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SUMMARY
This work presents a methodology using image analysis
to estimate the experimental stiffness of a parallel robot,
Parallix LKF-2040, a 3-degree-of-freedom manipulator.
The proposed methodology has a simple implementation
and can be applied to different architectures of parallel
robots. This methodology uses image analysis and camera
calibration techniques to estimate compliant displacements
of mobile platform produced by several loads at the end
effector level, and calculate stiffness in a specific position
of mobile platform. Experimental results are presented for
different positions within the workspace.

KEYWORDS: Stiffness; Parallel manipulator; Camera
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1. Introduction
Stiffness is an important feature to evaluate the performance
of a robot manipulator, since the forces present on its
elements can produce significant compliant displacements.
Such types of displacements considerably reduce positioning
accuracy of a robot. High stiffness is a characteristic often
associated with parallel manipulators,2 since more than two
limbs are supporting the load, as the Gough–Stewart platform
with six limbs attached to a mobile platform.

In 1990, Gosselin3 conducted relevant studies about
stiffness in parallel manipulators. In that work, an analytical
method is presented to find stiffness maps for planar and
spatial manipulators with 3 degrees-of-freedom (DOF).
Gosselin affirms that stiffness, for a specific position in the
workspace, can be characterized by the stiffness matrix and
can be estimated through Jacobian matrix.

Clinton and Zhang4 in 1997 proposed a mathematical
model describing the stiffness of a milling machine based
on the Gough–Stewart platform. The model is based on
structural matrix analysis to obtain stiffness matrix of each
mechanical element, and then assemble them in the stiffness
matrix of the whole system; the method assumes that
elements have only linear deformations. They also performed
an experimental analysis based on the stiffness test for
machining centers using ASME B5.54 standard.

In 2000, Rebeck and Zhang5 presented a method to
evaluate the stiffness of links, joints, and fixed platform of a
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milling machine based on the Gough–Stewart platform; the
stiffness of these elements was estimated using the principle
of virtual work. Their work considered that compliant
displacements were additive, then stiffness was the sum of
the stiffness of fixed platform and links.

In 2001, Huang et al.6 presented a two-step approach
to estimate the stiffness of TRIPOD, a parallel kinematic
machine. The first step decomposes the machine structure in
two substructures; the stiffness model of both substructures
was formulated following the principle of virtual work. The
second step estimates the stiffness model of whole machine
applying the principle of linear superposition.

Ceccarelli and Carbone presented7 the stiffness analysis
of robots, CaPaMan and CaHyMan.8 The stiffness matrix is
deduced from the stiffness of the most important mechanical
parts such as speed reducer elements and robot legs.

In 2003, Yoon et al.9 presented a method to analyze the
stiffness of links and joints based on the elastic deformation
theory.

In 2005, Ceccarelli and Carbone10 proposed a simple
approach to estimate coefficients of stiffness matrix of
parallel manipulators that only considered the displacements
caused by the application of linear forces. The compliant
displacements are measured using the Milli-CATRASYS,
a system to measure the mobile platform-compliant
displacements caused by applying a known load. Milli-
CATRASYS is an array of six sensors LVDT fixed in
a framework different from robot base but linked to the
mobile robot platform through six retractable cables. The
cable length (measured by LVDTs) changes according to the
applied forces. The inverse kinematics of the sensor array
allows finding the pose of mobile platform for each load.

In 2005, Company et al.,11 working with the parallel
manipulator H4, presented a method considering links as
springs to simplify the stiffness model. Corradini et al.12 used
three-dial test indicators to measure compliant displacements
of mobile platform of a 4-DOF parallel manipulator. The dials
are reset to zero without load and display the end-effector
displacement on each axis when a known load is applied.
Since compliant displacements and forces are known, the
experimental stiffness matrix can be determined numerically.

In 2006, Deblaise et al.13 presented a novel analytical
approach to calculate the stiffness matrix of parallel robots
based on matrix structural analysis; the stiffness matrix is
obtained and can be considered in the controller to improve
accuracy of a robot.
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Fig. 1. (Colour online) The Parallix LKF-2040 robot.

In 2008, Majou et al.14 presented a parametric stiffness
analysis applied to manipulator Orthoglide. This method is
based on a lumped parameter model of a flexible link that
replaces the links for virtual joints and virtual rigid links.

In 2008, Goncalves and Carvalho15 presented a method
based on structural analysis to obtain the stiffness matrix of
a 6-RSS manipulator; the results are compared with those
obtained with Finite Element Analysis (FEA).

In 2009, Pashkevich et al.16 presented a method to evaluate
stiffness based on a model of multidimensional global
parameters that replaces flexible links by 6-DOF virtual
springs that describe position and orientation.

In 2009, Najera et al.17 estimated the stiffness of a 6-RUS
manipulator based on Ceccarelli and Carbone’s proposed
approach.10 The stiffness of connecting rods and cranks of
a parallel manipulator were calculated using FEA, and the
stiffness of a speed reducer was determined experimentally.
This work emphasizes that the maximum values of stiffness
are presented in stationary configurations.

Lang et al.’s18 work presents a technique to obtain a
deformation model of an object described by a discrete
Green’s functions matrix based on its deformation behavior.
The object deformations are measured with a trinocular
stereo-head, while multiple loads are applied with a robot
arm; both estimated deformation and force are recorded at
high rates. Although in their work the stiffness of a robot
or an object is not measured, it contains all theoretical and
practical elements to perform it.

The work presented in this paper describes a methodology
to experimentally estimate the stiffness of a parallel
manipulator, Parallix LKF-2040,1 using computer vision
techniques. The stiffness matrices are obtained for a subset of
positions within the workspace. The main contribution of this
work is the method that measures compliant displacement
in three dimensions (3D), including changes in orientation,

when an external force is applied. The obtained displacement
measurements are used to evaluate the stiffness of a
manipulator. One important advantage of this method is that
it is possible to measure stiffness at any point of the whole
workspace of a robot. The accuracy of this method depends
on the quality of machine vision system, that is, on camera
calibration technique and camera resolution. The software
used in this work is based on MATLAB ToolBox “Camera
Calibration Toolbox”; camera resolution is 2592 × 1944
pixels, which allows to ensure enough accuracy for such
kind of robot-compliant displacements. A 3D graphical
representation of manipulator stiffness is generated using the
value of the stiffness matrix determinant for each position.

2. Description of Experimental Set Up

2.1. Parallix LKF-2040 robot
The Parallix LKF-2040 robot (see Fig. 1) is a pure
translational manipulator-type Delta. The actuators are
mounted on a fixed platform and the end-effector is mounted
on a mobile platform. The workspace is larger than the Delta-
type robot, since two rotational joints replaced spherical
joints. The structure of the manipulator is light, simplifying
the dynamics and minimizing the displaced load. The robot
is currently used for teaching purposes since it has an open
architecture. Each kinematic chain has three rotational joints,
two of these are passives joints.

The fixed platform is made of square steel tube. The
actuators are servomotors MAXON model RE-35, 90 W and
24 V DC with planetary gears and incremental encoders.
The servomotors are mounted on the fixed platform through
aluminum nuts. The upper links are made of aluminum and
are attached to motors through stainless steel couplings. The
lower links are constructed of round tubing. The passive
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Fig. 2. (Colour online) ROBWIN version 3.0: Graphical user interface.

joints are commercial needle bearings and are mounted
on stainless steel shafts. The mobile platform is made of
aluminum. The displacements in the Cartesian space are
done through motion control boards type PIC-SERVO SC
using ROBWIN Version 3.0, a Graphical User Interface
programmed in Visual C++ under Windows. Figure 2 shows
the main window of ROBWIN Version 3.0.

2.2. The USB camera
Our approach needs images from patterns fixed to the mobile
and fixed platforms. A color camera, type USB from Imaging
Source, model DFK 72UC02 with 2592 × 1944 pixels
resolution, was used to acquire images. The camera was
placed in front of the robot, far enough to keep the patterns
inside the camera field of view and to get a convenient ratio
pixel/millimeter.

2.3. Patterns for camera calibration
Two planar checkerboards with 1 × 1 cm squares were used
as reference patterns. The first pattern (rectangular shape)
was located on the fixed platform (on one motor support; see
Fig. 3). This pattern was used to determine transformation
matrix between the camera frame and the robot frame. The
second pattern (square shape) was located on mobile platform
(see Fig. 3). This pattern was used to determine compliant
displacement caused by the application of a known load at
the end-effector level.

2.4. Device to apply known forces
A special device was built to apply forces on X and Y-axes of
the mobile platform (see Fig. 4). The device was mounted on

a tripod to move it into the robot workspace. The forces are
applied using standard mass of 0.500, 0.200, and 0.100 kg.
To apply forces on Z-axis, the load is applied directly on
the mobile platform. The device was designed to ensure that
forces are actually collinear to X and Y-axes of the mobile
platform. The device is linked to the mobile platform by
a wire only, which transfers the applied force having the
effect of an external load. Friction was reduced by integrating
pulleys with bearings to force transmission elements, and
collinearity was guaranteed by integrating steel guides to
align load axis with each axis of the mobile platform.
However, friction force on the pulleys was experimentally
estimated. We are assuming that true force applied to the
mobile platform is the difference between the known force
and the friction force. Then true force was measured by
a dynamometer, which was placed between the pulley and
the mobile platform. The true force was measured with a
5-g resolution dynamometer using an 8-mm circular cross-
section belt for a 500-g load. For 10 repeated measurements,
the friction force was 28 g with a standard deviation of
8 g; this value represents less than 6% of the applied
force.

2.5. Software to estimate mobile platform-compliant
displacements
For each known applied force, the compliant displacement
of the mobile platform was estimated using camera
calibration techniques. Using these techniques some
parameters are estimated: intrinsic parameters of the
camera (focal length, principal point, and distortion
coefficients) and extrinsic parameters (position and
orientation of the reference pattern). The software

https://doi.org/10.1017/S0263574712000641 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574712000641


660 Stiffness estimation of a parallel manipulator

Fig. 3. (Colour online) Mobile and fixed reference patterns.

used in this work was based on MATLAB ToolBox
“Camera Calibration Toolbox,”19 some modifications were
implemented to the software to estimate the displacements
of the pattern and express them with respect to robot
frame.

3. Methodology

3.1. Transformation between camera and robot frames
The method proposed in this work is to quantify stiffness
by measuring the mobile platform-compliant displacements

Fig. 4. (Colour online) Device for the application of known forces.
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Fig. 5. (Colour online) The involved frames to estimate
transformation matrix.

using image analysis. The first step is to determine the
homogeneous transformation matrix that describes the
coordinates of a fixed pattern (object) on robot frame.
Figure 5 shows how the involved frames are related.
According to Fig. 5, the homogeneous transformation matrix
RAC , which relates the camera frame with the robot frame,
is obtained from

R AC = R AO
O AC , (1)

where:

R AO : Homogeneous transformation matrix of the pattern
(object) with respect to robot frame;

O AC : Homogeneous transformation matrix of the camera
with respect to object frame.

The position and orientation of the fixed pattern (object)
are contained in the homogeneous matrix C AO and these
can be extracted directly as a result of the camera calibration
software using the extrinsic parameters (R3×3 and T1×3) of
the fixed pattern

C AO =
[
R3×3 T1×3

03×1 1

]
. (2)

Figure 6 shows the selected plane of the object to estimate
its extrinsic parameters. The matrix O AC is obtained using:
O AC = (C AO)−1. Since the pattern is fixed to the motor
support, we are assuming that elements of R AO are constants
and known from robot base geometry. However, two sources
of error are possible, but we neglected both of them: (1) the
machining process to build motor support, which is less than
0.05 mm (accuracy of the milling to machine that piece),
and (2) the montage of motor support that is also related
with milling accuracy. For this study, the homogenous matrix
corresponding to the base of the servomotor 1 with respect
to robot frame is as follows:

R AO =

⎡
⎢⎣

1 0 0 −75.63
0 0 1 188.10
0 −1 0 31.00
0 0 0 1

⎤
⎥⎦ .

3.2. Validation of displacement estimation using image
analysis
To quantify the accuracy of the technique to estimate
displacements of mobile pattern through image analysis,
some experiments were performed by mounting a similar

Fig. 6. (Colour online) Selected plane to estimate extrinsic parameters of the fixed pattern.
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Fig. 7. (Colour online) Experimental validation using an optical
X-table.

Table I. Experimental validation result.

Micrometer Estimated
displacement (mm) displacement (mm)

2 1.99 ± 0.28
5 4.97 ± 0.27

10 9.75 ± 0.24
20 20.01 ± 0.21

pattern on an optical X-table driven by a micrometer (see
Fig. 7).

The pattern was displaced 2, 5, 10, and 20 mm using
the micrometer of the optical X-table. Using the camera
calibration techniques described previously, the extrinsic
parameters of the mobile pattern were extracted. According
to International Organization for Standardization’s ISO
5725-1:1994,20 10 repeated measurements of the pattern
position were performed; the repeated measurements help
to estimate standard deviation reported in Table I.

In measuring tasks using cameras, it is not necessary to
align them on a predetermined axis. Instead, it is preferred to
“rectify” the acquired images through the calibration process
as presented in refs. [21, 22]. Then the camera frame with
respect to real world frame, in our case with the optical X-
table frame, can be found indirectly. From the viewpoint of
optical X-table, movement is 1D (driven by micrometer),
but from camera frame viewpoint, it is a 3D movement.
In this way the measured displacement of the optical X-
table using the camera is vector (δx, δy, δz) of displacements
(extracted from camera extrinsic parameters), the estimated
displacements shown in Table I correspond to the norm of
this vector.

3.3. Estimation of mobile pattern-compliant displacements
Two images are required to estimate displacement when a
known load is applied on the mobile platform. The first
image corresponds to the pattern without load on the mobile
platform; the second image corresponds with load on the
mobile platform. From each image, extrinsic parameters
using camera calibration can be obtained. The extrinsic
parameters are the rotation matrix and the translation vector
(R3×3 and T1×3) of the mobile pattern with respect to camera
frame.

From the rotation matrix,

R =
⎡
⎣Ux Vx Wx

Uy Vy Wy

Uz Vz Wz

⎤
⎦ ,

the Euler angles can be calculated as follows:

ψ = tan−1

(
Vz

Wz

)
, (3)

φ = sin−1(−Uz), (4)

θ = tan−1

(
Uy

Ux

)
, (5)

where:

ψ : rotation around X-axis
φ: rotation around Y-axis
θ : rotation around Z-axis

Moreover, from the translation vector, T = [Px Py Pz ]t , it
is obtained directly with the pattern position for each axis.

Finally, the difference between extrinsic parameters
of each of the two images corresponds to compliant
displacement (three angular and three linear compliant
displacements) caused by load application:

δψ = ψL − ψNL

δφ = φL − φNL

δθ = θL − θNL

δx = PxL − PxNL

δy = PyL − PyNL

δz = PzL − PzNL

, (6)

where NL = no load and L = load.

3.4. Stiffness estimation approach
In the most general case, the methodology presented in
this work allows the estimation of the stiffness matrix
of a manipulator, defined in ref. [10], by the following
expression:

W = K �S, (7)

where:

K: Stiffness matrix 6 × 6;
�S: Compliant displacements of mobile platform, and �S =

(�x, �y, �z, �ψ, �φ, �θ);
W : Static wrench acting on mobile platform, and W =

(Fx, Fy, Fz, T x, T y, T z).
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Fig. 8. (Colour online) Set of positions in millimeter where the stiffness was estimated.

Table II. Forces applied to the mobile platform.

i Fxi [N] Fyi [N] Fzi [N]

1 0 4.905 0
2 −4.905 0 0
3 0 0 −4.905
4 0 1.962 0
5 −1.962 0 0
6 0 0 −1.962
7 0 0.981 0
8 −0.981 0 0
9 0 0 −0.981

However, since the robot under study is a translational one,
we only use compliant linear displacement and forces acting
on X–Y–Z axes at the mobile platform level:

F = Kδ. (8)

In this case the stiffness matrix K is only 3 × 3 and can be
represented by

K =
⎡
⎣k11 k12 k13

k21 k22 k23

k31 k32 k33

⎤
⎦ . (9)

The unknown coefficients of the stiffness matrix are nine,
and then at least nine different forces are required to estimate
them. In this way, the forces matrix F, and the compliant
linear displacements δ are, respectively, as follows:

F =
⎡
⎣Fx1 Fx2 Fx3 Fx4 Fx5 Fx6 Fx7 Fx8 Fx9

Fy1 Fy2 Fy3 Fy4 Fy5 Fy6 Fy7 Fy8 Fy9

Fz1 Fz2 Fz3 Fz4 Fz5 Fz6 Fz7 Fz8 Fz9

⎤
⎦,

δ =
⎡
⎣δx1 δx2 δx3 δx4 δx5 δx6 δx7 δx8 δx9

δy1 δy2 δy3 δy4 δy5 δy6 δy7 δy8 δy9

δz1 δz2 δz3 δz4 δz5 δz6 δz7 δz8 δz9

⎤
⎦ .
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Fig. 9. (Colour online) Example of mean value and standard
deviation for 10 compliant displacements.

The equation for estimating the stiffness matrix is solved
by least squares method since δ is not square:

K = Fδ′(δδ′)−1, (10)

Where δ′ is the transpose of matrix δ. The experimental
test consists of simultaneously measuring of applied forces
and corresponding compliant displacements. Moreover, the
determinant of the stiffness matrix was used to quantify
with a single value of stiffness in different positions of the
workspace.

4. Robot Stiffness Estimation
The stiffness was computed for a set of 48 positions within
the workspace of robot Parallix LKF-2040. The 48 positions
are located on three planes at different Z levels –200,
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Fig. 10. (Colour online) Displacements considering nine forces for robot positions: (a) (–100, –100, –400) and (b) (150, 50, –310).

–310, and –400; each plane contains 16 positions spaced
equally. The robot reference frame is located at position (0,
0, 0), which corresponds to the center of fixed platform.
Figure 8 shows the robot workspace (red dots) and the set of
positions (including their corresponding plane in blue) where
the stiffness was estimated.

For each position, two images of the mobile pattern
were acquired. These images correspond to compliant
displacements generated by applying nine vector forces,
shown in Table II, that correspond to a combination of three
loads. The scalar forces applied are 4.905, 1.962, and 0.981
N that correspond to loads of 500, 200, and 100 g. We
considered convenient to apply forces of less than 600 g,
which is the maximum payload of the robot.

We are assuming that a compliant displacement occurs
only when an external load is applied to the mobile platform.

Ten repeated measurements of the compliant displacement
were performed for each position according to ISO 5725.20

As an example, Fig. 9 shows 10 repeated measurements

corresponding to the compliant displacement norm when
force 1 (4.905 N along Y-axis, see Table II) is applied on the
mobile platform position (–100, –100, –400). Displacement
norm mean values and the corresponding standard deviations
are also indicated in Fig. 9.

Figure 10 shows the compliant displacement norm
corresponding to two of the 48 robot positions (–100, –100,
–400) y (150, 50, –310), when the nine forces (see Table II),
are applied to the mobile platform.

Figure 10(a) shows that the largest compliant displacement
occurs when forces are applied along the X-axis, while the
smaller one is obtained when the force is applied on the Z-
axis. In fact, compliant displacements produced by forces
of magnitude of 0.981 N on the Y and Z-axes are less
than 0.3 mm. In Fig. 10(b), lower compliant displacements
are observed, indicating that the stiffness is larger for that
position of the mobile platform.

The stiffness numerical values presented in Table III were
estimated using the mean value of compliant displacement

Table III. Stiffness matrices and determinants for six-robot positions.

K = −0.2409 0.2612 0.2029

1 [–100, –100, –400] 0.9153 0.244 0.6019 � = 0.6521
0.0759 0.3547 −1.7682

K = 0.6432 1.9244 −0.7547
2 [–100, –34, –400] 1.4974 0.9834 1.1074 � = 10.4954

−0.3293 0.3176 −5.3474
−1.7344 3.6163 −2.0876

3 [150, 50, –310] K = 1.4329 −0.2791 0.438 � = 38.4635
1.3356 −2.4109 −6.7579

−1.1034 3.3137 −1.5047
4 [150, 150, –310] K = 1.8491 −0.2564 1.0873 � = 43.6104

−1.4914 −1.4825 −7.8815
3.4201 0.2397 0.4399

5 [–200, 200, –220] K = 2.2007 0.2391 −2.4562 � = −4.4748
4.1906 0.0341 −6.4945
0.7342 1.2172 −4.8496

6 [200, –200, –220] K = 1.2115 −0.0114 1.1727 � = −0.8527
0.0378 1.207 −4.8725
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Fig. 11. (Colour online) Some positions where the stiffness was estimated.

for each position, and the corresponding determinant of
the stiffness matrix was computed. To illustrate the results
obtained, some stiffness matrices and the corresponding
determinants are presented in Table III. Some pictures
corresponding to the acquired images are shown in
Fig. 11.

5. Results
The resulting intrinsic parameters of camera calibration were
used along the experimental procedure. These parameters
change only if the camera optics is modified. Table IV shows
intrinsic parameters values calculated and used to compute
extrinsic parameters.

Figure 12 shows a stiffness map, it means a graphical
representation of the robot stiffness, considering the 48
selected positions. The circle diameters are proportional to
the determinant of stiffness matrix.

The stiffness estimation was performed starting from the
lower level, at the coordinates [–100, –100, –400]. Stiffness
is higher in the center than in the border of the workspace, as
according to Yoon et al.,9 a higher determinant value means
higher stiffness.

At coordinates [–67, 66, –220], the highest determinant
was found to be 873.27, this position is located at the center
of the upper plane. It is also noted that coordinates [–200,
200, –220] and [–200, 200, –220] have the lowest values. In
fact, these positions are located in the corners of the upper

Table IV. Intrinsic parameters of the camera.

Intrinsic parameters Values

Focal distance [Dfx = 3733.27, Dfy = 3722.85] ± [39.9636.86]
Principal point [u0 = 1466.77, v0 = 904.81] ± [24.6540.23]
Lens distortion [D1 = −0.09, D2 = 0.11] ± [0.00110.04632]

Fig. 12. (Colour online) Stiffness map of the Parallix LKF-2040 robot.
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Fig. 13. (a) Links folded, configuration related with high stiffness; (b) two links extended, configuration related with low stiffness.

plane. It is important to comment that low stiffness coincides
with low stability from the robot control viewpoint.

A mechanical structure is stable if the determinant of the
stiffness matrix is nonzero. Therefore, the more close to zero
is the determinant, less stiff will be the manipulator.

Figure 13 shows that the highest stiffness is obtained in
the upper workspace, which corresponds to a configuration
where the links of the robot are folded (see Fig. 13(a)).

This coincides with a common sense: man with folded
elbows can support a load more rigidly.

Furthermore, the stiffness of the manipulator is low in
positions away from the center of the workspace, especially
at the boundaries. This can be explained because in that
configuration control is less effective in maintaining the
desired position, as the lever arm is higher for one or two
actuators simultaneously and high torques are required. In
the configuration with 1 or 2 links extended (Fig. 13(b)) the
parallel manipulator presents the same disadvantages as a
serial-type robot manipulator arm.

6. Conclusions
In this paper, a methodology was developed and implemented
for estimating the stiffness of a parallel manipulator using
image analysis techniques. The methodology was tested on
a parallel robot, Parallix LKF-2040, built at IPN-CICATA,
Mexico. Three different loads in X–Y–Z axes were applied
to the mobile platform to produce compliant displacements
using a home-made device for force applications. This device
presented friction at pulleys level that was neglected during
the experiment, the force-applied losses were experimentally
estimated and were less than 6% of the applied force.

The displacement estimation using camera calibration
techniques was validated experimentally. The stiffness was
determined for different positions within the workspace of
the robot. The determinant of the stiffness matrix was used to
represent stiffness map graphically. The stiffness map shows
that stiffness decreases in extreme positions of the workspace
where the robot control performances decrease.

We are assuming that it is not necessary to measure
angular displacements, since Delta-type robot has only
translation motions. However, our approach allows extracting
them for camera extrinsic parameters in case they should
be considered for different robot architectures. This
method proved to be practical and fast to find compliant
displacements on the mobile platform when a load is

applied. It can be adapted to serial robot manipulators
where conventional methods to estimate stiffness are
difficult to implement. The idea of stiffness map for
graphical representation of robot stiffness should be studied
extensively. The accuracy of this method depends on the
quality of machine vision system, that is, on camera
calibration technique and camera resolution. The software
used in this work is based on MATLAB ToolBox “Camera
Calibration Toolbox”, and the camera resolution is 2592 ×
1944 pixels, which allows to ensure enough accuracy for
such kind of robot-compliant displacements.

Compared with other techniques to estimate stiffness in
robot manipulators, the method presented in this paper has
the following advantages:

� This avoids the analysis of rigidity of each one of the
elements (links and joints) of the robot.

� No need to know the mechanical properties of the elements
of the robot.

� The stiffness can be evaluated in all directions (translation
and orientation).

� Possibility of mapping the actual stiffness for any set of
robot workspace.

� Stiffness can be mapped during the execution of a given
task and then compare the results under different load
conditions.

� It can be used to experimentally validate theoretical
stiffness analysis.

� This is a low cost method since it only requires printed
patterns, a medium resolution camera, and a simple system
to apply known forces.
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