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The mechanism of localized inertial wave excitation and its efficiency is investigated
for an annular cavity rotating with Ω0. Meridional symmetry is broken by replacing
the inner cylinder with a truncated cone (frustum). Waves are excited by individual
longitudinal libration of the walls. The geometry is non-separable and exhibits wave
focusing and wave attractors. We investigated laboratory and numerical results for the
Ekman number E≈ 10−6, inclination α= 5.71◦ and libration amplitudes ε6 0.2 within
the inertial wave band 0 < ω < 2Ω0. Under the assumption that the inertial waves
do not essentially affect the boundary-layer structure, we use classical boundary-layer
analysis to study oscillating Ekman layers over a librating wall that is at an angle
α 6= 0 to the axis of rotation. The Ekman layer erupts at frequency ω = f∗, where
f∗≡ 2Ω0 sin α is the effective Coriolis parameter in a plane tangential to the wall. For
the selected inclination this eruption occurs for the forcing frequency ω/Ω0= 0.2. For
the librating lids eruption occurs at ω/Ω0 = 2. The study reveals that the frequency
dependence of the total kinetic energy Kω of the excited wave field is strongly
connected to the square of the Ekman pumping velocity wE(ω) that, in the linear
limit, becomes singular when the boundary layer erupts. This explains the frequency
dependence of non-resonantly excited waves. By the localization of the forcing,
the two configurations investigated, (i) frustum libration and (ii) lids together with
outer cylinder in libration, can be clearly distinguished by their response spectra.
Good agreement was found for the spatial structure of low-order wave attractors
and periodic orbits (both characterized by a small number of reflections) in the
frequency windows predicted by geometric ray tracing. For ‘resonant’ frequencies a
significantly increased total bulk energy was found, while the energy in the boundary
layer remained nearly constant. Inertial wave energy enters the bulk flow via corner
beams, which are parallel to the characteristics of the underlying Poincaré problem.
Numerical simulations revealed a mismatch between the wall-parallel mass fluxes
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near the corners. This leads to boundary-layer eruption and the generation of inertial
waves in the corners.

Key words: boundary-layer structure, geophysical and geological flows, waves in rotating fluids

1. Introduction

Inertial waves appear as coupled pressure–velocity oscillations in a homogeneous
fluid under constant uniform rotation. The restoring force is due to the Coriolis effect.
Wave frequencies are band-limited to (0, 2Ω0), where Ω0 denotes the constant angular
velocity of the system. Inertial waves are of importance in liquid planet cores (Tilgner
2009), but also in the deep ocean or the well-mixed equatorial atmosphere where
stratification is weak (Harlander & Maas 2007a; Maas & Harlander 2007). But even
in industrial rotating flows and spacecraft design (Agrawal 1993) they need to be
considered. The waves transport momentum and can, roughly speaking, generate mean
flows by angular momentum mixing (Maas 2001). Inertial waves have some striking
properties, which can be attributed to their dispersion relation (e.g. Lighthill 1978,
p. 438)

ω=±2Ω0 · k
|k| , (1.1)

with ω the wave frequency and k the wave vector. The wave frequency does not
depend on the length of the wave vector, but on its direction. This implies that
inertial waves of frequency ω propagate along a characteristic cone (Messio et al.
2008). Their phase velocity cp is perpendicular to the group velocity cg. By fulfilling
cp + cg = ±2Ω0/|k|, the waves show anomalous reflection from oblique boundaries
(Phillips 1963; Maas 2001; Manders & Maas 2003; Harlander & Maas 2007b; Borcia
& Harlander 2012).

Inertial waves can be excited in different ways. McEwan (1970) used a cylindrical
tank rotating with angular velocity Ω0 about its vertical axis. The top lid of the tank
had a slight inclination with respect to the horizontal and rotated with angular velocity
Ω that slightly differed from Ω0. For instance, Maas (2001) and Swart et al. (2010)
used a time-dependent rotation rate of the form

Ω(t)=Ω0 [1+ ε sin(ωt)] , (1.2)

where ε is the non-dimensional velocity amplitude and ω is the frequency of the
forcing. In the astrophysical context this kind of wave excitation is called longitudinal
or zonal libration. Many librating planets or moons are believed to possess a liquid
core (like the Earth’s moon) or liquid layers in the form of subsurface oceans,
e.g. Saturn’s moons Titan and Enceladus (Noir et al. 2009). Libration-induced flow
has been studied by several authors for different geometries. In the geophysical and
astrophysical context it is obvious to use spheres (Aldridge & Toomre 1969; Busse
2010; Sauret, Cébron & Le Bars 2013; Zhang et al. 2013) or spherical shells (Tilgner
2007; Noir et al. 2009; Calkins et al. 2010; Koch et al. 2013; Sauret & Le Dizès
2013). Other geometries, such as cylinders (Noir et al. 2010; Swart et al. 2010;
Lopez & Marques 2011, 2014; Sauret et al. 2012), cones (Beardsley 1970), prisms
(Maas 2001) and boxes (Boisson et al. 2012) have also been studied. These models
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are of general interest, even if seeming remote from geophysics at first glance. Waves
themselves can drive strong mean flows (Maas 2001; Tilgner 2007; Bordes et al.
2012), but even without inertial waves mean flows can be driven by libration (Busse
2011; Sauret et al. 2012; Sauret & Le Dizès 2013). In the latter case nonlinearities
in the Ekman boundary layer are responsible for the flows, but not inertial waves or
local instabilities. It is thus important to carefully distinguish the different causes.

The geometry has a large effect on the flow induced by libration. For the sphere
and the straight cylinder normal modes exist in the inviscid case. In contrast, for the
spherical shell, the cone, the frustum or the prism, inviscid solutions become singular
along detached shear layers, so-called wave attractors (Maas & Lam 1995; Rieutord
& Valdettaro 1997; Maas 2001), which we shall discuss later in more detail. The
surprising sensitivity to the confinement geometry is related to the hyperbolic nature
of the underlying boundary value problems (Harlander & Maas 2007a). A container
that is metrically simpler than a spherical shell but possesses most of its interesting
features is an annulus whose inner cylinder is replaced by a truncated cone, called
frustum in the following (Beardsley 1970; Henderson & Aldridge 1992). It is an
annular version of the prism used by Maas (2001) in order to allow emergence of a
unidirectional azimuthal mean flow. This geometry has been used earlier already by
Swart et al. (2010) to experimentally study inertial-gravity wave excitation in analogy
to the waves excited at ocean shelves. They observed a prominent wave beam excited
in the corner between the sloping and the inner wall (foot of the shelf). This was
explained by a local boundary-layer eruption similar to the eruption found at the
critical latitude on the inner sphere of a librating spherical shell (Kerswell 1995;
Koch et al. 2013) or at the shelf edge (Gostiaux & Dauxois 2007). Note that in both
of the latter cases the boundaries at which waves are excited are convex (bending
inwards). At the critical latitude (critical slope) the excited wave rays are tangent
to the surface. In contrast, the bottom of the shelf studied by Swart et al. (2010)
forms a concave boundary and the eruption gives rise to a wave beam perpendicular
to the bottom, but emerges at the critical point. The three examples nicely illustrate
how global oscillatory motions (of the boundary or the fluid) can lead to local wave
excitation.

We study inertial wave excitation and wave attractors in an annulus with an inner
frustum in the laboratory, by direct numerical simulation (DNS) and theoretical
analysis. We librate either the frustum alone or the outer cylinder together with
the top and bottom lids of the annulus. (In the laboratory the top and bottom lids
are mounted on the outer cylinder so that they cannot move independently.) This
is in a sense similar to the configuration of McEwan (1970). The advantage is
that inertial waves are excited at predefined regions that depend on the boundaries
that oscillate. This allows the different wave excitation mechanisms to be separated.
Inertial waves are efficiently excited when fluid particles are forced to cross surfaces
of constant angular momentum (in analogy to gravity waves that can be excited
by pushing fluid particles across surfaces of constant density). We shall see that in
the case of the librating inner wall an oscillating (rotary) Ekman layer forms on
the frustum, due to which fluid moves periodically up and down the slope. When
the outer cylinder and the lids librate, oscillating Ekman layers form over both
lids and fluid moves periodically in radial direction. Both configurations result in a
significant radial motion directed to or from a corner in a meridional section and
can be suspected as the primary ingredient of inertial wave excitation. The effect of
the librating outer cylinder on the wave motion is less clear. Usually, in studies with
an entire tank librating, the Stokes and Stewartson layers at the vertical walls are
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FIGURE 1. Schematic drawing of the annular tank. The inner wall (frustum) is inclined
towards the vertical axes with an apex half-angle α = 5.71◦. (a) shows the set-up and
(b) the local axes on the wall used for the boundary-layer analysis in § 5.1.

neglected or treated schematically (Wang 1970; Busse 2011). The main purpose of
the present work is to study the different wave excitation mechanisms and to expand
experimental and numerical results to clarify the role of the boundary layers on the
wave excitation. Moreover, we study efficiency of wave excitation and how the latter
depends on frequency.

The paper is organized as follows. In § 2 we describe the experimental and
numerical set-ups. In § 3 we use ray tracing to discuss the wave patterns that can
be expected. We also aim to single out forcing frequencies that yield geometrically
simple solutions. In § 4 we compare experimental and numerical results for different
forcing frequencies and the two forcing configurations. Subsequently, in § 5 we
discuss the efficiency of wave excitation and study its frequency dependence. Finally,
in § 6 we summarize our findings and give some concluding remarks.

2. Experimental and numerical set-up
The annular tank configuration is sketched in figure 1(a). It encloses a fluid volume

of height h and height-dependent gap width 1r(z)= r2− r1(z). Rigid lids are located
at z= 0 and z= h. The outer wall consists of a straight cylinder of radius r2 and the
inner wall is given by a frustum of radius

r1(z)= r1(0)− z tan α, (2.1)

where r1(0) is the base radius and α=5.71◦ is the apex half-angle of the frustum. The
whole tank is mounted upright, so that the gravitational acceleration g is antiparallel to
the rotation axis. In the present work we only consider constant mean rotation around
the symmetry axis, i.e. Ω0 =Ω0ez.

The flow in the tank is described by the Navier–Stokes equations. Formulated for
velocity v and pressure p in the corotating frame of reference the dimensionless
equations read (e.g. Greenspan 1969, p. 7)

∂v

∂t
=−Ro (v · ∇) v − 2ez × v −∇p+ E∇2v, (2.2)

∇ · v = 0, (2.3)
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where Ro is the Rossby number and E is the Ekman number. Here the latter are
defined as

Ro= U
Ω0h

, E= ν

Ω0h2
(2.4a,b)

where U is the velocity scale, h the length scale and ν the kinematic viscosity. As
time scale we use T = Ω−1

0 due to the Coriolis effect. Deviations from rigid-body
rotation are of the order O(ε) and are introduced by the wall libration. The velocity
U = εhT−1 and pressure scale p0 = εh2T−2 are thus consistent with (2.2). This is in
fact the scaling for boundary-layer flow over a flat surface in which the amplitude ε
is the Rossby number. We use this scaling for the discretized equations to have only
a single length scale h.

Inertial waves are excited by longitudinal librations of subsets of the four bounding
walls. The two complementary configurations that could be realized in the laboratory
(cf. figure 1a) are (i) libration of the frustum, i.e. Ω1=Ω(t), and (ii) libration of the
outer cylinder together with the lids, i.e. Ω2 =Ω(t). The remaining walls were kept
at constant rotation rate Ω0. We require no-slip conditions by prescribing velocity at
the walls. The wall is impermeable such that there is no flux through the boundary.

Velocity components have to fulfill Dirichlet boundary conditions. These are
homogeneous for components vz and vr, i.e.

vz = vr = 0 at z= 0, h and r= r1(z), r2. (2.5)

The two different configurations can be realized by appropriate expressions for the
azimuthal velocity vϕ alone. In case of the librating frustum (i) we have

vϕ = 0 at z= 0, h and r= r2,
vϕ = εr sinωt at r= r1(z),

}
(2.6)

whereas libration of the outer cylinder and lids (ii) means

vϕ = εr sinωt at z= 0, h and r= r2,
vϕ = 0 at r= r1(z).

}
(2.7)

(Selecting Ro = ε, cf. (2.4), demands rescaling of the boundary conditions so that
ε will be dropped from (2.6) and (2.7).) The librational forcing is purely azimuthal,
which makes the wall velocity vw divergence-free. Both velocity and pressure need
to be periodic in azimuthal direction and we require periodic Dirichlet conditions at
ϕ = 0, 2π. Pressure is specified only up to an additive constant due to the remaining
Neumann-type boundary conditions on boundaries in the (r, z)-plane.

It is worth noting that the numerical model offers more flexibility in the selection
of boundary conditions than presented here. For the current work we have selected
cases that are accessible with the laboratory set-up.

2.1. Laboratory set-up
2.1.1. Apparatus design

We constructed an apparatus with two corotating cylinders that can move
individually. The outer cylinder wall is made out of borosilicate glass and has the
height h=500 mm, an outer-side diameter 2R= (415±5) mm and a wall thickness of
1R= (7.0± 1.5) mm. The axial-mean inner-side diameter is 2r2 = (400.1± 1.7) mm.
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The frustum is made of aluminum and has a base diameter 2r1(0)= 200 mm and an
upper diameter of 2r1(h) = 100 mm, corresponding to a half-apex angle α = 5.71◦.
This rather shallow angle permits investigation of focusing reflections over a wide
range of frequencies (cf. Borcia & Harlander 2012). The top lid is made of acrylic
glass with a thickness of 1h = 40 mm and is mounted on the outer cylinder. The
bottom lid is made of aluminum and rests on a turntable serving as support for
the glass cylinder. All aluminum parts were anodized to suppress parasitic optical
reflections and to make the surface resistant against chemical processes.

In the experiment we use a mean angular velocity of Ω0 = π rad s−1. Forcing
amplitudes can be set within the interval 0<ε6 0.49, which is compliant with linear
and weakly nonlinear regimes. We focused on forcing frequencies lying in the inertial
wave band (0, 2Ω0). The system was perturbed with a unique frequency ω, which
immediately set the dominant frequency in the response spectrum of excited waves
(similar to spectra shown by Sauret et al. 2012, 2013).

As working fluid we used water (density ρ = 998.2 kg m−3, kinematic viscosity
ν = 1.0028 × 10−6 m2 s−1 at 20 ◦C; see Grigull, Straub & Schiebener 1990). Visual
observations were carried out after adding a small amount of a rheoscopic fluid. We
used AQ-1000 from Kalliroscope, which is a suspension of microscopic crystalline
platelets (Matisse & Gorman 1984). In accordance with Dominguez-Lerma, Ahlers &
Canell (1985), 1–2 % polymeric flakes are immersed in a mixture of propylene glycol
and water. The platelets align their longest axis parallel to the velocity shear present in
the fluid. Under unidirectional illumination this results in a coherent reflection signal.
Viewed from a fixed angle, the illuminated volume exhibits a shading that gives an
impression of the streamlines and their evolution with time.

The set-up used for the optical measurements is shown in figure 2. We used an
Nd:YAG laser to provide monochromatic light of 532 nm wavelength. The laser
light-sheet is formed by a set of lenses and is approximately 200 mm wide and
2–3 mm thick. Measurements were conducted with the laser light-sheet illuminating
the rectangular trapezoid ABCD illustrated in figure 2. In order to get a homogeneous
light intensity across the whole slice (aspect ratio 1r(0)/h = 1/5), light from the
horizontally mounted laser is redirected to be incident from the top. Flow patterns
were then recorded as intensity distributions of the scattered light with a digital HD
video camera, which was mounted at a physical distance of 500 mm normal to the
illuminated slice.

2.1.2. Measuring procedure and post-processing
Each measurement was started by synchronizing both cylinders to rotate with the

same angular velocity Ω0. After the system reached rigid-body rotation, libration was
switched on gradually. When the final libration amplitude was reached and transients
had vanished the flow was recorded (cf. figure 2). Reaching stationarity usually
took some tens of minutes. Individual record lengths were kept constant at 100 s
for each selected point in the parameter space (ε, E, ω). A frame rate of 25 fps
was used for all measurements. From each record 2500 images with a resolution of
720 pixels× 576 pixels were extracted, processed further by the procedure described
in the following. Processing of the data was necessary to enhance the contrast of
the oscillating patterns. The images were masked in order to exclude optical artifacts
originating from optical reflections along the boundaries.

In all of the experiments conducted we were in a weakly nonlinear regime. Wave–
wave and wave–boundary interactions yield the occurrence of harmonics ωj= jω (j=
0, 2, 3, . . .) of the forcing frequency ω, where ωj< 2Ω0 for patterns related to inertial
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Nd: YAG - Laser
532 nm

500 mm

C B

AD

Mirror

FIGURE 2. (Colour online) Experimental set-up in the laboratory. A laser light-sheet
illuminates a slice ABCD of the fluid volume. The flow is visualized by recording light
scattered from immersed platelets that are oriented according to the velocity shear in the
fluid. The camera is positioned normal to the light sheet and records the evolution of
streamlines in the meridional plane.

waves. The parameter setting permits filtering of the data at a few harmonics ωj in
order to suppress optical noise, which stems from imperfectness of the glass cylinder,
inhomogeneous illumination, varying particle densities, etc. Because the phases and
sampling rates of the individual constituents ωj are unknown, we chose the flexible
method of harmonic analysis as described by Emery & Thomson (2001), assuming
that the physical signal lies on the frequency comb of harmonics ωj= jω. In essence,
a truncated Fourier series is fitted to the time series containing all of the multiples ωj
in the inertial wave band. The residual R is computed for every point. In matrix form
we may write

R=
N∑

i=1

[
Y(ti)−

(
A0 +

M∑
j=1

Aj cosωjti + Bj sinωjti

)]2

. (2.8)

On the right-hand side Y(ti) denotes data vector for the time slices i = 1, 2, . . . , N,
whereas A0, Aj and Bj for j= 1, 2, . . . ,M are the Fourier coefficients of the harmonics
obtained by a least-squares fit. With the aid of the Fourier coefficients the time
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dependency of the flow patterns can be reconstructed. Individual harmonics can be
accessed by computing amplitudes Dj = (A2

j + B2
j )

1/2 and phases Ej = arctan(Bj/Aj),
where Ej ∈ (−π,π]. Evaluation of the residual R may serve as an estimate for quality
of the projection and the anharmonic remainder.

2.2. Numerical model
Two aspects have been regarded as particularly important in the investigation of wave
attractors: (i) the strong velocity gradients near the attractor and (ii) the propagation
time of the waves needed to develop an attractor. The first is addressed by DNS.
According to Moin & Mahesh (1998) this requires high accuracy, computational
efficiency and conservation of the integrals of motion. Long simulation times require
a numerical scheme with no or negligible numerical diffusion of the kinetic energy
of the waves. With the following scheme all these requirements can be fulfilled.

The set of (2.2) and (2.3) is solved in a terrain-following locally orthogonal
coordinate system (see appendix A for details). The model variables are staggered
contravariant volume fluxes. The base version of the solver used was developed by
Choi (1993) and Choi, Moin & Kim (1993) in the early 1990s for planar channel
flows over small-scale topography. Kaltenbach et al. (1999) further developed the
code for two-dimensional (2D) airfoil and large-eddy simulations (LES), focusing
on asymmetric planar diffuser flow. The solver was further developed by AW
(né Hauschild) and Kaltenbach in order to simulate diffuser flows with rotational
symmetry (Akselvoll & Moin 1996; Verzicco & Orlandi 1996). At the present it still
relies on the second-order central-differences scheme. Coriolis force, time-dependent
wall boundary conditions, as well as factoring of viscous terms in the axial direction
have been introduced in order to simulate libration-induced flows in the annulus in
the corotating frame of reference.

Following Morinishi et al. (1998) it is important to note that the numerical scheme
conserves mass and momentum a priori up to the individual orders of accuracy. It
was also shown that the scheme will become fully conservative by conserving kinetic
energy if a locally orthogonal grid is provided. The grid was optimized in this respect
yielding the residual (in a discrete sense) of maxi,j(1αij)≈ 0.03◦ taken over all grid
lines 0 6 i 6 Nr, 0 6 j 6 Nz. One should note that the numerical model requires
approximations in the geometry in the vicinity of the corners A and B due to local
orthogonality. Hence, the linear ramp r1(z) forming the frustum wall is required to
have smooth slope transitions near A and B thus introducing curvature in the axial
direction (see figure 3(b,c) and appendix B for details).

In our implementation only the volume fluxes q1 and q2 lying in the (r, z)-plane
are staggered. The volume flux q3 is collocated with the pressure p at cell centres.
Axisymmetry is exploited by the spectral derivative in the azimuthal direction. This
is efficient in cases dominated by small azimuthal wavenumbers. Staggering resolves
the discontinuous boundary conditions at the corners A–D (cf. (2.6) and (2.7)) up to
one half of a grid cell. This is in contrast to manual regularization needed in other
schemes (like Czarny et al. 2003).

We use a semi-implicit scheme for time integration. Only the wall-normal
viscous terms are treated implicitly using a factored Crank–Nicolson scheme that is
second-order accurate (Choi 1993). It is applied to avoid time-step limitations owing
to viscous dominance in highly refined meshes. Advection, Coriolis force, pressure
gradient, viscous cross and azimuthal derivatives, as well as boundary conditions
are integrated with the third-order Runge–Kutta scheme described by Orlandi (2000).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

30
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.304


Inertial wave excitation and focusing 263

0.10.20.30.4
r

0

0.2

0.4

0.6

0.8

1.0

z

A

BC

D

1

2

3

4

5

0.1980.2040.2100.216
r

0

0.01

0.02

0.03

0.04

0.05

0.06

Q

Q (2)

Linear ramp
Grid
Matching height

0.0960.1020.1080.114
r

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Linear ramp
Grid
Matching height

(a) (b) (c)

FIGURE 3. (a) Grid and subdomains: a generic structured grid is plotted for the trapezoid
ABCD shown in figure 1(a) with Nr × Nz = 192× 640 grid boxes in the (r, z)-plane. To
aid visibility, only every eighth grid line is shown here. (b) Close-up at A and (c) close-up
at B: enlarged view of the corners A and B, resolving every second grid line. Polynomial
slope transitions of width 1z= 0.04 (matching heights) replace the top and bottom parts
of the otherwise linear ramp. Shaded areas and numbers indicate subdomains used for
computation of volume integrals. Here, Q, Q(2) exemplary show Ekman fluxes induced in
the prograde phase for the frustum in libration (cf. § 5).

Since radial and axial dimensions are wall-bounded, alias removal is implemented for
the periodic azimuthal direction only. We use a grid-shift method proposed by Canuto
et al. (1991) for all dynamic variables and filter the Nyquist wavenumber explicitly.

The time steps had to be selected in such a way that time integration is stable and
accurate. It is bounded by the CFL condition of the scheme and the fastest wave in
the excited spectrum. Inertial waves are the only waves exhibited by the model. Given
a plane wave with wave vector k, we infer that phase velocity cp and group velocity cg

are of the order of the wavelength λ=|k|−1. Hence the fastest wave has the maximum
wavelength λmax . 2h. Excited waves typically have much smaller wavelengths though,
which will become more clear in § 4. Hence, λ= 2h yields a pessimistic estimate for
1t, whereby a too large time step affects the high-wavelength end of the spectrum.
In the configurations investigated it turns out that advection velocities are typically
smaller than the maximum wave speed, |v|�max(cp, cg). Thus, we take 1t.C1smin

initially, where 1smin is the diameter of the smallest grid cell and C is the CFL
number. (Note that we have to formally replace C→ εC for the scaled equations.) This
yielded time steps of the order 1t ' 2π× 10−3. Estimation of the viscous frictional
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time scale revealed that it is of similar order as the explicit time step, which means
that inaccuracies of the implicit terms are sufficiently small.

3. Ray tracing
Ray tracing is a useful technique to qualitatively understand the structure of

the flow field (Maas 2005), especially if the eigenspectrum is unknown. Analogue
situations arise in quantum chaos, where classical billiards are used to infer properties
of eigenfunctions of the Schrödinger operator in quantum billiards (see Ott 1993 for
an introduction). In essence, ray tracing is able to capture wave-related features by
a minimum of computational cost since no eigenvalue problem has to be solved and
only a map has to be iterated. In many cases these characteristics correspond to the
group velocities (Maas & Lam 1995; Maas 2001), i.e. the directions along which
kinetic energy can propagate (Harlander & Maas 2006). In non-separable geometries
so-called wave attractors arise. A wave attractor is a geometric object inside the
cavity onto which all rays for a fixed frequency ω are focused, when the number of
reflections exhibited by the ray tends to infinity. Wave attractors are not only features
of inviscid models but can be found also in viscous eigenfunctions of the linearized
Navier–Stokes operator (Rieutord & Valdettaro 1997).

The geometry of the annular cavity suggests to write the dimensionless (2.2) and
(2.3) in cylindrical coordinates (see Borcia & Harlander 2012, and references therein).
After linearization and elimination of the velocity we obtain for the pressure

∂2p
∂r2
−
(

4
ω2
− 1
)
∂2p
∂z2
+ 1

r
∂p
∂r
+ 1

r2

∂2p
∂ϕ2
= 0. (3.1)

The boundary conditions are due to impermeability of the walls, say v · n= 0 at z=
0, 1 and r = r1(z), r2. Note that ω is from now on dimensionless and in the range
(0, 2). Writing the boundary conditions in terms of pressure we obtain

∂p
∂z
= 0 at z= 0, 1, (3.2)

iω
[
∂p
∂r
−
(

4
ω2
− 1
)
∂p
∂ϕ

tan α
]
+ 2

r
∂p
∂ϕ
= 0 at r= r1(0)− z tan α, (3.3)

iω
∂p
∂r
+ 2

r
∂p
∂ϕ
= 0 at r= r2. (3.4)

Characteristics of (3.1) form a double cone (e.g. Greenspan 1969). Symmetry
permits us to consider only the (r, z)-plane, where it was shown by Borcia &
Harlander (2012) that characteristics c± are described by

c± = z± r

√
4
ω2
− 1. (3.5)

From a local source that emits waves with frequency ω, four ray directions
can be found: upwards to the right, upwards to the left, downwards to the right,
downwards to the left. The angle γ between the r direction and the ray is given by
tan γ = (4/ω2 − 1)1/2 and is fixed by the frequency ω, which is a direct consequence
of the dispersion relation. The wavelength does not enter the characteristic equation
so that the reflection law of inertial waves differs from Snell’s light reflection law.
For inertial waves the angles between rotation vector and any wave rays (incident
or reflected) are the same for a fixed wave frequency ω. The slope of the wall
from which the waves are reflected does not determine the direction of the reflected
ray. After a reflection on an inclined wall the wave can be focused or defocused
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FIGURE 4. Ray-tracing estimate of the inviscid spectrum. The Poincaré diagram shows
the reflection points along r (bottom lid) as a function of the wave frequency. The white
regions (‘windows’) correspond to wave attractor bands. Frequencies considered in § 4 are
marked: ω = 0.2 (inclination of characteristics roughly coincides with the frustum wall),
ω= 0.47 and ω= 0.57 (the middle and the upper limit of the 1/1 attractor interval) and
ω= 1.4 (collapsed interval that is a reminiscent of a normal mode solution; see also figure
9 in Borcia & Harlander 2012).

(see Phillips 1963). A (de)focusing reflection abruptly increases (decreases) the
wavenumber and increases (decreases) the energy density of a wave beam (E > 0
case). In general, closed trajectories in the form of wave attractors are obtained if
focusing dominates over defocusing after multiple reflections from the inclined wall
(see Maas & Lam 1995).

A proper way to display wave attractor frequencies is to construct a Poincaré
diagram such as that shown in figure 4. For a large number of different frequencies
the ray-tracing paths were calculated. Without loss of generality, we consider just
the reflections at the upper lid and outer cylinder wall. After waiting for the 5000th
reflection we plotted the reflection point coordinates along the selected r- and z-axis
up to the 20 000th reflection. In a generic setting, no low-order wave attractor exists
and wave rays cover, roughly speaking, the entire available domain. Consequently,
a black line forms for the selected frequency ω along the Poincaré surface as can
be seen in figure 4 (r-axis only; the z-axis the diagram is qualitatively similar).
However, in some particular frequency intervals focusing dominates and only a
few reflection points exist. These frequency intervals correspond to low-order wave
attractors, appearing as ‘windows’ in the otherwise black diagram. By wave attractor
band (window) we refer to frequency intervals in which a certain geometric structure
with a constant (small) number of reflections exists. A single structure obtained for a
selected ω is representative of the corresponding wave attractor class Im/n, where m
denotes the number of reflections along r and n those along z. The class Im/n exists
on the corresponding frequency interval Im/n ⊂ (0, 2) of non-zero measure. A few
examples are shown for ω= 0.2, 0.47, 0.57 in figures 6–8(a). All of these frequencies
are located within a wave attractor window of figure 4. Note that waves trapped
on the simplest possible 1/1 wave attractor propagate in the clockwise direction
(focusing reflections dominate), which is indicated by the arrows.
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FIGURE 5. Theoretical results for the inviscid case. Wave attractor solutions for the
limiting frequencies and intermediary states of the class I2/1. The images were obtained
by launching a characteristic ray at an arbitrary point, letting it reflect 5000 times and
plotting the next 400 reflections: (a) ω = 0.2; (b) ω = 0.22; (c) ω = 0.25; (d) ω = 0.28;
(e) ω= 0.296.

Representatives of I2/1≈ [0.2, 0.296] (cf. figure 4) are shown in figure 5. Note that
the attractors corresponding to the limit frequencies are degenerate, i.e. at each point
on the attractors shown in figure 5(a,e) wave rays propagate in both directions. In
the case of finite viscosity, interference of wave beams has to be expected, which
is beyond ray tracing. When the frequency is increased from the lower limit, a
‘two-cell structure’ appears and becomes symmetric with respect to the r- and z-axes
for ω ≈ 0.25. The attractor path is separated such that in a generic point wave rays
are propagating in a single direction only (see arrows). For higher frequencies the
cells become more elongated in the z direction and vanish again for the upper limit
frequency. It should be noted that figure 5(d,e) are approximately mirrored versions
of figure 5(a,b). Note further that the lower limit ω= 0.2 also is the critical frequency
that separates ‘point attractors’ located in the upper right corner B of the domain
from wave attractors in the whole annulus (cf. figure 4). Actually, for ω = 0.2 the
wave rays have the same slope as the frustum. Thus, in linear theory, any wave with
ω < 0.2 reflected from the frustum would lead to an infinite wave energy density in
the upper right corner B.

When focusing and defocusing exactly compensate for each other (m even and n
odd), one finds a periodic orbit that is not a wave attractor (Manders & Maas 2003).
The shape of the periodic orbit depends on the starting point (in contrast to wave
attractors). The two limiting ray patterns (in terms of figure 5) exist for the same
frequency ω (‘collapsed window’). These are typical features indicating existence of
a normal mode solution at this frequency. One can say that such frequencies are
remnants of the discrete (inviscid) eigenspectrum. An example of such a ‘surviving’
eigenmode frequency is ω= 1.4 (see figure 9(a), where the ‘limiting’ periodic orbits
connect corners A and B or C and D by a tilted W-like pattern).
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FIGURE 6. (Colour online) Comparison between (a) the ray tracing, (b) measurement and
(c) simulation for the excitation frequency ω = 0.47 at E = 1.3 × 10−6, ε = 0.2 for the
librating frustum. In (c) the boundary-layer flow exceeds the scale by a factor of 20; solid
(dashed) lines distinguish positive (negative) values. Characteristic angles are in qualitative
agreement.

The inertial frequency band (0, 2) is elaborately divided into bands Im/n of wave
attractors, single points corresponding to periodic orbits and ‘ergodic’ regions. From
figure 4 one can roughly say that the attractor windows become smaller and periodic
orbits more dense as ω→ 2.

4. Comparison of theory, experimental and numerical results

The relation between wave attractors obtained by ray tracing and the viscous
eigenfunctions has been discussed in detail for the spherical shell by Rieutord &
Valdettaro (1997) and Rieutord, Georgeot & Valdettaro (2001). For small Ekman
numbers the modes are strongly localized with a clear correspondence to the ray
patterns. The eigenspectra are rather dense. Thus, it is obvious that the viscous
boundary value problem, even though elliptic, is dominated by the hyperbolic part
of the operator. It should be noted that these findings are typical for non-separable
domains and not limited to the spherical shell. The viscous eigenspectrum of the
annulus bounded by a frustum is unknown, except for the few modes computed
by Henderson & Aldridge (1992) for a slightly different geometry. We used ray
tracing to estimate frequency intervals of inertial wave attractors adapting the picture
of propagating inertial wave (packages). Thus, it would be interesting to see an
eigenspectrum for our geometry and to compare it with the energy spectra found in
the numerical simulations and experiments (cf. § 5.3). Note that non-separable cases
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FIGURE 7. (Colour online) Comparison between (a) the ray tracing, (b) measurement and
(c) simulation for the excitation frequency ω = 0.2 at E = 1.3 × 10−6, ε = 0.2 for the
librating frustum. In (c) the boundary-layer flow exceeds the scale by a factor of 10; solid
(dashed) lines distinguish positive (negative) values. Characteristic angles are in qualitative
agreement.

are closer to real-world applications, wherefore it is illuminating to study the former
in detail.

In the following ray-tracing results are compared with measurements and simulations
for the viscous, weakly nonlinear regime. Fixed parameters are the Ekman number
E= 1.3× 10−6 and geometry. In the laboratory, the libration amplitude εlab= 0.2 was
kept constant, too. For the case of outer cylinder and lids in libration we adapted ε to
keep the Rossby number based on the libration velocity constant. Hence, εnum = 0.2
for the frustum in libration (as in the laboratory) and εnum = 0.1 for the lids and
outer cylinder in libration. Figures 6–9 show (a) the spatial structure of the solutions
obtained by ray tracing, (b) projection amplitudes of light intensity measurements (in
arbitrary units) and (c) the simulated azimuthal velocity field for different libration
frequencies. In (a) we show in addition to the wave attractor (solid black line) also
the four rays emerging from the corners: a (green online) solid line from the lower
right corner A, a (magenta online) dotted line from upper right corner B, a (blue
online) dash-dotted line from upper left corner C and a (red online) dashed line from
lower left corner D. This is because of the localization of the forcing, which we
discuss in § 5.

4.1. Frustum libration
Figure 6 shows the results for ω= 0.47. The frequency falls in the 1/1 wave attractor
window (cf. figure 4) and corresponds to the simplest possible wave attractor structure.
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FIGURE 8. (Colour online) Comparison between (a) the ray tracing, (b) measurement and
(c) simulation for the excitation frequency ω= 0.57 at E= 1.3× 10−6, εlab= 0.2, εnum= 0.1
for lids librating together with the outer cylinder. In (c) the boundary-layer flow exceeds
the scale by a factor of 10; solid (dashed) lines distinguish positive (negative) values.
Characteristic angles are in qualitative agreement.

The unique diamond shape is easily recognized since it is the same structure found by
Maas (2001) in a librating prism. In addition to the wave attractor itself, figure 6(c)
exhibits the effect of focusing: spatial compression, an increase in velocity amplitude
and a jump in phase (sign reversal). Furthermore, a slightly weaker and thinner beam
originates from the corner A (bottom right) and runs parallel to the wave attractor.
Considering the width of the wave beams, it takes practically just one round trip for
this beam to reach the wave attractor. A second beam from corner B (top right) is also
visible, but much weaker. This is easily explained by the radius ratio of r1(0)/r1(h)=2
of the librating frustum that results in a smaller librational velocity amplitude at corner
B. Note also the scaling of the velocity field in the corotating frame (divided by ε)
and that the colour scale has been truncated to ±0.01 to make interior features visible
(indicated also by exceeding-range caps on the colour bar). In fact, the maximum
azimuthal velocity of the frustum at corner A is approximately 20 times larger (vϕ =
0.2) and decays rapidly within the boundary layer. Note also that higher harmonics
are not notable. This indicates that the corner beams (also found by Beardsley 1970;
McEwan 1970; Sauret et al. 2012) are features of the linear dynamics. Numerical
simulations show that the whole solution in the bulk remains similar for the linear
forcing with ε= 0.02 and structures related to wave frequency ω= 0.47 become more
pronounced.
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FIGURE 9. (Colour online) Comparison between (a) the ray tracing, (b) measurement and
(c) simulation for the excitation frequency ω= 1.4 at E= 1.3× 10−6, εlab = 0.2, εnum = 0.1
for lids librating together with the outer cylinder. In (c) the boundary-layer flow exceeds
the scale by a factor of 5; solid (dashed) lines distinguish positive (negative) values.
Characteristic angles are in qualitative agreement.

Measurements shown in figure 6(b) exhibit the same wave structures as numerics
and ray tracing. It is apparent that measurements suffer from various errors, which
apply equally also to figures 7–9(b) in this section. Characteristics are artificially and
increasingly curved towards the outer cylinder. The outermost part of the cross-section
ABCD is invisible due to total reflection of light at the curved glass–air interface.
The invisible part has been replaced by rays of inviscid theory of § 3. Furthermore,
laboratory measurements exhibit higher amplitudes in the upper half. This is due to
scattering, absorption and expansion of the light sheet. All contribute to a slightly
inhomogeneous axial light intensity (remember that light was incident from the top;
cf. figure 2). Compared with the corresponding numerical simulation, corner beams
are dominating, which can be attributed to decreasing velocity shear as the beam
propagates and spreads due to viscosity (Cortet, Lamriben & Moisy 2010).

The wave attractor appears weaker than the one shown, for instance, by Maas
(2001) for the librating prism. This is due to different reasons. (i) Measurements
were done with immersed platelets and light intensities give an impression of shear
rather than relative velocity. Other researchers used particle image velocimetry (PIV)
instead. (ii) Often kinetic energy is used to magnify amplitudes related to waves, but
this requires the velocity field to be known. (iii) The apex half-angle of the frustum is
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small (α = 5.71◦), which results in a weak focusing. (iv) From the numerical results
we recover excited wave amplitudes of O(1 mm s−1). Other forcing mechanisms
may be more efficient (e.g. that of Messio et al. 2008). (v) The regime ε = 0.2
already exhibits nonlinearity in the boundary layer, due to which higher harmonics
nω (n = 2, 3, . . . for nω < 2) are present and the wave attractor for ω appears less
pronounced (see figures 8 and 11; but also Jouve & Ogilvie (2014) on that matter).
Anyhow, the wave attractor predicted by ray tracing is clearly visible. Numerical
simulations also revealed that such a simple pattern as the 1/1 wave attractor tends
to vanish between 10−5 < E < 10−4. It depends also on ε, but this is generally in
agreement with results published for the full cylinder. Sauret et al. (2012) and Lopez
& Marques (2014) found distinct wave beams for E = O(10−5), whereas Lopez &
Marques (2011) for an equivalent Ekman number of E=O(10−4) did not.

One last aspect we like to address is the vertical shear layer emerging from the
bottom lid at r1(0). As can be seen in figure 6(c), this is a prograde mean flow
layer of similar amplitude as the wave field. In the frequency-filtered measurements,
figure 6(b), the shear layer occurs only as artifact (also visible in the figures 7–9b).
The emergence from the lower corner A seems well in agreement with existing theory
developed for the spherical shell by asymptotic methods (Sauret & Le Dizès 2013)
(but for ω� 2). Here the frustum resembles the upper half of the near-equator region
of a sphere. The cause is nonlinearity in the boundary layer over a librating wall. This
feature remains persistent also in the inertial wave band.

Figure 7 shows the flow patterns in the meridional section (ϕ = const.) for the
critical frequency ω = 0.2 that also separates ‘point attractors’ (here it is just the
corner B) for ω < 0.2 from wave attractors (one-dimensional objects) for ω > 0.2.
Wave rays have the same slope as the inner cone for this frequency and one expects
a maximum of wave energy density along the slope due to boundary-layer eruption
(cf. § 5). For this configuration we see a single inertial wave beam excited at the
corner A in the figure 7(b,c). The wave amplitude is large along the slope and
confined to the boundary, which is consistent with the inclination angle α matching
the critical angle. The wave attractor expected from figure 7(a) is visible in the
experimental and numerical results. For ω= 0.2 the wave beam emerging from corner
A is in principle directly fed onto the wave attractor.

An azimuthal mean flow at r= r1(0) is also visible in figure 7(c), similarly to ω=
0.47. Note that there are no higher-harmonics visible. This shows that linear properties
are still dominating. Another aspect relevant for the cases ω = 0.2, 0.47 is that the
corner beams are quite strong. Although inertial waves might be emitted along the
whole oblique wall, their amplitude must be very small. At least, we could not detect
such waves experimentally or numerically.

Until now the figures correspond to wave excitation by frustum libration. For this
case excited wave amplitudes strongly decrease with forcing frequency as ω → 2
(see § 5).

4.2. Lids plus outer cylinder libration
Here we show a few examples of the complementary configuration, where the lids
librate together with the outer cylinder and the frustum is held at constant rotation
rate Ω0 = 1. As will be discussed in § 5, for this configuration it is in general more
suitable to investigate frequencies larger than one. This comes at the expense of a
much ‘denser’ spectrum of wave attractor bands and periodic orbits as can be seen
in figure 4. Fixed parameters are now E = 1.3 × 10−6, εlab = 0.2 for the laboratory
experiments and εnum = 0.1 for the numerical simulations.
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General features observed for outer cylinder and lids in libration is that corner
beams emerge from all four corners A–D, which is in contrast to frustum libration
(prominent at A, weak at B). The strongest beams originate from corners C and
D due to the larger radius r2 (cf. figure 8c). We begin with excitation frequency
ω = 0.57, which is the upper boundary of the 1/1 attractor window. In this case
the limit cycle coincides with the least inclined diagonal, i.e. the black solid line in
figure 8(a) that connects corners B and D. Even though the lids are of different size
wave beam magnitudes are almost the same. In figure 8(b), however, the attractor
seems to be more pronounced than the beam starting at C.

Figure 8(c) shows clear signs of nonlinearity. From the outer corners C and D
emission of a ‘wave beam fan’ is visible, containing less inclined beams. Frequency
filtering at 2ω= 1.14 and 3ω= 1.71 clearly isolates the respective beams (see in this
respect § 2.1.2 and appendix C). The mechanism appears to be triggered by instability
in the boundary layer. It develops first in the corner region and spreads along the outer
cylinder wall if ε is increased (enhanced nonlinearity) or if ω is decreased (longer
duration of stable and unstable libration phases). As ε→ 1 we can expect spontaneous
emission of inertial waves to become more important (Sauret et al. 2012, 2013). This
should not be confused with the mechanism resulting in wave beams excited in the
corners. We reduced ε to 0.01 and still found the corner beams for the prescribed
libration frequency ω, whereas higher harmonics disappeared.

Other interesting frequencies are those for which focusing and defocusing
compensate. This is the case, for instance, if ω = 1.4. Corresponding results are
shown in figure 9. In this case all rays (including those originating from corners)
lack net focusing and lie on a closed trajectory. In figure 9(b) optical distortion of the
characteristics and masking of the outermost region is quite obvious. The structures
closer to the frustum wall, however, can be clearly identified.

We close with noting that the mean flow layer (a layer of Stewartson-type) emerging
at A is weaker here than for the frustum libration case (compare, for instance, figures
6b,c with 8b,c). The origin is the same: nonlinearity in the oscillating Ekman layer
(Sauret & Le Dizès 2013).

5. Wave excitation

Simulations and observations revealed that dominating wave excitation is localized
at the four corners A–D in the (r, z)-plane of the annular cavity (see examples in
§ 4). It was pointed out, for instance, by Wang (1970) and Busse (2010) that the
corner regions in a librating full cylinder are not easily treated analytically even in
an asymptotic limit without any waves. The underlying corner flow problem has been
addressed recently by Swart et al. (2010), Boisson et al. (2012) and Sauret et al.
(2012). The most distinct feature found by Swart et al. (2010) is a wave beam emitted
due to boundary-layer eruption at the bottom of the sloping wall. No such beam
was found at the free upper surface and it was speculated whether corners prevent
boundary-layer eruption. Our results suggest that the absence of a boundary layer at
the free surface prevents boundary-layer interaction and hence leads to a dominant
wave beam at the bottom only. Although the details of the dynamics are not yet
understood, we contribute to the ongoing discussion by investigating the mechanisms
involved via splitting the problem into the discussion of boundary layer and bulk flow.
We distinguish between frustum in libration and lids plus outer cylinder in libration,
with the focus on the frequency dependence of wave excitation efficiency.
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In general, a temporal snapshot for a weakly nonlinear setting is composed of
dominant spatial structures that oscillate with harmonics nω of the forcing frequency
ω, where n= 0, 2, 3, . . . for nω< 2 (see § 4). The different structures can be separated
according to their time dependency by applying the frequency filters described in
§ 2.1.2 or appendix C, respectively. From the examples presented above the system’s
temporal variability with respect to inertial waves is dominated by the structures
corresponding to the forcing frequency ω. In the following we will therefore focus
on the frequency-filtered fields.

5.1. Boundary-layer analysis
5.1.1. Local equations

We apply classical boundary-layer theory to the rotating annular cavity. Strictly, this
assumption is valid only in the asymptotic limit without inertial waves present, but
it may be justified also due to the scale separation between boundary layer and bulk
flow (cf. figures 6–9). We neglect any feedback from the bulk flow to the boundary
layer. With respect to wave excitation by libration this may be lesser a problem when
we think of the libration-induced boundary layer providing the primary flow. The
essentials of the following derivations are well-documented in different books, for
instance, Batchelor (1967), Greenspan (1969) and Busse et al. (2007). We collect
some aspects here for the sake of a uniform nomenclature.

As usual we restrict our attention to the linear limit (ε � 1) and focus on small
Ekman numbers, E � 1. Owing to the latter, the generic boundary-layer depth δBL

is much smaller than the length scale, i.e. δBL� h. Also the radii fulfill r1, r2� δBL

and for the gap width r2 − r1 � δBL correspondingly. It is permissible to use a
local Cartesian approximation on each of the walls, as is shown in figure 1(b). The
tangential coordinates are (x′, y′, z′) and the system is oriented such that z′ points in
wall-normal direction into the fluid (it is antiparallel to the surface normal n). We
let x′ point in azimuthal (zonal) direction so that y′ is the second wall-tangential
component lying in the (r, z)-plane. Cylindrical velocities (vr, vϕ, vz) are mapped to
(u′, v′, w′), where u′ is the zonal velocity, w′ the wall-normal velocity and v′ is the
second wall-tangential velocity. On the lids, the tangential axes (x′, y′, z′) become
parallel to an underlying Cartesian system that can be introduced locally as (x, y, z) as
illustrated in figure 1(b). In some places this will be used to distinguishing between
frustum (primed) and lid (unprimed).

Within a boundary layer it is well known that gradients in wall-normal direction
z′ are dominating, which means ∂(·)/∂z′ � ∂(·)/∂x′, ∂(·)/∂y′. Axisymmetry of the
forcing and the geometry yields ∂p/∂x′ ≡ 0. Pressure can be eliminated by cross-
differentiation of the tendencies for v′ and w′. Introducing the poloidal (meridional)
stream function ψ yields v′=−∂ψ/∂z′ and w′= ∂ψ/∂y′. Subtraction of the tendencies,
insertion of ψ and keeping only the wall-normal first-order spatial derivatives yields
the reduced set of equations

∂3ψ

∂t∂z′2
=+f∗

∂u′

∂z′
+ E

∂4ψ

∂z′4
,

∂u′

∂t
=−f∗

∂ψ

∂z′
+ E

∂2u′

∂z′2
. (5.1a,b)

We introduced the effective Coriolis parameter f∗ ≡ f sin α with f = 2 the (dimension-
less) conventional Coriolis parameter.

Equations (5.1) are appropriate for a fluid in the half-space z′>0 bounded by a wall
at z′= 0. On the bottom lid α=π/2 and f∗= f , whereas on the top lid α=−π/2 and
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0

10–3

10–2

0.5 1.0 1.5 2.0 2.5

FIGURE 10. (Colour online) Comparison of the different classical boundary-layer depths
and their dependence on the libration frequency. All plots are for the Ekman number
E = 1.3× 10−6. Classical Ekman layers δE, δ′E are strictly valid only in the limit ω = 0.
Boundary layers over oscillating surfaces show eruptions (vertical dash-dotted lines). See
the text for details.

f∗ =−f . On the frustum α = 5.71◦ so that f∗ = 0.2 and on the outer cylinder α = π
and f∗= 0. Equations (5.1) state that inside a boundary layer the fluid is sensitive only
to the wall-tangential (‘horizontal’) component of the Coriolis force.

No-slip conditions for the walls yield the boundary conditions ψ = ∂ψ/∂n= 0 and
u′ = U sin(ωt) at z′ = 0. Here, U is the local amplitude of zonal velocity of the
librating wall, i.e. U = εr with r the physical distance from the axis of rotation. In
local Cartesian approximation, however, we treat U as constant.

5.1.2. Classical Ekman and Stokes layers
The classical Ekman problem is that of an interior geostrophically balanced flow

u′bulk =U = const. over a wall with homogeneous no-slip condition (in the corotating
frame). For not too small inclination angles |α| and requiring |v| < +∞, (5.1) have
the solution (e.g. Busse et al. 2007)

u′ =U
[

1− cos
(

z′

δ′E

)
e−z′/δ′E

]
, v′ = sgn(f∗)U sin

(
z′

δ′E

)
e−z′/δ′E , (5.2a,b)

where δ′E≡
√

2ν/|f∗|> δE is the Ekman-layer thickness over the frustum (cf. figure 10;
dashed horizontal line). For a horizontal lid with α = ±π/2 we have δ′E = δE (solid
horizontal line). The depth of a classical Ekman layer is constant for all amplitudes
U. Strictly, this is valid only in the limit ω= 0. To aid visibility, the plots of δE and
δ′E shown span the whole ω range in figure 10. A typical time scale of the Ekman
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layer formation is given by f−1
∗ and depends on the inclination angle, from which we

recover the well-known property that the energy dissipation rate dK/dt is proportional
to the kinetic energy K of the interior flow, i.e. dK/dt∝−| f∗|K.

Along a vertical wall (outer cylinder) the time dependence of the interior flow or
the boundary cannot be neglected since f∗= 0 (absence of an intrinsic time scale). For
the librating outer cylinder (amplitude U = εr2) we expect the classical Stokes-layer
solution (Batchelor 1967)

u′ =U sin
(

z′

δS
−ωt

)
e−z′/δS (5.3)

with the Stokes-layer thickness δS≡√2ν/ω, which exhibits a singularity at ω=0 (thin
solid line in figure 10). Equation (5.3) states that only the zonal velocity component
is non-zero.

5.1.3. Oscillating Ekman layer
Oscillatory (rotary) Ekman layers are well known in oceanography since tidal flows

in a rotating frame commonly occur (see in this respect Prandle 1982; Thorade 1928).
This is an analogue problem to the librating wall and the fluid bulk in solid-body
rotation. Owing to its importance for the present study we treat the oscillating Ekman
layer in more detail here (see also Greenspan 1969; Busse et al. 2007). We refer to
an Ekman layer as oscillating when it forms over a librating surface (with respect
to the corotating frame). A librating surface at an angle α 6= 0 to the rotational axis
periodically generates vorticity. This appears to be a more general feature of any
inclined wall, wherefore we use this formulation in favour of the velocity.

First, (5.1) are cross-differentiated and new variables are introduced: the local wall-
normal vorticity ζ ′ = ∂v′/∂x′ − ∂u′/∂y′ and the local wall-tangential divergence D′ ≡
∇‖ · v′ = ∂u′/∂x′ + ∂v′/∂y′. The boundary-layer approximation (5.1) yields

∂D′

∂t
− f∗ζ ′ = E

∂2D′

∂z′2
,

∂ζ ′

∂t
+ f∗D′ = E

∂2ζ ′

∂z′2
, (5.4a,b)

which is completed by the boundary conditions ζ ′ = εf∗ sin ωt and D′ = 0 at z′ = 0.
Regularity requires D′, ζ ′→ 0 for z′→+∞. Separation of variables yields the ansatz
ζ ′ = X1 sin ωt + X2 cos ωt and D′ = Y1 sin ωt + Y2 cos ωt for real-valued amplitudes.
Equations (5.4) are solved by standard procedure by collecting the amplitudes in
complex variables W ≡ X1 + iY1 and Z ≡ X2 + iY2. From a straightforward calculation
one obtains

L̂W =−ωZ, L̂Z =+ωW with L̂≡
[

E
∂2

∂z′2
+ if∗

]
. (5.5a,b)

The general solution for W reads (regularity |W|<+∞ implied)

W ≡ X1 + iY1 =C1e(is−1)z′/δ′− +C2e(i−1)z′/δ′+, (5.6)

where s= sgn(f∗ − ω) is the sign function and δ′± =
√

2ν/|f∗ ±ω| are the oscillating
Ekman layer depths with δ′−> δ

′
+ (see figure 10; solid and dashed lines with bars and

crosses). Both layers together adjust the boundary condition to the bulk flow. Only the
layer δ′− erupts for ω→ f∗ from either side of the singularity. On a librating lid it is
α=±π/2 and | f∗| = f , which makes δ′±= δ±. This corresponds to the case considered
by Busse et al. (2007). The Ekman layers δ± (on a lid) and δ′± (on the frustum)
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have in common that they approach constant values in the limit ω→ 0, which are
the classical Ekman layer depths on the f -plane.

Note that boundary conditions to (5.6) yield real-valued constants C1 = C2 = εf∗/2.
Then Z can be computed from W, so that D′ and ζ ′ can finally be obtained.
Exploiting axisymmetry, ∂(·)/∂x′ = 0, the velocity field can be computed (see
also appendix D). The full solution is not of interest here. Instead, let us focus
on another aspect: the divergence-free condition for the velocity field yields the
existence of a homogeneous wall-normal influx into the boundary layer that balances
the wall-parallel Ekman flux. The influx velocity w′E on top of the boundary layer,
the so-called Ekman pumping/suction velocity (depending on the librational phase),
is strictly vertical (see Busse et al. 2007). It can be obtained by integrating the
continuity equation, D′ = −∂w′/∂z′, along the stretched coordinate ξ = z′/δBL. By
making use of impermeability w′|z′=0 = 0 we get

w′E = −δBL

∫ +∞
0

D′ dξ =−εν
1/2

√
2

sin (ωt− χ)

×
{

f 3/2
∗ /

√
f 2∗ −ω2 for ω< f∗

f∗
√
ω−√ω2 − f 2∗ /

√
ω2 − f 2∗ for ω> f∗

(5.7)

with the phase shift χ given by

sin χ = − (δ′− − δ′+)√(
sδ′− + δ′+

)2 + (δ′− − δ′+)2
=
{
−F(ω/f∗)/2 for ω< f∗,
−1/
√

2 for ω> f∗.
(5.8)

For ω < f∗ the phase term sin χ(ω) has a dependency on F(ω/f∗), which is given
in (D 5). The phase term sin χ(ω) monotonically decreases from 0 to −1/

√
2 at

ω= f∗, where the derivative has a singularity. For ω> f∗ the phase shift is a constant
corresponding to χ = −π/4. Interestingly, w′E(ω) reaches a constant amplitude
ε
√

2νf∗/2 in the limit ω� f∗, whereas it tends to zero in the high-frequency limit
ω� f∗. Lastly, w′E increases infinitely for ω→ f∗ due to the boundary layer eruption.
More precisely, Maas & van Haren (1987) showed that in this case a z′2-profile of
velocity will be established. The functional behaviour of w′E(ω) is generally quite
similar to δ′−(ω) (see figure 10). Note that the same features are present also for a
librating lid by formally replacing f∗→ f and δ′−→ δ−.

Following Busse et al. (2007) the ‘horizontal’ flux divergence ∇‖ · Q= ∂Q′x/∂x′ +
∂Q′y/∂y′ exhibited by an oscillating Ekman layer is coupled to the Ekman pumping
velocity w′E. The associated mass flux balance reads

w′E =−δBL

∫ +∞
0

D′ dξ =−∇‖ · Q. (5.9)

By f∗= f sin α in w′E the inclination angle α directly affects the (‘horizontal’) flux Q
and its dependency on the forcing frequency ω.

In contrast to the Ekman layer, a Stokes layer over the librating outer cylinder only
carries an oscillating azimuthal flux. Due to finite height, the Stokes layer induces
secondary Ekman layers within the interaction regions near the corners C and D,
which are radial–axial patches of the order δS × δ−. The induced Ekman layer on
one of the lids exhibits a flux deficit with respect to the geostrophic flow on top of
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it (cf. Busse et al. 2007). The mathematical treatment of the flux deficit is similar
to the Ekman flux Q outlined above. In case the lids librate together with the outer
wall, the boundary-layer interaction becomes more distinct. Qualitative arguments are
then no longer sufficient and a detailed analysis of the corner flow problem would
be required. We will make use of the boundary layer and the mass flux (deficit) to
understand the localization of wave excitation which we discuss in the following
section.

5.2. Excitation mechanism
Under the presence of boundary layers we quantify wave excitation by distinguishing:
(i) coupling of wall libration and boundary layer and (ii) coupling of boundary layers
and bulk flow. We assume that waves excited in the bulk are of substantially smaller
amplitude than the oscillating boundary layer in accordance with observations in
§ 4. The oscillatory boundary layer (frequency ω) thus provides the primary flow
due to which waves will be excited. We also assume that classical boundary layers
are approximately realized locally. Then, with respect to (i), we shall see to which
degree classical boundary-layer theory is useful to understand the cavity flow excited.
Regarding (ii) we note that wave excitation mechanism refers to the mechanics in
the fluid rather than libration (even though they are not unrelated). It is due to the
dominance of the wave beams excited in the corners of the trapezoid ABCD that we
focus our attention on this mechanism.

We can consider wave excitation as linear process due to dominance of the signal
at the forcing frequency ω and its persistence for ε� 1. The reason appears to be a
mass flux discrepancy in the primary flow emerging at a corner. More precisely, it is
a mismatch in the local wall-tangential fluxes Q′y and thus a mismatch of the Ekman
pumping w′E (see 5.9) in the two overlapping boundary layers. This is shown for the
corners A and D in figure 11 for simulation results (see also figure 3(b), where the
situation Q′y, Q′(2)y < 0 is sketched corresponding to the prograde phase of libration).
Interestingly, only for the frustum libration (figure 11a, solid line) an anharmonic
behaviour is strongly visible. This indicates presence of nonlinearity in the boundary
layer, which enhances the flux discrepancy. If ε is reduced to O(10−2), all curves
become sinusoidal, but a discrepancy in the fluxes is preserved. The anharmonic
content vanishing for ε� 1 is thus consistent with the simultaneous disappearance of
the azimuthal mean flow layer (cf. figure 6c) due to reaching the linear regime. Note
also that we selected ω= 0.47 in figure 11 to ensure that no wave beam is incident
to the corners.

From the above reasoning we can infer that a homogeneous influx of fluid into
the frustum boundary layer due to Ekman pumping/suction must be balanced by a
localized outflow from the boundary-layer interaction volume in the vicinity of corner
A (and B). This jet-like outflow, seen in the (r, z)-plane, is directed roughly along the
bisectrix of the corner due to geometric constraints. Numerical simulations reveal a
rather rich kinematic behaviour that breaks symmetry of the pumping/suction process
of the emerging jet and is beyond the qualitative argumentation. Note in this regard
that the Ekman flux Q also has an azimuthal component whose role is not quite clear.
In any case, it is the frequency ω of the forcing that fixes possible directions of wave
beams excited locally. Once excited, the waves carry momentum and kinetic energy
from the boundary layers into the fluid’s bulk.

The whole argument can also be applied to the case of lids plus outer cylinder
libration, where oscillating and passive Ekman layers are present at corners A and
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FIGURE 11. (Colour online) Wall-tangential mass flux in the boundary layer for three
libration periods for the stationary regime: (a) ω = 0.47, E = 1.3 × 10−6, εnum = 0.2;
(b) ω = 0.47, E = 1.3 × 10−6, εnum = 0.1. The component Q′y(t) lies in the (r, z)-plane
according to the local coordinates defined in figure 1(b). Fluxes in the vicinity of corner A
for the frustum in libration are shown in (a), those near corners A and D for outer cylinder
and lids in libration are shown in (b). Locations are at roughly 10 × δBL (cf. figure 10)
away from the corner in the r or z direction, respectively. Integration was done over
3(±1)× δBL. The shading indicates the confidence interval due to variations of integration
length and location.

B (with primary and induced layers from above exchanged). In addition, oscillating
Ekman and Stokes layers interact at corners C and D. As mentioned earlier, this
problem seems more involved. It is worth noting that libration of the outer cylinder
alone can hardly excite waves. This is because, to first order, a wall-parallel flux
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towards the corners is absent. Only secondary Ekman layers on the lids could then
excite waves, which is supported also by numerical results for lid libration alone
(not shown here). In the next section we focus on the frequency dependency and the
possible interrelation between boundary layer and bulk flow.

5.3. Subdomain analysis
We investigated the coupling between oscillating boundary layers and bulk flow in
order to quantify wave excitation in the bulk (by corner beams) as was observed
and simulated. Our hypothesis consists of three parts: (i) formation of an oscillating
Ekman layer that drives a wall-parallel Ekman flux Q; (ii) the deflection of that flux in
the corners due to Q-discrepancy; and (iii) local excitation of inertial waves meeting
the dispersion relation locally.

The flux balance (5.9) suggests that Q scales with the Ekman pumping velocity
w′E as a consequence of mass conservation (2.3). Following the qualitative arguments,
we expect velocity amplitudes of the waves excited to scale with the flux discrepancy
near a corner in the boundary layer. The latter would thus be related to the Ekman
pumping, for which we have an estimate given by (5.7). This can be exploited
by investigating the frequency dependence of the flow. From measurements and
simulations it is known that a global trend is visible in excited wave amplitudes that
is qualitatively similar to the boundary-layer eruptions seen in figure 10 when the
libration frequency is varied. Besides that, resonant excitation of inertial waves was
observed for certain frequencies as we shall see below.

Five subdomains were defined (shaded areas in figure 3) and, for simplicity, all of
them were kept fixed over the range of forcing frequencies investigated (we will come
back to the robustness further down). Corner regions corresponding to the heights
of neighbouring subdomains were excluded to avoid overlap (see the enlarged views
in figure 3). Boundary-layer domains were chosen such that they initially covered
only a few δE in axial and δ′E in radial direction (cf. figure 10). From there on, the
extent was increased until tens of boundary-layer depths were covered. A similar
approach was taken by Sauret et al. (2012). In general, it is the scale separation
between boundary layer and bulk flow (cf. § 4) ensuring that the bulk flow portion
captured by the boundary-layer domain is approximately negligible. We found that the
frequency dependence shown in figures 12–14 is independent of the precise thickness
of the boundary-layer domain as long as boundary layer and bulk are well-separated.

In the following we consider the dominant signal oscillating with the forcing
frequency ω. As a measure of flow activity we calculated total kinetic energy Kω

from frequency-filtered velocities vω, i.e.

K i
ω ≡

∫
Vi

v2
ω

2
dV, (5.10)

where Vi denotes the volume of subdomain i according to figure 3. In the bulk, Kbulk
ω

measures the energy of propagating waves (other oscillatory large-scale flows are not
visible). The frequency filter used is described in appendix C.

5.3.1. Frustum libration
The frustum features only a single modulation frequency, determined by the half-

apex angle α, for which we expect the boundary layer to erupt all along the boundary
(cf. the thick (blue online) solid line in figure 10). This is in contrast to spherical
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FIGURE 12. (Colour online) Wave excitation by frustum libration for filtered quantities.
Total kinetic energy K i

ω in the subdomains i = 1, 5 according to figure 3(a) from the
numerical simulations and maximum light intensity Imax

ω measured in the bulk part of a
meridional slice (ϕ= const.). Thick bars on the upper axis indicate the cases shown in § 4.
Fixed parameters are E= 1.3× 10−6 and ε= 0.2. Fitted coefficients are Alab = 7.71× 104,
A1 = 1.37× 103, A5 = 38.5, C1 = 7.60× 10−6. See the text for details.

shells, where all inclination angles −π/26 α6π/2 are present and one always finds
a latitude at which the Ekman layer erupts (e.g. Kerswell 1995).

The qualitative argumentation outlined in § 5.2 can be applied as follows.
Equation (5.9) has already been integrated over the whole boundary-layer height.
The total kinetic energy of the oscillating Ekman layer thus reads KE

ω ∝ ŵ′2E (ω),
where ŵ′E denotes the oscillation amplitude found in (5.7). Due to the sinusoidal time
dependence it can be computed (modulo a factor of 2) by taking the temporal average
over one libration period of the squared velocity, i.e. ŵ′2E = 2w′2E . The interior wave
field should then possess the same frequency dependence as the oscillating Ekman
layer. The expected scalings are shown in figure 12 as fits (dashed lines with the
same colour as the data).

Figure 12 shows the simulated total kinetic energy (Kω, left scale, blue online)
as function of the forcing frequency ω in the subdomains bulk (i = 5; according to
figure 3a) and frustum boundary layer (i = 1). Also shown is the frequency-filtered
light intensity measured in the laboratory (Imax

ω , right scale, black). Flow fields
presented in § 4 correspond to the frequencies marked by thick bars at the upper
axis of figure 12. Dash-dotted vertical lines indicate the frustum boundary layer
eruption (ω = 0.2) and the limit of the inertial wave band (ω = 2). Grey vertical
patches illustrate low-order wave attractor windows obtained by ray tracing (see also
figure 4). Dashed grey lines show frequencies of periodic orbits, which become denser
as ω→ 2. A mean frequency resolution of 1ω= 0.05 could be realized, coarser for
the higher frequencies (less important due to reduced excitation efficiency) and finer
in low-order wave attractor windows. Cases for ω > 2 are shown as well, for which
no wave excitation in the linear limit is expected.
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Filtered light intensities were truncated by a spatial maximum norm to yield a single
point per measurement. Note that the curve of Iω would be less pronounced but similar
if a spatial average would have been used. Optical measurements provide data for the
bulk only. Following the qualitative arguments from above, velocity amplitudes in the
wave field are expected to scale with the Ekman pumping velocity. The frequency
dependence of the visualized shear is proportional to that of velocity (black dashed
curve). Hence, we expect a correlation to the amplitude ŵ′E(ω) on the right-hand side
of (5.7). One should not over-interpret the frequency dependence of the measurements
due to different (optical) errors. For ω= 0.7(0.8), for instance, it is not clear whether
the measured values are artificially reduced (enhanced). The least we can say is that
for ω&0.6 waves are not excited efficiently and shear associated with the waves is too
small to orient the particles sufficiently, so that the signal-to-noise ratio in Imax

ω is too
large for a reliable analysis. Nevertheless, a clear tendency is visible for 0.16ω6 0.5
pointing to the boundary-layer eruption at ω= f∗ = 0.2.

In figure 12 qualitative agreement is found for the bulk flow between measurements
(diamonds) and simulations (filled circles). The bulk kinetic energy reaches a
maximum at the eruption frequency close to ω = 0.2. Applying the qualitative
argumentation (Ekman flux discrepancy in the corners A and B), we can infer that
kinetic energy of the waves excited has to scale with respect to ω as the squared
amplitude of the Ekman pumping, say Kbulk

ω ∝ w′2E (ω). This is nicely seen in the
non-resonantly excited waves, for which Kbulk

ω follows the dashed (blue online) line,
except for distinct local maxima (resonance peaks). All of them are located in wave
attractor windows obtained by ray tracing (ω = 0.25, 0.35, 0.7, 1.05, 1.17, 1.3). Only
the less pronounced peaks at ω = 0.85 and 1.4 correspond to periodic orbits. The
small arrows (here only pointing to the right) indicate that the interior wave field
exhibits the spatial structure of a ray tracing path with a frequency roughly at the tip
of the arrow. A similar shift in frequency between ray tracing and eigenfrequencies
has recently been described by Lopez & Marques (2014). They argue that the wave
beams are not emitted exactly at the corners and are not reflected at the walls but
within the boundary layers. Thus, the domain in which the waves propagate does not
exactly match with the geometry considered.

An interesting feature is the asymmetry of resonance peaks within wave attractor
windows (e.g. the intervals around ω= 0.4, 0.7, 1.2). This can be understood in terms
of the localization of the forcing at corners A and B, the radial dependency of the
wall velocity vw,ϕ(r) (where r1(0)/r1(h)= 2) and the path length needed until a wave
beam is practically focused. In a viscous medium the damping length is finite (see
Phillips 1963) and we expect a resonance to decrease with increasing distance a wave
packet has to travel until it reaches the wave attractor. Looking at figures 5 and 7(a),
for instance, we see that the stronger beam from A (ω = 0.2) is fed onto the wave
attractor, while the other beam from corner B is damped before reaching it. This is
reversed for ω= 0.296 and is similar for the other wave attractor windows. Across the
window at ω≈ 1.2 the general frequency dependence of the forcing can be neglected.
Assuming that damping is similar for the modes excited at ω = 1.18 and 1.21, we
would expect kinetic energy to reduce roughly by an order of magnitude due to the
radial dependence of the wall velocity. This corresponds qualitatively to figure 12.
Shifts of the local maxima towards the centre of wave attractor windows may be due
to modified geometry (boundary layers, slope transitions) and interference of wave
beams in case of the wave attractors for the limiting frequencies. Here the resolution
1ω seems not yet sufficient to clarify this.
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In figure 12 we can also see that the boundary-layer domain shows agreement with
boundary-layer theory. We fitted a generic function (dash-dotted line) that consists of
a term proportional to the Ekman pumping and a constant offset C1 due to libration
(this is the evanescent part not present in the bulk). This is certainly a rather empirical
approach, but covers the behaviour inside the inertial wave band quite well. For the
oscillating boundary layer, Ekman pumping is notable only near the eruption frequency
f∗, where the otherwise constant value is increased by a factor of 3.

All fits (dashed and dash-dotted lines) were obtained for ω> f∗ where we have the
majority of data points. Note that to the left of the peak (ω< f∗) values predicted by
the scalings are only about twice as large as those simulated and observed. This is
acceptable considering the heuristic argumentation used for derivation of the frequency
dependence, as well as the simplifications made in the boundary-layer analysis and the
domain decomposition.

The interval ω.E1/2 has to be excluded due to spin-up (e.g. Smirnov et al. 2005).
On the other hand, inertial instabilities become more important for ω→ 0 (e.g. Koch
et al. 2013). For ε = O(10−1) and E = O(10−6) boundary-layer instabilities occur
before any notable spin-up effects. Small-scale vortices develop first in the corner A
during the prograde phase of libration and spread upward along the frustum wall if
ε is increased or ω is reduced. Then wave excitation can no longer be considered as
a completely linear process. Instead it is replaced gradually by spontaneous emission
of inertial waves (Sauret et al. 2012, 2013). With notable nonlinearity, energy can
be extracted from the forcing frequency ω and thus shift the system response to
other frequencies in the spectrum. From numerical simulations for εnum = 0.2 and
E = 1.3 × 10−6, the onset of boundary-layer turbulence was notable for forcing
frequencies ω . 0.2. In this range KBL

ω in the frustum boundary layer can also
suffer from aliasing (coarse temporal resolution of time slices used for filtering) and
violation of stationarity.

Also visible in figure 12 is that Kω of the bulk is much smaller than that of
the frustum boundary layer, except for boundary-layer eruption. We neglected
wave–boundary-layer interaction, but from the local solutions (bulk flow over
a wall) an additional loss of kinetic energy can generally be expected for a
wave beam impinging on a wall. Note that there are no resonance peaks visible
in the corresponding boundary-layer curve KBL

ω shown in figure 12. Thus, the
waves are present in the bulk, but they do not effect much the boundary layer
dynamics. Boundary-layer theory developed in § 5.1 seems to be an acceptable
approximation also in the wave regime. The reason might be the limited power
influx by libration (cf. appendix D) and geometry, i.e. α� 1. For larger apex angles
and non-axisymmetric forcing boundary layer theory might no longer work. Integral
quantities of the boundary-layer analysis change quantitatively but not qualitatively if
the domain decomposition is varied. The points close to ω= 0 and 2 are those most
affected. Hence also the drop of Kbulk

ω at ω = 2 changes in magnitude. However, we
found the signals qualitatively robust once this drop was substantial (one order of
magnitude or higher). For the selected decomposition (see also table 1) we can say
that the error level is 1Kbulk

ω ≈ 5× 10−11 as can be seen from the points in the range
ω> 2.

5.3.2. Lids plus outer cylinder libration
In case of lids and outer cylinder in libration no singularity is present within the

inertial wave band (0, f ). However, Stokes and Ekman layer eruptions occur at ω= 0
and ω= f , respectively (non-dimensional Coriolis parameter f = 2).
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(1Nr, 1Nz) A× 10−7 a B× 10−7 b B′ × 10−5 b′

(12, 6) 8.56 1.058 0.87 0.923 2.20 1.149
(24, 12) 4.48 1.037 1.46 0.996 1.43 1.317
(32, 16) 3.26 1.029 2.08 1.043 2.03 1.364
(40, 20) 2.29 1.021 2.72 1.087 2.59 1.406

∗ (48, 24) 1.55 1.014 3.18 1.126 2.85 1.440
(52, 28) 1.25 1.011 3.05 1.138 2.70 1.452
(56, 48) 1.06 1.010 1.94 1.122 2.15 1.452

TABLE 1. Fit coefficients for the energy ratio Kbulk
ω /KBL

ω using different domain
decompositions. The decompositions are identified by the number of grid cells trimmed
from the bulk along each wall in radial and axial direction (1Nr,1Nz). Unprimed variables
B, b are for the fits excluding the strongest two resonances ω≈ 0.9, 1.40 for the lids and
outer cylinder libration case. The asterisk (*) marks the domain decomposition used for
figures 12–14.
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FIGURE 13. (Colour online) Wave excitation by libration of the lids together with the
outer cylinder for filtered quantities. Total kinetic energy K i

ω in the subdomains i= 3, 4, 5
according to figure 3(a) from the numerical simulations and maximum light intensity Imax

ω

measured in the bulk part of a meridional slice (ϕ = const.). Thick bars on the upper
axis indicate the cases shown in § 4. Fixed parameters are E= 1.3× 10−6 and εlab = 0.2
and εnum = 0.1. Fitted coefficients are Blab = 4.77× 103, B3 = 0.164, B4 = 1.14, B5 = 9.11,
C4 = 3.70× 10−6. See the text for details.

Figure 13 shows total kinetic energy (Kω, left scale, red online) as a function of
the forcing frequency ω in the subdomains bulk (i= 5 according to figure 3a) and the
boundary layer over the librating walls (i= 3, 4). Also shown is the frequency-filtered
light intensity measured in the laboratory (Imax

ω , right scale, black). Top and bottom lids
behave almost identically, wherefore we skipped the plot for the top lid Ekman layer
(i= 2) in the kinetic energies. The underlying vertical patches and lines are the same
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FIGURE 14. (Colour online) Wave excitation efficiency given by the energy ratio
Kbulk
ω /KBL

ω for two different configurations (frustum libration with pluses (blue online); lids
and outer cylinder libration with crosses (red online)). The quotient was computed from
simulated total kinetic energies shown before. KBL

ω is the sum over all oscillating boundary
layers. Fits (dashed and solid black lines) were obtained by a least-squares fit of the data
sets. See the text and table 1 for details.

as in figure 12 and indicates low-order wave attractors and periodic orbits obtained
by ray tracing (cf. figure 4). Thick bars on the top axis indicate the results discussed
for this configuration in § 4. To each data set the expected frequency dependence (see
(5.7) and the Stokes layer scaling) has been plotted by dashed and dash-dotted lines
of corresponding color.

The highest energy component in figure 13 is the Stokes layer’s total kinetic
energy (pentagons). It exhibits only an azimuthal velocity component according to
the boundary layer analysis. Considering the aspect ratio 1r(0)/h= 1/5, the kinetic
energy density in the Stokes layer is practically given by the local solution, i.e.
v2
ω/2 = U2/2 and U = εr2. Integration over the Stokes layer yields the estimate

KS
ω ≈ πU2δS(ω) ∝ ω−1/2. Indeed, the Stokes layer’s frequency dependence shown in

figure 13 is practically perfect. Surprisingly, this holds in the low frequency limit
as well. This means that even though nonlinear phenomena appear for ω → 0 (as
discussed for the frustum libration case) they are of much smaller kinetic energy
than the underlying azimuthal flow induced by the librating wall. As a secondary
phenomenon at the outer wall, Taylor–Görtler vortices form along the outer cylinder
similar to the full cylinder (see Sauret et al. 2012).

In figure 13 qualitative agreement can be seen for the bulk flow between simulations
and measurements. A constant value is approached in the waves’ kinetic energy as
ω→ 0, which is consistent with the theoretical prediction of wE (see (5.7); note that
unprimed variables for the lid are obtained by formally replacing w′E→wE and f∗→
f ). Wave energy increases for ω→ f and is followed by a sharp drop as ω > f = 2.
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This drop appears stronger than in figure 12 because boundary layer eruption of the
lid’s oscillating Ekman layer coincides with wave band limit f . We also observe the
proportionality to Ekman pumping velocity (for measured Imax

ω ) or its square (for the
simulated kinetic energy Kbulk

ω ) as indicated by the fitted functions.
Non-monotonic behaviour of the data Kω in figure 13 can be attributed to resonance.

Similar as for the frustum libration, low-order patterns accumulate energy in the
wave field. These do not necessarily correspond to wave attractors as can be seen
when inspecting the shaded areas. We found strong peaks with spatial structures
corresponding to periodic orbits (dashed vertical grey lines), e.g. ω ≈ 0.9, 1.4. The
peaks at ω ≈ 0.9, 1.4 were excluded in the fits (dashed and dash-dotted lines, red
online) in order to have the data compliant with approximately non-resonant wave
excitation (cf. §§ 5.1 and 5.2). The pattern for ω= 1.4 is shown in figure 9. A larger
peak, however, occurs in the simulations at ω ≈ 0.9. More precisely, for a shifted
frequency ω = 0.85 (indicated by an arrow). In the ray picture the modes have a
tilted V- and W-shape. The outer as well as the inner corners are connected and
waves are therefore directly emitted onto the periodic orbits. This is a geometric
interpretation for resonant behaviour found in figure 13. The frequency ω = 1.66
might be quasi-resonantly excited by the libration frequencies ω = 1.6 and 1.7 as
indicated by two opposed arrows. For the attractor windows we find a significant peak
at ω≈ 0.62, 1.2, but only a weak signal for ω≈ 0.25, 0.5. As ω→ 2, the ‘spectrum’
gets denser and spatial patterns show more reflections, which makes identification
difficult. However, the few data points at ω = 1.85, 1.9, 1.95 show spatial patterns
corresponding to periodic orbits of ray tracing solutions (consisting of several ‘tilted
Vs’ similarly to figure 9).

The periodic orbits correspond to modes that exist for one frequency only. When
they are excited quasi-resonantly this gives an idea of ‘line broadening’ in the
spectrum due to viscosity. Considering the two frequencies ω = 0.9, 1.4 we can say
that the line broadening is of the order of δω≈ 0.05, which is the resolution along the
ω-axis for the simulations carried out. We attribute the line broadening to boundary
layers, wave beams of finite-width and modification of geometry next to corners A
and B. The peak at ω= 0.85, for instance, shows a V-like pattern connecting A and
B, whereas that at ω = 0.9 is dominated by the mirrored one connecting corners C
and D.

The oscillating Ekman layer over the lid (unfilled squares (red online) in figure 13)
exhibits good agreement with the boundary-layer theory but shows only traces of
the bulk flow resonances. This justifies the boundary-layer analysis and domain
decomposition also for the lids and outer cylinder in libration, even though the
kinetic energy of the bulk is now larger than that over the lid.

Measurements Imax
ω in figure 13 show the same trend to higher energies across the

inertial wave band as ω increases. One series of peaks does not coincide with those
seen in simulations: ω= 0.25, 0.5, 1.0. This can be attributed to imperfections of the
experimental set-up in combination with the frequency filter used. Libration of the
imperfect outer cylinder results in a frequency modulated optical signal. If the (filter)
frequency ω is an integer fraction of the mean rotation rate Ω0 = 1, the comb of
frequencies coincides with the sideband spectrum of the frequency-modulated signal
recorded by the camera. As a result, the harmonic analysis samples optical artifacts.
These are originating from the shape of the glass cylinder, an inhomogeneous particle
distribution and particles sticking to the wall, resulting in an artificial increase of
measured light intensities for frequencies nω6 f (where n= 0, 1, 2, . . .). We highlight
the frequencies affected by optical artifacts by dotted vertical lines in figure 13
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(ω = 0.25, 0.5, 1.0). In this regard we may only note that an off-centre mount on
the turntable and elliptical deformation (manufacturing tolerances) have the largest
impact, since they yield the smallest possible carrier frequencies Ωc = 1, 2 that fall
into the inertial wave band.

The driving flow in the case of lids plus outer cylinder libration is given by (i)
oscillating Ekman layers over the lids and (ii) Stokes layer over the outer cylinder.
In the linear limit, the situation is close to libration of the lids alone. Figure 13
shows that the oscillating Ekman layers over the librating lids are correlated with the
wave energy in the bulk, which is in agreement with the theoretical arguments. This
is similar to results on libration-induced flows for a full cylinder in an asymptotic
limit of small libration frequencies (Wang 1970; Busse 2010) in which outer cylinder
libration has been neglected. Nevertheless, the Stokes layer over the librating outer
cylinder is not negligible per se. Its effect might be more subtle by modifying the
corner flow problem and inducing a jet-like mean flow close to the wall by streaming.

5.3.3. Wave excitation efficiency
Wave excitation efficiency is discussed in the following by investigating energy

input by librating walls, energy in the boundary layers and energy in the bulk. As
shown in appendix D, spectral power input by libration is connected to the oscillating
boundary layer over librating walls. The wave field’s energy Kbulk

ω is a result of the
balance of energy input, nonlinearity and viscous dissipation. No theory exists for
the frequency dependence of wave energy in the bulk, wherefore we investigate it
empirically by considering the coupling of boundary layer and bulk flow.

We consider the energy ratio Kbulk
ω /KBL

ω as measure for wave excitation efficiency,
where KBL

ω denotes the sum of K i
ω over all oscillating boundary layers i according

to figure 3(a). This is based on the assumption that the oscillating boundary layer
provides the primary flow which is (partly) transformed into waves. Frequency-filtering
ensures that we compare only data possessing the same time scales, here ω−1. The
energy ratio makes it possible to compare the two different configurations more
directly in terms of energy input by libration versus energy of inertial waves excited.

Figure 14 shows the simulated wave excitation efficiency as a function of the
libration frequency ω in the inertial wave regime (0<ω< f = 2). The shaded vertical
structures are the same as in figures 12 and 13. Small thick bars on the upper axis
indicate frequencies selected for cases shown in § 4. Two clear trends are obvious:
(i) frustum libration is generally most efficient at the Ekman layer eruption
ω= f∗ = 0.2, decreasing to the left and right; (ii) lids and outer cylinder in libration
excites waves more efficiently as ω→ f = 2. Both data sets, corresponding to the two
configurations investigated, exhibit pronounced fluctuations around the fitted curves.
These are due to resonance at low-order wave attractor and periodic orbit frequencies.

The non-resonant behaviour of Kbulk
ω /KBL

ω can be understood by qualitative
arguments. The oscillating boundary layer is of roughly constant kinetic energy
(far from the eruption frequency). Thus, Kbulk

ω /KBL
ω can be fitted to the squared

Ekman pumping amplitude. In the ansatz functions the pole of the respective Ekman
layer eruption is preserved (see (5.7)), but we allow for a change in the scaling
exponent. Table 1 collects the coefficients obtained by a least-squares fit in the
frequency interval 0.25 < ω < 1.95 for different domain decompositions and the
two configurations investigated. Results in figures 12–14 are corresponding to the
decomposition marked with an asterisk (*). On the one hand, for the case of frustum
libration (coefficients A, a) and lids plus outer cylinder libration (coefficients B′, b′)
all points in the range have been used. On the other hand, for the case of lids
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and outer cylinder libration, the coefficients B, b correspond to a fit excluding the
strongest two resonance peaks at ω = 0.90± 0.05 and ω = 1.40± 0.05. In figure 14
we show the fits corresponding to A, a and B, b (similarly to the fits in figures 12
and 13). Inspecting the spectra corresponding to the decompositions (not shown here),
we can consider the decompositions (32, 16)–(52, 28) as geometrically acceptable.
Decomposition (56, 48) suffers from a too small bulk portion. Averaging over the
decompositions (32, 16)–(52, 28) yields

a= 1.02± 0.01, b= 1.09± 0.05, b′ = 1.41± 0.05. (5.11a–c)

The exponents a and b are close to one, as one would expect for the case without
resonant excitation of eigenmodes. In this sense, the frustum libration case behaves
much simpler than the lids and outer cylinder libration case. In the latter, b′ is close
to 3/2, indicating a strong effect of resonant wave excitation not captured by our
theory. The prefactors A, B, B′ are just proportionality constants that depend also
on the exponents (see the magnitudes of B and B′ in table 1). The non-monotonic
variation of B and B′ with the decomposition appears because the size of the excluded
regions increases with the number of grid cells trimmed from the bulk, i.e. 1Nr in
radial and 1Nz in axial direction (cf. figure 3). Note further that the coefficients
A, a correspond to the interval ω > f∗, whereas B, b and B′, b′ correspond to ω < f
(cf. (5.7)).

6. Concluding remarks
In this paper we have investigated inertial wave excitation and wave attractors in a

rotating annular cavity, whose inner wall is a truncated cone (frustum). Waves were
excited by longitudinal libration of (i) the frustum or (ii) the lids together with the
outer cylinder. The set-up was investigated by boundary-layer analysis, by ray tracing,
by DNS and by measurements in the laboratory.

Up to weakly nonlinear regimes (ε. 0.2) inertial waves could be clearly identified.
They manifest themselves most notably by characteristic beams that are excited
in the corners, as well as spatial structures corresponding to wave attractors and,
for some distinct frequencies, periodic orbits. We showed examples of low-order
wave attractors and periodic orbits exhibited by DNS, observations and ray tracing.
Qualitative agreement was found between the results of all three methods. For the
same parameters, DNS and observations yielded remarkable similarities, to be seen,
for instance, in the wave beam widths.

It should be noted that DNS and measurements also exhibited a steady prograde
mean flow layer located at r = r1(z = 0) that spanned the entire height. Its origin
is nonlinearity in the Ekman layer along the librating frustum or the librating lids,
respectively. The prograde mean flow layer is surprisingly persistent throughout the
entire wave band even though it is a feature of the asymptotic limit without inertial
waves (for ω> f see Sauret & Le Dizès 2013; for ω→ 0 see Wang 1970 and Busse
2010).

Inertial waves were dominantly excited locally in the corners of the annular cavity.
This coincides with the results published recently by Boisson et al. (2012) and Sauret
et al. (2012), as well as experiments by Beardsley (1970) and McEwan (1970). Our
geometry is closer to the configuration studied by Swart et al. (2010), who studied
inertia-gravity waves excited by libration in a large annulus with a sloping inner wall.

Applying existing boundary-layer theory revealed that an Ekman layer forms over
a librating wall that is inclined by an angle α 6= 0 to the axis of rotation. We showed
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that both the Ekman layer depth δ′− and Ekman pumping velocity w′E exhibit a strong
and qualitatively similar dependency on the forcing frequency ω. The Ekman layers
forming over the librating frustum (α < π/2) or a librating lid (α = π/2) differ in
their eruption frequencies and boundary-layer depths, but the boundary-layer structure
is identical (see figure 10, curves for δ′± and δ±).

Simulations revealed that kinetic energy of the non-resonantly excited bulk wave
field exhibits the same frequency dependence as the kinetic energy in the oscillating
Ekman layer after subtracting a constant term representing libration, i.e. Kbulk

ω,nr(ω) ∝
KE
ω(ω)−Klib. This was shown for the case of frustum in libration in figure 12 and for

the case of lids plus outer cylinder in libration in figure 13. The bulk wave energy for
non-resonant frequencies is given by the Ekman pumping energy, i.e. Kbulk

ω,nr ∝ ŵ2
E(ω),

where ŵE denotes the amplitude of the Ekman pumping velocity.
Inspecting the wave excitation mechanism further revealed that the inclined librating

surface induces an oscillating wall-tangential Ekman flux balanced by a wall-normal
influx (Ekman pumping/suction). Close to the corners in the (r, z)-plane, we found a
mismatch in the wall-tangential mass fluxes in the numerical simulations (figure 11)
as inferred from linear boundary-layer theory. Both, discontinuity of the wall velocity
(see figure 11b, comparing the curves for corners A and D) and nonlinearity emerging
in the boundary layer (anharmonic content seen in figure 11), enhance this flux
discrepancy. Owing to geometric constraints, this discrepancy is balanced by an
outflow roughly directed along the bisectrix. Inertial waves are thus efficiently excited
in the corner regions. However, how the dispersion relation is met locally is not yet
fully understood.

It is worth mentioning that the energy spectra shown in figures 12 and 13 are
reminiscent of internal wave spectra found in the ocean. Figures 7 and 8 of Munk
(1980) exhibit a peak at the local inertial frequency (the so-called ‘inertial cusp’) and
show qualitatively similar decay rates as our spectra in figures 12 and 13. A pole of
the form |f 2

∗ − ω2|−1/2 arises. In our work this is similar (see (5.7)), but is related to
Ekman pumping/suction induced by the librating frustum or lid.

Enhancement of bulk flow amplitudes was observed for structures corresponding
to low-order wave attractors or periodic orbits obtained by ray tracing. A viscous
line broadening of about δω/Ω0 ≈ 0.05 was observed that resulted in quasi-resonant
excitations. To which degree this can be attributed only to viscosity (frequency shift
and finite beam widths) or also to boundary-layer effects (Lopez & Marques 2014)
was not investigated here.

Simulations confirm that the Stokes layer over the librating outer cylinder plays a
minor role with respect to wave excitation. Without induced secondary layers on the
lids, the Stokes layer is unable to excite inertial waves. This is because it entirely
consists of an azimuthal flow and no volume flux component is directed towards the
corners in the (r, z)-plane. Yet it is amazing that the Stokes layer can contain orders
of magnitude larger kinetic energy than the Ekman layers or the interior wave field,
which can be seen in figure 13.

Wave excitation efficiency was defined by the ratio Kbulk
ω /KBL

ω . It can be interpreted
as a coupling factor of the boundary layer and bulk flow, where KBL

ω denotes the
sum over all oscillating boundary layers. We suggest that spectral power input is
proportional to the kinetic energy in the oscillating boundary layers. Simulation
results shown in figure 14 revealed that wave excitation is most efficient when the
oscillating Ekman layer erupts and when resonance occurs. This holds equally for
the librating lid and for the librating frustum. Resonant excitations can increase the
excitation efficiency by an order of magnitude.
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By the present study we could demonstrate that the annular geometry with an
inner frustum offers the possibility to study internal shear layers, wave attractors and
wave excitation relevant for planetary flows in a somewhat simpler set-up than a
spherical shell. It is an archetype configuration that supports an azimuthal mean flow
and provides focusing of inertial waves at the inclined inner wall. The possibility to
have different walls librating has proven useful since it allowed us to separate effects
at the sloping inner and vertical outer wall from those at the lids.
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Appendix A. Generalized coordinates and pressure treatment

In this section the transformation of the Navier–Stokes equations into generalized
curvilinear coordinates is briefly summarized for the purpose of implementation in a
numerical solver (cf. § 2.2). We apply covariant notation and Einstein’s summation
convention to any twice-appearing index regardless of its position. We make use of
the general framework of curvilinear coordinates (see for instance Schade 1997) to
derive equations in terrain-following coordinates.

We begin with introducing a set of covariant curvilinear coordinates for the flow
domain, i.e. (ξ 1, ξ 2, ξ 3) 7→ (x, y, z) with (x, y, z) denoting the underlying Cartesian
coordinates. Then r denotes the position vector independent of a particular basis.
Due to the mapping, bounding walls coincide with coordinate surfaces, e.g. ξ 1 = 0, 1
and ξ 2 = 0, 1 in the case of an annular cavity. For a bundle of coordinate lines the
associated covariant and contravariant basis vectors of the dual basis are

ai = ∂r
∂ξ i

and ai =∇ξ i. (A 1a,b)

They need not to be of unit length, but we require them to be orthonormal in a
holonomic sense ai · aj= δj

i (see Schade 1997), where δj
i is the usual Kronecker symbol

(summation is suppressed for i= j). In order to minimize the number of metric terms
we exploit axial symmetry by the mapping

x= r(ξ 1, ξ 2) cos ϕ(ξ 3), y= r(ξ 1, ξ 2) sin ϕ(ξ 3), z= z(ξ 1, ξ 2), (A 2a–c)

where r2 = x2 + y2 is the polar radius in the (x, y)-plane, ϕ = ξ 3 ∈ [0, 2π) is the
azimuthal angle and z is the direction of the axis. The associated Jacobi matrix reads

D(x, y, z)
D(ξ 1, ξ 2, ξ 3)

= (a1, a2, a3)=
 c̃1/2

1 cos ϕ c̃1/2
2 cos ϕ −c̃1/2

3 sin ϕ
c̃1/2

1 sin ϕ c̃1/2
2 sin ϕ c̃1/2

3 cos ϕ
c3

1 c3
2 0

 , (A 3)
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with the quasi-two-dimensional curvilinear components in the (r, z)-plane

c̃1/2
1 ≡

∂r
∂ξ 1

, c̃1/2
2 ≡

∂r
∂ξ 2

, c̃1/2
3 ≡ r, c3

1 ≡
∂z
∂ξ 1

, c3
2 ≡

∂z
∂ξ 2

. (A 4a–e)

The covariant components of the metric tensor gij can be obtained from the Jacobi
matrix, i.e. gij = ck

i c
k
j . Using properties of the holonomic basis it can be shown that

the covariant and contravariant components are connected by

gil = 1
J2

(
gjmgkn − gjngkm

)
for (ijk)= (123) and (lmn)= (123), (A 5)

where (123) denotes a cyclic permutation and J= det(ci
j)=√g is the Jacobian of the

transformation. Defining β ij ≡ Jgij and γ i
j ≡ β ikck

j , which are both proportional to the
inverse Jacobi matrix, aids stating the governing equations in a more compact form.

Velocities are replaced by volume fluxes qi, which are parallel to the curvilinear
coordinate lines (ξ 1, ξ 2, ξ 3). The chain rule reveals that contravariant components qi

are connected with Cartesian velocities vk by qi= γ i
kv

k, where it should be noted that
vk = vk. Contracting Cartesian components of (2.2) with γ i

j (over j) and applying the
chain rule yields

∂qi

∂t
=−Ro

1
J
γ i

j
∂

∂ξ k

(
1
J

cj
mqmqk

)
− 2

J

(
γ i

2c1
mqm − γ i

1c2
nqn
)

−β il ∂p
∂ξ l
+ 1

J
γ i

j
∂

∂ξm

[
Eβmn ∂

∂ξ n

(
1
J

cj
kq

k

)]
, (A 6)

0= ∂qm

∂ξm
. (A 7)

Note that axisymmetry with respect to the z-axis is used, which can be seen in the
Coriolis term that possesses only fixed lower indices 1 and 2. Moreover, it can be
shown for holonomic bases that ∂γ i

j /∂ξ
i = 0, which is the geometrical conservation

law (Thompson, Warsi & Mastin 1985, p. 104). For a generic grid this may no
longer be fulfilled in a discrete sense. Therefore, conservative and non-conservative
derivatives were carefully used in accordance with the type of the derivative operators
(cf. Morinishi et al. 1998). On substitution of γ i

j and β ij into (A 6) and (A 7), followed
by an expansion of all sums, one can obtain the forms finally implemented. It is
due to axial symmetry that several terms collapse in this step. Also note that the
equations in this form require only three additional metric quantities to be stored in
the (r, z)-plane, e.g. J, c̃i

j and β ij.
The last step is the transformation of boundary conditions. Due to periodicity

in azimuthal direction volume fluxes and pressure have to fulfill periodic Dirichlet
conditions at the planes ξ 3 = 0, 2π. In the (r, z)-plane no-slip conditions apply at
the surrounding walls. We restrict ourselves to wall-parallel motions of the wall. The
wall velocity vw thus fulfills n · vw= 0 with n the surface normal (∇ · vw= 0 implied).
Boundary values for the volume fluxes are easily obtained by mapping the prescribed
wall velocity components to volume fluxes, i.e. qi = γ i

j v
j. For (2.5), (2.6) and (2.7)

we have

q1 = q2 = 0, q3 = J

c̃2/3
3

vϕ at ξ 1 = 0, 1 and ξ 2 = 0, 1, (A 8a,b)

where only vϕ is non-zero on a librating wall. Pressure boundary conditions are
obtained by insertion of vw into the momentum balance. For walls at rest we obtain
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∂p/∂n = 0, whereas on librating walls ∂p/∂n = −2(n × ez) · vw. For the discretized
equations we use the fractional-step method (e.g. Perot 1993) computing the pressure
in such a way that v is divergence-free at the end of every time step. In a discrete
sense, pressure is never calculated precisely at the wall so that one-sided differences
are used in the momentum balance. Neumann-type boundary conditions are moved
into the discrete pressure field (pseudo-pressure formulation). The advantage is that
only ∂p/∂n= 0 needs to be implemented, which aids mass conservation because the
momentum balance is skipped along the boundaries. In generalized coordinates we
have

∂p
∂ξ 1
= 0 at ξ 1 = 0, 1,

∂p
∂ξ 2
= 0 at ξ 2 = 0, 1. (A 9a,b)

Note in this respect that the residual of the Poisson equation arising is modified only
by the prescribed wall velocities. It might be worth noting that the pseudo-pressure
(gradient) is also the physical pressure (gradient) on the lids (n = ±ez) and in the
limit ε→ 0.

An important aspect of any incompressible solver is that the pressure has to
adjust instantly to the velocity field so that the latter is solenoidal at all times. The
fractional-step method is used to enforce this property over the time integration
(see, e.g., Le & Moin 1991; Rosenfeld, Kwak & Vinokur 1991; Perot 1993). The
third- and second-order temporal accuracies obtained with the Runge–Kutta and
Crank–Nicolson schemes are in this regard sufficient, since it was shown by Perot
(1993) that the fractional-step scheme is limited to second-order accuracy due to its
construction. In our implementation the azimuthal direction is treated spectrally such
that the dynamic fields are Fourier-transformed in a first step. This yields a set of
2D Helmholtz problems for the different azimuthal wavenumbers. Each of them is
solved directly by LU decomposition. In order to save CPU time, the equation for
each azimuthal wavenumber is evaluated only if the corresponding residual exceeds
a certain threshold. After that the fields are transformed back into the configuration
space. By this procedure the constant pressure offset is regauged in each time step
by pinning the zero-pressure level at a particular point in space, preferably near a
non-librating wall to keep variations small. Nevertheless, the mean pressure level
‘floats’ and absolute pressure values have no physical meaning.

Finally, we would like to note that the code can also be used to simulate a full
cylinder by using boundary conditions of Akselvoll & Moin (1996) at the axis. Axially
periodic and axial inflow/outflow conditions are also readily implemented.

Appendix B. Geometrical approximations for the generalized coordinate
framework

Discretization by finite differences requires a structured grid within the trapezoid
ABCD (cf. figure 1a). The grid we used is depicted in figure 3 and was produced
with an in-house two-dimensional algebraic grid generator. The azimuthal direction is
equispaced, its construction hence straightforward.

The aspect ratios of the frustum and the gap are r1(0)/h= 1/5 and 1r(0)/h= 1/5
respectively. Due to the holonomic constraint (locally orthogonal grid lines), smooth
slope transitions had to be introduced near the lids at z = 0, 1. We chose these of
length 1z = 0.04, yielding the ‘matching height’ zm = 1z in figure 3(b) and zm =
1−1z in figure 3(c). The shape function of the frustum, r1(z), is required to be at
least two times continuously differentiable to avoid metric artifacts from the viscous
term. We used

r1(z)= r1(1)+
[
1− F1z(z)

]
[r1(0)− r1(1)] , (B 1)
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where F1z(z) denotes a ramp function on the unit interval with smooth transitions at
its ends, i.e.

F1z(z)=



CG
(

z
21z

)
for 0 6 z 61z

C
[

1/2+G′ (1/2)
z−1z

21z

]
for 1z< z< 1−1z

C
[

G′ (1/2)
1− 21z

21z
+G

(
z− 1+ 21z

21z

)]
for 1−1z 6 z 6 1

(B 2)

with the scale factor C=[1+G′(1/2)(1− 21z)/(21z)]−1. The polynomial ramp G(ξ)
of lowest possible order that fulfills the geometrical requirements reads G(ξ)= 6ξ 5−
15ξ 4 + 10ξ 3 for ξ ∈ [0, 1]. Its derivative is G′(ξ)≡ dG(ξ)/dξ .

The modification of the geometry resulted in a slight discrepancy between the
inclination angles of the frustum in the laboratory (αlab = 5.71◦) and that in the
numerical grid (αnum = 5.93◦). As can be seen in figure 3(b,c) the error is largest
near the inner top and bottom corners, but is only of the order of one grid cell. The
mismatch in the inclination angles can be considered lesser a problem since inertial
waves preserve the angle to the rotation axis upon reflection, whereas viscosity (here
E & 10−6) overcompensates any sensible bias in the focusing reflections. Modification
of geometry in the vicinity of the top and bottom inner corners along the frustum
gives the most significant portion of the discretization error. This error cannot be
resolved by increasing the resolution, but the modified geometry is self-consistent
upon change in resolution.

Appendix C. Frequency filtering of numerical data
In order to separate features of stationary solution according to their time scales, a

Fourier filter was applied to the numerical data. Filtered data was used for the figures
12–14.

A numerical simulation was performed for a certain libration frequency ω and
a time series was stored from t = t0 on, at which the system reached practically
stationarity. For convenience, time slices were equispaced and taken for an integer
number of libration periods MTlib = 2πM/ω (M = 1, 2, . . .). In the linear limit and
for weakly nonlinear configurations filtering of only a few harmonic frequencies lω
with lω 6 2Ω0 is sufficient. Projection amplitudes al, bl that preserve the scales are
obtained by evaluation of the discretized Fourier integrals

al = 2
MTlib

∫ t0+MTlib

t0

g(t) cos(lωt) dt≈ 2
N

N−1∑
j=0

g(tj) cos
2πjl

N
, (C 1)

bl = 2
MTlib

∫ t0+MTlib

t0

g(t) sin(lωt) dt≈ 2
N

N−1∑
j=0

g(tj) sin
2πjl

N
. (C 2)

Integration is done for every grid point r i and for all variables so that formally g(tj)=
(v, p, . . .)T(r i, tj). Amplitudes Al and phases θl are obtained via Al = (a2

l + b2
l )

1/2 and
θl = arctan(bl/al) for l > 1 and with θl ∈ [−π,π). For the mean (l= 0) we have A0 =∑

j g(tj)/N and θ0 ≡ 0. Spatial structures seen in the fields Al(r) and θl(r), however,
consist of several wave vectors that fulfill the dispersion relation for ωl.
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Appendix D. Power input by libration and its effect on the flow
The observed fluid flow state inside the cavity for the given (longitudinal) libration

frequency ω is not perfectly time-coherent, but is weakly chaotic (turbulent) and
the individual wave trains may have a characteristic life-duration time of the order
of dominating wave period, 2π/ω. The period 2π/ω is supposed to be short in
comparison with the spin-up time determined by the harmonic mean between the
rotation period 2π/Ω0 ≡ 4π/f (Coriolis parameter f = 2Ω0) and the diffusion time
along the height h= 2H of the approximately cylindrical cavity (Greenspan & Howard
1963; Busse 2011). It means that ω/f � δE/H ∼ 3 × 10−3, in our experiment and
numerical simulations.

The power input by libration can be derived by applying a modification of the
‘fastest response principle’ to our fluid system. It means that the destruction of
kinetic energy K of the flow in the fluid interior occurs on the shortest time-scale
permissible in the system, in our case ω−1 (a shorter time scale f−1 should be
excluded from considerations, because it specifies the Ekman layer formation rate
(Greenspan & Howard 1963), whereas the boundary layer internal dynamics are
eventually responsible for the destruction of the energy K). So, any variation in ω,
say δω, leads to the corresponding variation in the (kinetic) energy destruction rate
Kδω. The later quantity must be equilibrated by the corresponding variation in the
external mechanical power P input to the system, which yields

Kδω= δP. (D 1)

Changing from variations to differentials we obtain

K (ω)= dP
dω

(ω) . (D 2)

In the following, we use the notation with respect to the bottom lid axes (see
figure 1b) and we replace f∗→ f throughout. As a substitute for P(ω) in the right-hand
side of (D 2) we use the power input through the librating lids by taking the product
of the velocity of librations, u|z=0= ε(f /2)r sinωt, and the calculated surface stress in
the oscillating Ekman boundary layer, i.e. ρν(∂u/∂z)|z=0. Integration of the horizontal
vorticity ζ by exploiting axisymmetry (see (5.4)–(5.6)) yields for the azimuthal
velocity component

u = εfr
4

(
sgn[ f∗ −ω]e−z/δ− sin

z
δ−
− e−z/δ+ sin

z
δ+

)
cosωt

+ εfr
4

(
e−z/δ− cos

z
δ−
+ e−z/δ+ cos

z
δ+

)
sinωt. (D 3)

With this, the product of wall velocity and surface stress is integrated over the whole
lid, averaged over the period 2π/ω and, finally, the result is taken with the opposite
sign (to fulfill the third Newton law demands). The mechanical power introduced into
the fluid via longitudinal librations of the outer cylinder wall plays a less important
role in determining the flow dynamics in the fluid main bulk (including inertial wave
oscillations) and is disregarded in our estimates (cf. Wang 1970; Busse 2011). So, the
power input corresponding to each lid reads

P (ω)= π

32
√

2
ρν1/2ε2f 5/2

(
r4

2 − r4
1

)
F (ω/f ) (D 4)
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with r1 and r2 denoting the inner and outer radius, respectively, and

F (ξ)=
{√

1+ ξ −√1− ξ for ξ < 1,√
ξ + 1+√ξ − 1 for ξ > 1.

(D 5)

When ω/f�1 then P∝ω, while P∝ω1/2 in the opposite limit case of ω/f�1. There
is a (dP/dω)-singularity at ω/f = 1 (boundary layer eruption over the librating lid;
cf. figure 10). The calculation and conclusion also applies to the frustum in libration
with formally substituting f → f∗ ≡ f sin α.

From (D 2) and (D 4) and by summing contributions from the top and bottom lids
(the cavity is approximately considered as purely cylindrical) one gets

K (ω)≡ ρU2 (ω)

2
π
(
r2

2 − r2
1

)
2H = dP (ω)

dω
≡ π

16
√

2
ρν1/2ε2f 3/2

(
r4

2 − r4
1

) dF (ω/f )
d (ω/f )

.

(D 6)
In the low-frequency limit ω/f � 1 one thus has the estimate

U2 ≈ 1
8
ν1/2ε2f 3/2 r2

2 + r2
1

H
∼ 2.1× 10−6 m2 s−2, (D 7)

i.e. (D 7) predicts velocities U ∼ 10−3 m s−1 that are of the order of experimentally
measured values and numerical solutions. Typically, simulated and measured values
are in the order of 2 mm s−1 for the parameters considered, where the laboratory
data referred to were obtained recently by PIV measurements in the laboratory. Note
that these velocities constitute a small fraction, in the order of (δE/H)1/2, of the
libration velocity amplitude U0 = ε(f /2)r2 (here at the outer cylinder). Under the
same limit ω/f � 1 and in comparison with the vertical velocity amplitude at the top
of the oscillating Ekman boundary layer, i.e. ŵE ≈ ε√2νf /2 (cf. (5.7)), (D 7) predicts
(H/δE)

1/2-times larger values.
Equation (D 6) describes satisfactorily the frequency dependence of experimental

results for both situations, librating frustum and the librating outer cylinder plus lids.
The plot of function dF(ω/f )/d(ω/f ) is qualitatively similar to that of the oscillating
Ekman depth δ′− ≡

√
2ν/| f∗ −ω| in figure 10 and is not presented here.
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