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We show that the Banach space M of regular ¼ -additive ¯nite Borel complex-valued
measures on a non-discrete locally compact Hausdor® topological Abelian group is
the direct sum of two linear closed subspaces M D and MND , where M D is the set of
measures · 2 M whose Fourier transform vanishes at in¯nity and MND is the set of
measures · 2 M such that ¸ =2 M D for any ¸ 2 M n f0g absolutely continuous with
respect to the variation j· j. For any corresponding decomposition · = · D + · ND

(· D 2 M D and · ND 2 MND ) there exist a Borel set A = A( · ) such that · D is the
restriction of · to A, therefore the measures · D and · ND are singular with respect to
each other. The measures · D and · ND are real if · is real and positive if · is
positive. In the case of singular continuous measures we have a re¯nement of Jordan’ s
decomposition theorem. We provide series of examples of di® erent behaviour of
convolutions of measures from M D and MND .

1. Introduction

Decay (or decaying) measures over the real line are measures with Fourier transform
vanishing at 1. We say that a measure · on a real line is purely non-decaying if
any non-zero measure absolutely continuous with respect to the variation j· j is not
a decay measure. The decay measures on the real line describe mixing ®ows [5] and
decay in quantum physics [7,8], since they correspond to the spectral measures of
the self-adjoint generator of evolution. In the case of mixing ®ows, the generator is
the Liouville operator [5, 13], while in the case of quantum systems, the generator
is the Hamiltonian or the Liouville{von Neumann operator [15,21].

We have proven [1] that any measure on a real line admits a unique decomposition
into a sum of a decaying measure and a purely non-decaying measure, which leads
to a re­ nement of the Jordan decomposition theorem. Evidently, discrete measures
are purely non-decaying and absolutely continuous measures are decaying according
to the Riemann{Lebesgue theorem. The non-triviality of the above decomposition
appears for singular continuous measures. For example,

(i) the standard Cantor measure · 1 [12] is a purely non-decaying singular con-
tinuous measure on R;
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(ii) according to [6], the measure · 2 with the Fourier transform

~· 2(x) =

1Y

n = 1

cos

³
2nx

5n

´

is a decaying singular continuous measure on R;

(iii) however, the sum · 3 = · 1 + · 2 of the two above measures is an example
of a singular continuous measure on R that is neither decaying nor purely
non-decaying.

Note that all three above measures have compact support of zero Lebesgue mea-
sure and are positive.

In order to discuss decay for operators with complex spectra, appearing in more
general systems like ergodic endomorphisms or stochastic processes, we have to
extend the results of [1] for measures on the complex plane and especially on the
unit circle. We realized, however (theorem 2.1), that this extension can be easily
achieved for measures over any non-discrete locally compact topological abelian
group.

The spectral measures of the Liouville{von Neumann operator [15,21], describing
the statistical evolution in quantum mechanics, are convolutions · ¤ · R [3] of the
spectral measures · of the underlying Hamiltonian operator with their re®ections
· R(A) = · ( ¡ A). Therefore, in order to characterize the decaying statistical states,
we have to study the decay properties of the convolutions of decaying, as well as of
purely non-decaying, measures. This study is summarized in proposition 2.6.

First, we introduce the key concepts and notations, and formulate the Lebesgue
theorem.

We say that a function f on a locally compact topological space X vanishes at
in¯nity if and only if, for any " > 0, there exists a compact set K » X such that
f (x) < " for any x 2 X n K. We denote the space of all continuous complex-valued
functions on X vanishing at in­ nity by C0(X). This space is a Banach space with
respect to the norm

kfkc = sup jf j: (1.1)

Let G be a non-discrete Hausdor¬ locally compact topological abelian group (we
denote the group operation by +), G£ be the dual group for G, i.e. G£ is the group
of all continuous homomorphisms h : G ! T1 = R=(2º Z) from G to the circle T1,
which is also (with the natural so-called compact-open topology [9,16]) a Hausdor¬
locally compact topological abelian group. Also let M = M(G) be the space of all
regular ¼ -additive ­ nite Borel complex-valued measures on G (see [16] for de­ ni-
tions), M + = M + (G) be the set of positive measures from M, P = P(G) be the
set of probability measures from M, Mc = Mc(G) be the subspace of continuous
measures from M, M p = M p (G) be the subspace of measures with countable sup-
port (i.e. regular measures equivalent to Borel measures with countable support),
M s c = M s c(G) be the subspace of continuous measures singular with respect to the
Haar measure m on G (i.e. a positive locally ­ nite ¼ -additive translation invariant
measure; m exists and is unique up to multiplication over a positive constant) and
Mac = Mac(G) be the subspace of measures absolutely continuous with respect to
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m (see [12] for de­ nitions). For · 2 M, denote the variation or absolute value of ·
by j· j (j · j is an element of P), i.e.

j· j(A) = sup

»X

n

j · (An)j : A =
[

n

An; An \ Am = ; if m 6= n

¼
:

The space M is a Banach space with the norm

k · kv = j· j(G) (1.2)

and an abelian Banach algebra with respect to the convolution

( · ¤ ¸ )(A) =

Z

G

¸ (A ¡ g) d · (g);

where A ¡ g = fh ¡ g : h 2 Ag.
Let · be a ¼ -additive complex-valued measure on some measurable space (X; F)

and ¸ be a positive (not necessarily ­ nite) ¼ -additive measure on (X; F). We write
· ¿ ¸ if · is absolutely continuous with respect to ¸ and we write · ? ¸ if · is
singular with respect to ¸ . If A 2 F , then let · A be the restriction of · to A, i.e. the
measure de­ ned by the equality

· A(B) = · (A \ B): (1.3)

Lebesgue theorem (see [18]). Let · be a ¼ -additive complex-valued measure on
some measurable space (X; F) and ¸ be a positive (not necessarily ­ nite) ¼ -additive
measure on (X; F). Then there exist unique measures · 1 and · 2 such that · 1 ¿ ¸ ,
· 2 ? ¸ and · = · 1 + · 2. Moreover, there exists A 2 F such that · 1 = · A and
· 2 = · XnA.

According to this theorem M p , Mc, M s c and Mac are closed linear subspaces of
M, M = M p ©Mc and Mc = M s c ©Mac, where © is the direct sum in the category
of Banach spaces.

We present here a new decomposition of M based on the asymptotic behaviour
of the Fourier transform (the characteristic functional) of a measure,

~· (h) =

Z

G

ei(gjh) d · (g); (1.4)

where (g j h) = h(g).
It is well known that ~· is a bounded uniformly continuous complex-valued func-

tion on G£. We say that a measure · 2 M is decaying if its Fourier transform
vanishes at in­ nity and denote by M D = M D (G) the set of all decaying measures
from M(G). This interesting class of measures has been studied by many authors
(see, for example, [4, 11]). In particular, it has been shown in [11] that the space
M s c \ M D is non-zero for any non-discrete locally compact topological abelian
group.

We say that a measure · 2 M is purely non-decaying if ¸ =2 M D for any ¸ 2 M,
¸ ¿ j· j, ¸ 6= 0 and denote by MND = MND (G) the set of all purely non-decaying
measures from M(G).
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We show that MND is a closed linear subspace of the Banach space M and that
M is the direct sum of M D and MND . We prove that subspace M b s of M(R)
consisting of measures with bounded support can not be decomposed as a direct
sum of M D \ M b s and any subalgebra of M(R) with respect to the convolution ¤.

Obviously, M D is a linear subspace of M, M p ³ MND and the generalized
Riemann{Lebesgue theorem [16] implies that Mac ³ M D .

After the statement of the main results in x 2, we prove the lemmas in xx 3 and 5
and the main results in xx 4, 6 and 7.

2. Main results

The main results of the present paper are summarized by the following two theo-
rems.

Theorem 2.1.

(i) For any measure · 2 M, there exists a unique decomposition

· = · D + · ND ; where · D 2 M D and · ND 2 MND : (2.1)

Moreover, there exists a unique (up to coincidence almost everywhere with
respect to the measure j · j) Borel set A ³ G such that · D = · A and · ND =
· GnA (in the sense of (1.3)). In particular, if · 2 M + , then · D ; · ND 2 M +

and if · 2 M s c, then · D ; · ND 2 M s c.

(ii) The sets M D and MND are closed linear subspaces of the Banach space M,

M = M D © MND ; (2.2)

and the norms of the projections P D : · 7! · D onto M D along MND and
P ND : · 7! · ND onto MND along M D are equal to 1.

(iii) If X is a closed linear subspace of M, M = M D © X and the norm of the
projection onto X along M D is equal to 1, then X = MND .

This theorem implies the following result.

Corollary 2.2. The spaces M s c, M D and MND admit the decompositions

M s c = M D
s c © MND

s c ; (2.3)

M D = M D
s c © Mac; (2.4)

MND = MND
s c © M p ; (2.5)

where
M D

s c = M s c \ M D and MND
s c = M s c \ MND :

This corollary and the generalized Riemann{Lebesgue lemma immediately imply
the next result.

Corollary 2.3. The complete decomposition of the space M in terms of the four
spaces

M p ; Mac; M D
s c; MND

s c (2.6)
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has the form
M = M p © Mac © M D

s c © MND
s c : (2.7)

The decay properties of convolutions of measures are presented in the following
theorems 2.4 and 2.5. Pick two classes (they may be identical) among the four classes
of measures listed in (2.6). The question is whether convolutions of measures from
these two classes belong to a certain class among (2.6). Theorem 2.4 summarizes
the cases where these convolutions belong to precisely one space from (2.6). The
examples in theorem 2.5 show cases when these convolutions are not in precisely
one class from (2.6). These examples involve measures over the real line; however,
they can be easily generalized for measures on G = Rn £ Tm.

Theorem 2.4. For any · ; ¸ 2 M, we have

(i) if · 2 M p and ¸ 2 Mac, then · ¤ ¸ 2 Mac;

(ii) if · 2 M p and ¸ 2 M D
s c, then · ¤ ¸ 2 M D

s c;

(iii) if · 2 M p and ¸ 2 MND
s c , then · ¤ ¸ 2 MND

s c ;

(iv) if · 2 M p and ¸ 2 M p , then · ¤ ¸ 2 M p ;

(v) if · 2 Mac, then · ¤ ¸ 2 Mac;

(vi) if · 2 Mc, then · ¤ ¸ 2 Mc;

(vii) if · 2 M D , then · ¤ ¸ 2 M D .

Theorem 2.4 immediately follows from elementary properties of Fourier trans-
forms and convolutions of measures (see, for example, [16]); except for the third
part, which follows from theorem 2.1. According to theorem 2.4, the subspaces Mc,
Mac and M D are ideals in the Banach algebra M. Subspace M p is a subalgebra
of M.

Theorem 2.5.

(i) There exists a measure · 2 MND
s c (R) \ P(R) such that

· ¤ · ¤ ¢ ¢ ¢ ¤ ·| {z }
n times

2 MND (R) for any n 2 N:

(ii) There exist measures · ; ¸ 2 MND
s c (R) \ P(R) such that · ¤ ¸ 2 M D

s c(R).

(iii) There exist measures · ; ¸ 2 MND
s c (R) \ P(R) such that · ¤ ¸ 2 Mac(R).

(iv) Let · 2 MND
s c (R), · 6= 0. Then there exists a unique representation

· ¤ · = · 1 + · 2 + · 3;

where · 1 2 Mac, · 2 2 M D
s c, · 3 2 MND

s c and · 3 6= 0. Moreover,

(a) there exists a measure · 2 MND
s c (R)\P(R) such that · 1 6= 0 and · 2 = 0;

(b) there exists a measure · 2 MND
s c (R)\P(R) such that · 2 6= 0 and · 1 = 0;
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(c) there exists a measure · 2 MND
s c (R)\P(R) such that · 2 6= 0 and · 1 6= 0.

(v) There exists a measure · 2 M D
s c(R) \ P(R) such that

· ¤ · ¤ ¢ ¢ ¢ ¤ ·| {z }
n times

2 M D
s c(R) for any n 2 N:

(vi) There exists a measure · 2 M D
s c(R) \ P(R) such that · ¤ · 2 Mac(R).

Proposition 2.6. Let the linear space M b s (R) be an algebraic direct sum of
M D (R) \ M b s and some linear subspace X. Then X is not a subalgebra of M.

Note that in the case of discrete G (equivalently, compact G£), we have

M = M D = Mac = Mc = M p ; M s c = MND = f0g:

So, in this case, some of the formulated results are trivial, others are wrong.

3. Lemmas for the proof of theorem 2.1

The following lemma is an easy exercise.

Lemma 3.1. Let f 2 C0(G£) and g 2 L1(G£; m) (m is the Haar measure). Then
f ¤ g 2 C0(G£), where

(f ¤ g)(x) =

Z

G £
f(u)g(x ¡ u) dm(u)

is the convolution of f and g.

Lemma 3.2. Let · 2 M + . Then the set ff 2 C0(G) : f̂ 2 L1(G£; m)g is a dense
linear subspace of the Banach space L1(G; · ), where

f̂ (h) =

Z

G

f (g)ei(gjh) dm(g)

is the Fourier transform of f .

Proof. The inclusion C0(G) ³ L1(G; · ) is obvious since all elements of C0(G) are
bounded and measurable. Clearly, C0(G) is dense in L1(G; · ). To complete the
proof, it su¯ ces to verify that the set A = ff 2 C0(G) : f̂ 2 L1(G£; m)g is dense in
C0(G) with respect to the uniform convergence topology. Since A is the image of
Banach algebra L1(G£) under the Gelfand transform (see [16]), A is a subalgebra of
the Banach algebra C0(G) (with pointwise multiplication), separating points. The
desired density follows from the Stone{Weierstrass theorem [10].

The following lemma is a generalization of the theorem 10.9 of [23, chapter XII].

Lemma 3.3. Let · 2 M D and ¸ 2 M, ¸ ¿ j· j. Then ¸ 2 M D .

Proof. Let f be the density of ¸ with respect to j · j and g be the density of
· with respect to j· j. Then jgj = 1 almost everywhere with respect to j· j and
f 2 L1(G; j· j). According to lemma 3.2, there exists a sequence fn 2 C0(G) such
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that kfn ¡ fg¡1kL1(G;· ) ! 0 for n ! 1 and f̂n 2 L1(G£; m). For any n 2 N, let
¸ n be the measure with density fng with respect to the measure j· j. Since

~¸ n(h) =

Z

G

fn(x)g(x)ei(xjh) dj · (x)j =

Z

G

fn(x)ei(xjh) d · (x);

we have that ~¸ n is equal (up to multiplication by a positive constant) to the convo-
lution ~· ¤ f̂n. From the assumptions, ~· 2 C0(G£). Since f̂ n 2 L1(G£), lemma 3.1
implies that ~¸ n 2 C0(G£). Since the sequence fng converges to f with respect to
the norm of L1(G; j· j), we have that k ¸ n ¡ ¸ kv ! 0 for n ! 1. The inequality

kf̂kc 6 ckfkL1 (3.1)

(the constant c depends on normalizations of Haar measures on G and G£) implies
uniform convergence of ~¸ n to ~¸ . Since the uniform limit of the elements of C0(G£)
is again an element of C0(G£), we have that ~¸ 2 C0(G£). Lemma 3.3 is proved.

Lemma 3.4. Let · 2 M D and ¸ 2 MND . Then · is singular with respect to j ¸ j.

Proof. From the Lebesgue theorem, there exist unique ® ; ² 2 M such that · = ® + ² ,
® ¿ j̧ j and ² ? j̧ j. Moreover, there exists a Borel set A ³ G such that ® = · A,
² = · GnA. Then ® ¿ j· j and therefore, according to lemma 3.3, ~® 2 C0(G£). If
® 6= 0, then, since ® ¿ j ¸ j, we have that ~® =2 C0(G£). Therefore, ® = 0. Hence
· = ² ? j ¸ j. The lemma is proved.

Corollary 3.5. Let · 1; : : : ; · n 2 MND , c1; : : : ; cn 2 C, ¸ = c1 · 1 + ¢ ¢ ¢+cn · n 6= 0.
Then ¸ =2 M D .

Proof. Suppose that ¸ 2 M D . Lemma 3.4 implies that, for any j = 1; : : : ; n, there
exists a Borel set Aj such that j ¸ j(G n Aj) = 0 and j· j j(Aj) = 0. Let A =

Tn
j = 1 Aj.

Then j̧ j(G n A) = 0 and j· j j(Aj) = 0 for all j = 1; : : : ; n. Hence

j ¸ (A)j 6
nX

j = 1

jcj jj · jj(A) = 0:

Therefore, j̧ j(G) = j ¸ j(A) + j̧ j(G n A) = 0. Thus ¸ = 0. This contradiction
completes the proof of the corollary.

4. Proof of theorem 2.1

Part I. Let A D be the set of all Borel subsets A of G for which j· jA 2 M D . The
strategy of the proof of the ­ rst part of the theorem is to ­ nd the maximal element
M of A D and to show that the decaying part of the measure · coincides with the
restriction of · to M .

First, let us show that A [ B 2 A D for any A; B 2 A D . Obviously,

j· jA [ B ¿ ¸ = j · jA + j · jB :

From the de­ nition of A D , we have that ¸ 2 M D . From lemma 3.3, j· jA [ B 2 M D .
Hence A [ B 2 A D .
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Let us show now that there exists M 2 A D such that

j · j(M n A) = 0 for any A 2 A D : (4.1)

First, choose An 2 A D for n 2 N such that

lim
n ! 1

j· j(An) = sup
A 2 AD

j · j(A)

and put Bn =
Sn

j = 1 Aj . Since the class A D is closed (as we just proved) with respect
to ­ nite unions, Bn 2 A D . Let

M =

1[

n= 1

An =

1[

n = 1

Bn:

We shall prove that M is the desired set. The equality kj· jM ¡ j· jBn
kv = j · j(M nBn)

and ¼ -additivity of the measure j · j imply that kj· jM ¡ j · jBn
kv ! 0 for n ! 1.

Inequality (3.1) implies uniform convergence of the sequence

]j· jBn to ]j · jM :

Therefore,
]j · jM 2 C0(G£):

Hence M 2 A D . Let A 2 A D . Then, as we already showed, M [ A 2 A D . Conse-
quently,

j · j(M [ A) > j· j(M ) > lim
n ! 1

j · j(Bn) > lim
n! 1

j · j(An) > j· j(M [ A):

Since the ­ rst and the last terms in the previous formula are identical, all inequal-
ities in this formula are actually equalities. So j· j(M [ A) = j· j(M ). Therefore,
j · j(M n A) = 0. Thus the set M has all the desired properties.

Now let · D = · M and · ND = · ¡ · D = · GnM . From the de­ nition of A D , it
follows that j · jM 2 M D . Since · D ¿ j · jM , lemma 3.3 implies that · D 2 M D . Let
the measure ® 2 M D and ® ¿ j · ND j = j · jGnM . To prove that · ND 2 MND , it
su¯ ces to show that ® = 0. Suppose that ® 6= 0. Then the density f of ® with
respect to j · jGnM is a non-zero element of L1(G; j· jGnM). Then there exists " > 0
such that j· j(C) > 0, where C = fx 2 G n M : jf (x)j > "g. Since the density of
j · jC with respect to j· j is the indicator of the set C and the absolute value of the
density of ® with respect to j · j is greater than " on C , j · jC ¿ j ® j. Since ® 2 M D ,
lemma 3.3 implies that j· jC 2 M D . Therefore, C 2 A D . Formula (4.1) and the
inclusion C ³ G nM imply that j · j(C) = j · j(C nM ) = 0. This contradiction proves
that · ND 2 MND .

It remains to verify the uniqueness of the decomposition (2.1) of · . Suppose
· = ¸ + ² and ¸ 2 M D , ² 2 MND . Then ¸ ¡ · D = · ND ¡ ² . Since ¸ ¡ · D 2 M D

and ² ; · ND 2 MND , corollary 3.5 implies that ¸ ¡ · D = 0. Therefore, ¸ = · D and
² = · ND .

The last statement of the ­ rst part of theorem 2.1 follows from the fact that sin-
gularity, continuity and positivity are preserved under the restriction of a measure
to a subset. Part (i) of theorem 2.1 is proved.
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Part II. Let us show now that MND is a linear subspace of M (we already men-
tioned that M D is a linear subspace of M). The inclusion c· 2 MND for any
· 2 MND and c 2 C is trivial. Let · ; ¸ 2 MND . From the already proved ­ rst
part of theorem 2.1, we have that there exist ² 2 MND and ® 2 M D such that
· + ¸ = ² + ® . Then · + ¸ ¡ ² = ® . From corollary 3.5, we have that ® = 0.
Therefore, · + ¸ 2 MND . So MND is a linear subspace of M. The ­ rst part of
theorem 2.1 now implies that the linear space M is the direct sum of the linear
subspaces M D and MND and that the projections P D onto M D along MND and
P ND onto MND along M D map each measure to some restriction of this measure to
some Borel subset. Therefore, kP D k = kP ND k = 1. In particular, P D is continuous.
Consequently, the subspaces M D and MND of the Banach space M are closed. The
second part of theorem 2.1 is proved.

Part III. Suppose that X is a closed linear subspace of M, M = M D © X and the
norm of the projection T onto X along M D is equal to 1. It remains to show that
X = MND . Suppose X 6= MND . Then there exists a measure · 2 MND such that
¸ = · ¡ T · 6= 0. Since T ¸ = 0, we have that ¸ 2 M D . Lemma 3.4 implies that
¸ ? j· j. Therefore,

kT · kv = k · ¡ ¸ kv = k · kv + k ¸ kv > k· kv :

Hence kT k > 1, which is a contradiction.

5. Lemmas for the proof of theorem 2.5

In this section we consider only measures on real line, i.e. here, G = R. Let us
consider the a following seminorm on M:

k · kls = lim
x! 1

~· (x): (5.1)

Inequality (3.1) implies that

k · kls 6 k~· kc 6 k · kv: (5.2)

We denote the set of all · 2 M(R) such that k · kv = k · kls by M u ls .

Lemma 5.1. The following inclusions are valid:

M p ³ M u ls ³ MND :

Moreover,

(i) if · 2 M u ls , then

· ¤ · ¤ ¢ ¢ ¢ ¤ ·| {z }
n times

2 M u l s for any n 2 N;

(ii) if · 2 M + , n 2 N and
· ¤ · ¤ ¢ ¢ ¢ ¤ ·| {z }

n times

2 M u l s ;

then · 2 M u ls .
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Proof. The inclusion M p ³ M u ls is obvious. Let · 2 M u ls . According to theo-
rem 2.1, · = · 1 + · 2, where · 1 2 M D and · 2 2 MND and · 1 ? · 2. Since
k · 1kls = 0, we have that

k · 1kls = k · kls = k · kv = k · 1kv + k · 2kv 6 k · 1kv 6 k · 1kls :

Since the ­ rst and last terms in this formula are identical, all inequalities in it are
actually equalities. Therefore, k · 1kv +k · 2kv = k · 1kv , i.e. k· 2kv = 0. Hence · 2 = 0.
Thus · = · 1 2 MND .

Let · 2 M u ls and
¸ = · ¤ · ¤ ¢ ¢ ¢ ¤ ·| {z }

n tim es

:

Then
k ¸ kls = lim

x! 1
j~¸ (x)j = lim

x ! 1
j~· (x)jn = k · kn

ls = k· kn
v > k ¸ kv:

This inequality, together with (5.2), implies that ķ kls = k ¸ kv . Thus ¸ 2 M u ls .
Suppose now that · 2 M + and

¸ = · ¤ · ¤ ¢ ¢ ¢ ¤ ·| {z }
n tim es

2 M u ls :

Since
ķ kv = ¸ (R) = ( · ¤ · ¤ ¢ ¢ ¢ ¤ ·| {z }

n tim es

)(R) = · (R)n = k · kn
v

and
k ¸ kls = lim

x ! 1
j~¸ (x)j = lim

x ! 1
j~· (x)jn = k · kn

ls ;

we have
k · kls = (k ¸ kls )

1=n = k ¸ k1=n
v = k · kv :

Thus · 2 M u l s and the lemma is proved.

Recall [16] that a Borel set A ³ R is called a Kronecker set if and only if, for
any continuous function f : A ! C such that jf j ² 1 and any " > 0, there exists
a t 2 R such that jf (x) ¡ eitxj 6 " for all x 2 A. Theorem 5.2.2 of [16] shows the
existence of a Cantor-type (i.e. perfect and nowhere dense) compact subset KR of
R that is a Kronecker set.

Lemma 5.2. Let · 2 M be a measure concentrated on a compact Kronecker set.
Then · 2 M u l s .

Proof. Lemma 5.2 follows immediately from theorem 5.5.2 of [16].

We will need below a well-known class of continuous measures with Fourier trans-
form identical to a Kronecker product with parameter ³ > 1,

~· ³ (x) =

1Y

n= 1

cos

³
x

³ n

´
: (5.3)

The measure · ³ is the weak limit of the sequence of measures ¸ ³ ¡ 1 ¤ ¢ ¢ ¢ ¤ ¸ ³ ¡ n ,
where ¸ ¬ is the measure on the real line concentrated in the two point set f¡ ¬ ; ¬ g
such that ¸ ¬ (f¡ ¬ g) = ¸ ¬ (f ¬ g) = 1

2 . Note that
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(i) · ³ 2 P for all ³ > 1;

(ii) the standard Cantor measure (up to the transformation x 7! x ¡ 1
2
) coincides

with · 3;

(iii) · 2 is the normalized Lebesgue measure on the segment [ ¡ 1; 1].

Lemma 5.3. For any ³ 2 N, ³ > 3, the measure · = · ³ is an element of MND
s c n

M u l s .

Proof. Obviously, measure · is concentrated in the Cantor-type compact set

K ³ =

» 1X

j = 1

"j

³ j
: "j 2 f¡ 1; 1g

¼
; (5.4)

which has Lebesgue measure zero. Therefore, · 2 M s c. Let

c =

­­­­
1Y

n = 1

cos

³
2 º

³ n

´­­­­:

Clearly, c > 0 and j~· (2 º ³ k)j = c for all k 2 N.
Suppose that · =2 MND . According to theorem 2.1, there exists a subset A of K ³

such that · (A) > 0 and ~· A 2 C0(R). Since · (A) > 0, there exists an element x0 of
K such that

lim
"! 0; ¯ ! 0

";̄ >0

· ((x0 ¡ ¯ ; x0 + ") \ A)

· (x0 ¡ ¯ ; x0 + ")
= 1:

Therefore, there exist n 2 N and ¬ 2 f0; 1gn such that

· (In
¬ n A)

· (In
¬ )

< 1
2
c; where In

¬ =

µ
an

¬ ¡ ³ ¡n

³ ¡ 1
; an

¬ +
³ ¡n

³ ¡ 1

¶
; an

¬ =

nX

j = 1

¬ j ³ ¡j :

From lemma 3.3,
^· In

¬ \ A 2 C0(R): (5.5)

Inequality (3.1) implies that

k^· In
¬ nAkc 6 k · In

¬ nAkv = · (In
¬ n A) 6 1

2 c· (In
¬ ) = c2¡n¡1: (5.6)

Using (5.5) and (5.6), we arrive at

lim
x ! + 1

jg· In
¬

(x)j 6 c2¡n¡1: (5.7)

As the measure · In
¬

can be obtained from measure · by contraction (with factor ³ n),
shift and multiplication by 2¡n, we have

lim
x ! + 1

jg· In
¬

(x)j = 2¡n lim
x ! + 1

j~· (x)j > 2¡nc: (5.8)

The inequalities (5.7) and (5.8) contradict each other. Therefore, · 2 MND . The
inequality k · ³ kls < k· ³ kv can be easily veri­ ed. Therefore, · ³ =2 M u l s . Lemma 5.3
is proved.

Lemma 5.4 (see [6,23]). Let ³ be a rational number, ³ > 2 and ³ =2 Z. Then · ³ 2
M D

s c(R).
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6. Proof of theorem 2.5

Part I. Let · 2 M be a probability continuous measure concentrated on the above
perfect Kronecker compact set KR. Then, from lemma 5.2, it follows that · 2 M u ls

and from lemma 5.1 it follows that

· ¤ · ¤ ¢ ¢ ¢ ¤ ·| {z }
n tim es

2 M u l s ³ MND (R) for any n 2 N:

Singularity of · follows from the Riemann{Lebesgue theorem.

Part II. Let · be the measure · 5 of (5.3) and ¸ be the measure obtained from ·
by expansion with the factor

a =

1X

n = 0

5¡n2

:

According to (5.3),

~· (x) =

1Y

n = 1

cos(x5¡n); ~¸ (x) =

1Y

n= 1

cos(ax5¡n): (6.1)

Lemma 5.3 implies that · ; ¸ 2 MND
s c . It su¯ ces to show that · ¤ ¸ 2 M D

s c. One can
easily verify, using (5.4), that (see, for example, [23]) the Hausdor¬ dimension of
supports of · and ¸ is log5 2 and the Hausdor¬ dimension of the support of · ¤ ¸ is
at most log5 4 < 1. Hence measure · ¤ ¸ is singular. In view of (6.1), it remains to
verify that F 2 C0(R), where

F (x) =

1Y

n = 1

(cos(x5¡n) cos(ax5¡n)):

For this purpose, let us consider the following notion. Suppose m 2 N is represented
in pentadic system,

m =

lX

j = 0

mj5j; where mj 2 f0; 1; 2; 3; 4g:

Denote by {(m) the number of j 2 1; l for which either mj 2 f1; 2; 3g or mj¡1 6= mj.
It is easy to see that ­­­­

1Y

n= 1

cos(x5¡n)

­­­­6 q[{(x=2 º )]

for some q 2 (0; 1), where [y] is the integer part of the number y. That is why, in
order to prove that F vanishes at in­ nity, it su¯ ces to show that {(m)+{([am]) !
+1 as m ! +1 (m 2 N). The last statement follows from the de­ nition of a,
namely it is ensured by the form of the pentadic representation of a.

Part III. Let ¶ be the normalized Lebesgue measure on the segment [ ¡ 1; 1]. One
can directly verify (see [23]) that

~¶ (x) =
sin x

x
=

1Y

n= 1

cos

³
x

2n

´
= F (2x)F (x);
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where

F (x) =

1Y

n= 0

cos

³
x

4n

´
:

According to lemma 5.3, the function F is the Fourier transform of a singular
continuous probability measure · = · 4 2 MND

s c of (5.3). Then the measure ¸ ,
obtained from · by expansion with factor 2, is also an element of MND

s c and has
Fourier transform F (2x). Therefore, ¶ = · ¤ ¸ . Thus the Lebesgue measure on a
segment is a convolution of two measures from MND

s c .

Part IV. Let · 2 MND
s c (R). Corollary 2.3 implies that · ¤ · = · 1 + · 2 + · 3, where

· 1 2 Mac, · 2 2 M D
s c and · 3 2 MND

s c . Since ~· =2 C0(R) and j]· ¤ · j = j~· j2, we have
that ]· ¤ · =2 C0(R). Therefore, · 3 6= 0.

Part IVA. Follows easily from the (already proved) ­ rst part of theorem 2.5.

Part IVB. Let · and ¸ be measures, constructed in the proof of the second part
of theorem 2.5, and let ® = 1

2
( · + ¸ ). Theorem 2.1 implies that ® 2 MND

s c (R). Since
the Hausdor¬ dimension of the support of ® ¤ ® is less than 1, we have ® ¤ ® 2 M s c.
Evidently,

® ¤ ® = 1
4 ( · ¤ · + ¸ ¤ ¸ ) + 1

2 ( · ¤ ¸ ):

Similarly to the proof of lemma 5.3, one can show that 1
4 ( · ¤ · + ¸ ¤ ¸ ) 2 MND

s c , while
in the proof of the third part of theorem 2.5 it have been shown that 1

2
( · ¤ ¸ ) 2 M D

s c.
Therefore, ® is the desired probability measure.

Part IVC. Consider four measures · j, j 2 f1; 2; 3; 4g, where · 1 and · 2 are mea-
sures · and ¸ , constructed in the proof of the second part of theorem 2.5 and · 3,
· 4 are measures · and ¸ , constructed in the proof of the third part of theorem 2.5.
The desired measure is

® =
1

4

4X

j = 1

· j :

The proof is similar to the proof of part (iv) b.

Part V. The main point of the proof is to ­ nd a measure · 2 M D
s c with the compact

support K such that the Hausdor¬ dimension of the set

K + K + ¢ ¢ ¢ + K| {z }
n tim es

is zero for any n 2 N. Let ³ = 5
2
. We shall show that there exists a strictly increasing

sequence nk of non-negative integers such that n0 = 0 and

lim
t! 1

1Y

m= 1

nmY

j = nm ¡ 1 + 1

cos

³
t

³ j2m

´
= 0: (6.2)

According to lemma 5.4, limt ! 1 F1(t) = 0, where

F1(t) =

1Y

j = 1

cos

³
t

³ j

´
:
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Thus there exists A1 > 1 such that jF1(t)j < 1
3

for all t such that jtj > A1. Again,
using lemma 5.4, we have that limt! 1 G1(t) = 0, where

G1(t) =

1Y

j = 1

cos

³
t

³ 2j

´
:

Therefore, there exists A2 > maxf2; A1g such that jG1(t)j < 1
4 for all t such that

jtj > A2. Using uniform convergence of the product and de­ ning F1 on the segment
[ ¡ A2; A2], we obtain the existence of n1 2 N such that

n1Y

j = 1

cos

³
t

³ j

´
6 1

2 for all t 2 R such that A1 6 jtj 6 A2. (6.3)

Consider now

F2(t) = lim
t! 1

n1Y

j = 1

cos

³
t

³ j

´ 1Y

j = n1 + 1

cos

³
t

³ 2j

´
:

The obvious inequality jF2(t)j 6 jG1(t)j implies that jF2(t)j < 1
4 for all t such that

jtj > A2. Let

G2(t) = lim
t! 1

n1Y

j = 1

cos

³
t

³ j

´ 1Y

j = n1 + 1

cos

³
t

³ 4j

´
:

Lemma 5.4 implies that limt! 1 G2(t) = 0. Therefore, there exists A3 > maxfA2; 3g
such that jG2(t)j 6 1

5 for all t such that jtj > A3. Using uniform convergence of the
product and de­ ning F2 on the segment [ ¡ A3; A3] and inequality (6.3), we obtain
the existence of n2 2 N such that n2 > n1 and

n1Y

j = 1

cos

³
t

³ j

´ n2Y

j = n1 + 1

cos

³
t

³ 2j

´
6 1

2 for all t 2 R such that A1 6 jtj 6 A2;

n1Y

j = 1

cos

³
t

³ j

´ n2Y

j = n1 + 1

cos

³
t

³ 2j

´
6 1

3
for all t 2 R such that A2 6 jtj 6 A3:

Proceeding in the described way, we can obtain a strictly increasing sequence of
integers nk and a converging to +1 sequence of positive real numbers Ak such
that

lY

m= 1

nmY

j = nm ¡ 1 + 1

cos

³
t

³ j2m

´
6 1

l + 1
for all t 2 R such that Al 6 jtj 6 Al + 1: (6.4)

Formula (6.4) implies (6.2). But, obviously,

F (t) =

1Y

m = 1

nmY

j = nm ¡ 1 + 1

cos

³
t

³ j2m

´

is the Fourier transform of the measure · , which is the (in­ nite) convolution of
measures ¸ ³ ¡ j2m (j = 1; 2; : : : , m = 0; 1; : : : ). Therefore, · 2 M D (R). Thus the
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measure · is continuous and its support is included in the perfect compact set

K =

» 1X

j = 1

1X

m= 1

"j;m ³ ¡j2m

: "j;m 2 f¡ 1; 1g
¼

:

Using the same argument as for the calculation of the Hausdor¬ dimension of the
standard Cantor set, one can easily verify that the set

K + K + ¢ ¢ ¢ + K| {z }
n tim es

has zero Hausdor¬ dimension for any n 2 N. Therefore, the support of

· ¤ · ¤ ¢ ¢ ¢ ¤ ·| {z }
n tim es

has zero Hausdor¬ dimension. Hence the measure

· ¤ · ¤ ¢ ¢ ¢ ¤ ·| {z }
n tim es

is singular. Thus

· ¤ · ¤ ¢ ¢ ¢ ¤ ·| {z }
n tim es

2 M D
s c(R) for any n 2 N:

Part VI. Wiener and Wintner [22], for any " 2 (0; 1
2), constructed an example of

a measure · 2 (M s c \ P) with compact support such that

~· (t) = O(t¡1=2+ ")

for jtj ! +1. Therefore, j]· ¤ · (t)j2 = O(t¡2+ 4") and j]· ¤ · (t)j2 is integrable if
" < 1

4 . In this case, · ¤ · 2 Mac (with square integrable density).

7. Proof of proposition 2.6

If · 1 and · 2 are the measures · and ¸ from the proof of the third part of theorem 2.5,
then · 1; · 2 2 MND (R) \ M b s and · 1 ¤ · 2 2 Mac(R) » M D (R). Then · 1 = ¸ 1 + ¸ 2

and · 2 = ¸ 3 + ¸ 4, ¸ 1; ¸ 3 2 M D and ¸ 2; ¸ 4 2 X . Suppose that X is a subalgebra of
M. Since · 1; · 2 =2 M D , we have ¸ 2 6= 0 and ¸ 4 6= 0. Since M D is an ideal in the
algebra M and · 1 ¤ · 2 2 M D , ¸ 2 ¤ ¸ 4 = · ¤ ¸ ¡ ¸ 1 ¤ ¸ 3 ¡ ¸ 1 ¤ ¸ 4 ¡ ¸ 2 ¤ ¸ 3 belongs M D .
On the other hand, since X is a subalgebra of M, ¸ 2 ¤ ¸ 4 2 X . Hence ¸ 2 ¤ ¸ 4 = 0.
Therefore, ~¸ 2~¸ 4 ² 0. Since ¸ 2 and ¸ 4 have bounded support, ~¸ 2 and ~¸ 4 are analytic.
By the uniqueness theorem for analytic functions, either ~¸ 2 ² 0 or ~¸ 4 ² 0, which is
a contradiction. The proposition is proved.

8. Concluding remarks

(1) It seems interesting to investigate further properties of the set M u ls , de­ ned
here in x 3. One can verify that a measure absolutely continuous with respect
to an element of M u ls is again an element of M u l s . On the other hand, it
is not clear whether the sum or convolution of di¬erent elements of M u l s is
necessarily an element of M u l s .
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(2) The decomposition from theorem 2.1 provides a decomposition of the space F
of Fourier transforms of measures from M(R) as the direct sum of two closed
(with respect to the uniform convergence topology) subspaces, one of which
consists of all elements of F , converging to zero at in­ nity. The corresponding
decomposition of the space of all continuous bounded functions is impossible.
This follows from the fact that the space c0 of sequences converging to zero is
non-complementable (see [17]) in the Banach space l 1 of bounded sequences.

(3) For any self-adjoint operator on a Hilbert space, our re­ nement of the Jordan
decomposition of any probability measure · 2 M leads to a corresponding
invariant decomposition of the Hilbert space [2]. This fact allows us to charac-
terize completely [3] the mixing and decaying states of classical and quantum
systems [5,7, 8]. In particular, classical chaotic systems are mixing and they
give rise to decay of the correlation functions. In the case of strange attractors
which give rise to singular measures [13,14, 20], our decomposition of singu-
lar measures (2.3) allows us to characterize mixing which so far has been
achieved only for absolutely continuous measures [5, 13]. Decaying quantum
systems appear in quantum complex systems like unstable atoms, particles
and nano-electronic devices.

In the case of quantum systems, the spectral measure of the Liouville{
von Neumann operator generating the statistical evolution is the convolution
of the spectral measure of the Hamiltonian with its re®ection [3]. Thus the
decay properties of the statistical evolution of quantum systems motivated
the study of convolutions (theorem 2.5) of decaying and purely non-decaying
measures. In [3], we corrected some erroneous statements [19] on the spectrum
of the Liouville{von Neumann operator in the Hilbert{Schmidt space.
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