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ON NUMERICAL EVALUATION OF FINITE TIME SURVIVAL
PROBABILITIES

By D. C. M. DICKSON

ABSTRACT

In this paper we review three algorithms to calculate the probability of ruin/survival in finite time
for the classical risk model. We discuss the computational aspects of these algorithms and consider
the question of which algorithm should be preferred.
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1. INTRODUCTION
In the classical risk model the insurer’s surplus at time f is:
Uft)=u+ct-S(t)

where u is the initial surplus (i.e. the surplus at time zero), c¢ is the rate of
premium income per unit time and S (f) denotes aggregate claims up to time r.
The aggregate claims process {S.(f)},», is a compound Poisson process, and,
without loss of generality, we can let the Poisson parameter equal 1. Without loss
of generality we can also let the distribution of individual claim amounts, whose
distribution function we denote by P, have mean 1. Thus, we can write c=1+6,
where 0 is the premium loading factor. The probability of survival to time ¢ is
defined as:

Ofu )=Pr{U(1)>0 forallt, O<7<i].

In this paper we comment on three methods of approximating §.(«, ) which
have appeared in the literature in recent times. Each method is based on the
same discrete time risk model, In the discrete model, aggregate claims per unit
time have a compound Poisson distribution with Poisson parameter 1/(1+6)f,
where 8 is a positive integer, and individual claim amounts are distributed on
the non-negative integers with mean B. (In each of our applications in Section
3, we assume a continuous individual claim amount distribution in our classical
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model. The individual claim amount distribution in our discrete model
approximates that of the continuous model, subject to scaling.) We denote by G
and g the distribution function and probability function, respectively, of
aggregate claims per unit time. The probability function can be calculated easily
using Panjer’s (1981) recursion formula. The premium income per unit time in
this model is 1. If we let the initial surplus u, be a non-negative integer, then
the surplus process moves on the integers, and the probability of survival to
(integer) time ¢ is:

Nu, ) =Pr[U(t)>0 forallt, 7=1,2,...,1]

where U(7) denotes the surplus at time 7. Note that under this definition, as in the

definition of §.(u, 1), ruin does not occur at time O if #=0. The methods of

calculating &u, 1), described in Sections 2.2 and 2.3, require such a definition.
Dickson & Waters (1991) explain why a reasonable approximation to ,(u,?) is:

6,(u, 1) = 6(Pu(1 + 6)Pn).

In the next section we set out three methods of calculating &u, 1). In Section 3
we discuss some computational aspects, and in the final section we consider the
question of which method should be preferred.

2. THREE METHODS OF CALCULATING &u, 1)

2.1 The Method of De Vylder & Goovaerts

De Vylder & Goovaerts (1988) use a slightly different definition of survival to
the one given in the previous section. However, this does not affect the
application of their method to the discrete time model described in the previous
section. Their approach, which considers the function W(u,f)=1-&u,1), is as
follows. For u=0, 1, 2, ...

Wu, 1)=1-G(u)

that is ruin occurs at the end of the first time period if the aggregate claim
amount in that time period is strictly greater than u. For u=0, 1, 2, ... and =2,
3,4, ..

YD =y D+ g(Wlu+1-jir=1)

j=0

that is if ruin occurs by time ¢, either the aggregate claim amount in the first time
period causes ruin, or else the aggregate claim amount is j<u, and ruin occurs in
the next t—1 time periods from the resulting surplus u#+1—j.

https://doi.org/10.1017/5135732170000057X Published online by Cambridge University Press


https://doi.org/10.1017/S135732170000057X

On Numerical Evaluation of Finite Time Survival Probabilities 577

The number of computations involved in this algorithm can be reduced by
means of a neat truncation procedure. Let £>0 be small, and let k, be the least
integer such that G(k;)21-& Now define:

g(j) for j=0,1,2,....k,

£,y
g(’)'{o for j =k +1, ko +2,...

and let:

1D ifu<gk
y/”:(u,l)z{w(u ) ifu<k,

0 if 1>k,

For t=2, 3, 4, ... define:

Ve =y )+ Y g (e w+1-jr=1)

i=0

provided that the calculated value is at least £. Otherwise define w*(u, 1) to be 0.
We can easily apply the ideas of De Vylder & Goovaerts (1988) to show that:

VE(u, DS Y, HSwe(u, ) +3¢€t.

In our illustrations in the next section we calculate w*(u,t), since we can
control the error introduced by the truncation. For a given value of 7, we always
set £€=107%/3¢ so that the error introduced by truncation is no more than 1 in the
fourth decimal place. (The rescaling which we introduce in Section 3 produces
approximations to Y, (u,1)=1-3(u,t) which are mostly correct to 4 decimal
places, so this choice of € should not have much effect on the accuracy of the
approximation.)

We comment that the above prescription is not quite that given by De Vylder
& Goovaerts (1988). It is a modification of their approach which produces better
approximations to ¥, (u, ) or 6.(u,t). However, all the ideas presented above come
from their paper. Details of the modification are given by Dickson & Waters
(1991, Section 2).

2.2 The Method of Dickson & Waters

Dickson & Waters (1991) also consider the aggregate claim amount in the first
time period and apply the formula:

u-—1
Bu—Lr+1)= Y g(j)ou—j.1)

j=0
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for u>1 and >0, to get:

u=1
8(u1)=g(O)| Su—1Lr+1)=Y g()du = j.0) M

j=1

with:
8(1,0)=g(0)"8(0, t+1).

Recursive calculation of &8(u,t) is then possible if values of §(0,7) can be
calculated for 7=r+1, t+2, ..., t+u. Dickson & Waters (1991) show that:

71 .
5(0,7)= Z(l —f)h(j, 7) @
j=0

where h(j, 7) is the probability that aggregate claims over a time interval of length
Tequal j, j=0, 1, 2, ... . Note that, for a given value of 7, & is the probability
function of a compound Poisson random variable.

This method requires values of 6(0,7) for T=t+1, #+2, ..., t+u. We start by
calculating 6(0,7+1) from formula (2), using Panjer’s recursion formula to
calculate values of h(-, t+1). At first sight it is tempting to compute values of
6(0,7) for t=t+2, t+3, ..., t+u in exactly the same way. However, this is
computationally inefficient. As noted by Dickson & Egidio dos Reis (1996) who
consider a related problem, it is better to use convolutions rather than Panjer’s
recursion formula in most of the subsequent calculations. Suppose we have
calculated &0, 7) for some 7, t+1<7<r+u. This means that we have values of
h(, ) for j=0, 1, 2, ..., T—1. To calculate &0,7+1) we require values of
h(j, T+ forj=0,1,2, .., 7. Fori=0, 1, 2, ..., 7—1 we can calculate h(i, T+1),
as:

h(i,T+1) = 2 h(k, DA -k, T)
k=0

and then we can use Panjer’s recursion formula to calculate hA(t, T+1). This
approach must involve calculating values of a(-, 1) (which is the same as g(-)), but
these can be calculated efficiently by Panjer’s recursion formula, and the whole
procedure of calculating h(-, 7) for successive values of 7 is much more efficient
in terms of the number of operations required to calculate the probability function
of aggregate claims over successive time periods.
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A disadvantage of the method of Dickson & Waters is that it is numerically
unstable, that is, after a large number of computations, formula (1) produces
computed values of survival probabilities outside the interval [0, 1]. Dickson &
Waters (1991) propose a pragmatic solution to this problem. They note that:

O<max{d(u,t+1), S(u-1,H}<é(, <1 3)

and constrain the calculated survival probabilities to behave in this way. In our
numerical illustrations in the next section we apply this constraint to allow a
comparison of computer run times. We comment on the effect of this constraint
on approximations to &,(«, t) in Section 4.

Unfortunately, there does not appear to be a neat truncation procedure for this
algorithm which produces a simple error bound.

2.3 The Prabhu/Seal Formula
We can apply the arguments used to derive the Prabhu/Seal formula for the
classical risk model (see Prabhu, 1961; and, for example, Seal, 1978) to write
down the corresponding formula for our discrete model. If the aggregate claim
amount at time ¢ is less than u+¢ (so that the surplus at time ¢ is greater than 0)
then either:
(1) the surplus has been above 0 at time 7=1, 2, ..., ; or else
(2) at some time j<t—1 the surplus was 0 (the probability of which is A(u+j, j)),
and in the remaining time period of length —j the surplus remained above 0
(the probability of which is 8(0, t—j)).
Combining the probabilities of the above events we have:

=1
Hu+t-1,1)=5(u, t)+2h(u+j,j)6(0,t—j)

j=1

where H(j, ¢} is the probability that aggregate claims over a time interval of
length ¢ are less than or equal to j. Hence:

=1
Su,ty= Hu+t=1,0= Y h(u+ j, H5(0,1 - j) )

j=1

with (0, 7) given by (2).

Kling & Goovaerts (1991) approximate J(u, t) by discretising the continuous
time version of (4). However, allowing for rescaling of time units and claim
amounts, the formulae from which they calculate their approximations are
identical to (2) and (4).
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Table 1. Exponential Claims

t=10 t=30 t=50 t=100 t=500

u=0 DVG 0 i 3 11 163
DW 0 0 0 0 3

P/S 0 0 0 0 3

S(u 0 0.2146 0.1480 0.1284 0.1100 0.0925

u=10 DVG 0 2 4 13 170
bW 0 2 4 17 383

P/S 0 3 11 70 7,230

S(ur) 0.9681 0.8758 0.8163 0.7394 0.6435

u=20 DVG 0 2 5 14 172
DW 2 5 i1 36 778

P/S 1 5 16 89 8,075

S(u, t) 0.9996 0.9908 0.9754 0.9396 0.8629

u=30 DVG 1 3 6 16 175
DW 4 10 20 59 1,163

P/S 2 9 23 110 8,127

8(u 0 1 0.9996 0.9978 0.9890 0.9488

u=40 DVG 1 3 6 17 180
DW 9 18 32 87 1,741

P/S 3 13 32 133 8,400

S(u 1) 1 1 0.9999 0.9984 0.9815

u=50 DVG 1 3 6 17 183
DW 17 29 48 121 2,334

P/S 4 18 42 160 8,972

S(u,n 1 1 1 0.9998 0.9936

3. COMPARISONS

In the previous section we have summarised three algorithms for calculating
w(u, t) or 8(u t). Each of the formulae is exact, and, in principle, each method
should give the same solution as the others. (The algorithm for w*(i, 1) may, of
course, give a different solution.) In Tables 1 and 2 we show approximations to
S(u, 1) calculated by the Prabhu/Seal formula. We have chosen this method
simply because the calculations are unaffected by truncation or by numerical
stability.

Tables 1 and 2 also show computing times in seconds for each of the three
algorithms — denoted in the tables by DVG, DW and P/S respectively —for a
range of values of u and t. We have chosen computing time as our measure of
comparison rather than the number of algebraic operations. Under the method of
De Vylder & Goovaerts with truncation, the only way of counting the number of
algebraic operations is to run a program, because, due to the definition of y*, we
do not know at the outset at which points in the calculations truncation will
apply. We chose to record computing times rather than incorporate a calculation
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Table 2. Pareto Claims

=10 +=30 t=50 =100 =500

u=0 DVG 0 1 6 46 6,524
DW 0 0 0 0 4

P/S 0 0 0 0 4

XUA)) 0.3061 0.2186 0.1886 0.1568 0.1126

u=10 DVG 0 3 9 60 6,336
Dw 0 2 4 16 49

P/S 0 3 9 60 6,228

S(u 1) 0.9068 0.7826 0.7117 0.6180 0.4595

u=20 DVG 1 5 14 76 6,764
DW 2 5 11 36 756

P/S 1 5 14 77 6,410

S(u, 1) 0.9722 0.9143 0.8672 0.7878 0.6136

u=30 DVG ! 7 20 94 7,274
DW 4 10 20 59 1,312

P/S 1 7 20 94 6,728

S(u 1) 0.9877 0.9591 0.9312 0.8745 0.7127

u=40 DVG 2 11 27 115 7,787
DwW 9 18 32 87 1,580

P/S 3 1t 27 115 7,108

S(u, 1 0.9932 0.9773 0.9605 0.9217 0.7814

u=50 DVG 3 15 36 137 7,409
DwW 16 29 47 121 2,010

P/S 3 15 36 138 7,806

S(u, 0 0.9957 0.9858 0.9751 0.9484 0.8308

of the number of algebraic operations in our programs. All computer programs
were written in Fortran and computations were carried out on a Digital
AlphaServer 4000 2/300MHz CPU. For Table 1 the individual claim amount
distribution in the classical risk model is exponential, whereas in Table 2 it is
Pareto (2, 1), that is:

Px)=1—(1+x)"2 forx>0.

We have chosen these two distributions as illustrations of light-tailed and
heavy-tailed distributions respectively. See, for example, Embrechts er al. (1997,
Chapter 1) for a description of other distributions which fall into these
categories.

In each set of calculations the value of @ is 0.1. To apply the algorithms of the
previous section, we rescaled these continuous individual claim amount
distributions to have mean 20, then discretised the rescaled distributions using the
method described by De Vylder & Goovaerts (1988). We chose a mean of 20, as
this level of rescaling is sufficient to produce. very accurate approximations to
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0,(u, t) — see Dickson & Waters (1991, Table 5). We make the following points

about the computer run times in Tables 1 and 2:

(1) When u=0, it is clearly better to calculate values of 8(u,7) from formula (2).
Even with ¢ as large as 500, the run time is trivial.

(2) There is a marked difference for the run times under the method of De
Vylder & Goovaerts in the two tables. The reason for this is simple. The
truncation procedure has no impact when the individual claim amount
distribution is Pareto. In each calculation, k, exceeded the largest value of j
for which we had to calculate g(j) in order to apply the method. Recall that
we have set £=107/3t. If we increase £ by a factor of 10, the truncation
procedure still has no impact, resulting in no change in run time or accuracy
of the approximation. If we use the method of De Vylder & Goovaerts
without truncation in the situation of Table 1, the run times are broadly
similar to those in Table 2 for this method.

(3) In Table 1 it is clear that the method of De Vylder & Goovaerts is the most
efficient in terms of run times for u>0. However, this is not the case in
Table 2. Their method requires run times that are broadly comparable with
those for the Prabhu/Seal formula, but are much greater than those required
for the method of Dickson & Waters. Indeed, we note that, as ¢ increases
from 100 to 500 in Table 2, the relative performance of the method of
Dickson & Waters improves considerably.

4. CONCLUSIONS

Based on the numbers presented in the previous section, we can draw the
following conclusions:

(1) When u=0, calculation of &u, f) by formula (2) is clearly best.

(2) When the individual claim amount distribution has a light tail, the method of
De Vylder & Goovaerts will be the most efficient computationally, as the
truncation procedure will have a real effect.

(3) There seems to be little reason to use the Prabhu/Seal formula, although it is
marginally superior to the method of De Vylder & Goovaerts in Table 2
when ¢=500.

(4) The method of Dickson & Waters appears to be computationally most
efficient in Table 2, at least for large values of t. However, Dickson &
Waters (1991) observe that the algorithm appears to be unstable for values of
u greater than about 30. In Tables 1 and 2 the values shown for « 230 arise
from the application of the constraint given by (4). When u=30 the
calculated values are virtually identical to four decimal places to those shown
in the tables. However, as u increases, the error can increase, by as much as
2.5% of the true value of &u, ). We would, therefore, recommend the use of
this algorithm only when u<30. (Recall that we have been working in a
framework where the mean individual claim amount is 1.)
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In choosing which algorithm to apply, we should also consider whether we
want to know the value of the survival probability for a given combination of u
and 1, or whether we are interested in a range of values. In calculating &(u, 1) the
method of De Vylder & Goovaerts also gives values of §(w, 7) for 1<7<t—1 and
for 1<@w<u+t-—1, whereas the method of Dickson & Waters gives values of
8(w, 1) for 0Sw<u—1 and for t<7<7+u—w, excluding 6(0,7). By contrast, all
that the Prabhu/Seal formula offers is values of 6(0, 7) for 7=1, 2, ..., t—1.

In summary, we would suggest that there is no clear answer to the question of
which algorithm should be preferred. The figures in Tables 1 and 2 show that, in
terms of computer run times, there is no clear choice. Perhaps the only real
conclusion we can draw is a negative one — there appears to be little reason for
using the Prabhu/Seal formula when u>0.

Finally, we note that the conclusions of this study differ substantially from
those of Steenackers & Goovaerts (1991, Section 2.4), who conduct a similar
study and conclude that “The best performance is obtained by the method of
Kling & Goovaerts™, that is what we have called the Prabhu/Seal method. There
are three reasons why they reach a different conclusion to ours. First, they take
the definition of survival to be:

PrlU(1)20 forallt, 7=1,2,...,1]

in applying the method of Dickson & Waters. This method leads to poorer
approximations to J,(u, 1) — see Dickson & Waters (1991). Second, their analysis
applies the algorithm given by De Vylder & Goovaerts (1988), whereas we have
used a modified (improved!) version of it. Third, our analysis has been based on
computing times, since the algorithms presented in this paper are just different
ways of calculating the same quantity. However, their conclusions are based on
the numerical accuracy of the algorithms they compare. In this paper, numerical
accuracy has been an issue only when an algorithm is unstable.
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