie, Twitter allows
450 queries per 15 min on their search API).28 Thus, the speed
at which data are tagged and classified may not be optimized
due to this constraint.

Filtering of information provided by social media during emer-
gencies is not uncommon. In fact, while Twitter and other micro-
blogging platforms have the capacity to provide up-to-date data,
information overload is often prevalent. A study published in

202029 aimed to use different ML algorithms to analyze hetero-
geneous social media data, that is, data that encompass many dif-
ferent types of emergency and disaster scenarios as opposed to just
focusing on one. In heterogeneous datasets, both training and test
data are drawn frommultiple data sources, whichmakes it difficult
for the learning algorithm to generalize. Using ensemble learning
algorithms (Adaptive Boosting, Gradient Boosting, and Random
Forest), researchers were able to classify relevant text-based
Twitter messages that were disaster-related or informative and
contributing to situational awareness. The results showed that
ensemble learning algorithms were much better at classifying
heterogeneous data than nonensemble learning algorithms. This
research is among the first to tackle the massive diversity of
real-world social media data. As a result, classifying such data is
often difficult and produces inaccurate or ambiguous results.
Over time, it is anticipated that improvements in the field of AI
will allow for these hurdles to be overcome.

Airborne (eg, National Oceanic and Atmospheric
Administration aerial) and spaceborne (eg, Maxar WorldView)
imaging systems are often used during emergency situations to
map the extent of postevent damage, but the delay between an area
being affected and image acquisition can sometimes be longer than
the desired time window for making critical resource deployment
decisions. In addition, 4/8-band multispectral imagery (MSI) is
unable to see through clouds, which typically obscure areas affected
by hurricanes. For this reason, there has been growing interest in
Synthetic Aperture Radar (SAR) imaging systems, as they are
capable of seeing through clouds. However, SAR images can be dif-
ficult to interpret without proper training and can have inadequate
resolution for certain tasks when captured by satellites.When non-
cloudy overhead MSI and RGB imagery is available, it can be very
useful for identifying flooded areas, damaged buildings, and
obstructed roads. Recently, there have been efforts to automate
these tasks with deep learning, as these are very time-consuming
to performmanually. One of these is the xView2 challenge,30 which
focuses on building damage assessment on images from the
DigitalGlobe Open Data Program31 for 6 different disaster types,
in which buildings are designated with varying damage labels rang-
ing from no damage to completely destroyed.

While the former approaches focus on streamlining the use of
satellite imagery, inclement weather can render satellite imagery
nonfunctional. In a project titled Evolution of Emergency
Copernicus services (E2mC), crowdsourcing approaches were
coupled with a pre-established emergency management system
to obtain temporal and spatial information derived from social
media using digital volunteers and local eyewitness reporters.
This witness system is coupled with a social mediaML filtering sys-
tem to provide the most complete depiction of the emergency sce-
nario at hand with as few gaps in information as possible. The ML
component can preprocess the social media posts to decipher slang
and predict the relevancy of the post. This information processing
system can generate a damage assessment that may not be available
from satellite signals because of inclement weather and can also
help constrain and prioritize the imagery ML models process.
This systemworks in tandemwith the established emergency man-
agement system by providing information on the situation so that
experts can implement and make decisions.32 However, it is still
unable to produce information in real-time. While the system
can provide information within the first few hours of an event,
emergencies require immediate, real-time response to optimally
mitigate damage and loss.
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Violent Mass Casualty Response

During violent mass casualty events, quick and immediate action is
required to secure the safety of those present. With events ranging
from active shooter situations to terrorist attacks, the number of
injured can readily overwhelm first responders. In 2018, a classi-
fication model for survival prediction was designed with the ability
to quickly and precisely triage victims bymeans of wearable devices
in the absence of medical personnel. Logistic regression statistical
analysis was used to analyze vital signs and classify injury severity.
When applied to 460,865 sample cases, logistic regression, random
forest, and neural network algorithms were all found to perform
best with the “consciousness index,” a coma scale independently
developed by the team.33 Limitations imposed by innate bias of
the dataset present with any study involvingML are acknowledged.
This bias is further detailed in the discussion section. Most of the
datasets from this study were collected from patients sustaining
accidents in daily life rather than in a disaster context. The defi-
ciency of samples collected from the patients in a disaster is a
key limitation of this study.

In conjunction with streamlined triage are efforts toward pre-
vention of violent mass casualty events themselves. In recent years,
the United States has seen an alarming increase in active shooter
events.34 AI systems with the purpose of mitigating damages and
loss of life in these events have been created. Using an AI interface
and virtual events, 1 research team aimed to train school teachers
and administrators on what to do in the event of a school shooting.
Griffith et al. crafted an accessible gamemodule where teachers can
direct students by issuing commands during an active shooter sce-
nario. Users can occupy roles such as teachers, staff and adminis-
trators, law enforcement officers, school resource officers, and the
suspect role. This ensures that role-players can navigate the sce-
nario without knowing exactly how the students will react.35

While this training game can help teachers prepare for school
shootings, it remains very challenging to emulate the real world
and prepare teachers for the trauma of an actual active shooter
event. The extent to which a game, even with realistic responses,
can prepare teachers for such events remains limited.

AI can also be incorporated into public buildings to improve
evacuation routes during an active shooter situation. One example
is the use of an “Internet of Things” based decision support system
to evacuate civilians during indoor mass shooting events where
users are alerted and directed to the safest exits during an emer-
gency. This system uses 3 agents: a threat detection agent that acts
as gunshot detectors and accepts human-input data of the assail-
ant’s location, a room monitor agent that estimates populations in
each room and manages the actions of the doors, and door agents
that serve as exit doors or room doors. The threat detection agents
locate gunshots and contacts the room monitor for determination
of shot origin. The governing room monitor is responsible for ini-
tiating and ending the signaling process. The room monitor com-
municates with the exit doors. Throughout the situation, the door
agents continually assess safety levels depending on the proximity
of the shooter. This system was applied to a case study of the Pulse
Night Club.36 This combination of Internet of Things and AI
(namely “Artificial Intelligence of Things”) allows for intelligent
decision-making but still requires further testing.

There are also other tools to address deliberate violent mass
casualty events. WISER (wireless information system for emer-
gency responders) is a free application on iOS and Android devel-
oped by the National Library of Medicine to assist emergency
responders in hazardous material incidents. To optimize this tool

for the identification of chemical agents (ie, chemical warfare or
terrorism events), ML algorithms were developed with functional-
ity similar to WISER with the capacity to identify chemical agents
based upon presenting symptoms. This study showed that ML
binary decision trees and artificial neural networks were more effi-
cient and more accurate at determining the culprit chemical agent
than WISER.37 However, the ML algorithms experienced
decreased efficiency as more symptoms and parameters were
added, exemplifying a key limitation in this study (Table 4).

Discussion

While the applications of AI/ML seem ubiquitous, many limita-
tions to current AI/ML systems exist. To currently validate most
ML models, large-scale data sets with representative test sets are
typically required to serve as a benchmark. Because the foundation
of ML relies on the recognition of patterns in data sets, situations
that lack robust data are difficult to validate. While many of the
referenced articles demonstrate performance at a level of statistical
significance, accuracy of particular algorithms falter when more
variables are introduced and can over-fit to the bias of a training
set. For example, the work by Kaufhold et al. labeling social media
data is not only limited by speed, but also by the expansiveness of
social media, which increases ML susceptibility to bias. This study
addressed several variables, such as relevancy, subjectivity, and
objectivity of user tweets but could not account for all possible var-
iables when labeling data.28 One approach by Pekar et al. uses
ensemble learning to mitigate this bias effect observed in large data
sets with many variables.29

ML bias because of training, learning, and re-learning often
reinforces such biases within given datasets. This is true for any
project in which ML algorithms are used. Unfortunately, many
of the aforementioned articles do not address such biases, which
must be acknowledged when reviewing their accuracy and validity.
On the other hand, the triage algorithm of Kim et al. does address
the bias of their dataset, which relied solely on injury data from
daily accidents rather injuries from disaster contexts.33

Similarly, to the model by Boltin et al. for the identification of
chemical agents showed promising results when the number of
symptoms is limited. Given only 9 symptoms, the ML algorithms
can identify the involved chemical agent with extreme precision.
However, as the number of symptoms increases, the accuracy of
the algorithm decreases. The introduction of increased variables
can confuse the algorithm, yielding less fruitful results.37

It is this uncertainty associated with many of these algorithms
that have prevented them from being widely used in the field of
public health. Considering that the rise of AI is a relatively recent
phenomenon, AI models are still continually being improved upon
and novel uses of AI are introduced every year, as observed in the
work by Horii et al. on emergency evacuations.20

In fact, the vast majority of information processing search
results focused on the applications of social media data for emer-
gency situations, a trend that shows researchers are making use of
the vast amounts of information made accessible by the Internet.
While this abundance of information can be helpful, there remains
a lot of noise associated with social media-derived data. Even
though ML does an excellent job in filtering out many irrelevant
posts, the data extracted from these ML modules may still remain
incomplete. As a result, crowd-sourcing and human participation
are required to fill in the gaps of information, as seen in the E2Mc
analysis system.32
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Although applications of AI in public health are not yet entirely
self-sufficient, these algorithms remain highly versatile and can be
potentially implemented inmany different areas. Different emergency
situations require different tools and modes of action, as depicted by
the varying applications of AI in emergency situations. However,
many of these systems can be adapted to address other public health
emergency categories. For instance, while satellite images usingAI can
be used to assess damage after natural disasters, they can also be
applied during terrorist or violent mass casualty events.

Some interesting trends were revealed. While several articles
pertained to issues affecting developed nations (ie, active shooter
events in the United States), many others were pertinent to devel-
oping nations, especially related to natural disaster events, as sim-
ilarly noted by Fernandez-Luque and Imran in their review of
humanitarian health computing.16

Certain limitations of this review are acknowledged. Due to the
expansiveness of the public health and AI fields, the search strat-
egy, despite its thoroughness, could not encompass all possible
search terms. Accordingly, it is possible that certain relevant
articles may not have been captured due to limitations of the search
terms used. As only publicly available published works were con-
sidered, tools in development and military-based, classified, or
other proprietary technologies in use in this field may not have
been included. AI used in other fields potentially applicable to
the disaster medicine and public health emergency context is
beyond the scope of this review. Future directions for AI in this
field include further validation of established algorithms, expan-
sion of variables incorporated into these models, application in rel-

evant contexts, and evaluation of practical implementation of these
systems.

Conclusions

Disasters and public health emergencies are often complex inci-
dents that require extensive cooperation, resources, and efficient
response. This review study highlights various machine learning
and artificial intelligence projects applied to the field of disasters
and public health emergencies. Ranging from social media data
extraction to video games designed to train and prepare teachers
for traumatic events, the versatility of AI holds considerable prom-
ise. Generally speaking, although AI and ML potentially can be
used to address many concerns, there are limitations to overcome
in terms of the accuracy and certainty of these systems. In the
future, it is expected that AI and ML will be more broadly, consis-
tently, and robustly applied to these practical challenges in disas-
ters and public health emergency contexts.
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