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Abstract. We construct a transcendental entire functionf with J (f ) = C such thatf
has arbitrarily slow growth; that is, log|f (z)| ≤ φ(|z|) log |z| for |z| > r0, whereφ is an
arbitrary prescribed function tending to infinity.

For an entire functionf we denote the Julia set byJ (f ). By definition, it is the
complement of the maximal open setF(f ), the set of normality, where the iteratesf n

form a normal family.
While for polynomials the Julia set always has empty interior, for transcendental

functions it may coincide with the whole complex planeC. The first example with this
property was given by Baker [1] and later Misiurewicz [16] showed that this is the case
for the exponential function. There are several methods of constructing such examples
(besides [1] and [16] we refer to [3, p. 74; 4, pp. 155, 172;7, pp. 167–168;8, p. 225;
9, p. 625;10, p. 610;12]) but none of them seems to be applicable to entire functions of
arbitrarily slow growth, the main problem being to exclude the possibility of a wandering
component of the set of normality where the iterates tend to infinity. That such a wandering
component may indeed occur for functions of arbitrarily slow growth was shown by Baker
[2] and Hinkkanen [11]. Notice that for entire functions of order less than one-half there is
always a sequence of critical values tending to infinity (see [13, p. 1788]). This makes the
usual arguments for the proof of the absence of wandering domains hard to apply.

THEOREM 1. Let t 7→ φ(t) : [0,∞) → [1,∞) be an arbitrary increasing function
tending to∞ as t → ∞. Then there exists an entire functionf and r0 > 0 with the
propertiesJ (f ) = C and

log |f (z)| ≤ φ(|z|) log |z|, |z| > r0.
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We use the following notation:D(R) = {z : |z| < R}, 1(R) = {z ∈ C : |z| > R} and
A(R,R′) = {z : R < |z| < R′}, where 0< R < R′ < ∞. The sequence(P n(z))∞n=0 is
called theP -orbit of the pointz.

The proof of Theorem 1 is based on the following.

PROPOSITION1. Let P be a polynomial,P(0) = 0, P (1) = 1, degP ≥ 2. Assume
that theP -orbits of all the critical points ofP tend to infinity. Letz1, . . . , zk−1 ∈ C and
m1, . . . ,mk−1 ∈ N and suppose thatPmj (zj ) = 0 for 1 ≤ j ≤ k − 1. Letzk ∈ C, ε > 0
andR > 0 be given.

Then there exists a polynomialQ, Q(0) = 0, Q(1) = 1, such that theQ-orbits of all
the critical points ofQ tend to infinity, and there existz′1, . . . , z′k ∈ C andmk ∈ N such
that |zj − z′j | < ε andQmj (zj ) = 0 for 1 ≤ j ≤ k. Moreover,|P(z) − Q(z)| < ε for
z ∈ D(R), degQ = degP + 1 and if a1, . . . , ad are the zeros ofP , thenQ has a zero in
each disk|z− aj | < ε, and a zero in1(R).

For the proof of Proposition 1 we need the following two lemmas. In these lemmas, we
shall use some concepts from the theory of quasiconformal (and quasiregular) maps; see
[15] for a general introduction to quasiconformal maps, and [5, 6] for a discussion of their
role in complex dynamics.

LEMMA 1. For everyδ > 0 andR̂ > 0 there existsη > 0 such that every quasiconformal
homeomorphismφ : C → C fixing0 and1 with Beltrami coefficient‖µ‖∞ < η satisfies

|φ(z)− z| < δ, for z ∈ D(R̂).

Proof. Assume that the lemma is incorrect. Then there is a sequence of quasiconformal
homeomorphisms(φn), each fixing 0 and 1, such that the corresponding Beltrami
coefficientsµn satisfy‖µn‖∞ → 0, but

|φn(zn)− zn| ≥ δ > 0

for somezn ∈ D(R̂). As a family of quasiconformal maps with uniformly bounded
distortion fixing 0 and 1 is normal [15, §II.5], we may assume thatφn → φ asn → ∞,
uniformly on compacta inC, andφ is a conformal homeomorphism. Our normalization
implies thatφ(z) = z and we obtain a contradiction. 2

LEMMA 2. For every positive integerd and η > 0 there existsγ ∈ (0,1/2) with the
following property:

Leth1 andh2 be holomorphic functions inA(r/2,4r) such that‖hi‖∞ < γ , i = 1,2.
Then there exists a quasiregular local homeomorphismφ : A(r,2r) → C with boundary
values

φ(z) = zd(1 + h1(z)), |z| = r

and

φ(z) = zd(1 + h2(z)), |z| = 2r

and the Beltrami coefficientµ of φ satisfies‖µ‖∞ < η.
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Proof. We defineh(z) := (2−|z|/r)h1(z)+(|z|/r−1)h2(z). This function is smooth in the
ringA(r,2r) and has boundary valuesh1(z), |z| = r, andh2(z), |z| = 2r. The sup-norm
of the derivativeDh : A(r,2r) → R2 tends to 0 whenγ → 0. Thus,φ(z) := zd(1+h(z))
has all the required properties whenγ is small enough. 2

Proof of Proposition 1.It follows from our hypotheses on the critical points ofP thatJ (P )
is totally disconnected andPn(z) → ∞ for all z ∈ C\J (P ), see, for example, [6, p. 67].

Let d := degP . Recall (see [6, p. 34] or [18, pp. 63, 147]) that the limit

u := lim
n→∞

1

dn
log |Pn| (1)

exists uniformly on compacta inC\J (P ) and u is a positive harmonic function there,
satisfying

u(z) ∼ log |z|, z → ∞. (2)

If we extendu by settingu(z) = 0 for z ∈ J (P ), the resulting function is continuous, and
we haveu(z) > 0 if and only if z ∈ C\J (P ).

We may assume without loss of generality thatzk ∈ C\J (f ), because this can be
achieved by a small shift ofzk, using the fact thatJ (f ) is totally disconnected. Performing
another small shift ofzk if necessary, we may also assume that

0< u(zk) 6= dju(c) for all c ∈ crit(P ) andj ∈ Z, (3)

where crit(P ) denotes the set of critical points ofP . It follows from (3) that there exists
κ > 0 with the property

|dnu(zk)− dju(c)| > κdn for all c ∈ crit(P ) andn ∈ N, j ∈ Z,

from which it follows, in view of (1), that

min
j∈N

∣∣∣∣log
|Pn(zk)|
|Pj (c)|

∣∣∣∣ → ∞ asn → ∞ andc ∈ crit(P ). (4)

Similarly

min
0≤j<n

|Pn(zk)|
|Pj (zk)| → ∞ asn → ∞. (5)

We fix arbitrary δ > 0 and apply Lemma 1 for somêR satisfying R̂ ≥ R + 1,
R̂ ≥ 1 + max1≤j≤d |aj |, R̂ ≥ 1 + max1≤j≤k |zj |, and R̂ ≥ 1 + max|z|=R+1 |P(z)|.
Then, usingη obtained from Lemma 1 andd, we apply Lemma 2 to obtainγ ∈ (0,1/2).

Now we are going to find a large integern so that the following conditions (6)–(11) are
satisfied:

|Pn(zk)| > 4

γ
(R + 1), (6)

r := γ |Pn(zk)|
4

>
16

γ
, (7)

|z−dP (z)− 1| < γ, for z ∈ 1(r/2), (8)

min
j∈N

∣∣∣∣log
|Pn(zk)|
|Pj (c)|

∣∣∣∣ > log
4

γ
, c ∈ crit(P ), (9)

min
0≤j<n

|Pn(zk)|
|Pj (zk)| >

4

γ
, (10)
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and

theP -orbits of all pointsz1 . . . , zk−1 are contained inD(r). (11)

Conditions (9) and (10) can be satisfied in view of (4) and (5), respectively.
We define a quasiregular mapQ1 : C → C in the following way:

Q1(z) = P(z), z ∈ D(r), (12)

Q1(z) = zd
(

1 − z

Pn(zk)

)
, z ∈ 1(2r), (13)

and in the annulusA(r,2r) we interpolate using Lemma 2 withh1(z) = z−dP (z)− 1 and
h2(z) = −z/Pn(zk). The conditions of Lemma 2 are satisfied in view of (7) and (8).

If U := 1(2|Pn(zk)|) thenU is Q1-invariant and allQ1-orbits inU tend to infinity.
The mapQ1 has the following properties.

(i) TheQ1-orbits of the critical points ofQ1 tend to infinity. Indeed, the critical set of
Q1 consists of the critical set ofP and one additional pointw := dPn(zk)/(d + 1). The
P -orbits of the critical points ofP do not intersect the annulusA(r,2|Pn(zk)|) in view of
(9), so theirQ1-orbits also do not intersect this annulus, but do intersect the setU , and thus
tend to infinity. Furthermore,Q1(w) = wd/(d + 1) ∈ U , so theQ1-orbit ofw also tends
to infinity.

(ii) (Q1)
n+1(zk) = 0. Indeed,

(Q1)
2((Q1)

n−1(zk)) = (Q1)
2(P n−1(zk)) = Q1(P

n(zk)) = 0,

becausePj (zk) ∈ D(r) for j < n in view of (10) andP(z) = Q1(z) for z ∈ D(r) by
definition.

(iii) Q
mj
1 (zj ) = 0 for 1 ≤ j ≤ k − 1. This follows from (11) sinceQ1(z) = P(z) for

z ∈ D(r).
ThusQ1 has all the required properties, except that it is not holomorphic in the annulus

A(r,2r). To make it holomorphic we use a method of Shishikura [17]; see also [5, §§8–9]
for an account of Shishikura’s method. The image of the annulusA(r,2r) is contained
in the invariant domainU , which is disjoint fromA(r,2r). This permits us to define
a new conformal structureσ in C such that it coincides with the standard conformal
structureσ0 in U , andQ1 : (C, σ ) → (C, σ ) is holomorphic. The distortion of this
structure with respect to the standard one is measured by the sup-norm of the Beltrami
coefficient which is the same as that ofQ1, namely at mostη (see Lemmas 1 and 2).
By the basic existence theorem for quasiconformal mappings [15, Ch. 5], there exists a
conformal homeomorphismψ : (C, σ0) → (C, σ ). We can normalize it byψ(0) = 0 and
ψ(1) = 1. ThenQ := ψ−1 ◦Q1 ◦ψ is easily seen to be a polynomial. The dynamics ofQ

are similar to those ofQ1, namely from (i)–(iii) it follows that theQ-orbits of the critical
points ofQ tend to infinity, and withz′j := ψ−1(zj ), 1 ≤ j ≤ k, andmk = n+ 1 we have
Qmj (z′j ) = 0 for 1 ≤ j ≤ k.

Finally, we notice thatψ : (C, σ0) → (C, σ0) is quasiconformal and the sup-norm of
its Beltrami coefficient is at mostη. The same is true forψ−1 and so by Lemma 1 we have

|ψ(z)− z| < δ and |ψ−1(z)− z| < δ for z ∈ D(R̂).
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If δ < 1 and|z| ≤ R, then|ψ(z)| ≤ R + δ < r and hence|Q1(ψ(z))| = |P(ψ(z))| ≤
R̂ − 1. We deduce that ifδ → 0, then

Q(z) = ψ−1(Q1(ψ(z))) = ψ−1(P (ψ(z))) → P(z),

uniformly for z ∈ D(R). This implies thatQ andz′j have all the required properties for
sufficiently smallδ. 2

Proof of Theorem 1.We fix a dense sequence(zj )∞j=1 in C with z1 = 3/4, a sequence of
positive numbers(εj ) with the property

∞∑
j=1

εj < 1, (14)

and an increasing sequence(Rj ) → ∞ with the property

∞∑
j=1

1

Rj
< ∞. (15)

Starting withk = 2, P2(z) = 4z2 − 3z, m1 = 1, andz1 = z1,2 = 3/4, we apply
Proposition 1 repeatedly, and obtain a sequence(Pk) of polynomials and a sequence(mk)
of positive integers with the following properties: degPk = k, Pk(0) = 0,Pk(1) = 1, and,
for everyj ∈ N andk > j , there is a pointzj,k satisfying

|zk − zk,k+1| < εk+1 and |zj,k − zj,k+1| < εk+1 for j < k

such that

P
mj
k (zj,k) = 0. (16)

In addition, the zerosaj,k of Pk satisfy

|ak,k| > Rk for k ≥ 3 and |aj,k − aj,k+1| < εk+1 for k ≥ 2, j ≤ k,

and the sequence(Pk) converges uniformly on compacta inC to an entire functionf .
It follows that the limitswj := limk→∞ zj,k exist for allj ∈ N and|zj − wj | → 0 as

j → ∞. Thus, the sequence(wj ) is dense inC. Passing to the limit ask → ∞ in (16), we
conclude thatfmj (wj ) = 0. This means that the preimages of zero are dense inC. Thus,
J (f ) = C.

Finally, we have to estimate the growth. We have

Pk(z+ 1) =
k∏
j=1

(
1 − z

cj,k

)
,

with cj,k = aj,k −1. Thus,|cj,k − cj,k+1| < εk+1 for k ≥ 2, j ≤ 2 and|ck,k| > Rk −1 for
k ≥ 3. Passing to the limit whenk → ∞ and taking (15) into account we conclude that

f (z+ 1) =
∞∏
j=1

(
1 − z

cj

)

where|cj | = | limk→∞ cj,k| > Rj − 1 − ∑∞
n=j+1 εn > Rj − 2. Thus,f is an entire

function of genus zero. Using standard estimates for canonical products (see, for example,
[14]) we can choose(Rj ) so that the growth off is arbitrarily slow. 2
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