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Abstract

We propose a novel theoretical characterization of the optimal ‘Gittins index’ policy in
multi-armed bandit problems with non-Gaussian, infinitely divisible reward distributions.
We first construct a continuous-time, conditional Lévy process which probabilistically
interpolates the sequence of discrete-time rewards. When the rewards are Gaussian,
this approach enables an easy connection to the convenient time-change properties of a
Brownian motion. Although no such device is available in general for the non-Gaussian
case, we use optimal stopping theory to characterize the value of the optimal policy as
the solution to a free-boundary partial integro-differential equation (PIDE). We provide
the free-boundary PIDE in explicit form under the specific settings of exponential and
Poisson rewards. We also prove continuity and monotonicity properties of the Gittins
index in these two problems, and discuss how the PIDE can be solved numerically to find
the optimal index value of a given belief state.
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1. Introduction

The field of optimal learning (see Powell and Ryzhov (2012)) concerns the study of the
efficient collection of information in stochastic optimization problems subject to environmental
uncertainty—that is, problems where uncertainty is driven by unknown probability distribu-
tions. In many applications in business, medicine, and various branches of engineering, the
decision-maker is able to formulate a belief about these unknown distributions, and gradually
improve it using information collected from expensive simulations or field experiments. In
particular, we consider a fundamental class of optimal learning problems known as multi-
armed bandit problems (Gittins et al. (2011)), in which there is a finite set of competing
‘arms’ or ‘alternatives’ (e.g. system designs, pricing strategies, or hiring policies), each with an
unknown value. Alternatives are implemented sequentially in an online manner: upon choosing
an alternative, we collect a reward in the form of a noisy sample centered around the unknown
value. Our objective is to maximize the cumulative discounted expected reward collected over
an infinite horizon.

Each individual reward thus plays two roles: it contributes immediate economic value, and
it also provides information about the alternative with the potential to improve future decisions.
The tradeoff between reward and information is known as the exploration versus exploitation
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Optimal learning with non-Gaussian rewards 113

dilemma. This problem arises in applications where decisions are made in real time, such as
dynamic pricing or advertising placement in e-commerce (Chhabra and Das (2011)) or clinical
drug trials with human patients (Berry and Pearson (1985)). The bandit model is also relevant
in simulation, in situations where a single simulation experiment costs money (Chick and Gans
(2009)).

In the classical multi-armed bandit setting where the decision-maker’s beliefs about the
alternatives are mutually independent, the work by Gittins and Jones (1979) shows that the
optimal strategy takes the form of an index policy. At each time stage, an index is computed for
each alternative independently of our knowledge about the others, and the alternative with the
highest index is implemented. The index can be expressed as the solution to an optimal stopping
problem; see Katehakis and Veinott (1987). Nonetheless, despite this considerable structure
(see, e.g. Gittins and Wang (1992) for additional scaling properties), which continues to inspire
new theoretical research on Gittins-like policies (Filliger and Hongler (2007), Glazebrook and
Minty (2009)), even the stopping problem for a single arm is computationally intractable. This
challenge has given rise to a large body of work on heuristic methods, which often require the
reward distributions to be Gaussian, or to have bounded support; see, e.g. Auer et al. (2002) for
examples of both.

In the simulation literature, Gaussian assumptions are standard due to advantages such as
the ability to concisely model correlations between estimated values (Chick and Inoue (2001),
Ryzhov et al. (2012)). More recently, however, numerous applications have emerged where
observations are clearly non-Gaussian. Recently, the operations management literature has
considered (Caro and Gallien (2007) and Glazebrook et al. (2013)) applications where the
observed demand comes from a Poisson distribution with unknown rate. The challenge of
deriving Poisson distributions also arises in dynamic pricing (Farias and Van Roy (2010)), op-
timal investment and consumption (Wang and Wang (2010)), models for household purchasing
decisions (Zhang et al. (2012)), and online advertising and publishing (Agarwal et al. (2009)).
Lariviere and Porteus (1999) studied a newsvendor problem where a Bayesian gamma prior
is used to model beliefs about an exponentially distributed demand. The gamma-exponential
model was also used by Jouini and Moy (2012) for deriving signal-to-noise ratios in channel
selection.

Motivated by applications such as the above, we consider Bayesian bandit problems under
non-Gaussian, infinitely divisible reward distributions, encompassing both exponential and
Poisson models. In the Gaussian setting, a recent body of work by Brezzi and Lai (2002),
Yao (2006), and Chick and Gans (2009) approximates the Gittins index for an arm using an
optimal stopping problem on a Brownian motion with unknown drift, a continuous-time process
that probabilistically interpolates the sequence of Gaussian rewards collected from the arm.
By making the connection between Brownian motion and the heat equation (Steele (2001)),
one can formulate and numerically solve a free-boundary problem (Van Moerbeke (1976))
to approximate the Gittins index. Our approach uses a similar foundation: we interpolate
the reward sequences in the non-Gaussian problems with conditional Lévy processes, which
are generated by infinitely divisible distributions (Sato (1999)), and then derive the relevant
continuous-time stopping problems. Although there has been a body of research available
on multi-armed bandit problems driven by Lévy processes (El Karoui and Karatzas (1994),
Kaspi and Mandelbaum (1995), Mandelbaum (1986), (1987)), this work does not consider the
Bayesian perspective where the reward distributions depend on unknown (random) parameters
and our beliefs about them evolve over time. This dependence leads to the use of conditional
Lévy processes, which have previously been studied in a learning context only in the much
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more restrictive setting of binary prior distributions; see, for example, Buonaguidi and Muliere
(2013), and Cohen and Solan (2013).

The major challenge in studying non-Gaussian reward problems under this interpolation
technique is that we cannot exploit the time-change properties of Brownian motion to ‘stan-
dardize’ the problem, as was done before in the Gaussian setting. Therefore, we develop an
alternate method based on equating the infinitesimal and characteristic operators (Peskir and
Shiryaev (2006)) of value functions in an optimal stopping problem. We then obtain free-
boundary problems on partial integro-differential equations (PIDEs), which can potentially be
used to approximate the Gittins index. The solutions to these equations are shown to possess
regularity properties such as continuity and monotonicity, thus retaining the structure of the
original discrete-time problems.

In this paper we make the following contributions:

1. we propose novel continuous-time approximations to Gittins indices for non-Gaussian
problems, in the form of stopping problems on conditional Lévy processes that proba-
bilistically interpolate sequences of infinitely divisible rewards;

2. we derive free-boundary PIDEs whose solutions match the value functions in these
stopping problems, and illustrate how these solutions can be calculated;

3. we apply our method directly to gamma-exponential and gamma-Poisson problems and
derive explicitly the PIDEs corresponding to these models;

4. we prove relevant structural properties on the monotonicity, continuity, and asymptotic
behavior of the value functions and Gittins indices. We also derive a scaling property for
the gamma-Poisson problem that is, to the best of the authors’ knowledge, entirely new.

We view these contributions as furthering the theoretical understanding of Gittins indices for
non-Gaussian problems.

2. Optimal learning with non-Gaussian rewards

In Section 2.1 we set up the notation for our analysis and describe two major classes of
conjugate learning models with infinitely divisible rewards, namely gamma-exponential and
gamma-Poisson. In Section 2.2 we review the Gittins index policy, known to be optimal for
bandit problems. Section 2.3 provides additional motivation for our study by showing that
non-Gaussian problems can cause inconsistent behavior in knowledge gradient methods, a
prominent class of heuristic learning policies.

2.1. Learning models for non-Gaussian rewards

Consider a bandit problem withM alternatives, with xn ∈ {1, . . . ,M} denoting the alterna-
tive chosen for implementation in stage n = 0, 1, 2, . . . . LetWxn

n+1 be the single-period reward
observed after xn is implemented. In the discrete-time problem, quantities are indexed by the
time at which they become known; thus, xn is chosen at time n, butWxn

n+1 becomes known one
time period later.

For fixed x, the rewardsWx
1 ,W

x
2 , . . . are drawn from a common sampling distribution with

density f x(·; λx), where λx is an unknown parameter (or vector of parameters). The rewards are
conditionally independent given λx . Let Fn be the σ -algebra generated by the first n decisions
x0, x1, . . . , xn−1 as well as the resulting rewardsWx0

1 , . . . ,W
xn−1
n . The unknown parameter λx

is modeled as a random variable, and our beliefs about the possible values of the parameter
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at time n are represented by the conditional distribution of λx given Fn. In the problems we
consider, this sequence of conditional distributions is characterized by a sequence (kxn)

∞
n=0 of

random vectors, where kxn is Fn-measurable for all n, and we write E[Wx
n+1 | Fn] = m(kxn)

for some appropriately chosen function m, so that m is the mean of the reward based on our
current belief. For convenience, we also letmx∞ = E[Wx

1 | λx] be the ‘true mean’of the single-
period reward, which is the mean of the reward distribution when the true value of λx is known.
Note that, if x is observed infinitely often, m(kxn) → mx∞ almost surely (a.s.) by martingale
convergence.

The knowledge state kxn can also be viewed as a set of sufficient statistics for the conditional
distribution of λx given Fn. We follow the classic multi-armed bandit model, where λx and λy

are independent for any x �= y, and likewise the single-period rewards are independent across
alternatives. Thus, our beliefs about all the alternatives can be completely characterized by
kn = {k1

n, . . . , k
M
n }. Then, a policy π denotes a sequence Xπ0 , X

π
1 , . . . of functions mapping

knowledge states k0, k1, . . . to elements of {1, . . . ,M}. In other words, a policy is a rule for
making decisions, under any possible knowledge state, at any time stage. Our objective can
thus be written as

sup
π

E
π

∞∑
n=0

γ nm(k
π,Xπn (kn)
n ), (2.1)

where 0 < γ < 1 is a prespecified discount factor. In words, we maximize the expected
cumulative, infinite-horizon, discounted reward obtained from alternatives implemented by our
chosen policy.

We specifically highlight two classic Bayesian learning models where the sampling dis-
tributions are infinitely divisible. In the gamma-exponential model, f x is (conditionally)
exponential with unknown rate λx . Under the assumption that λx ∼ gamma(ax0 , b

x
0 ), the

conditional distribution of λx , given Fn, is also gamma with parameters axn and bxn . From
DeGroot (1970), we can obtain simple recursive relationships for the parameters, given by

axn+1 =
{
axn + 1 if xn = x,

axn if xn �= x,
bxn+1 =

{
bxn +Wx

n+1 if xn = x,

bxn if xn �= x.
(2.2)

In the gamma-exponential model, kxn = (axn, b
x
n), and the mean functionm is given bym(kxn) =

E[1/λx | Fn] = bxn/(a
x
n − 1). We also consider the gamma-Poisson model, where f x is

conditionally Poisson with unknown rate λx . Again, we start with λx ∼ gamma(ax0 , b
x
0 ),

whence the posterior distribution of λx at time n is again gamma with parameters axn and bxn ,
and the Bayesian updating equations are now given by

axn+1 =
{
axn +Wx

n+1 if xn = x,

axn if xn �= x,
bxn+1 =

{
bxn + 1 if xn = x,

bxn if xn �= x.
(2.3)

Again, the decision-maker’s knowledge about λx at time n is represented by kxn = (axn, b
x
n)with

mean function m(kxn) = E[λx | Fn] = axn/b
x
n .

2.2. Review of Gittins indices

We briefly summarize the characterization of the Gittins index policy, known to optimally
solve (2.1). For a more detailed introduction, we refer the reader to Powell and Ryzhov (2012,
Chapter 6). Furthermore, Gittins et al. (2011) provides a deeper theoretical treatment with
several equivalent proofs of optimality for the policy.
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The Gittins method considers each alternative separately from the others. Let k denote our
beliefs about an arbitrary alternative, dropping the superscript x for notational convenience.
Consider a situation where, in every time stage, we have a choice between implementing
this alternative and receiving a known, deterministic ‘retirement reward’ r . The optimal
decision (implement versus retire) can be characterized using Bellman’s equation for dynamic
programming. We write

V (k, r) = max

{
r

1 − γ
,m(k)+ γE[V (k′, r) | k]

}
, (2.4)

where k′ is computed using, e.g. (2.2) or (2.3).
The Gittins index R(k) is the value of r that makes us indifferent between the two quantities

inside the maximum in (2.4). When λx is known, this value is equal to the mean single-period
reward, as shown in the following lemma. The proof is straightforward, and we omit it.

Lemma 2.1. If the parameter λx is a known constant, the Gittins index of arm x is mx∞.

Once the Gittins indices have been computed, the policy X∗
n(kn) = arg maxx R(kxn) can

be shown to be optimal for the objective in (2.1). Thus, the Gittins method decomposes
an M-dimensional problem into M one-dimensional problems, each of which can be solved
independently of the others. Furthermore, in the gamma-exponential version of the problem
(that is, where k = (a, b) and (2.2) is used to update k), it has also been shown by Gittins and
Wang (1992) that

R(a, b) = bR(a, 1), (2.5)

meaning that the Gittins indices only have to be computed for a restricted class of knowledge
states. Equivalently, if we can find b̃(a) such that R(a, b̃(a)) = 1, we can use (2.5) to write
R(a, b) = b/b̃(a). Yet, even with this structure, it is difficult to compute R(a, 1) or b̃(a) for
arbitrary a.

2.3. The inconsistency of knowledge gradient methods

In this section we provide additional motivation for our work by showing that non-Gaussian
problems create theoretical challenges for a prominent class of suboptimal heuristics known
as knowledge gradient (KG) methods. Such methods first calculate the expected improvement
criterion

RKG,x
n = E

[
max
y
m(k

y
n+1)− max

y
m(k

y
n)

∣∣∣ Fn, xn = x
]

(2.6)

and then implement the alternative

XKG
n (kn) = arg max

x
RKG,x
n (2.7)

at time n. This approach has received attention in the simulation community (see, e.g. Chick
(2006)), because it is computationally efficient and often performs near-optimally in experi-
ments. Simulation optimization usually seeks to identify the alternative with the highest value,
rather than to maximize the cumulative reward as in (2.1). However, these objectives are closely
related, and the method can be adapted to bandit problems (Ryzhov et al. (2012)) with a simple
modification of (2.7) known as ‘online KG.’

If the rewards are Gaussian, Frazier et al. (2008) showed that the policy in (2.7) is statistically
consistent, meaning thatm(kxn) → mx∞ a.s. for every x. This is a useful regularity property for
simulation optimization algorithms, and often holds when rewards are Gaussian; see Vazquez
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and Bect (2010) and Frazier and Powell (2011). However, as we now show, this is not always
true in non-Gaussian settings. Specifically, in the gamma-exponential problem, (2.6) has a
closed-form solution; see Ryzhov and Powell (2011, Theorem 3.1). From that solution, it can
immediately be seen that it is possible to have RKG,x

n = 0 even though var(λx | Fn) > 0. We
prove here that, if the policy places zero value on x, there may be a nonzero probability that the
policy will never measure x, and m(kxn) will not converge to the true mean reward. The proof
can be found in the Appendix.

Theorem 2.1. There exists a gamma-exponential problem for which (2.7) has a nonzero prob-
ability of never measuring a particular alternative.

3. The Gittins index as a stopping boundary

Our analysis is based on the idea of continuous-time interpolation, first proposed by Brezzi
and Lai (2002) for Gaussian rewards. If the rewards are non-Gaussian, but infinitely divisible,
we construct a continuous-time process (Xt ) such that, for integer t , the increment Xt+1 −Xt
has the same distribution as Wt+1. We then formulate and study the Gittins stopping problem
on this process.

3.1. Continuous-time conditional Lévy interpolation

We follow the theoretical characterization of conditional Lévy processes introduced in Çinlar
(2003). Let (Xt ) be a real-valued stochastic process that will later serve in Section 4 as the
continuous-time interpolation of cumulative rewards without discounting. Let λ be a random
variable (or random vector) such that, given λ, the process (Xt ) has conditionally stationary
and independent increments. We further restrict (Xt ) to increasing and right-continuous pure
jump processes; the method below does apply to general stochastic processes, but this is not as
useful for interpolation purposes in Bayesian bandit problems. The dependence of Xt on λ is
described as

Xt = X0 +
∫

[0,t]×R+
zμ(ds, dz),

where μ is conditionally (given λ) a random measure on R
+ × R

+ with mean measure
ν(λ, dz) ds, satisfying

∫
R+ ν(λ, dz)(z ∧ 1) < ∞ for all λ (for details on random measure

and mean measure, see Çinlar (2011, Chapter 6)). The intensity measure of μ at time t , that is,
the intensity given Ft but not given λ, is written as ν̄t (dz) ds = E[ν(λ, dz) | Ft ] ds. Thus, ν̄
can be described as ‘the mean of the conditional mean measure’.

The Gittins logic can be extended to the continuous-time setting as follows. Let c be a
continuous-time discount factor (lower values of c correspond to higher values of γ in discrete
time). The Gittins index R is the particular value of r such that

r

∫ ∞

0
e−cs ds = sup

τ
E

[∫ τ

0
e−cs dXs + r

∫ ∞

τ

e−cs ds

]
, (3.1)

where τ denotes a stopping time. This expectation is evaluated given some initial state k0; we
take the starting time to be 0 without loss of generality, since the Gittins index only depends on
the current time through the current state. This formulation is equivalent to the one in (2.4); see,
e.g. Katehakis and Veinott (1987) or Yao (2006). As before, discounted rewards are collected
from (Xt ) until time τ , at which point we collect the fixed retirement reward r until the end of
time. If (3.1) holds, we are indifferent between stopping immediately and running the process
optimally.
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3.2. Characterization as a free-boundary problem

In the Gaussian setting, (Xt ) is a conditional Brownian motion, and can be converted into
a standard Wiener process via a time change; see Brezzi and Lai (2002). Then, (3.1) can
be solved on the transformed process using simulation (Yao (2006)) or a free-boundary heat
equation (Chick and Gans (2009), Chick and Frazier (2012)). For a more general conditional
Lévy process, we can still apply a time change (Monroe (1978)), but it will be random and
computationally intractable. Instead, we apply a new approach based on Peskir and Shiryaev
(2006). We manipulate (3.1) as follows:

0 = sup
τ

E

[∫
[0,τ ]×R+

e−cszμ(dz, ds)−
∫ τ

0
e−csr ds

]

= sup
τ

E

[∫ τ

0
e−cs

(∫
R+
zν(λ, dz)− r

)
ds

+
∫

[0,τ ]×R+
e−csz[μ(dz, ds)− ν(λ, dz) ds]

]
(3.2)

= sup
τ

E

[∫ τ

0
e−cs

(∫
R+
zν(λ, dz)− r

)
ds

+
∫

[0,τ ]×R+
e−cszE[μ(dz, ds)− ν(λ, dz) ds | Fs]

]
(3.3)

= sup
τ

E

[∫ τ

0
e−cs

(∫
R+
zν(λ, dz)− r

)
ds

]

= sup
τ

E

[∫ τ

0
e−cs

(∫
R+
zν̄s(dz)− r

)
ds

]
. (3.4)

In (3.2) we use a compensating technique by adding and subtracting ν(λ, dz). The random
measure μ is cancelled in (3.3) by applying the tower property. We use the tower property
again in (3.4).

We denote
∫

R+ zν̄t (dz) by mt to emphasize that this quantity serves the same role as m(kn)
in discrete time. Then, (3.1) in continuous time can be written as

sup
τ

E

[∫ τ

0
e−cs(ms − r) ds

]
= 0, (3.5)

which we will refer to as the ‘calibration equation’ throughout this paper. We also write the
left-hand side of (3.5) as a function of the starting state,

V (t,m) := sup
τ

E

[∫ τ

0
e−cs(ms − r) ds

]
. (3.6)

Recall that the expectation in (3.6) is evaluated given some initial state at time 0. The pair
(t, m), representing a time parameter and a mean parameter, is a set of sufficient statistics for
the distribution of λ given Ft . In this value function, r is a fixed constant value and the Gittins
index R(t,m) is the particular value of r that makes V (t,m) = 0. On the other hand, if we
fix r , the set of pairs (t, m) for which V (t,m) = 0 is precisely the set of states that have r as
the Gittins index.

We now construct a free-boundary problem for V by equating the characteristic and in-
finitesimal operators of V . We rely on the mild condition that (mt ) is a càdlàg strong Markov
process; this assumption holds for the Bayesian problems considered in Section 4.
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From Dynkin (1965), the characteristic operator of V is defined as

LcharV (t,m) = lim
U↓{m}

E[V [tτUc , mτUc ]] − V (t,m)

E[τUc ] , (3.7)

where U is an open set that containsm, and τUc is the hitting time of the set Uc for the process
(mt ). That is, τUc = inf{t ≥ 0 : mt ∈ Uc} is the first time at which (mt ) leaves the set U . We
now show that (3.7) has a closed-form expression.

Lemma 3.1. If (mt ) is a càdlàg strong Markov process, then LcharV is given by

LcharV (t,m) = cV (t,m)− (m− r).

Proof. The lemma follows from Peskir and Shiryaev (2006, Equation (7.2.8)). In a killed
Lagrange problem on the value function

∫ τ
0 e−�(s)L(ms) ds, by inserting �(s) = cs and

L(ms) = ms − r , we obtain the desired results in the lemma. �
The infinitesimal operator Linf (also called the generator of V ) satisfies

V (t,mt ) = V (0,m0)+
∫ t

0
LinfV (s,ms) ds + Yt , (3.8)

where (Yt ) is a martingale formed by adding and subtracting a continuous compensator to the
jump component ofV ; see Itô et al. (2004) for an exposition of this idea. We assume thatmt can
be written as g(t, Xt ) for some continuous function g with first-order derivatives. In Section 4
we will explicitly derive g for gamma-exponential and gamma-Poisson problems.

Lemma 3.2. If (mt ) can be written into the formmt = g(t, Xt ) for some continuous function g
with first-order derivatives, then the infinitesimal operator of V is given by

Linf(t, m) = ∂V

∂t
(t, m)+ ∂g

∂t
(t, Xt )

∂V

∂m
(t,m)

+
∫

R+
[V (t, g(t, Xt + z))− V (t, g(t, Xt ))]ν̄t (dz).

Proof. First, we calculate

V (t,mt ) = V (0,m0)+
∫ t

0

∂V

∂s
(s,ms) ds +

∫ t

0

∂V

∂m
(s,ms) dmc

s

+
∑

0<s≤t
[V (s,ms)− V (s,ms−)] (3.9)

= V (0,m0)+
∫ t

0

∂V

∂s
(s,ms) ds +

∫ t

0

∂V

∂m
(s,ms) dmc

s

+
∫

[0,t]×R+
[V (s, g(s,Xs + z))− V (s, g(s,Xs))]μ(ds, dz)

= V (0,m0)+
∫ t

0

∂V

∂s
(s,ms) ds +

∫ t

0

∂V

∂m
(s,ms)

∂g

∂s
ds

+
∫

[0,t]×R+
[V (s, g(s,Xs + z))− V (s, g(s,Xs))]ν̄s(dz) ds)

+
∫

[0,t]×R+
[V (s, g(s,Xs + z))− V (s, g(s,Xs))]
× (μ(ds, dz)− ν(λ, dz) ds + ν(λ, dz) ds − ν̄s(dz) ds). (3.10)
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In (3.9), we use Itô’s lemma for jump-diffusion processes (Sato (1999, Chapter 6, Theo-
rem 31.5)), and mc

s denotes the continuous part of ms , after removing all jumps. Since
ms = g(s,Xs) and Xs is a pure jump process, we have dmc

s = (∂g/∂s) ds. In (3.10), we
apply a compensator technique. As a result, (3.10) has the form of (3.8) where Yt is the last
integral in the expression. It can readily be shown using the tower property that this integral is
an Ft -martingale. The desired result follows. �

Essentially, the characteristic and infinitesimal operators are two different expressions for
the derivative of V based on Kolmogorov theory and Itô calculus. Under general arguments
from Peskir and Shiryaev (2006), the two operators exist and coincide. By matching them, we
obtain a free-boundary problem on a PIDE as a consequence of the above derivations.

Theorem 3.1. Let r be fixed. If mt = g(t, Xt ), where g is continuous and has first-order
derivatives, the value function V (t,m) solves the free-boundary problem

∂V

∂t
(t, m)+ ∂g

∂t
(t, Xt )

∂V

∂m
(t,m)+

∫ ∞

0
[V (t, g(Xt + y))− V (t,m)]ν̄t (dy)

= cV (t,m)− (m− r),

V (t,m∗(t)) = 0,

wherem∗(t) is an unknown stopping boundary curve. For every point on the stopping boundary,
the Gittins index R(t,m∗(t)) is equal to r .

Proof. Using the characteristic and infinitesimal operators shown in Lemmas 3.1 and 3.2,
the theorem follows from Peskir and Shiryaev (2006, Chapter 7.2). �

We briefly note that the value function is not time-homogeneous, because the time index t
is part of the state variable. In bandit problems on conditional Lévy processes with binary
priors (see, e.g. Cohen and Solan (2013)), the binary structure leads to time-homogeneity of
the optimal policy. However, for more general priors, t is usually needed (DeGroot (1970)) in
order to obtain a sufficient statistic over the observed information, analogous to a sample size
in discrete time.

4. Exponential and Poisson rewards

We now apply Theorem 3.1 to problems with exponential and Poisson rewards. Section 4.1
covers the gamma-exponential problem, whereas Section 4.2 covers the gamma-Poisson prob-
lem.

4.1. A free-boundary problem for gamma-exponential bandits

In the gamma-exponential problem, our continuous-time interpolation (Xt ) is a conditional
gamma process with shape parameter 1 and unknown scale parameter λ ∼ gamma(a0, b0).
LettingFt be theσ -algebra generated by the path of (Xt )up to time t , the conditional distribution
of λ given Ft is still gamma with posterior parameters at = a0 + t and bt = b0 + Xt , as in
(2.2). For convenience, we may also use the notation kt = (at , bt ). The value function V (t,m)
for the gamma-exponential problem can also be written as V (a,m) under a shift of variable for
simplicity as at = a0 + t .

https://doi.org/10.1017/apr.2015.9 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2015.9


Optimal learning with non-Gaussian rewards 121

Theorem 4.1. The value function V (a,m) in the gamma-exponential problem solves the free-
boundary problem

∂V

∂a
(a,m)− m

a − 1

∂V

∂m
(a,m)+

∫ ∞

0
[V (a,m+ z)− V (a,m)]1

z

(
m

m+ z

)a
dz

= cV (a,m)− (m− r),

V (a,m∗(a)) = 0,

where m∗(a) is an unknown stopping boundary curve. For every point (a,m) on this stopping
boundary, the Gittins index R(a,m) is equal to r .

Proof. This can be shown through explicit calculation based on the PIDE in Theorem 3.1.
In the conditional Lévy process we use to model exponential rewards, the conditional mean
measure given λ is ν(λ, dy) = e−λy/y, the same as in a gamma process, and the distribution
of λ given Ft is gamma(at , bt ). Therefore, the unconditional mean measure ν̄t (dy) is calculated
as

ν̄t (dy) =
∫ ∞

0

e−λy

y

b
at
t λ

at−1 e−bt λ


(at )
dλ dy =

(
bt

bt + y

)at 1

y
dy,

whence mt = g(t, Xt ) = (b0 +Xt)/(a0 + t − 1) and ∂g/∂t = −(b0 +Xt)/(a0 + t − 1)2 =
−mt/(at − 1). Also,∫

R+
[V (t, g(t, Xt + y))− V (t, g(t, Xt ))]ν̄t (dy)

=
∫

R+

[
V

(
t,
bt + y

at − 1

)
− V

(
t,

bt

at − 1

)](
bt

bt + y

)at 1

y
dy

=
∫

R+
[V (t,mt + z)− V (t,mt )]

(
mt

mt + z

)at 1

z
dz,

where the last equality is obtained by using a change of variable z = y/(at − 1). �
We use integration by parts to simplify the free-boundary PIDE from Theorem 3.1. First,

we write (3.6) as

V (a,m) = sup
τ

1

c
E

[
(m− r)− e−cτ (mτ − r)+

∫ τ

0
e−cs d

ds
ms

]
.

Observe that

d

ds
ms = d

ds

b0 +Xs

a0 + s − 1
= − b +Xs

(a + s − 1)2
ds + 1

a + s − 1
dXs.

We take the expectation of this quantity, whence

E

[∫ τ

0
e−cs d

ds
m(as, bs)

]

= −E

[∫ τ

0
e−cs

(
b0 +Xs

(a0 + s − 1)2

)
ds

]
+ E

[∫ τ

0
e−cs

E

[
1

a0 + s − 1
dXs

∣∣∣∣ Fs

]]

= −E

[∫ τ

0
e−cs

(
b0 +Xs

(a0 + s − 1)2

)
ds

]
+ E

[∫ τ

0
e−cs

(
b0 +Xs

(a0 + s − 1)2

)
ds

]
= 0.
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Consequently, (3.5) can be written as (1/c)[supτ E[e−cτ (r −mτ )] +m− r] = 0.We define a
new value function G(a,m) := supτ E[e−cτ (r − mτ )] = cV (a,m) − m + r for fixed r , and
substitute it into Theorem 4.1 to obtain the following equivalent free boundary problem. This
equivalent formulation will be convenient in Sections 5 and 6.

Proposition 4.1. The value function G(a,m) in the gamma-exponential problem solves the
free-boundary problem

∂G

∂a
(a,m)− m

a − 1

∂G

∂m
(a,m)+

∫ ∞

0
[G(a,m+ z)−G(a,m)]1

z

(
m

m+ z

)a
dz = cG(a,m),

G(a,m∗(a)) = r −m∗(a),
where m∗(a) is an unknown stopping boundary curve. For every point (a,m) on this stopping
boundary, the Gittins index R(a,m) is equal to r .

Proof. By substituting V (a,m) = [G(a,m)+m− r]/c in Theorem 4.1, we obtain

∂V

∂a
(a,m)− m

a − 1

∂V

∂m
(a,m)+

∫ ∞

0
[V (a,m+ z)− V (a,m)]1

z

(
m

m+ z

)a
dz

= 1

c

∂G

∂a
(a,m)− 1

c

m

a − 1

[
∂G

∂m
(a,m)+ 1

]

+ 1

c

∫ ∞

0
[G(a,m+ z)−G(a,m)]1

z

(
m

m+ z

)a
dz+ 1

c

m

a − 1

= 1

c

[
∂G

∂a
(a,m)− m

a − 1

∂G

∂m
(a,m)

+
∫ ∞

0
[G(a,m+ z)−G(a,m)]1

z

(
m

m+ z

)a
dz

]

and cV (a,m)− (m− r) = G(a,m). On the stopping boundary,

1

c
[G(a,m)+m− r] = 0. �

4.2. A free-boundary problem for gamma-Poisson bandits

In the gamma-Poisson problem, the continuous-time interpolation (Xt ) is a Poisson process
with unknown rate λ. Again, we assume that λ ∼ gamma(a0, b0), let Ft be the σ -algebra
generated by the path of (Xt )up to time t , and update the posterior parameters usingat = a0+Xt
and bt = b0 + t , as in (2.3). We then obtain the following free-boundary PIDE through
calculating mt explicitly.

Theorem 4.2. The value function V (b,m) in the gamma-Poisson problem solves the free-
boundary problem

∂V

∂b
(b,m)− m

b

∂V

∂m
(b,m)+

[
V

(
b,m+ 1

b

)
− V (b,m)

]
m = cV (b,m)− (m− r),

V (b,m∗(b)) = 0,

where m∗(b) is an unknown stopping boundary curve. For every point (b,m) on this stopping
boundary, the Gittins index R(b,m) is equal to r .
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Proof. In the gamma-Poisson setting, the conditional mean measure is given by ν(λ, dy) =
λδ1, where δ1 is the Dirac delta function. The distribution of λ given Ft is gamma(at , bt ). It
is then straightforward to show that ν̄t (dy) = (at/bt )δ1 dy, whence mt = (a0 +Xt)/(b0 + t).
Therefore, mt = g(t, Xt ) = (a0 +Xt)/(b0 + t) and ∂g/∂t = −(a0 +Xt)/(b0 + t)2 =
−mt/bt . Finally, ∫

R+
[V (t, g(t, Xt + y))− V (t, g(t, Xt ))]ν̄t (dy)

=
∫

R+

[
V

(
t,
at + y

bt

)
− V

(
t,
at

bt

)]
at

bt
δ1 dy

=
[
V

(
t, mt + 1

bt

)
− V (t,mt )

]
mt

as required. �
Again, we use integration by parts to simplify the value function in order to obtain

V (b,m) = 1

c

[
sup
τ

E[e−cτ (r −mτ )] +m− r
]

= 0.

By definingG(b,m) := supτ E[e−cτ (r−mτ )] = cV (b,m)−m+r for fixed r and replacing V
in Theorem 4.2, we obtain the equivalent free-boundary problem for the gamma-Poisson model.
The proof is the same as that of Proposition 4.1 and we omit it here.

Proposition 4.2. The value function G(b,m) in the gamma-Poisson problem solves the free-
boundary problem

∂G

∂b
(b,m)− m

b

∂G

∂m
(b,m)+

[
V

(
b,m+ 1

b

)
− V (b,m)

]
m = cG(b,m),

G(b,m∗(b)) = r −m∗(b),

where m∗(b) is an unknown stopping boundary curve. For every point (b,m) on this stopping
boundary, the Gittins index R(b,m) is equal to r .

5. Theoretical analysis

In this section we provide theoretical results on the structure of the Gittins index for non-
Gaussian problems in continuous time. In Section 5.1 we consider scaling properties, more
notably for the gamma-Poisson problem. In Section 5.2 we investigate the continuity and
monotonicity of the Gittins index and value function. These properties match the discrete-
time results shown in Gittins et al. (2011) and Yu (2011), supporting our framework as a
generalization of the discrete-time model.

Throughout, we abuse notation slightly by writing the value functions V and G, as well as
the Gittins index R, as functions of (t, m), (a,m), or (b,m), as is convenient. Most results
apply to both gamma-exponential and gamma-Poisson problems and, therefore, we use (t, m)
where possible. We will specifically use (a,m) or (b,m) in proofs when needed. When we hold
a parameter constant, we omit it in the argument, e.g. V (m) denotes the value function V (t,m)
while we hold t constant. When needed, we also use the subscript r for value functions, e.g.
Vr(t,m), to denote that they are calculated given that fixed r value. This notation facilitates
writing our proofs in this section.
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5.1. Distributional and scaling properties

We begin with two computational results on the predictive distributions appearing in the
gamma-exponential and gamma-Poisson problems. These results are used in the proofs of
some structural properties in this section. The proofs are straightforward algebraic derivations,
and we omit them.

Lemma 5.1. In the gamma-exponential model, the predictive distribution of Xt/b0, given F0,
is the beta-prime distribution with parameters t and a0.

Lemma 5.2. In the gamma-Poisson model, the predictive distribution of Xt , given F0, is the
generalized negative binomial distribution with parameters a0 and t/(b0 + t).

Next, we establish scaling properties of the Gittins index for both non-Gaussian problems.
Theorem 5.1 extends the result of (2.5) to the continuous-time setting, where the Gittins index
is defined to be the value of r that solves (3.1); we include this proof for completeness.

Theorem 5.1. In the gamma-exponential problem, the Gittins index satisfies R(a, b) =
bR(a, 1).

Proof. We factor b0 out of the calibration equation (3.5) of the Gittins index to obtain

sup
τ

E

[∫ τ

0
e−cs(ms − r) ds

]
= sup

τ
E

[∫ τ

0
e−cs

(
b0 +Xs

a0 + s − 1
− r

)
ds

]

= b0 sup
τ

E

[∫ τ

0
e−cs

(
1 +Xs/b0

a0 + s − 1
− r

b0

)
ds

]
(5.1)

= 0.

The factor b0 in front of (5.1) can be dropped since (5.1) equals 0. By applying the scaling
properties of the gamma process and gamma distribution, we see that the process (Xt/b0) has
the same law as a conditional gamma process with the prior λ ∼ gamma(a0, 1). Then, if R
balances (3.5), it follows that the index R/b0 balances the calibration equation for a gamma-
exponential problem starting from the knowledge state (a0, 1). Thus, R(a, b) = bR(a, 1), as
required. �

For the gamma-Poisson problem, we also emphasize the dependence of R on the discount
factor c, as this plays a role in the scaling property. To the best of the authors’ knowledge,
Theorem 5.2 is the first known scaling result for problems with Poisson rewards.

Theorem 5.2. Let σ > 0. In the gamma-Poisson problem, the Gittins index satisfies

R(b,m, c) = 1

σ
R

(
b

σ
, σm, σc

)
.

Proof. We consider the calibration equation for the gamma-Poisson problem and write

sup
τ

E

[∫ τ

0
e−cs(ms − r) ds

]
= sup

τ
E

[∫ τ

0
e−cs

(
a0 +Xs

b0 + s
− r

)
ds

]

= sup
τ

E

[∫ τ

0
e−cs

(
a0 +Xs

b0/σ + s/σ
− rσ

)
1

σ
ds

]
. (5.2)
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Letting t = s/σ and Yt = Xσt , we write (5.2) as

sup
τ

E

[∫ τ

0
e−cs(ms − r) ds

]
= sup

τ
E

[∫ τ/σ

0
e−cσ t

(
a0 +Xσt

b0/σ + t
− rσ

)
dt

]

= sup
τ

E

[∫ τ

0
e−cσ t

(
a0 + Yt

b0/σ + t
− rσ

)
dt

]
.

Observe that if τ is a stopping time for Xt , then τ/σ is a stopping time for Yt , where Yt is a
conditional Poisson process with rate σλ, which is equivalent to a conditional Poisson process
with the prior λ ∼ gamma(a0, b0/σ). This suggests a comparison with the calibration equation
under discount factor cσ and prior λ ∼ gamma(a0, b0/σ), which yields the desired scaling
property R(b,m, c) = (1/σ)R(b/σ, σm, σc). �

Corollary 5.1. From Theorem 5.2, it follows that

R(b,m, c) = 1

b
R(1,mb, bc) = cR

(
bc,

m

c
, 1

)
.

Thus, we can scale either b or c to 1, but the other parameter will also be changed.

For the gamma-exponential problem, any Gittins index can be obtained from a family of
stopping boundaries corresponding to r = 1 for each value of c. In the gamma-Poisson problem,
we can standardize the discount factor, but it is necessary to construct a family of curves indexed
by b and m. Since the value of c is fixed throughout a given bandit problem, while the values
of a and b change in each time step, the gamma-exponential problem is less computationally
intensive.

5.2. Continuity and monotonicity

In discrete time, the Gittins index is known to possess various continuity and monotonicity
properties; see Aalto et al. (2011) and Yu (2011). Here, we show that our continuous-time
framework retains the fundamental structure of discrete-time bandit problems. Higher indices
are assigned to states with higherm (higher exploitation value), and smaller t (higher exploration
value). Furthermore, even though we use processes with jumps for interpolation, continuity
indicates that these jumps are ‘smoothed out’. Finally, we prove in Theorem 5.6 that, when
t → ∞, the exploration value vanishes and the Gittins index approaches the true mean value
almost surely. Consequently, the stopping boundary curves from Section 4 are continuous and
monotonically increase to the limit r .

Starting with the next result, we will repeatedly compare two arbitrary prior knowledge
states. Let (mt ) denote the mean process starting with the prior parameters (t0,m0), and let
(m′

t ) denote the process starting with (t ′0,m′
0). Our proofs in this section are heavily based

on stochastic dominance theory; see Müller and Stoyan (2002) and Shaked and Shanthikumar
(2007). We shall follow the notation used in Müller and Stoyan (2002) and will use the usual
stochastic order ≤st, the convex order ≤cx, and the increasing convex order ≤icx. For random
variables X and Y , X ≤st Y if fX(c)/fY (c) is decreasing in c. Also, X ≤cx Y (respectively,
X ≤icx Y ) if Eφ[X] ≤ Eφ[Y ] for all convex functions (respectively, convex and increasing) φ.
Useful properties that we will use include the equivalent definition X ≤st Y if FX ≥ FY , the
implication ≤icx⇒≤cx when EX = EY , and the coupling techniques that will be restated as
Lemmas 5.4 and 5.5 in this section.
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Lemma 5.3. In the gamma-exponential and gamma-Poisson problems, the two following
stochastic order properties hold for predictive mean processes, for every t:

mt ≥st m
′
t if m0 ≥ m′

0 and t0 = t ′0, (5.3)

mt ≥cx m
′
t if m0 = m′

0 and t0 ≤ t ′0 (5.4)

Proof. We prove (5.3) first. It suffices to show that, when m0 ≥ m′
0 and t0 = t ′0, we have

Fmt ≤ Fm′
t
.

For the gamma-exponential problem, t0 = t ′0 implies that a0 = a′
0, and we denote this

common value by a. By Lemma 5.1, we have

P(mt ≥ m) = P

(
b0 +Xt

a + t − 1
≥ m

∣∣∣∣ a,m0

)
= 1 − F

(
m(a + t − 1)

m0(a − 1)
− 1

)
,

P(m′
t ≥ m) = P

(
b′

0 +Xt

a + t − 1
≥ m

∣∣∣∣ a,m′
0

)
= 1 − F

(
m(a + t − 1)

m′
0(a − 1)

− 1

)
,

where F is the cumulative distribution function (CDF) of the beta′(t, a) distribution. When
m0 ≥ m′

0, we have
m(a + t − 1)

m0(a − 1)
≤ m(a + t − 1)

m′
0(a − 1)

,

whence P(mt ≥ m) ≥ P(m′
t ≥ m), i.e. Fmt ≤ Fm′

t
. The gamma-Poisson case is proved in

the same way with F being the CDF of the generalized negative binomial distribution from
Lemma 5.2.

Secondly, we prove (5.4). We focus on the gamma-exponential case; the gamma-Poisson
version can be shown in exactly the same way. In this case, in (5.4) it was assumed that
m0 = b0/(a0 − 1) = b′

0/(a
′
0 − 1) = m′

0, which we denote by m, and a0 ≤ a′
0. We prove

convex dominance by showing that

mt =
(
b0 +Xt

a0 + t − 1

∣∣∣∣ λ ∼ gamma(a0, b0)

)

≥cx

(
b′

0 +Xt

a′
0 + t − 1

∣∣∣∣ λ ∼ gamma(a0, b0)

)
(5.5)

≥cx

(
b′

0 +Xt

a′
0 + t − 1

∣∣∣∣ λ ∼ gamma(a′
0, b

′
0)

)
(5.6)

= m′
t .

We observe that(
b0 +Xt

a0 + t − 1

∣∣∣∣ λ ∼ gamma(a0, b0)

)
=

(
b0 +mt + (Xt −mt)

a0 + t − 1

∣∣∣∣ λ ∼ gamma(a0, b0)

)

= m+ 1

a0 + t − 1
(Xt −mt | λ ∼ gamma(a0, b0))

and, similarly,(
b′

0 +Xt

a′
0 + t − 1

∣∣∣∣ λ ∼ gamma(a0, b0)

)
= m+ 1

a′
0 + t − 1

(Xt −mt | λ ∼ gamma(a0, b0)),
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where (Xt − mt | λ ∼ gamma(a0, b0)) is a random variable with mean 0. If we write Yt :=
(Xt −mt | λ ∼ gamma(a0, b0)), then to prove (5.5) it suffices to show that

m+ 1

a0 + t − 1
Yt ≥cx m+ 1

a′
0 + t − 1

Yt .

By Müller and Stoyan (2002, Theorem 1.5.18) for a random variable X with mean 0, we have
aX+ b ≤icx cX+ d , when 0 ≤ a ≤ c and b ≤ d. Since 1/(a0 + t − 1) ≥ 1/(a′

0 + t − 1), we
have (

b0 +Xt

a0 + t − 1

∣∣∣∣ λ ∼ gamma(a0, b0)

)
≥icx

(
b′

0 +Xt

a′
0 + t − 1

∣∣∣∣ λ ∼ gamma(a0, b0)

)
,

and then ≥cx follows from the fact that they have equal means, whence (5.5) is proved.
Next, (5.6) follows from Shaked and Shanthikumar (2007, Theorem 3.A.21). For the gamma-

exponential problem, it suffices to prove the condition of the theorem that, for every convex
function φ, E[φ(Xt | 1/λ)] is convex in 1/λ. For all θ ≥ θ ′ and α ∈ (0, 1),

E

[
φ

(
Xt

∣∣∣∣ 1

λ
= αθ + (1 − α)θ ′

)]

= E

[
φ

[(
Xt

∣∣∣∣ 1

λ
= αθ

)
+

(
Xt

∣∣∣∣ 1

λ
= (1 − α)θ ′

)]]
(5.7)

= E

[
φ

[
α

(
Xt

∣∣∣∣ 1

λ
= θ

)
+ (1 − α)

(
Xt

∣∣∣∣ 1

λ
= θ ′

)]]
(5.8)

≤ E

[
αφ

(
Xt

∣∣∣∣ 1

λ
= θ

)
+ (1 − α)φ

(
Xt

∣∣∣∣ 1

λ
= θ ′

)]
(5.9)

= αE

[
φ

(
Xt

∣∣∣∣ 1

λ
= θ

)]
+ (1 − α)E

[
φ

(
Xt

∣∣∣∣ 1

λ
= θ ′

)]
in which (5.7) and (5.8) are due to scaling properties of the gamma distribution, and (5.9) is
due to φ being convex. Therefore, Shaked and Shanthikumar (2007, Theorem 3.A.21) holds,
whence (5.6) is proved. With (5.5) and (5.6) shown, (5.4) is proved (the gamma-Poisson case
is proved in exactly the same way and we omit it). �

We now restate two results (known as the ‘coupling’ techniques) from Müller and Stoyan
(2002). It is worth noting that they only require (5.3) and (5.4), meaning that the subsequent
analysis will hold for any Lévy process interpolation as long as Lemma 5.3 holds.

Lemma 5.4. (Müller and Stoyan (2002, Theorem 1.2.4).) If (mt ) ≥st (m
′
t ) for all t , there exist

two processes (m̂t ) and (m̂′
t ) defined on the same filtration Ft that are identical in distribution

to (mt ) and (m′
t ), and m̂t ≥ m̂′

t a.s.

Lemma 5.5. (Müller and Stoyan (2002, Theorem 3.4.2).) If (mt )≥cx (m
′
t ) for all t , there exist

two processes (m̂t ) and (m̂′
t ) defined on the same filtration Ft that are identical in distribution

to (mt ) and (m′
t ), and E[m̂t | m̂′

t ] = m̂′
t .

If (t0,m0) and (t ′0,m′
0) are two initial states that generate mean processesmt andm′

t satisfying
stochastic dominance ≤st or convex dominance ≤cx, Lemmas 5.4 and 5.5 give us two processes
m̂t and m̂′

t defined on the same filtration with a.s. dominance or the conditional expectation
property, respectively. If (t1,m1), (t2,m2), . . . , is a sequence of states that all dominate or are
dominated by (t, m), each (tk,mk) can be coupled with (t, m). We denote the coupled process
of (tk,mk) by m̂kt .
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Theorem 5.3. If (5.3) and (5.4) hold, then V (m) is increasing in m, and G(m) is decreasing
in m.

Proof. Assume thatm0 ≥ m′
0 and t0 = t ′0. Then, Lemma 5.4 gives us two processes defined

on the same filtration with a.s. dominance. The processes (mt ) and (m̂t ) are identically
distributed, as are (m′

t ) and (m̂′
t ). Using the arguments of Lamberton and Pagès (1990), the

values of V andG, as well as the optimal stopping time τ , depend only on the law of mt . This
result is also given in Coquet and Toldo (2007). Therefore, the value function will be unchanged
if we write V and G using m̂t and m̂′

t instead of mt and m′
t . This provides the almost sure

dominance necessary to complete the proof, that is, m̂t (ω) ≥ m̂′
t (ω) for almost every ω. We

calculate

Vr(m
′
0) = sup

τ
E

[∫ τ

0
e−cs(m̂′

s − r) ds

]

= sup
τ

E

[∫ τ

0
e−cs(m̂s − r) ds +

∫ τ

0
e−cs(m̂′

s − m̂s) ds

]

≤ sup
τ

E

[∫ τ

0
e−cs(m̂s − r) ds

]
= Vr(m0)

and, similarly,

Gr(m0) = sup
τ

E[e−cτ (r − m̂′
τ )+ e−cτ (m̂′

τ − m̂τ )] ≤ sup
τ

E[e−cτ (r −m′
τ )] = Gr(m

′
0),

as required. �

The monotonicity results for V and G can be used to obtain similar results for the stopping
boundaries of the PIDEs, as well as the Gittins indices. Below, we find that the Gittins index is
increasing in the mean parameter m, matching the result of Yu (2011) for discrete time.

Proposition 5.1. The stopping boundaries m∗
r (t), indexed by the retirement reward r , are

ordered and do not cross. That is, m∗
r ≥ m∗

r ′ for r ≥ r ′.

Proof. Let m∗
r be the stopping boundary corresponding to r and take r ′ ≤ r . Then

sup
τ

E

[∫ τ

0
e−cs(ms − r ′) ds

]
= sup

τ
E

[∫ τ

0
e−cs(ms − r)+ e−cs(r − r ′) ds

]

≥ sup
τ

E

[∫ τ

0
e−cs(ms − r)

]
.

Therefore, Vr ′(m∗
r ) ≥ 0. By monotonicity in Theorem 5.3, we obtain m∗

r ≥ m∗
r ′ . �

Corollary 5.2. From Proposition 5.1, it follows that the Gittins index R is increasing in m.

With the monotonicity in m proved, we are now able to show that R is continuous in m.

Theorem 5.4. If (5.3) and (5.4) hold, then R(m) is continuous in m.

Proof. Monotonicity in Corollary 5.2 guarantees the existence of limε→0− R(m + ε) and
limε→0+ R(m+ ε) provided R(m) is finite, and it suffices to show that limε→0− R(m+ ε) =
limε→0+ R(m+ ε) = R(m).
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First, we prove left-continuity. For any fixed t , we take an infinite increasing sequence
of values {mk} converging to m from the left, and denote the corresponding Gittins indices
R(t,mk) byRk . We also denote the Gittins index corresponding to (t, m) byR. Then, recalling
from Theorems 4.1 and 4.2 that GRk(mk) = Rk − mk for all k, we obtain limk→∞ Rk =
limk→∞mk + limk→∞GRk(mk). We denote limk→∞ Rk by R̄. By Proposition 5.1, R̄ ≤ R.
Now we show that R̄ ≥ R by calculating

R̄ = m+ lim
k→∞ sup

τ
E[e−cτ (Rk −mkτ )]

= m+ lim
k→∞ sup

τ
E[e−cτ (Rk − m̂τ + m̂τ − m̂kτ )] (5.10)

≥ m+ lim
k→∞ sup

τ
E[e−cτ (Rk − m̂τ )] (5.11)

≥ m+ sup
τ

lim
k→∞ E[e−cτ (Rk − m̂τ )] (5.12)

= m+ sup
τ

[
E[e−cτ (R̄ − m̂τ )] + lim

k→∞ E[e−cτ (Rk − R̄)]
]

= m+ sup
τ

E[e−cτ (R̄ − m̂τ )].

In (5.10), we use the coupling technique in Lemma 5.4 to map the predictive processes mt and
mkt onto the same filtration and obtain almost sure dominance, which provides the inequality
(5.11). Equation (5.12) is due to supτ E[e−cτ (Rk − m̂τ )] ≥ E[e−cτ (Rk − m̂τ )] for every k and
thereby limk→∞ supτ E[e−cτ (Rk− m̂τ )] ≥ limk→∞ E[e−cτ (Rk− m̂τ )] for each τ . This yields
limk→∞ supτ E[e−cτ (Rk − m̂τ )] ≥ supτ limk→∞ E[e−cτ (Rk − m̂τ )]. Therefore, we have

m− R̄ + sup
τ

E[e−cτ (R̄ − m̂τ )] = sup
τ

E

[∫ τ

0
e−cs(ms − R̄) ds

]
≤ 0. (5.13)

Since VR(m) = supτ E[∫ τ0 e−cs(ms − R) ds] = 0, we obtain

0 = sup
τ

E

[∫ τ

0
e−cs(ms − R̄ + R̄ − R) ds

]

≤ sup
τ

E

[∫ τ

0
e−cs(ms − R̄) ds

]
+ (R̄ − R) sup

τ
E

[∫ τ

0
e−cs ds

]
, (5.14)

which leads to (R̄ − R) supτ E[∫ τ0 e−cs ds] ≥ − supτ E[∫ τ0 e−cs(ms − R̄) ds] ≥ 0 by (5.13).
Since supτ E[∫ τ0 e−cs ds] ≥ 0, (R̄ − R) ≥ 0 and, therefore, R̄ ≥ R, whence left-continuity is
proved.

Right-continuity can be proved in a similar way. For any m and t fixed, take an infinite
increasing sequence of values {mk} converging to m from the right. To show R̄ ≤ R, we
calculate

R̄ = m+ lim
k→∞ sup

τ
E[e−cτ (Rk − m̂τ + m̂τ − m̂kτ )]

≤ m+ lim
k→∞ sup

τ
E[e−cτ (Rk − m̂τ )]

= m+ lim
k→∞ sup

τ
E[e−cτ (R̄ − m̂τ + Rk − R̄)]

≤ m+ lim
k→∞

{
sup
τ

E[e−cτ (R̄ − m̂τ )] + sup
τ

E[e−cτ (Rk − R̄)]
}

= m+ sup
τ

E[e−cτ (R̄ − m̂τ )].
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This shows that VR̄(m) = supτ E[∫ τ0 e−cs(ms − R̄) ds] ≥ 0, and therefore, as in (5.14),

0 ≤ sup
τ

E

[∫ τ

0
e−cs(ms − R) ds

]
+ (R − R̄) sup

τ
E

[∫ τ

0
e−cs ds

]
,

which leads to (R − R̄) supτ E[∫ τ0 e−cs ds] ≥ 0, whence right continuity is proved. �
Lemma 5.6. Let (5.4) hold. For fixed m, the Gittins index R(t,m) is decreasing in t .

Proof. Under the convex order in (5.4), this follows from Müller (1997, Theorem 5.4). �
Theorem 5.5. If (5.3) and (5.4) hold, then R(t) is continuous in t .

Proof. Monotonicity in Lemma 5.6 guarantees the existence of limε→0− R(t + ε) and
limε→0+ R(t + ε) provided R(t) is finite, and it suffices to show that limε→0− R(t + ε) =
limε→0+ R(t + ε) = R(t).

First, we prove left-continuity. For any m fixed, take an infinite increasing sequence of
values {tk} converging to t from the left, and denote corresponding Gittins indices R(tk,m)
by Rk . We denote limk→∞ Rk by R̄. By Proposition 5.1, we have R̄ ≤ R. Now we show that
R̄ ≥ R. By taking the limit of both sides of the calibration equation, we obtain

0 = lim
k→∞ sup

τ
E

[∫ τ

0
e−cs(m̂ks − Rk) ds

]

= lim
k→∞ sup

τ
E

[∫ τ

0
e−cs(m̂ks − m̂s + m̂s − R + R − Rk) ds

]

≥ sup
τ

lim
k→∞ E

[∫ τ

0
e−cs(m̂ks − m̂s + m̂s − R + R − Rk) ds

]

= sup
τ

{
lim
k→∞ E

[∫ τ

0
e−cs(m̂ks − m̂s) ds

]
+ E

[∫ τ

0
e−cs(m̂s − R) ds

]

+ (R − R̄) lim
k→∞ E

[∫ τ

0
e−cs ds

]}

= sup
τ

{
lim
k→∞ E

[∫ τ

0
e−cs

E(m̂ks − m̂s | m̂s) ds

]
+ (R − R̄) lim

k→∞ E

[∫ τ

0
e−cs ds

]}

= (R − R̄) lim
k→∞ E

[∫ τ

0
e−cs ds

]
. (5.15)

By Lemma 5.3, it follows that m̂t ≤cx m̂
k
t for every t , and hence in (5.15), we have E[m̂ks −

m̂s | m̂s] = 0 by Lemma 5.5. Therefore R − R̄ ≤ 0, whence left-continuity is proved.
Right-continuity can be proved in a similar way. For any m and t fixed, take an infinite

increasing sequence of values {tk} converging to t from the right, and under the same notation
we show R̄ ≤ R. By taking the limit of both sides of the calibration equation, we obtain

0 = lim
k→∞ sup

τ
E

[∫ τ

0
e−cs(m̂ks − m̂s + m̂s − R + R − Rk) ds

]

≤ lim
k→∞

{
sup
τ

E

[∫ τ

0
e−cs(m̂ks − m̂s) ds

]
+ sup

τ
E

[∫ τ

0
e−cs(m̂s − R) ds

]

+ (R − Rk) sup
τ

E

∫ τ

0
e−cs ds

}
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= lim
k→∞

{
sup
τ

E

[∫ τ

0
e−cs

E(m̂ks − m̂s | m̂ks ) ds

]
+ (R − R̄) sup

τ
E

[∫ τ

0
e−cs ds

]}

= (R − R̄) sup
τ

E

[∫ τ

0
e−cs ds

]
,

whence right-continuity is proved. �
Theorem 5.6. Let Theorems 5.4 and 5.5 hold. Then, the Gittins index limt→∞ R(t,m) = m

for each m fixed, and R(t,mt ) converges a.s. to m∞ as t → ∞.

Proof. By Theorems 5.4 and 5.5,R(t,m) is continuous in (t, m). As t → ∞,mt → m∞ a.s.
The result then follows from Lemma 2.1, which is easily extended to continuous-time. �

6. Numerical illustration

Solving the problems in Theorems 4.1 and 4.2 numerically poses a substantial challenge,
because we do not know the stopping boundary, making it difficult to define suitable initial
conditions. This problem properly belongs to the realm of PIDE solution procedures, and thus
is outside the scope of this paper. For illustration purposes, we implement an approximation
that gives a lower bound on the value function, based on the following ‘one-stage’ stopping
rule (also used by Chick and Gans (2009)). Starting from an initial set of parameters at time 0,
we observe the process (Xt ) until some fixed time B ≥ 0. If mB < r , we retire, and if
mB ≥ r , we continue running the process until ∞. We then calculate the expected earnings,
given by ḠB = E[e−cB(r − mB)

+], and use supB ḠB to approximate the value of G for
the prior parameters. For both gamma-exponential and gamma-Poisson models, ḠB can be
computed in closed form, and supB ḠB is relatively easy to calculate numerically. The proofs
are straightforward and we omit them due to space considerations.

Proposition 6.1. In the gamma-exponential model

ḠB = e−cB b0

A+ 1

∫ A

0
F(s) ds,

where A = (r(a0 + B − 1)/b0) − 1 and F is the CDF of a beta-prime distribution with
parameters B and a0.

Proposition 6.2. In the gamma-Poisson model

ḠB = e−cB

b0 + B

[∑
k≤A

F(K)− (�A� − A)F(�A�)
]
,

whereA = rb0 + rB−m0b0 and F is the CDF of a generalized negative binomial distribution
with parameters a0 and B/(b0 + B).

We use Propositions 6.1 and 6.2 to calculate the initial conditions at (a,m) for some large,
fixed a and all m > 0. Theorem 5.6 implies that the stopping boundary converges to r as
a → ∞, which suggests that the behavior of the value function is more stable (and thus easier
to approximate) at large a values. The following figures illustrate the one-stage stopping rule
and the search for a lower bound through a gamma-exponential example with r = 1 and
c = 0.05. First, in Figure 1(a) we show that the approximation ḠB is unimodal for B ∈ [0, 20]
with a = 50 and m = 1. The maximum value of this curve is then implemented as an

https://doi.org/10.1017/apr.2015.9 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2015.9


132 Z. DING AND I. O. RYZHOV

Figure 1: Demonstration of initial values obtained from the one-stage searching method. (a) Search for
supB GB(a = 50,m = 1) while r = 1 and c = 0.05. (b) Initial values GB(a = 50,m = 1) while r = 1

and c = 0.05.

approximation forG(a,m) with a = 50 and m = 1. In Figure 1(b) we show the results of this
procedure for allm values, with a = 50 fixed. The bold line segment shows that the initial-value
approximation is close to the stopping trigger value r −m with high precision when m is low.
The tail curve approaching 0 shows where the approximation starts to deviate from r −m. In
the stopping problem, the section in bold would correspond to the stopping region, while the
other section corresponds to the continuation region.

It is preferable to calculate the initial value approximation for large time values, since the
quality of the lower bound supB ḠB is much better when a is large, and then use the PIDEs
to build the value function while moving backward in time. In Figure 2(a) we illustrate the
solution surface to the PIDE for r = 1, c = 0.05, and the initial value approximation (the right
edge of the surface) with a = 50. The surface was created by propagating the initial value
curve from Figure 1(a) from a = 50 backward to a = 1. The solution surface is stopped and
cut off when it hits the tilted plane G(a,m) = r − m. The curve is the stopping boundary,
a projection of the surface values on this ‘hitting plane’ onto the (a,m) plane. In Figure 2(b)
we show the boundary curves for several values of r , all with initial conditions set at a = 50.
Each of these curves represents the set of all knowledge states whose Gittins index is equal to
the given r value; for any state above the curve, we prefer to continue collecting rewards from
the process (Xt ), whereas for any state below the curve, we prefer to stop and accrue the fixed
reward r instead.

We can see that the stopping boundary m∗(a) described by Theorems 3.1 and 4.1 is con-
tinuous, increasing, and bounded above by the retirement value r . The growth of m∗ slows as
the boundary approaches its limiting value from Theorem 5.6. The boundary curves appear
to be concave; the slight bumps close to a = 50 are due to numerical issues stemming from
proximity to the initial value. It is clear that the key to such procedures is the ability to find
good boundary curves, an issue that is outside the scope of this paper. However, the results
in Figure 2 demonstrate that the numerical solution behaves in accordance with the theoretical
structure of the problem.
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Figure 2: Stopping boundaries of the value function and 2D plots for different r values. (a) Solution
surface G(a,m) while c = 0.05. (b) Stopping boundaries while c = 0.05.

7. Conclusion

We have presented a theoretical framework that generalizes multi-armed bandit problems
with non-Gaussian rewards in continuous time, using conditional Lévy processes that serve as
probabilistic interpolations of the discrete-time reward processes in the bandit problem. We
then showed a connection between Gittins indices and free-boundary problems on PIDEs that
equate the characteristic and infinitesimal operators of the relevant value function. We have also
proved continuity and monotonicity properties of the value functions in these free-boundary
problems, as well as the Gittins indices in continuous time. These properties match known
discrete-time results, corroborating the use of a continuous-time interpolation to generalize the
discrete-time problem.

Our theoretical framework can potentially be applied to any infinitely divisible reward distri-
bution. While this is outside the scope of this paper, this approach could also be extended to more
general reward processes and stopping problems, such as those in Chick and Frazier (2012). In
this paper we have focused on presenting conditional Lévy interpolation and PIDE construction
as a generalization of the well-known diffusion approximation for Gaussian rewards.

Appendix. Proof of Theorem 2.1

Consider a problem with two alternatives. For simplicity, let a1
0 = a2

0 = 2, and choose b1
0, b

2
0

such that b2
0 < b1

0/2. By Ryzhov and Powell (2011, Theorem 3.1), the KG policy will measure
alternative 2. Our beliefs about alternative 1 will thus remain unchanged. Let E be the event
that b2

n/(a
2
n − 1) < b1

0/2 for all n ≥ 0, implying that we will never measure alternative 1. We
show that P(E) > 0. For notational convenience, let λ refer to the rate λ2 of alternative 2, and
let c = b1

0/2.
Let (Xt ) be a conditional gamma process with shape parameter 1 and scale parameter λ, and

let X0 = b2
0. Then, Xn has the same conditional distribution as b2

n, given λ. We now observe
that

P(E | λ) ≥ P

(
Xt

t + 1
< c for all t ≥ 0

∣∣∣∣ λ
)

= P(Xt < c(t + 1) for all t ≥ 0 | λ). (A.1)

Given λ, E is the event that (Xt ) satisfies a certain condition at discrete points in time, which
contains the event that the condition is satisfied at all continuous times. If (A.1) is strictly
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positive when λ takes values in a nonnegligible set, applying the tower property will show that
P(E) > 0.

Consider the case where λ > 1/c. Now the last expression in (A.1) can be expressed as

P(Xt < c(t + 1) for all t ≥ 0 | λ) = P
(

inf
t≥0
Yt > −c

∣∣∣ λ),
where Yt = ct − Xt and Y0 = −b2

0. Because (Xt ) is a pure jump process that increases a.s.,
(Yt ) is a spectrally negative Lévy process (i.e. its jumps are always negative). Because (Xt ) is
conditionally a gamma process, we must have E[X1 − X0] = 1/λ and, hence, E[Y1 − Y0] =
c − 1/λ > 0. In this case

P

(
inf
t≥0
Yt > −c

∣∣∣ λ) = E[Y1 − Y0]w(c + Y0) = E[Y1 − Y0]w(c − b2
0), (A.2)

wherew is called the scale function of the spectrally negative Lévy process (Yt ); see Kyprianou
(2006, p. 215). The expression E[Y1 −Y0] in (A.2) is due to the fact that ψ ′(0+) = E[Y1 −Y0]
by the property of the moment-generating function, where ψ is the Laplace exponent ψ(s) =
log E es(Y1−Y0). Because w(x) > 0 for any x > 0, we have shown that the conditional
probability is strictly positive given values of λ in a nonnegligible set. Thus, there is a strictly
positive probability that we will be stuck on alternative 2 forever, and this alternative will always
look worse than alternative 1.
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