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Abstract We construct a transcendental entire functjomith J(f) = C such thatf
has arbitrarily slow growth; that is, Idg (z)| < ¢(|z]) log|z| for |z] > ro, whereg is an
arbitrary prescribed function tending to infinity.

For an entire functionf we denote the Julia set by(f). By definition, it is the
complement of the maximal open sEf f), the set of normality, where the iterat¢$
form a normal family.

While for polynomials the Julia set always has empty interior, for transcendental
functions it may coincide with the whole complex plaBe The first example with this
property was given by Baked] and later Misiurewicz 16] showed that this is the case
for the exponential function. There are several methods of constructing such examples
(besides ] and [16] we refer to B, p. 74;4, pp. 155, 1727, pp. 167-1688, p. 225;

9, p. 625;10, p. 610;12)) but none of them seems to be applicable to entire functions of
arbitrarily slow growth, the main problem being to exclude the possibility of a wandering
component of the set of normality where the iterates tend to infinity. That such a wandering
component may indeed occur for functions of arbitrarily slow growth was shown by Baker
[2] and Hinkkanen1]. Notice that for entire functions of order less than one-half there is
always a sequence of critical values tending to infinity (48e ). 1788]). This makes the
usual arguments for the proof of the absence of wandering domains hard to apply.

THEOREM1. Letr +— ¢(t) : [0,00) — [1,00) be an arbitrary increasing function
tending toco ast — oo. Then there exists an entire functighand rop > 0 with the
propertiesJ (f) = C and

log|f(2)| = ¢(zDloglzl, Iz] > ro.
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We use the following notationD(R) = {z : |z] < R}, A(R) ={z€ C:|z] > R}and
A(R,R") ={z: R < |z| < R'}, where 0< R < R’ < oo. The sequenceP”(z))5 , is
called theP-orbit of the pointz.

The proof of Theorem 1 is based on the following.

PROPOSITIONL. Let P be a polynomial,P(0) = 0, P(1) = 1, degP > 2. Assume
that the P-orbits of all the critical points ofP tend to infinity. Lets, ..., z-1 € C and
my, ..., mg-1 € Nand suppose tha®”i(z;) =0forl1 < j <k —1 Letzy € C,e >0
andR > 0 be given.

Then there exists a polynomi@l, 0(0) = 0, Q(1) = 1, such that theQ-orbits of all
the critical points ofQ tend to infinity, and there exist, ..., z; € C andm; € N such
that|z; — z}l <eandQ™i(z;) = 0forl < j < k. Moreover,|P(z) — Q(z)| < € for
z € D(R),degQ = degP + 1andifas, ..., ay are the zeros oP, thenQ has a zero in
each diskz — a;| < €, and a zero iNA(R).

For the proof of Proposition 1 we need the following two lemmas. In these lemmas, we
shall use some concepts from the theory of quasiconformal (and quasiregular) maps; see
[15) for a general introduction to quasiconformal maps, éd] for a discussion of their
role in complex dynamics.

LEMMA 1. For everys > 0andR > Othere exists) > 0 such that every quasiconformal
homeomorphism : C — C fixing 0 and 1 with Beltrami coefficient |l < n satisfies

p(z) —z| <8, forze D(R).

Proof. Assume that the lemma is incorrect. Then there is a sequence of quasiconformal
homeomorphisms¢,), each fixing 0 and 1, such that the corresponding Beltrami
coefficientsu, satisfy|| i, lloo — 0, but

|¢I‘l(zl‘l) - Zn| Z (S > O

for somez, € D(R). As a family of quasiconformal maps with uniformly bounded
distortion fixing O and 1 is normallp, 8l1.5], we may assume thaf, — ¢ asn — oo,
uniformly on compacta irC, and¢ is a conformal homeomorphism. Our normalization
implies thatp (z) = z and we obtain a contradiction. O

LEMMA 2. For every positive integedf andn > 0 there existsy € (0, 1/2) with the
following property:

Leth; andhy be holomorphic functions i (r/2, 4r) such that||h;|lec < v, i = 1, 2.
Then there exists a quasiregular local homeomorphismA(r, 2r) — C with boundary
values

o) =2'A+h2), lzl=r

and
o) ='A+ha2), lzl=2r

and the Beltrami coefficient of ¢ satisfied|u|l < 1.
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Proof. We defingi(z) := (2—|z|/r)h1(z)+(|z]/r—D)h2(z). This function is smooth in the
ring A(r, 2r) and has boundary valués(z), |z| = r, andhz(z), |z| = 2r. The sup-norm
of the derivativeDh : A(r, 2r) — R? tends to O whey — 0. Thusg(z) := z¢(1+h(z))
has all the required properties whgns small enough. |

Proof of Proposition 1.1t follows from our hypotheses on the critical points®thatJ (P)
is totally disconnected an8l" (z) — oo for all z € C\J(P), see, for exampleg] p. 67].
Letd := degP. Recall (seef, p. 34] or [L8, pp. 63, 147]) that the limit

o1 "
= Jm -~ log|P7| )
exists uniformly on compacta ift\J(P) andu is a positive harmonic function there,
satisfying
u(z) ~loglzl, z— oo. (2

If we extendu by settingu(z) = 0 for z € J(P), the resulting function is continuous, and
we haveu(z) > O ifand only ifz € C\J(P).

We may assume without loss of generality thate C\J(f), because this can be
achieved by a small shift af;, using the fact thaf (/) is totally disconnected. Performing
another small shift of; if necessary, we may also assume that

0 < u(zx) #d’u(c) forallc e crit(P) andj € Z, ©)
where crif P) denotes the set of critical points & It follows from (3) that there exists
« > 0 with the property

|d"u(zi) — du(c)| > kd" forallc e crit(P) andn € N, j € Z,
from which it follows, in view of (1), that

|P" (zi)|
[P (c)]

— 00 asm — oo andc € crit(P). 4)

jeN
Similarly

n IPn.(Zk)I — asn — oo. (5)
O=j<n |PJ(zi)]
We fix arbitrarys§ > 0 and apply Lemma 1 for somR satisfyingR > R + 1,
R>1+ maxi<j<d lajl, R > 14+ maxi<j<klzjl, andR > 1+ maxz=r+1 | P(2)].
Then, using; obtained from Lemma 1 ant| we apply Lemma 2 to obtaip € (0, 1/2).
Now we are going to find a large integeso that the following conditions (6)—(11) are

satisfied:
4
|[P" (zi)| > ;(R +1), (6)
_ y|P™(zk)] - 1_6’ (7)
4 Y

lz79P(z) — 1] <y, forze A(r/2), (8)

. | P (zx)| 4 ,
S'T;IIQ log O] > Iog;, ¢ € Crit(P), 9
|Pn(Zk)| - i (10)

0<j<n |Pi(zp)| ~ y’
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and
the P-orbits of all points ..., zx—1 are contained iD(r). (11

Conditions (9) and (10) can be satisfied in view of (4) and (5), respectively.
We define a quasiregular m&p : C — C in the following way:

01(z) = P(z), z € D(r), (12)

01(z) = 24 (1— ) . z€A@2r), (13)

z
P"(zx)

and in the annulud (r, 2r) we interpolate using Lemma 2 with (z) = z ¢ P(z) — 1 and
h2(z) = —z/P"(zx). The conditions of Lemma 2 are satisfied in view of (7) and (8).

If U := A2|P"(zx)]) thenU is Qj-invariant and allQ-orbits in U tend to infinity.
The mapQ1 has the following properties.

(i) The Q1-orbits of the critical points of21 tend to infinity. Indeed, the critical set of
Q1 consists of the critical set a? and one additional point := d P"(z;)/(d + 1). The
P-orbits of the critical points o do not intersect the annulus(r, 2| P" (zx)|) in view of
(9), so theirQ1-orbits also do not intersect this annulus, but do intersect thié satd thus
tend to infinity. FurthermoreQ1(w) = w?/(d + 1) € U, so theQ1-orbit of w also tends
to infinity.

(i) (Q1)"(zx) = 0. Indeed,

(0D2((0D)" Xz1) = (QDA(P" L)) = Q1(P"(zx)) = O,

becauseP’ (zx) € D(r) for j < n in view of (10) andP(z) = Qi(z) for z € D(r) by
definition.

(i) Q'l"j (zj) =0forl < j <k — 1. This follows from (11) sinc&1(z) = P(z) for
z € D(r).

ThusQ; has all the required properties, except that it is not holomorphic in the annulus
A(r, 2r). To make it holomorphic we use a method of Shishikdrg;[see also%, §88—9]
for an account of Shishikura’s method. The image of the anntiflus2r) is contained
in the invariant domairU, which is disjoint fromA(r, 2r). This permits us to define
a new conformal structure in C such that it coincides with the standard conformal
structureop in U, and Q1 : (C,o0) — (C, o) is holomorphic. The distortion of this
structure with respect to the standard one is measured by the sup-norm of the Beltrami
coefficient which is the same as that 6f, namely at mosy (see Lemmas 1 and 2).
By the basic existence theorem for quasiconformal mappihf§s¢h. 5], there exists a
conformal homeomorphism : (C, og) — (C, o). We can normalize it by, (0) = 0 and
¥ (1) = 1. ThenQ := ¥ ~1o Q10 is easily seen to be a polynomial. The dynamicgof
are similar to those of1, namely from (i)—(iii) it follows that theQ-orbits of the critical
points of Q tend to infinity, and witfk; = w‘l(zj), 1< j <k,andm; =n+1we have
Q"i(z)) =0forl<j <k

Finally, we notice thaty : (C, og) — (C, op) is quasiconformal and the sup-norm of
its Beltrami coefficient is at most The same is true fag 1 and so by Lemma 1 we have

lW(z)—zl <8 and |y 1(z)—z| <8 forze D(R).
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If § < 1and|z|] < R, then|y(z)| < R+ 8 < r and henceQ1(v(2))| = |P(¥(2))]| <
R — 1. We deduce that if — 0, then

0 =¥ N1 @) = v L PW®R) — P(),

uniformly for z € D(R). This implies thatQ andz’j have all the required properties for
sufficiently smalls. |

Proof of Theorem 1We fix a dense sequen(:gj)‘]’.oz1 in C with zq = 3/4, a sequence of
positive numberse ;) with the property '

o0

D <1, (14)
Jj=1

and an increasing sequen@®;) — oo with the property
o0
1

Y = <o (15)
=t

Starting withk = 2, Pa(z) = 4z — 3z, m1 = 1, andz1 = z12 = 3/4, we apply
Proposition 1 repeatedly, and obtain a sequéiig of polynomials and a sequen¢ey)
of positive integers with the following properties: dBg= k, P,(0) = 0, P,(1) = 1, and,
foreveryj € Nandk > j, thereis a point; x satisfying

|2k — zkk+1l < €+1 and |zjx — zja+1l < €41 forj <k
such that
P (zjx) = 0. (16)
In addition, the zeros; ; of Py satisfy
lakkl > R fork >3 and |aji —ajry1l <eqr fork>2,j <k,

and the sequende;) converges uniformly on compacta@to an entire functiory .

It follows that the limitsw; := lim;_. z; existforallj e Nand|z; —w;| — O as
j — oo. Thus, the sequence ;) is dense irC. Passing to the limit as — oo in (16), we
conclude thatf™/ (w;) = 0. This means that the preimages of zero are denge hus,
J(H=C

Finally, we have to estimate the growth. We have

k
Pk(z+1)=]_[(1—i),
j=1 €k

with cik=ajr—1. ThUS,|Cj’k —Cjk+1| < €x+1 fork > 2, j < 2and|ck x| > Ry — 1 for
k > 3. Passing to the limit whelh — oo and taking (15) into account we conclude that

f(z+1)=]‘[<1_i>
j=1 €

where|c;| = [liMisoocjkl > Rj —1—372 . 1€ > Rj —2. Thus,f is an entire
function of genus zero. Using standard estimates for canonical products (see, for example,
[14]) we can chooséR ;) so that the growth of is arbitrarily slow. |
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