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In this study, large-eddy simulations are utilised to unravel the influence of the nozzle’s
external geometry on upstream-travelling waves in under-expanded supersonic impinging
jets. Three configurations, a thin-lipped, a thin-lipped with a sponge and an infinite-lipped
nozzle are considered with the other non-dimensionalised geometrical and flow variables
identical for the three cases. Spectral proper orthogonal decomposition is applied to the
Mack norm, i.e. the energy norm based on the stagnation energy, to obtain the spatial
modes at their corresponding frequency. The spectral decomposition of the spatial modes
at optimal and suboptimal frequencies is used to isolate the wavepackets into upstream-
and downstream-propagating waves based on their phase velocity. It is found that the
external geometry of the nozzle has a significant influence on the first-order statistics
even though the governing non-dimensional parameters are the same for all three cases.
Multiple peaks emerge in the energy spectra at distinct frequencies corresponding to
axisymmetric azimuthal modes for each case. The downstream-propagating wavepackets
have a high amplitude at the shear layer of the three jets with the mode shapes resembling
Kelvin–Helmholtz instability waves, while the upstream-travelling wavepackets exist in
the three regions of the near field, shear layer and inside of the jet. The barrel shock
at the nozzle exit appears as a flexible shield, which prevents upstream-travelling waves
from reaching the internal region of the nozzle, where the upstream-travelling waves
travel obliquely with one side of the wavefront is crawling on the reflected shock while
the other side is guided by the shear layer. These latter waves can reach the nozzle
lip via inside of the jet. The spectral decomposition of the spatial modes at optimal
and suboptimal frequencies show that all three forms of the near field, shear layer and
inside jet upstream-travelling wavepackets contribute to the receptivity process while their
contributions and strength are altered by the change of the external geometry of the nozzle.

Key words: supersonic flow, shear layer turbulence, jets

† Email address for correspondence: shahram.karami@monash.edu

© The Author(s), 2021. Published by Cambridge University Press 929 A20-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

82
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:shahram.karami@monash.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.822&domain=pdf
https://doi.org/10.1017/jfm.2021.822


S. Karami and J. Soria

1. Introduction

Under-expanded supersonic jets with engineering applications range from exhausts of
aircraft and rockets to mixing processes in supersonic combustion chambers, accidental
leakage of pressurised fluids and cold spray additive manufacturing, and have been the
subject of intense research since the theoretical study by Prandtl (1904). Flow dynamics
of an under-expanded supersonic jet are more complicated than that of a subsonic jet
due to the curvilinear compression shocks and high pressure and density-gradient fields
(Zapryagaev, Kiselev & Gubanov 2018). Under-expanded supersonic jets are a part of the
family of fluid flows classified as oscillatory flows. Some other flow configurations which
are part of this family are subsonic impinging jets (Ho & Nosseir 1981; Tam & Ahuja
1990), resonance tubes, an edge-tone and a plate with a cavity (Raman & Srinivasan 2009).

In the configuration of an under-expanded supersonic impinging jet, it is recognised
that the acoustic–hydrodynamic interaction is the main cause of this self-sustained
oscillation (Henderson 1966; Donaldson & Snedeker 1971). Powell (1988) proposed a
widely accepted conceptual theory describing the feedback oscillations based on the
Rossiter mechanism found in the open cavity flow (Rossiter 1964). The main ingredients
of a feedback loop are as follows: (i) shear-layer disturbances develop in the form of
Kelvin–Helmholtz (K–H) instabilities; (ii) high-intensity acoustic waves are created by
the interactions of K–H instabilities and the oblique shock, Mach disk and stand-off
shock; (iii) high-intensity acoustic waves travel upstream; and (iv) these acoustic waves
are internalised into the initial conditions of a vortical shear-layer instability at the nozzle
lip via a receptivity mechanism (Karami et al. 2020b).

The early shadowgraph flow visualisation by Poldervaart & Wijnands (1974) showed
that the flow structures in under-expanded supersonic free jets are significantly altered
when the feedback loop is interrupted or re-enforced by a reflecting or sound-absorbing
surface located in the near field of the jet. Norum (1983) studied the influence of
nozzle shape on the amplitude of screech in free supersonic jet flows and found that
the conditions for a given screech mode to exist are highly configuration dependent. In
another experimental study by Wlezien & Kibens (1988), it was found that supersonic free
jets from non-axisymmetric nozzles exhibit a wider range of acoustic properties compared
with axisymmetric nozzles and that shock oscillations can be controlled or eliminated
depending on the nozzle’s shape. The influence of the nozzle’s external geometry on the
azimuthal mode selection of under-expanded supersonic impinging jets was studied using
particle image velocimetry (known as PIV), acoustic measurements and ultra high-speed
schlieren by Weightman et al. (2019) for several nozzle configurations. The authors utilised
proper orthogonal decomposition (POD) to capture coherent structures, i.e. not the most
energetic structures as only two components of the velocity vector were used, and observed
that the thin-lip nozzle configuration contained a helical mode whereas an increase in the
nozzle lip thickness resulted in a switch to an axisymmetric mode, while a secondary
helical mode was also present. They concluded that altering the nozzle geometry leads to
a change of the dominant instability mode.

While changing the nozzle’s external geometry alters the flow field and is considered
a passive control strategy, there have also been attempts to use active flow control
strategies to eliminate self-sustained oscillations, for instance, by utilising plasma
actuators (Gaitonde & Samimy 2011) and microjets (Alvi et al. 2003; Kumar, Lazic & Alvi
2009). Kumar et al. (2009) used microjets as an active open-loop control strategy to study
the sound pressure level and the pressure force on the impingement plate, observing not
only attenuation but sometimes even elimination of the discrete high-amplitude impinging
tones.
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Influence of nozzle external geometry

These studies only focused on the influence of the nozzle and near obstacle geometries,
i.e. a passive control, on the global dynamics of the flow or the manipulation of the
near field instabilities utilising plasma actuators or microjets, i.e. an active control, while
the upstream waves and their contribution to the receptivity process, which is the main
contributor to the altered dynamics caused by the geometrical change, has received little
attention. To the best of our knowledge, the influence of the external geometry of the
nozzle on the upstream-travelling waves and receptivity process in the configuration of
under-expanded supersonic impinging jets has not been investigated. Hence, motivated
by recent experimental observations of the influence of the external geometry of the
nozzle on the global hydrodynamic and acoustic physics of under-expanded supersonic
impinging jets (Weightman et al. 2019) and our previous study of receptivity in this flow
(Karami et al. 2020b), the primary objective of this study is to investigate the nature of
upstream-travelling waves and their contributions to the receptivity process as a function
of the external geometry of the nozzle. For this purpose, spectral proper orthogonal
decomposition (SPOD) is utilised to obtain the single frequency energy ranked coherent
structures, i.e. a mode shape with a well-described and unique frequency, where the total
energy, known as the Mack energy norm (Mack 1984; Hanifi, Schmid & Henningson 1996;
Freund & Colonius 2002; Tumin & Reshotko 2003; Ray, Cheung & Lele 2009; Paredes
et al. 2016), is used as the energy norm. It is noted that obtaining the energy norm based
on the Mack energy is not feasible in experimental studies of this flow configuration due
to difficulty in simultaneous measurements of the three components of the velocity and
pressure fields.

In recent years, there have been considerable developments in data-driven techniques
to reveal the characteristics of coherent structures in turbulent flows (Bagheri et al.
2009; Schmid 2010; Sieber, Paschereit & Oberleithner 2016; Le Clainche & Vega 2017;
Le Clainche, Vega & Soria 2017; Towne, Schmidt & Colonius 2017). Spectral proper
orthogonal decomposition as a data-driven technique was first introduced by Lumley
(1970). This original POD method identifies energy-ranked modes where each oscillates
at a single frequency, and has been largely overlooked since its inception despite its
advantages over the common spatial form of POD (Sirovich 1987a), i.e. the snapshot
method (Kostas, Soria & Chong 2005). Glauser, Leib & George (1987) applied the SPOD
method to experimental hot wire measurements of the velocity in the shear layer of an
axisymmetric jet to study the coherent structures in an axisymmetric jet showing that
nearly all the energy of the flow was accumulated in the first three modes. In another
study, Delville et al. (1999) used SPOD to study the coherent structures in a plane turbulent
mixing layer where the first mode was found to be dominant containing nearly 50 % of the
turbulent kinetic energy. Stahl, Prasad & Gaitonde (2021) performed large eddy simulation
(LES) of single and dual impinging jets and applied the SPOD method to pressure
fluctuation fields to investigate the changes in the jet dynamics when another jet is added
alongside to form a dual impinging jet arrangement. There are a number of techniques in
the literature to compute SPOD modes (Citriniti & George 2000; Gordeyev & Thomas
2000; Towne et al. 2017). In this study, we used the procedure developed by Towne et al.
(2017), which has been comprehensively reviewed in Schmidt & Colonius (2020), as
it is found to be computationally more efficient compared with others. Spectral proper
orthogonal decomposition utilises the Fourier transform to decompose the dynamics into
the frequency domain and then applies the energy ranked optimisation at each discrete
frequency to find the mode shape associated with that frequency. Hence, it is used in
this study as a more rigorous approach to investigate upstream-travelling waves in the
configuration of under-expanded supersonic impinging jets.
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The rest of the manuscript is organised as follows. In § 2, the numerical method and
configurations of this study are presented. A brief discussion of SPOD follows in § 3, for
completeness. The results, including mean flow fields, SPOD spectra and mode shapes
at dominant frequencies and upstream and downstream wavepackets at these discrete
frequencies are presented in § 4 with discussion and concluding remarks in § 5.

2. Configurations and numerical methods

The configuration is an under-expanded supersonic impinging jet with the nozzle-to-wall
distance of h = 2d, where d is the jet diameter. In this study, three external nozzles with
a thin-lipped nozzle, a thin-lipped nozzle with a sponge, and an infinite-lipped nozzle are
considered. The schematics of the x–r plan view at θ = 0 of these three configurations are
presented in figure 1.

An in-house developed high-fidelity LES parallel multiblock code (ECNSS) (Karami
et al. 2019) is used to solve the filtered compressible conservation equations of mass,
momentum and total energy in cylindrical coordinates. This code has been validated
extensively in previous studies (Stegeman et al. 2016a; Stegeman, Soria & Ooi 2016b;
Karami, Edgington-Mitchell & Soria 2018a; Karami et al. 2018b, 2019, 2020b; Amjad
et al. 2020). The subgrid-scale terms are computed using Germano’s dynamic model with
the adjustment proposed by Lilly (1992). A sixth-order central finite difference method
is applied in the smooth regions in all spatial directions, while a fifth-order weighted
essentially non-oscillating scheme (known as WENO) with local Lax–Friedrichs flux
splitting is used in the discontinuous regions. A novel shock identification and capturing
method is used to capture the discontinuous regions (Karami et al. 2019). The temporal
integration is performed using a fourth-order, five-step Runge–Kutta scheme (Kennedy &
Carpenter 1994; Kennedy, Carpenter & Lewis 2000). The centreline numerical singularity
in cylindrical coordinates is treated with the procedure developed by Mohseni & Colonius
(2000) as an accurate method that is simple to implement (Fukagata & Kasagi 2002;
Morinishi, Vasilyev & Ogi 2004; Livermore, Jones & Worland 2007; Bogey, Marsden &
Bailly 2011; Gojon & Bogey 2017). The modified Navier–Stokes equations are considered
in our implementation of the wall boundary condition where all the convective terms
vanish in the case of a no-slip/no-penetration wall boundary condition. For the sixth-order
spatial discretisation applied here, four extra cell points are used as ghost cells where
the primitive variables are evaluated using the Taylor extrapolation for these points
considering the no-slip, adiabatic wall condition. The approach of treating the wall
boundary condition by introducing ghost cells has been proved to be stable and effective
(Tam & Dong 1994; Colonius & Lele 2004). This approach also allows the internalisation
of the acoustic waves into a shear-layer instability through a receptivity mechanism
at the nozzle lip (Karami et al. 2020b). The interested reader is referred to Karami
et al. (2019) for further details on the numerical method, the novel shock identification
and capturing method and the LES code. The mean inlet axial velocity is specified
using the hyperbolic-tangent function suggested by (Bodony & Lele 2005) with an inlet
momentum thickness of 0.04d (Bogey et al. 2011; Karami et al. 2020b) and a laminar
inlet flow. The assumption of laminar inlet flow is considered to be valid as the nozzle
of the under-expanded supersonic jet has a high contraction ratio similar to previous
experimental studies (Edgington-Mitchell, Honnery & Soria 2014; Amili et al. 2015a,b;
Soria & Amili 2015); hence, the inlet turbulence is considered to be negligible. The
Reynolds number based on inlet velocity and jet diameter is 50 000, which is similar to
our previous studies (Karami et al. 2018a, 2020a,b; Sikroria et al. 2020), to maintain the
LES resolution requirement under acceptable computational cost (Kawai & Lele 2010).
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Figure 1. Schematic of the three configurations with the thin-lipped nozzle lip with reflecting surface (a),
the thin-lipped nozzle lip with the sponge region to tapper reflected acoustic waves (b) and the infinite-lipped
nozzle (c) (it is noted that the configuration is axisymmetric, hence only the x–r plan view at θ = 0 is shown).

Region Lx × Lr × Lθ Nx × Nr × Nθ (�xmin,�xmax) (�rmin,�rmax)

1 0.03 × 0.5 × 2π 16 × 48 × 96 (1.9×10−3, 2.1×10−3) (0.9×10−3, 2.5×10−3)
2 2.0 × 0.5 × 2π 480 × 48 × 96 (1×10−3, 6×10−3) (0.9×10−3, 2.5×10−3)
3 2.0 × 0.016 × 2π 480 × 16 × 96 (1×10−3, 6×10−3) (0.96×10−3, 1.2×10−3)
4 2.0 × 11.48 × 2π 480 × 368 × 96 (1×10−3, 6×10−3) (1.25×10−3, 15×10−2)
5 0.6 × 11.48 × 2π 192 × 368 × 96 (2×10−3, 7×10−3) (1.2×10−3, 15×10−2)

Table 1. Lengths and grid points for each block in the computational domain as depicted in figure 2. All
dimensions are normalised with the nozzle diameter d.

The nozzle pressure ratios (NPR) (i.e. the ratio between the stagnation pressure measured
in the jet plenum and the ambient pressure) is 3.4. This NPR is higher than the critical
NPR (= 1.893 for dry air); hence, the nozzle is choked and the nozzle exit Mach number
is unity for all three cases. The size of the computational domain in the radial direction
is 12d. The details of the computational grid are provided in table 1. A uniform grid
is employed in the azimuthal direction, θ . In the axial direction, x, a fine grid is used
near the nozzle and near the impingement wall. In the radial direction, r, a fine grid is
used in the mixing layer region with a polynomial stretching of the grid points towards
the jet’s centre and the far field. Similar to our previous study (Karami et al. 2020b),
the maximum mesh spacing of 0.04d for r < 8.5d is used which allows the capture
of the propagation of acoustic waves with Strouhal numbers up to 5.0. This resolution
leads to over 27 × 106 grid points for the thin-lipped nozzle with reflecting surface
case and the thin-lipped nozzle with the sponge region case and over 20 × 106 grid
points for the infinite-lipped nozzle case. Davidson (2009) recommends a minimum of
eight computational grid points to represent the largest structures for a coarse LES,
while a recent study by Pelmard, Norris & Friedrich (2018) suggests that more than 16
computational grid points are required to represent the largest structures in a well-resolved
LES. Based on these recommendations, 16 computational grid points are used in the shear
line region, i.e. region 3 in figure 2.

The simulations are run for 204.8 acoustic time units (tao/d, where t is time and ao
is the speed of sound) after the transient period. The transient period to wash out the
initial conditions is approximately 50 acoustic time units. The three-dimensional flow
fields after the transient period are stored every 0.05 acoustic time units, which yields
4096 three-dimensional snapshots. It should be noted that the equations and all other
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Figure 2. Schematic of the domain of the simulation with different regions highlighted (it is noted that the
configuration is axisymmetric, hence only the x–r plan view at θ = 0 is shown).

parameters are non-dimensionalised with respect to the nozzle diameter (d), speed of
sound (ao) and viscosity at atmospheric temperature (the non-dimensionalised variables
are used throughout this paper). The sound absorption sponge is modelled as a sponge
region where an unphysical term of form σ(qref − q) (q is a primitive variable and qref
is the reference primitive variable) is added to the right-hand side of the Navier–Stokes
equations to force the flow to an atmospheric reference temperature and pressure which
reduces the reflection of acoustic waves from the reflective wall attached to the root of
the nozzle. The parameter σ is an inverse time scale representing the strength of the
sponge region (Almgren et al. 2008). It has a constant value in the sponge region and
zeros outside of the sponge region where the transition from zero to σ occurs through
a quadratic spatial function (Colonius, Lele & Moin 1997; Bodony 2006; Haghiri et al.
2018). Based on our numerical experiments and previous studies (Brès et al. 2018; Haghiri
et al. 2018; Bodony 2006; Colonius et al. 1997), a value of σ = 0.3 is used in this
study.

3. The mathematical background of SPOD

The space-only POD (Lumley 1967, 1981; Sirovich 1987a,b,c) assumes the flow variables
are separable into time and space. Based on this assumption, flow variables are separated
into spatial mode shapes, i.e. base functions that are ranked based on their energy content,
and mode coefficients, i.e. mode dynamics which may have a broad spectral characteristic.
The SPOD (Tutkun, Johansson & George 2008; Hellström & Smits 2014; Tutkun &
George 2017; Schmidt et al. 2018; Towne, Schmidt & Colonius 2018; Karami & Soria
2018; Milani et al. 2020), however, uses the Fourier transform in time to decompose the
dynamics in the frequency domain and then applies the energy ranked optimisation at each
discrete frequency to find the mode shape associated with that frequency. The Fourier
transformation guarantees that the mode shape has a well-described frequency. A brief
description of the SPOD approach is presented here for completeness, while the interested
reader can refer to a recent paper on the application of the SPOD method and its properties
by Schmidt & Colonius (2020). The kernels of both space-only POD and SPOD are an
energy norm. It is known that the jet flow is homogeneous in the azimuthal direction and
considering that the under-expanded supersonic impinging jets of this study is statistically
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stationary, fluctuations of every flow variable of q can be expressed as

q′(x, r, θ, t) = q(x, r, θ, t)− q̄(x, r),=
Nθ /2∑

−Nθ /2

qm(x, r, t) exp imθ, (3.1)

where q̄ is the temporally azimuthally averaged field, Nθ is the number of computational
grid points in the azimuthal direction and m is azimuthal mode number. Using the common
Euclidean inner product, an energy norm is defined as
∫∫

D
〈q∗

mWqm〉 dx dr

=
∫∫

D
[α1(u∗

x)m(ux)m + α2(u∗
r )m(ur)m + α3(u∗

θ )m(uθ )m + α4a∗
mam + α5p∗

mpm] dx dr,

(3.2)

where ∗ denotes the complex conjugate, (ux, ur, uθ ) are the three components of the
velocity vector, a is the local speed of sound, p is the pressure and the vector α =
[α1, α2, α3, α4, α5] determines the specific norm. Choosing α = [1, 1, 1, 2/(γ − 1), 0]
recovers the stagnation enthalpy norm used by Rowley (2002) for compressible flows and
is also used in this study as it is found to be more relevant than the turbulent kinetic
energy norm (i.e. α = [1, 1, 1, 0, 0]), which is often used in incompressible flows. In
this context, the norm that is commonly used in experimental studies can be obtain by
α = [1, 1, 0, 0, 0] which approximates the turbulent kinetic energy using two components
of the velocity vector.

Assume that the flow variables of interest, based on the definition of the energy norm,
are available for N time instants which are decomposed in the homogeneous direction (i.e.
the azimuthal direction in this study) and equally spaced in time, then the dataset can be
organised in a compact matrix form as

Qm = [q1,m, q2,m, . . . , qN,m], (3.3)

where m is the azimuthal mode number. The matrix Qm has a dimension of M × N where
M is the number of spatial points (the radial grid points times the axial grid points) times
the number of variables. The converged estimation of the cross-spectral density tensor
can be obtained by averaging the spectra over multiple realisations of the flow (Bendat
& Piersol 1966). Firstly, the dataset is partitioned into smaller blocks or segments (Nb)
with an overlap of Novlp, each of which represents an ensemble realisation of the flow.

A temporal discrete Fourier transform of each block is then calculated, Q̂
(b)
m . A Hanning

window is used to reduce the discontinuities with a hypothetical next period and spectral
leakage. A new data matrix is formed at the kth frequency by collecting all of the Fourier
realisations of the blocks Q̂(m,fk). This yields the estimated cross-spectral density tensor at
frequency fk as

Ŝ(m,fk) = Q̂(m,fk)Q̂
∗
(m,fk). (3.4)

For a given frequency, the SPOD modes are found as the eigenvectors Ψm,fk =
[ψ(1)m,fkψ

(2)
m,fk · · ·ψ(nb)

m,fk ], and the total energy as the corresponding eigenvalues Λm,fk =
diag(λ(1)m,f1λ

(2)
m,f2 · · · λ(nb)

m,fnf
) of the weighted cross-spectral density matrix Ŝ(m,fk) which is
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defined as
Ŝ(m,fk)WΨm,fk = Ψm,fkΛm,fk . (3.5)

The eigenvalues are ordered from the largest to the smallest. The eigenvector
corresponding to the largest eigenvalue is the leading or optimal mode, and the subsequent
smaller eigenvalues (i.e. lower-energy modes) are suboptimal modes at each azimuthal
mode number.

4. Results

4.1. Influence of the external geometry of the nozzle on the mean flow field
The influence of the nozzle’s external geometry has been studied experimentally
(Poldervaart & Wijnands 1974; Weightman et al. 2017), however, numerical studies in
this spectrum are scarce. Microphone measurements are commonly utilised to analyse
the acoustic near field of free and impinging supersonic jets (Semlitsch et al. 2020;
Edgington-Mitchell et al. 2014). Some of these studies show that the supersonic jet flows
are very sensitive to the experimental set-up. Therefore, first-order statistics are presented
in this section as it is found that changes in the nozzle’s external geometry modify them
significantly.

Figure 3 shows contour plots of the ensemble-averaged streamwise velocity (a–c),
radial velocity (d–f ), as well as the pressure (g–i) for the thin-lipped nozzle (a,d,g),
thin-lipped nozzle with the sponge (b,e,h) and infinite-lipped nozzle (g,h,i). Starting with
the ensemble-averaged streamwise velocity, the streamlines near the nozzle lip with a
zoomed-in view in the black rectangle marked as ‘A’ show that changes in the external
geometry of the nozzle have a significant effect on entrainment in the region near the
nozzle lip. It is noted that the sponge region alters the pressure field; hence, it alters the
acoustic feedback loop, which leads to the inevitable alteration of the mean flow field.
Compared with the thin-lipped nozzle, the Mach disk location, marked as ‘B’, moves
slightly upstream in the case of the thin-lipped nozzle with the sponge, while it moves
downstream in the configuration of the infinite-lipped nozzle.

Another physically interesting phenomenon is the formation of a recirculation zone at
the impingement region created by the large pressure drop behind the strong shock and the
condition required for its formation is still a topic of debate (Dauptain, Gicquel & Moreau
2012). The streamlines at this region are shown for all three cases in the zoomed-in view
in the black rectangle marked as ‘C’ in figure 3(a–c). The recirculation bubble present in
the case of the thin-lipped nozzle, it nearly disappears in the case of the thin-lipped nozzle
with the sponge, and reappears again in the case of the infinite-lipped nozzle. Previous
studies (Dauptain, Cuenot & Gicquel 2010; Dauptain et al. 2012) found that the formation
of a recirculation bubble depends on the NPR, nozzle-to-wall distance and impingement
plate dimension while the results of this study clearly for the first time show the process
is more complex and the external geometry of nozzle is another important parameter that
must be taken into account.

The ensemble-averaged radial velocities for the three cases are shown in figure 3(d–f )
where the alteration to the Mach disk and the triple point is easily identified. These
alterations are also clearly noticeable in the animations of the density gradient, which
are provided as supplementary material available at https://doi.org/10.1017/jfm.2021.822.
The recirculation zone where the radial velocity is negative is also clearly observable in
these contour plots. One clear difference between the three cases of this study is that flow
separation in the wall jet region which is present for the thin-lipped nozzle and faded as
the thin-lipped nozzle is modified by adding the sponge (serving as a sound absorber) and
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Figure 3. Contour plots of ensemble-averaged streamwise velocity (a–c), radial velocity (d–f ) and pressure
(g–i) for the thin-lipped nozzle (a,d,g), thin-lipped nozzle with the sponge (b,e,h) and infinite-lipped nozzle
(c, f,i).

the solid wall. This flow separation is clear in the wall jet region in figure 3(d–f ) where
the ensemble-averaged streamwise velocity is negative and the radial velocity near to the
impingement wall is low. Ensemble-averaged pressure fields of the three cases of this study
are presented in figure 3(g–i) where the mean pressure increases at the impingement wall
as the nozzle lip is changed to the infinite-lipped nozzle. The stand-off shock is found to
be stronger in the case of a thin-lipped nozzle with the sponge.

4.2. Coherent structures obtained from SPOD
The kernel of SPOD is a fast Fourier transform (known as FFT) of multiple flow
realisations. The simulations have 4096 three-dimensional snapshots that are equally
spaced in time, with a time step of 0.05 acoustic time units. A window size of 1024
snapshots with 75 % overlap produces 13 blocks that are used to obtain the SPOD
modes. The SPOD was also evaluated using a window size of 512 snapshots with 75 %
overlap, as well as other combinations of the window size and overlap, to investigate the
sensitivity of the results to window size and overlap. These alternate combinations did not

929 A20-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

82
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.822


S. Karami and J. Soria

significantly change the results: changes in the leading eigenvalues did not exceed 0.1 % in
both the optimal and the suboptimal frequencies.

Figure 4 presents the first three SPOD modes (i = 1, 2 and 3) of the first three azimuthal
mode numbers of m = 0, 1 and 2 for the thin-lipped nozzle (a), the thin-lipped nozzle with
the sponge (b) and infinite-lipped nozzle (c). All three cases show that the axisymmetric
mode, m = 0, is dominant, with multiple peaks observed in the spectra. There is a low
Strouhal number peak in all three cases (marked with a red circle and arrow) that is
associated with the bouncing of the acoustic waves between the impingement wall and
the wall attached to the nozzle. As shown later, these low-frequency modes have high
amplitude spatial components in the wall jet region with a slow phase velocity. The
low-frequency peaks are followed by three peaks and their harmonics in all three cases,
which are shown by black filled, black open and black cyan-filled circles. The optimal
frequency, also called the ‘leading mode’, is marked with a black open circle and a
blue arrow. The optimal frequency is an order of magnitude stronger in both cases that
used the thin-lipped nozzle. In contrast, the optimal and suboptimal frequencies have
comparable amplitudes in the case of the infinite-lipped nozzle, which is more apparent
in the harmonics of this case. The distribution of energy in the frequency domain of the
case with an infinite-lipped nozzle leads to an early conclusion that the infinite-lipped
nozzle in this set-up suppresses the presence of a strong and dominant peak in spectra,
which is commonly interpreted as a screech. In all three cases of this study, a large gap is
observed between the first and second SPOD eigenvalues, indicating a low-rank behaviour.
The low-rank behaviour is also reported in subsonic free jet flows (Towne et al. 2017).
However, as shown in figure 4, this low-rank behaviour is comprehensible at optimal and
suboptimal frequencies in the under-expanded supersonic jet configuration in this study,
as the gap is an order of magnitude larger.

The spatial distributions of the first SPOD modes of the first azimuthal wavenumber of
the streamwise velocity (ψm=0

i=0 : ux) and the local speed of sound (ψm=0
i=0 : a) at optimal

and suboptimal frequencies are presented in figure 5 for the thin-lipped nozzle case. As
mentioned, the peaks at low frequencies have high amplitude wavepackets in the wall
jet region. In the thin-lipped nozzle configuration, there are two low Strouhal numbers
of Stj = 0.18 and 0.36 that have such a spatial pattern. The lower Strouhal number
(i.e. Stj = 0.18) has the strongest wavepackets while the higher Strouhal number (i.e.
Stj = 0.36) appears as the harmonic of the first Strouhal number with approximately the
same amplitude but a different wavelength (see figure 5a–d). The velocity component
(ψ0

0 : ux) is stronger than the local speed of sound component (ψ0
0 : a), indicating that

these two modes are hydrodynamically driven coherent structures in the wall jet, and
oscillations at these low frequencies are dictated by the bouncing of acoustic waves
between the impingement wall and the wall attached to the root of the nozzle. The spatial
pattern of the SPOD mode at Stj = 0.58 is more intense in the shear layer in both velocity
and local speed of sound components, with a wavepacket emanating from an acoustic
source located near the impingement wall (approximately at r = 1.8) alternating with a
weakly positive/negative sign at an angle of 45◦. The spatial pattern of the SPOD mode
at Stj = 0.72, which is the optimal mode of this case, develops a continuous wavepacket
in the shear layer of the jet and is convected in the wall jet as shown in both the velocity
and local speed of sound components. The spatial wavelength of this wavepacket before
fading away in the wall jet does not vary in the spatial domain, indicating a constant
phase velocity. There are also wavepackets in the near field and outside the jet’s periphery,
that are acoustic in nature, i.e. the vorticity is negligible outside the shear layer. These
wavepackets appear as a cellular pattern because of the reflection of the acoustic waves
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Figure 4. The SPOD eigenvalue spectra of the first three azimuthal mode numbers normalised by cumulative
energy of these azimuthal modes for the thin-lipped nozzle (a), thin-lipped nozzle with the sponge (b) and
infinite-lipped nozzle (c).

from the wall attached to the nozzle’s root. The spatial contour map of the SPOD mode at
Stj = 0.88, presented in figures 5(i) and 5(j), has a similar mode shape to that at Stj = 0.72,
with a different wavelength.

The results for the thin-lipped nozzle with the sponge, presented in figure 6, show
the spatial pattern of the first SPOD modes of the first azimuthal wavenumber of the
streamwise velocity (ψ0

0 : ux) and the local speed of sound (ψ0
0 : a) at the optimal and

suboptimal frequencies. At the lowest suboptimal Strouhal number (Stj = 0.15 which is
approximately 15 % lower than the lowest suboptimal Strouhal number of the thin-lipped
nozzle case), an intense wavepacket appears in the wall jet region, which is more evident
in the velocity component than the local speed of sound component. However, its strength
is weaker than the coherent structures in the shear layer of the optimal mode presented in
figure 6(e). It should be noted that the behaviour is different in the thin-lipped nozzle case
and the strength of the low-frequency coherent structures in the wall jet is comparable to
the coherent structures in the shear layer of the optimal mode (see figures 5a and 5g). The
spatial mode shape of the suboptimal mode (i.e. at Stj = 0.63 which is approximately 9 %
higher than the suboptimal mode of the thin-lipped nozzle case) is presented in figures
6(c) and 6(d). The spatial distribution of this mode shows that a weak wavepacket is
travelling in the shear layer and is diverted into the wall jet and fades away in the wall
jet region. Similar to the thin-lipped nozzle case, the mode shape of the optimal mode
(i.e. at Stj = 0.79, which is approximately 9.5 % higher than that of the thin-lipped nozzle
case) shows that a coherent, K–H-like wavepacket develops in the shear layer and travels in
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Figure 5. Four dominant SPOD modes of the streamwise velocity (a,c,e,g) and the local speed of sound
(b,d, f,h) for the first azimuthal wavenumber (m = 0) for the thin-lipped nozzle.

the wall jet region. One important difference compared with the thin-lipped nozzle case is
the significantly weaker cellular pattern of the near field acoustic field, which is due to the
damping of acoustic waves by the sponge region in this configuration. The high Strouhal
number suboptimal mode (Stj = 0.94) has a similar mode shape to the optimal mode but
with a different and shorter wavelength, as expected.

The results show that reducing the strength of the acoustic wave by using the sponge
region attached to the thin-lipped nozzle, which serves as an imperfect sound absorber,
has a significant effect on the SPOD modes, with a shift of approximately 10 % in the
optimal and suboptimal Strouhal numbers. However, the sponge region used in this study
could not eliminate the peaks in the spectra as achieved by Weightman et al. (2019) using
foam. It is worth noting that obtaining such a perfect sound absorbing surface numerically
is a challenging task and requires multiple high-fidelity simulations.

After determining the influence of the imperfect sound absorber (i.e. the sponge region
attached to the thin-lipped nozzle), the next step is to investigate how the modes change
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Figure 6. Four dominant SPOD modes of the streamwise velocity (a,c,e,g) and the local speed of sound
(b,d, f,h) for the first azimuthal wavenumber (m = 0) for the thin-lipped nozzle with the sponge.

when the acoustic absorber (the sponge) is replaced with a perfectly reflecting surface, for
example, a wall attached to the thin-lipped nozzle (the ‘infinite-lipped nozzle’). Figure 7
shows the first SPOD modes of the first azimuthal wavenumber of the streamwise velocity
(ψ0

0 : ux) and the local speed of sound (ψ0
0 : a) at optimal and suboptimal frequencies. At

the low Strouhal number of Stj = 0.24, approximately 30 % higher than the thin-lipped
nozzle, the wavepackets are intense at the Mach disk location, stand-off shock and oblique
shock. Like the other two cases, a coherent wavepacket appears in the wall jet region at
this low Strouhal number. The optimal mode (i.e. Stj = 0.74) and suboptimal modes (i.e.
Stj = 0.55 and 0.92) show a similar trend of the development of the wavepackets in the
shear layer, diversion of these wavepackets into the wall jet region and weakening as they
travel in the wall jet region. The near field local speed of sound components of these modes
show cellular patterns with wavelengths that shorten as the Strouhal number increases.
In light of these observations, the perfectly reflecting surface seems to shift the optimal
and suboptimal Strouhal numbers and suppress the optimal mode. This observation is
consistent with the experimental microphone measurement of Weightman et al. (2019),
where they studied the same NPR as this study but with a different nozzle-to-wall distance.
They found that the dominant Strouhal number of the infinite-lipped nozzle case shifted
and its amplitude weakened compared with the finite-lipped nozzle cases.
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Figure 7. Four dominant SPOD mode of the streamwise velocity (a,c,e,g) and the local speed of sound
(b,d, f,h) for the first azimuthal wavenumber (m = 0) for the infinite-lipped nozzle.

4.3. Upstream-propagating and downstream-propagating waves of the dominant
coherent features

The spectra presented in figure 4 and mode shapes presented in figures 5, 6 and 7 show
that changing the external geometry of the nozzle while keeping all other non-dimensional
parameters identical significantly alters both the spectra and the mode shapes (i.e. the
optimal and suboptimal wavepackets). These findings are consistent with the previous
experimental studies of Weightman et al. (2019). However, in light of the time-resolved,
three-dimensional fields of all primitive variables that contribute to the energy norm
available from the LES, this phenomenon was analysed comprehensively and with a great
level of detail for the first time in under-expanded supersonic impinging jets.

A little addressed yet physically relevant phenomenon in under-expanded supersonic
flows is upstream-travelling waves (Edgington-Mitchell et al. 2018, 2021) and their
contributions to closing the feedback loop (Powell 1953). Edgington-Mitchell et al. (2018)
applied POD to two-component–two-dimensional (2C–2D) velocity measurements of a
moderately under-expanded supersonic free jet. They used the first pair of POD modes
and the screech frequency obtained using a microphone measurement to construct the
time evolution of the dominant wavepacket, and a spatial decomposition of these modes
to separate the upstream and downstream waves at the screech frequency. This approach
may not be valid in the configuration of this study, as the spectra obtained using the SPOD
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Figure 8. Streamwise and radial velocities and local speed of sound wavenumber spectra at the dominant
frequency for three cases: thin-lipped nozzle (a,d,g), thin-lipped nozzle with the sponge (b,e,h) and
infinite-lipped nozzle (c, f,i). The dotted green and yellow vertical lines denote the speed of sound in the
upstream and downstream directions, respectively. Negative wavenumbers correspond to waves travelling in
the upstream direction and positive wavenumbers correspond to waves travelling downstream.

analysis of the energy norm show multiple peaks. In addition, POD ranks modes based on
their energy content, not their frequency characteristics. Therefore, SPOD is used in this
study to investigate the upstream-travelling and the downstream-travelling wavepackets
with more confidence, since each SPOD mode has a well-defined frequency while also
being energy ranked. It is worth noting that experimental studies are limited to 2C–2D
velocity fields, while the kernel of POD is the kinetic energy norm that requires three
components of the velocity fields in incompressible flows and the total energy norm that
requires three components of the velocity fields, as well as pressure and temperature fields
in compressible flows.

Figure 8 shows the wavenumber spectra of the streamwise and radial-velocity
components, as well as the local speed of sound at the dominant frequency for three cases
of the thin-lipped nozzle (a,d,g), the thin-lipped nozzle with the sponge region (b,e,h)
and the infinite-lipped nozzle (c, f,i). The dotted green and yellow vertical lines denote
the speed of sound in the upstream and downstream directions, respectively. It should be
noted that negative wavenumbers correspond to upstream-travelling waves, while positive
wavenumbers correspond to downstream travelling waves. The spectra show that the
wavepackets with peak amplitudes at the shear layer of the jets travel downstream with
a phase velocity of approximately 0.63Uj and this behaviour is similar in all three cases
independent of the external geometry of the nozzle. This phase speed, which is associated
with the convection velocity of the coherent structures in supersonic impinging jets, is in
good agreement with the previous studies listed in table 2.

There are also components with negative phase velocities in three regions: inside;
the shear layer (i.e. r/d < 0.5); and the near field of the jets for all three cases. The
upstream-travelling wavepackets are different for the different external geometry of
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Convection velocity NPR Nozzle-to-wall distance Reference

0.61Uj 3.67 5d Bogey & Gojon (2017)
0.6Uj 2.7 various Thurow, Samimy & Lempert (2002)
0.55Uj 2.5 5d Krothapalli et al. (1999a,b)
0.63Uj 3.4 2d and 5d Karami et al. (2020a)

Table 2. Convection velocity of the coherent structures.

the nozzle. The upstream wavepackets inside the jet and in the shear layer of the jets are
weakened when the sponge is added to the thin-lipped nozzle, whereas they are amplified
in the case of the infinite-lipped nozzle. The upstream acoustic waves in the near field of
the jets are also affected by the external geometry of the nozzle.

The amplitudes of upstream-travelling and downstream-travelling waves are obtained
by separating the wavepackets into positive and negative phase velocities and performing
an inverse fast Fourier transform. Figure 9 shows the amplitude, which resembles
the envelope of wavepackets, of the downstream-travelling and upstream-travelling
components of the coherent local speed of sound fluctuations determined from
the optimal SPOD mode, with all values normalised by the respective maximum
downstream-travelling component. In all three cases, the downstream travelling waves
associated with the K–H instabilities are the strongest wavepackets. There are also strong
downstream travelling wavepackets after the Mach disk that are significantly weaker than
the K–H wavepackets in the thin-lipped nozzle with the sponge region case, as shown
in figure 9(a–c). Figure 9(d–f ) shows the contour maps of the local speed of sound
amplitudes of the upstream-travelling wavepackets. The influence of the external geometry
of the nozzle is clearly noticeable in these contour maps; the amplitudes are significantly
different among all three cases. These upstream-travelling wavepackets can be classified
as the waves inside the jet core, in the shear layer (i.e. the oblique shock–shear layer
interaction) and outside of the jet. For the cases with the thin-lipped and infinite-lipped
nozzles, the amplitudes of the upstream-travelling wavepackets is strong inside the jet.
Conversely, these upstream-travelling wavepackets are weak in the thin-lipped nozzle with
the sponge region. These waves cannot reach the internal region of the nozzle since the
barrel shock, shown in figure 9 with a solid-white line, at the nozzle exit acts as a protective
shield. However, they can approach the nozzle lip by travelling obliquely, with one side of
the wavefront crawling on the reflected shock and the other side of the wavefront guided
by the shear layer. Hence, this class of wave also contributes to closing the feedback loop.
The upstream-travelling waves formed at the oblique shock–shear layer interaction are
much weaker than those formed in the jet’s core in all three cases. The upstream-travelling
waves outside the jets are acoustic wavepackets as the vorticity is negligible in this region
of the jets. They are formed near the impingement wall and their characteristics, such as
the amplitude and orientation, are influenced by the external geometry of the nozzle. While
previous experimental and numerical studies of impinging jets (Poldervaart & Wijnands
1974; Gojon, Bogey & Marsden 2015, 2016; Gojon & Bogey 2017; Weightman et al. 2017;
Edgington-Mitchell 2019) reported the formation of acoustic waves at the impingement
region, to the best of the authors’ knowledge, this study is the first that clearly shows the
influence of the nozzle’s external geometry on their source location.

The real components of the local speed of sound at the leading SPOD modes – Stj =
0.72 for the thin-lipped nozzle case, Stj = 0.79 for the thin-lipped nozzle with sponge
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Figure 9. Amplitude of the local speed of sound fluctuations decomposed into the downstream-travelling (a–c)
and upstream-travelling (d–f ) components determined from the leading SPOD mode. All values are normalised
with respect to the maximum downstream-travelling component. The dashed white lines are the isocontours of
the non-dimensionalised mean velocity magnitude of 0.2, and the solid-white line is the intercepting, or barrel,
shock.

case and Stj = 0.74 for the infinite-lipped nozzle case – are decomposed into components
with positive and negative phase velocities to further investigate the characteristics
of upstream-travelling and downstream-travelling waves. The spatial distribution of
the upstream-travelling and downstream-travelling wavepackets at these SPOD modes
are presented in figure 10 for the thin-lipped nozzle (a,d), the thin-lipped nozzle
with the sponge (b,e) and the infinite-lipped nozzle (c, f ). The downstream-travelling
waves are easily identified in these figures, especially the K–H instabilities. The
downstream-travelling wavepackets in the shear layer have their tails at the Mach disk and
their heads at the shear layer. This connection indicates that the wavepackets at the shear
layer and the Mach disk are strongly connected. Figure 10(b) shows that the amplitudes
of the wavepackets at and after the Mach disk have decreased significantly as the sponge
is integrated into the thin-lipped nozzle. Conversely, figure 10(c) shows an increase in
the amplitudes of the downstream wavepackets at and after the Mach disk location in the
infinite-lipped nozzle case.

The analysis presented in this section reveals that the upstream-travelling wavepackets
exist in three regions: inside; shear layer; and outside the jets at the optimal modes. The
approximate average location of the barrel shock is shown with a solid-white curve in
figure 10(d–f ) and appears as a shield at the nozzle exit. It prevents the penetration of
upstream-travelling waves into the internal region of the nozzle. These contour maps also
show that the spatial pattern of the upstream wavepackets outside the jets are influenced
by the external geometry of the nozzle. These observation are further considered in § 4.5
using a linear impulse response analysis.

4.4. Upstream-travelling waves at discrete frequencies and their nature in the receptivity
process at the nozzle lip

The decomposition analysis presented in § 4.3 suggests that further exploration of
the upstream-travelling wavepackets of the optimal modes is necessary to identify
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Figure 10. The local speed of sound at the leading SPOD mode decomposed into the components with positive
(a–c) and negative (d–f ) phase velocity for the thin-lipped nozzle (a,d), thin-lipped nozzle with the sponge (b,e)
and infinite-lipped nozzle (c, f ). The dashed lines are the isocontours of the non-dimensionalised mean velocity
magnitude of 0.2 and the solid line is the intercepting, or barrel, shock.

their contribution to the receptivity process in this configuration. Different paths for
the upstream-travelling and downstream-travelling wavepackets that contribute to the
feedback loop were proposed by Weightman et al. (2019) based on the POD analysis
of 2C–2D velocity measurements. However, in this study, we analyse the paths of
the upstream-travelling wavepackets based on a more rigorous methodology using the
SPOD method. As highlighted, the SPOD approach leads to spatial modes that each
have a well-defined frequency. The decomposition of these spatial modes into the
upstream-travelling and downstream-travelling waves suggests new upstream-travelling
paths, presented schematically in figure 11.

Figure 9(d–f ) demonstrate that the dominant acoustic waves with the potential to reach
the nozzle lip and close the feedback loop belong to three types of wavepackets located in
the jet’s core, the jet’s shear layer and outside the periphery of the jet. Therefore, assuming
that the location of the acoustic source corresponding to the mode of interest is given as
indicated by the red circles in figure 11, an upstream-travelling acoustic wave has three
possible paths to reach the nozzle lip without being reflected by a reflective surface. For
the upstream-propagating waves with the source location outside the jet, these paths are:
(I) a direct path from the source to the nozzle lip; (II) an upstream free acoustic wave
that travels in the shear layer; and (III) an upstream free acoustic wave that travels in the
jet core. The latter appears as an obliquely travelling wave with one side of the wavefront
crawling on the reflected shock, while the other side of the wavefront is guided by the shear
layer of the jet. For the upstream-propagating waves with the source located at the jet’s
shear layer, the possible paths are: (II) a direct path from the source created at the shear
layer to the nozzle lip; and (III) an upstream obliquely travelling wave that crawls on the
reflected shock. For the upstream-propagating waves with the source located at the jet’s
core, these paths are: (II) an upstream acoustic wave that travels in the shear layer; and (III)
an upstream acoustic wave crawling on the reflected shock that is formed at the interaction
of the reflected shock and the shear layer. The other plausible path is a direct reflection
from a reflective surface, path (IV) in figure 11. The proposed upstream-travelling paths in
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Figure 11. Proposed paths of the travelling aeroacoustic waves that contribute to the feedback loop as the
origin of the upstream acoustic wavepackets changes. The barrel and reflected shocks are shown schematically
with solid blue lines. The propagation direction of the wavefront that is crawling on the reflected shock on one
side and is guided by the shear layer on the other side is marked with a solid cyan arrow.

this study can be considered as an extension to the proposed aeroacoustic feedback paths
of Weightman et al. (2019) by expanding their acoustic path 1 into three separate paths.

The radial profiles of the amplitude of the upstream-travelling and downstream-travelling
waves at x/d = 0.25 are examined to study the contribution of wavepackets at the optimal
and suboptimal frequencies in the receptivity process. This axial location, as demonstrated
schematically in figure 11 with a black horizontal line, allows the amplitude of the
upstream-travelling waves associated with paths (I), (II) and (III) to be distinguished. It
is worth noting that farther upstream, near the nozzle, the two paths of (I) and (II) merge
due to the expansion of the shear layer in the configuration of this study.

Figure 12 shows the radial profiles of the upstream-travelling waves at the optimal
and suboptimal frequencies at the axial location of x/d = 0.25 for the three cases under
investigation. The amplitudes in these profiles are normalised with respect to the maximum
amplitude of the downstream travelling wave for each case.

Starting with the thin-lipped nozzle case, the amplitude of the upstream-travelling waves
in the shear layer and periphery of the jet (i.e. 0.3 < r/d < 0.7) are the largest at the
optimal mode (Stj = 0.72). This indicates that the dominant upstream-travelling wave in
this configuration at the optimal mode travels along paths (I) and (II). The near field
upstream-travelling wave (i.e. in the region of r/d > 0.75) is clearly noticeable at this
frequency, which indicates the presence of waves that travel upstream from an acoustic
source location with a pattern, as shown by the blue dashed curves in figure 11. However,
the suboptimal mode (i.e. Stj = 0.58) shows large amplitudes of upstream-travelling waves
both inside (in the region of 0.2 < r/d < 0.5) and outside (in the region of 0.6 < r/d <
0.75) the jet. Hence, at suboptimal mode Stj = 0.58, the upstream-travelling waves travel
on paths (I) and (III).

Figure 12(b) shows the upstream-travelling waves at the optimal and suboptimal
frequencies for the thin-lipped nozzle with the sponge region. The optimal mode (Stj =
0.79) has the largest amplitude of the upstream-travelling waves in the shear layer and
the periphery of the jet, with peaks at r/d = 0.5 and 0.58; hence, the upstream-travelling
waves at the optimal mode travel on paths (I) and (II) – similar to the thin-lipped nozzle.
The near field upstream-travelling wave (in the region of r/d > 0.75) is weaker than that of
the thin-lipped nozzle, indicating that the sponge weakens the upstream-travelling waves
in this case. However, the suboptimal, low-frequency mode (Stj = 0.15) shows a large
amplitude of an upstream-travelling wave outside the jet (in the region of 0.6 < r/d <
0.75); hence, the upstream-travelling wave travels on path (I) at this frequency.
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Figure 12. Radial distribution of the upstream-travelling waves (the local speed of sound component) at
optimal and suboptimal frequencies and at x/d = 0.25 for the thin-lipped nozzle (a), the thin-lipped nozzle
with the sponge (b) and the infinite-lipped nozzle (c).

For the infinite-lipped nozzle case, the upstream-travelling waves of the optimal
and suboptimal frequencies contribute nearly equally to the process – the amplitudes
are approximately equal at optimal and suboptimal frequencies but they travel on
different paths. The low-frequency mode (Stj = 0.24) has a maximum amplitude of
the upstream-travelling wave in the shear layer, while the high-frequency mode (Stj =
0.92) has a maximum amplitude of the upstream-travelling wave outside the jet (in the
region of 0.6 < r/d < 0.7). However, the two other frequencies have large amplitudes of
upstream-travelling waves inside the jet, at the shear layer and at the periphery of the jet
(in the region of 0.3 < r/d < 0.7). Therefore, the low-frequency wave (Stj = 0.24) travels
on path (II), the high-frequency wave (Stj = 0.92) travels on path (III) and the two other
frequencies travel on paths (I), (II) and (III). The near field upstream-travelling wave (in the
region of r/d > 0.75) is weaker than that of the upstream-travelling wave in the two other
cases, which is probably because the waves are reflected by the infinite-lipped nozzle.

The last acoustic path – path (V) shown with a green arrow in figure 11 – is indeed
a downstream-travelling wave. This downstream-travelling wave is the consequence of
the reflective surface. The wavefronts of this downstream-travelling wave are shown
schematically as light-green curves in figure 11. Figure 13 shows the radial profiles of
the amplitudes of the local speed of sound that travel downstream at at x/d = 0.25 (i.e. the
same axial location as in figure 12).

Figure 13(a) shows the radial profiles of the downstream-travelling waves at the axial
location of x/d = 0.25 and for the optimal and suboptimal frequencies of the thin-lipped
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Figure 13. Radial distribution of the downstream-travelling waves (the local speed of sound component) at
optimal and suboptimal frequencies at x/d = 0.25 for the thin-lipped nozzle (a), thin-lipped nozzle with the
sponge (b) and infinite-lipped nozzle (c).

nozzle case, with all amplitudes normalised by the respective maximum amplitude of
the downstream-travelling wave. The amplitude of the downstream-travelling waves at
the optimal SPOD mode is maximal at the shear layer as expected – that is, the K–H
instabilities are dominant in the shear layer. The near field wave in the r/d > 1.0 region is
also strong, indicating strong reflective waves by the wall attached to the root of the nozzle
in this configuration. At the suboptimal SPOD modes, the downstream-travelling waves
are negligible compared with the optimal SPOD mode.

Figure 13(b) shows the radial profiles of the downstream travelling waves at the optimal
and suboptimal SPOD modes in the same axial location as in figure 13(a) for the
thin-lipped nozzle with the sponge region case. The optimal SPOD mode has a maximum
amplitude in the shear-layer region, while the SPOD mode with a low Strouhal number
(Stj = 0.15) has an amplitude peak in the periphery of the jet. The near field wave in the
r/d > 1.0 region is weak because the sponge region weakens the reflection from the wall
attached to the root of the nozzle.

The behaviour is completely different in the infinite-lipped nozzle case (figure 13c).
Optimal and suboptimal SPOD modes are all active in both the shear layer and the
periphery of the jet. The near field wave in the r/d > 1.0 region is active at all SPOD
modes, with an amplitude weaker than the optimal mode of the thin-lipped nozzle case and
a similar amplitude to the optimal mode of the thin-lipped nozzle with the sponge case. It
appears that the sponge suppresses the near field wavepackets, and the wavepacket at the
optimal mode is squeezed into the shear-layer region, while the infinite-lipped nozzle leads
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to a more complex behaviour by distributing the energy approximately equally between the
optimal and suboptimal SPOD modes.

4.5. Impulse response analysis and the travelling paths of wavepackets
Impulse response analysis is performed to further clarify the proposed paths of the
wavepackets contributing to the feedback loop mechanism as presented in § 4.4 and
summarised in figure 11.

A brief summary of the mathematical framework of the analysis is presented
here with the interested reader referred to Karami et al. (2018b, 2020b) for a more
detailed exposition. The linearised compressible Navier–Stokes equations (LNSE) are
derived by superimposing small-amplitude disturbances onto a mean flow field. The
three-dimensional LNSE are given in the concise matrix form as

∂q′

∂t
= Aq′, (4.1)

where q′ is the perturbations of primitive variables (ρ′, u′
x, u′

r, u′
θ , e′) and A is the linear

operator advancing the small perturbation in time.
An acoustic impulse described by

p′(t = 0) = B exp
(

−(x − xo)
2

2σ 2
x

− (r − ro)
2

2σ 2
r

)
cos(2πmθ) (4.2)

is used as a localised initial condition of the acoustic irrotational pressure fluctuations,
where ‘B’ is the amplitude of the impulse; xo and ro are the streamwise and radial
location of the centre of the impulse, respectively; σx and σr are the radii of the impulse
in the streamwise and radial directions, respectively, with σx and σr � λ the acoustic
wavelength; and m is the azimuthal mode number. In this study, ’B’ is 0.01, σx = σr = 0.05
and m = 0. The centre of the impulse is located at a radius of Rp from the nozzle lip and an
angle of θp, where θp is the angle from the jet shear line. This corresponds to the location
of the impulse in the axial and the radial directions of xo = Rp sin(θp) and ro = Rp cos(θp).
Three angular positions of −20 (centreline of the jet), 0 (shear layer) and 45 (near field) are
considered to investigate the scenarios presented in figure 11. Four cases are simulated. In
the first three cases, the impulse radial location (Rp) is fixed at 1.2 and the angular location
changes. In the last case, the angular location is −20, but the radial location is reduced to
0.8. This last case is simulated to explore path (III) in figure 11.

The objective of this analysis is to clarify the proposed paths of the travelling waves that
contribute to the receptivity process as schematically presented in figure 11. Therefore, the
analysis in this demonstration is limited to the thin-lipped nozzle case. Using the mean
flow fields obtained from the ensemble average of the LES results, the three-dimensional
LNSE are solved with the same LES resolution in a smaller domain in the radial direction
(i.e. 4.9 in the radial direction). A sixth-order central finite difference method and a
fourth-order, five-step Runge–Kutta are used for the spatial discretisation and temporal
integration, respectively (Karami et al. 2020b).

The time evolution of the perturbations of the total energy for the cases with the impulse
located at θp = −20◦ with Rp = 1.2 (centreline), θp = 0◦ with Rp = 1.2 (hear layer), θp =
−45◦ with Rp = 1.2 (near field) and θp = −20◦ with Rp = 0.8 are presented from left
to right in figure 14. The white isolines mark the local ensemble-averaged streamwise
velocity equal to the speed of sound. The sequential two-dimensional snapshots (x–r plane
at azimuthal location of θ = 0) are presented for the instants of t0 to t7 with the time
difference of 0.5 acoustic time units between the snapshots.
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Figure 14. Instantaneous contours of the total energy fluctuation fields of the pressure impulse simulations for
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For cases C1,C2 and C4, the impulse is located in or near the supersonic region; hence,
the travelling wave cannot travel upstream in the streamwise direction, as can be observed
in these snapshots. However, they eventually go around this obstacle (reflected shock) and
travel upstream obliquely, as can be observed in instances t1 to t4 for C1, C2 and C4.
In the time series presented in figure 14 and the animations provided as supplementary
materials, this group of wavepackets travels inside the jet. These wavepackets crawl on the
reflected shock on one side and are guided by the shear layer on the other side. They reach
the barrel shock and eventually disappear. They cannot penetrate the supersonic region,
as the flow velocity normal to the wavefront is larger than the speed of sound; however,
the wavefront guided by the shear layer can reach the nozzle lip from inside the jet. This
path of the travelling wave is path (III) in the proposed paths of the upstream-travelling
waves in figure 11. The same spatial distributions of wavepackets were observed in the
speed of sound component of the optimal upstream-travelling waves in LES results in
figure 10(d–f ).

The near field acoustic waves travelling in a direct path towards the nozzle lip (i.e.
the path (I) in figure 11) are easy to retrieve from time instances of t1 to t4 for the case
C3, as shown with an orange arrow in figure 14. At instance t3 of case C3, it is also
clearly observable that paths (I) and (II) merge as the wavefront approaches the nozzle
lip.

Paths (II) and (IV) are clearly noticeable in the time history presented in figure 14 for
all four cases. wavepackets travel upstream on the shear layer on path (II), and near field
wavepackets reflected by the plate attached to the root of the nozzle travel downstream on
path (IV).

5. Discussion and conclusion

The role of the nozzle’s external geometry on the upstream-travelling wavepackets in
the configuration of under-expanded supersonic impinging jets is studied for three nozzle
configurations using temporally resolved LES.

The ensemble-averaged analysis shows that the changes in the nozzle’s external
geometry significantly modify the first-order statistics. It also shows that the recirculation
zone in the impingement region presents in the thin-lipped and infinite-lipped nozzle cases,
while it nearly disappears in the thin-lipped nozzle with the sponge case.

Spectral proper orthogonal decomposition, as a rigorous method compared with
space-only POD, is used to obtain the spatial modes that each has a single frequency
characteristic. Eigenvalue spectra of the first three azimuthal mode numbers reveal
multiple peaks at discrete frequencies at the axisymmetric mode (m = 0) for the three
cases in this study. It is also observed from the eigenvalue spectra that the optimal modes
of the thin-lipped nozzle and the thin-lipped nozzle with the sponge are an order of
magnitude stronger than the suboptimal modes while the optimal and suboptimal modes
of the infinite-lipped nozzle have comparable amplitudes. Finally, it is observed that the
Strouhal number of the optimal SPOD modes undergo a minor shift as the nozzle’s
external geometry is modified. The spatial distributions of the low-frequency modes of
all three cases show strong wavepackets in the wall jet region.

The spatial evolution of the leading SPOD modes at the optimal and suboptimal
frequencies are isolated into the upstream-travelling (negative phase velocity) and
downstream-travelling (positive phase velocity) wavepackets by bandpass filtering. The
amplitude of the downstream wavepackets (indicating the wavepacket envelope) that
resemble K–H instabilities are dominant in the shear layer. Downstream-travelling

929 A20-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

82
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.822


Influence of nozzle external geometry

wavepackets also appear after the Mach disk at optimal SPOD modes. The
upstream-travelling wavepackets are active in the three regions of the inside, shear layer
and near field of the jets. The amplitudes of the upstream-travelling waves are weakened
by the sponge being added to the thin-lipped nozzle. Conversely, an infinite-lipped nozzle
results in complex behaviour with strong upstream-travelling waves inside the jet. In all
three configurations of this study, due to the NPR, the barrel shock at the nozzle exit acts
as a shield preventing upstream-travelling waves from reaching the internal region of the
nozzle.

There are numerous paths that acoustic waves can take to reach the nozzle lip and initiate
shear-layer instabilities. Based on the spatial distribution of the SPOD modes and the
instantaneous density-gradient fields, several paths of the travelling aeroacoustic waves
that contribute to the feedback loop are proposed. The upstream-travelling waves from the
acoustic source can travel via a direct path to the lip, the shear layer and inside the jet. The
upstream-travelling waves inside the jet travel obliquely with one side of the wavefront
crawling on the reflected shock and the other side guided by the shear layer. This type of
wavepacket travels towards the barrel shock but fails to penetrate into the internal region
of the nozzle, as the local velocity normal to the propagation direction is higher than
the speed of sound. Downstream-travelling waves reflected by reflective surfaces, i.e. the
perfectly reflecting surface attached to the root of the nozzle in the thin-lipped nozzle
case, the imperfect acoustic absorption surface that cannot suppress all acoustic waves
in the thin-lipped nozzle with the sponge case and the infinite-lipped nozzle case, also
contribute to closing the feedback loop.

The isolated upstream-travelling and downstream-travelling waves at the optimal and
suboptimal SPOD modes are used to evaluate the proposed paths. The results show that
the optimal SPOD mode has the highest amplitude of upstream-travelling waves in the
shear layer for the thin-lipped nozzle and thin-lipped nozzle with the sponge cases. In the
thin-lipped nozzle case, the suboptimal SPOD mode with a Strouhal number of 0.58 has
high-amplitude upstream-travelling waves inside the jet and also outside the periphery
of the jet. In contrast, the suboptimal SPOD mode (Strouhal number of 0.15) of the
thin-lipped nozzle with the sponge case has a high-amplitude upstream-travelling wave
outside the jet’s shear layer. In contrast, the results of the infinite-lipped nozzle case show
that all SPOD modes have high-amplitude upstream-travelling waves that are active in
all three regions: inside the jet; in the shear layer; and outside the jet. A complementary
impulse response analysis was also performed that clarifies the proposed acoustic paths.

The present study shows that acoustic waves that contribute to the receptivity process
have different frequencies and select different paths to reach the nozzle in ways that are
sensitive to the external geometry of the nozzle. The findings that upstream-travelling
waves at discrete frequencies have high amplitudes at different regions of the jets and
depend on both the frequency and external geometry of the nozzle is significant in the
understanding of the feedback loop phenomenon.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.822.
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SEMLITSCH, B., MALLA, B., GUTMARK, E.J. & MIHĂESCU, M. 2020 The generation mechanism of higher

screech tone harmonics in supersonic jets. J. Fluid Mech. 893, A9.
SIEBER, M., PASCHEREIT, C.O. & OBERLEITHNER, K. 2016 Spectral proper orthogonal decomposition.

J. Fluid Mech. 792, 798–828.
SIKRORIA, T., SORIA, J., KARAMI, S., SANDBERG, R.D. & OOI, A. 2020 Measurement and analysis of the

shear layer instabilities in supersonic impinging jets. In AIAA Aviation 2020 Forum, p. 3070. AIAA.
SIROVICH, L. 1987a Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl.

Maths 45 (3), 561–571.
SIROVICH, L. 1987b Turbulence and the dynamics of coherent structures. II. symmetries and transformations.

Q. Appl. Maths 45 (3), 573–582.
SIROVICH, L. 1987c Turbulence and the dynamics of coherent structures. III. dynamics and scaling. Q. Appl.

Maths 45 (3), 583–590.
SORIA, J. & AMILI, O. 2015 Under-expanded impinging supersonic jet flow. In 10th Pacific Symposium on

Flow Visualization and Image Processing (ed. G. Cardone), June 15–18, Naples, Italy.
STAHL, S.L., PRASAD, C. & GAITONDE, D.V. 2021 Distinctions between single and twin impinging jet

dynamics. J. Acoust. Soc. Am. 150 (2), 734–744.

929 A20-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

82
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://www.youtube.com/watch?v=EnlCDOQW7wc
https://www.youtube.com/watch?v=EnlCDOQW7wc
https://doi.org/10.1017/jfm.2021.822


Influence of nozzle external geometry

STEGEMAN, P.C., PÉREZ, J.M., SORIA, J. & THEOFILIS, V. 2016a Inception and evolution of coherent
structures in under-expanded supersonic jets. J. Phys.: Conf. Ser. 708, 012015.

STEGEMAN, P.C., SORIA, J. & OOI, A. 2016b Interaction of shear layer coherent structures and the stand-off
shock of an under-expanded circular impinging jet. In Fluid-Structure-Sound Interactions and Control,
pp. 241–245. Springer.

TAM, C.K.W. & AHUJA, K.K. 1990 Theoretical model of discrete tone generation by impinging jets. J. Fluid
Mech. 214, 67–87.

TAM, C.K.W. & DONG, Z. 1994 Wall boundary conditions for high-order finite-difference schemes in
computational aeroacoustics. Theor. Comput. Fluid Dyn. 6 (5–6), 303–322.

THUROW, B., SAMIMY, M. & LEMPERT, W. 2002 Structure of a supersonic impinging rectangular jet via
real-time optical diagnostics. In 32nd AIAA Fluid Dynamics Conference and Exhibit, p. 2865. AIAA.

TOWNE, A., SCHMIDT, O.T. & COLONIUS, T. 2017 Spectral proper orthogonal decomposition and its
relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 825, 1113–1152.

TOWNE, A., SCHMIDT, O.T. & COLONIUS, T. 2018 Spectral proper orthogonal decomposition and its
relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821–867.

TUMIN, A. & RESHOTKO, E. 2003 Optimal disturbances in compressible boundary layers. AIAA J. 41 (12),
2357–2363.

TUTKUN, M. & GEORGE, W.K. 2017 Lumley decomposition of turbulent boundary layer at high Reynolds
numbers. Phys. Fluids 29 (2), 020707.

TUTKUN, M., JOHANSSON, P.B.V. & GEORGE, W.K. 2008 Three-component vectorial proper orthogonal
decomposition of axisymmetric wake behind a disk. AIAA J. 46 (5), 1118–1134.

WEIGHTMAN, J.L., AMILI, O., HONNERY, D., EDGINGTON-MITCHELL, D. & SORIA, J. 2017 On the
effects of nozzle lip thickness on the azimuthal mode selection of a supersonic impinging flow. In 23rd
AIAA/CEAS Aeroacoustics Conference, p. 3031. AIAA.

WEIGHTMAN, J.L., AMILI, O., HONNERY, D., EDGINGTON-MITCHELL, D. & SORIA, J. 2019 Nozzle
external geometry as a boundary condition for the azimuthal mode selection in an impinging underexpanded
jet. J. Fluid Mech. 862, 421–448.

WLEZIEN, R.W. & KIBENS, V. 1988 Influence of nozzle asymmetry on supersonic jets. AIAA J. 26 (1), 27–33.
ZAPRYAGAEV, V., KISELEV, N. & GUBANOV, D. 2018 Shock-wave structure of supersonic jet flows.

Aerospace 5 (2), 60.

929 A20-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

82
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.822

	1 Introduction
	2 Configurations and numerical methods
	3 The mathematical background of SPOD
	4 Results
	4.1 Influence of the external geometry of the nozzle on the mean flow field
	4.2 Coherent structures obtained from SPOD
	4.3 Upstream-propagating and downstream-propagating waves of the dominant coherent features
	4.4 Upstream-travelling waves at discrete frequencies and their nature in the receptivity process at the nozzle lip
	4.5 Impulse response analysis and the travelling paths of wavepackets

	5 Discussion and conclusion
	References

