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Abstract
To test the effects of talker variability and explicit instruction on the statistical learning of lexical
tone, 80 monolingual English listeners were taught an artificial language that mimicked Manda-
rin’s asymmetric distribution of syllable-tone co-occurrences. Training stimuli consisted of either
speech from one talker or speech from four talkers. Participants were either never instructed or
explicitly taught associations between phonemes (CVs), tones, and nonce symbols across four
consecutive days. Learning was assessed by the accuracy of mouse clicks and eye movements to
visual nonce symbols. Critical trials induced competition between the target symbol, which
matched the acoustic input, and a competitor symbol that had a statistically more probable tone
(but mismatched the acoustic input). Eye fixations indicated that participants were sensitive to
syllable-tone co-occurrence probabilities even without explicit instruction of tone. The degree to
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which statistical knowledge was used to recognize words appeared to increase when participants
processed more variable speech.

INTRODUCTION

The process of spoken word recognition requires the listener to match acoustic input to
existing linguistic representations in memory. As a listener perceives a word’s initial
acoustic information, multiple lexical candidates are concurrently activated and compete
against one another for selection (see Cutler, 2012 for a review). During this early stage of
lexical processing, a listener may also draw on knowledge of statistical regularities about
the sound patterns of words (Dahan et al., 2001; McQueen & Cutler, 2010). For a second
language (L2) learner, spoken word recognition in the L2 requires learning novel speech
cues and building the statistical knowledge of how often those multidimensional cues
occur and co-occur with other cues to form sound categories, phonotactics, and words
(e.g., Ellis, 2002, 2011; Escudero & Boersma, 2004; Hayes-Harb, 2007; Holt & Lotto,
2006; Pajak et al., 2016).
Previous L2 speech learning research investigating adult learners’ acquisition of

novel speech sounds has identified challenges stemming from a late age of acquisition,
a perceptual system attuned to first language (L1) input, and limited L2 input in a
classroom setting (see Colantoni et al., 2015 for a review). This research has estab-
lished that L2 learners often struggle to phonetically discriminate novel speech
sounds, particularly those produced by unfamiliar talkers whose acoustic realizations
of speech may differ considerably from realizations previously encountered (e.g.,
Barcroft & Sommers, 2005, 2014; Hardison, 2003; Lecumberri et al., 2010; Lively
et al., 1993; Wade et al., 2007). This inability to accurately discriminate new L2
speech sounds may cause learners to activate spurious lexical competitors, which
ultimately results in slower or inaccurate L2 spoken word recognition (Weber &
Cutler, 2004, 2006).
Given the challenges associated with recognizing L2 speech, statistical information

about the probability of novel L2 speech cuesmay be highly beneficial for learners. In other
words, information about the likelihood of sound occurrences and co-occurrences may
facilitate word recognition in the absence of sophisticated L2 perception. Here we examine
this claim with respect to a specific type of input learning, “dimension-based statistical
learning” (Idemaru & Holt, 2011, 2014, 2020), which reflects listeners’ ability to track
multidimensional speech cues such as the statistical regularity of CV strings (where C and
V refer to consonants and vowels, respectively) and the acoustic dimensions that define
language units larger than the phoneme. Because talker variability can affect L2 learning
(e.g., Barcroft & Sommers, 2005), we also examine how variability in the speech signal
affects naïve listeners’ reliance on statistical information for L2 spoken word recognition.
We additionally clarify whether explicit instruction on particular speech cues (e.g., Saito,
2011, 2015) is beneficial to L2 learners. An investigation into the effect of explicit
instruction on speech sounds may also benefit L2 educators, particularly those who teach
speech sounds that are typically difficult for adult learners to acquire.
To address these questions, this eye-tracking study tests (1) whether adult listeners

unfamiliar with lexical tone learn statistical regularities of syllable-tone co-occurrences,
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(2) whether multitalker speech affects the reliance on statistical information for online L2
word recognition, and (3) whether explicit instruction on lexical tone contours facilitates
this statistical learning.

BACKGROUND AND MOTIVATION

DIMENSION-BASED STATISTICAL LEARNING OF SYLLABLE-TONE

CO-OCCURRENCES

Mandarin Chinese (hereafter “Mandarin”) provides a relatively consistent mapping from
the word to the written form to the morpheme to the spoken syllable (Myers, 2010;
Packard, 1999, 2000). As an example, the word “horse” can be written with one character,
马, which corresponds to one morpheme, and which consists of one syllable: ma.
Hereafter, we use “syllable” to refer to a segmental string irrespective of its tone. Because
a syllable-tone combination likema3 is theminimalMandarinmorpheme or word, we use
“word” hereafter to refer to a specific syllable-tone combination.

Each of the nearly 400 (C)V(C) Mandarin syllables varies in terms of its token
frequency where the frequency of an item is inversely proportional to its frequency rank
in a natural corpus (e.g., the tenth most likely word appears .1 times as often as the most
likely one; DeFrancis, 1986; Duanmu, 2007, 2009; Zipf, 1935, 1949). In Mandarin, for
example, the 30 most frequent syllables account for roughly 50% of the tokens in a 46.8-
million-character speech corpus (SUBTLEX-CH: Cai&Brysbaert, 2010). In contrast, the
100 least frequent syllables account for approximately 1% of the corpus’ tokens. Here-
after, references to frequency signify “token frequency.”Mandarin word recognition thus
involves repeatedly activating a small subset of highly frequent syllables and occasionally
activating mid- to low-frequency syllables. Native speakers learn from this asymmetric
distribution of syllables in speech and tend to perceive and produce frequent syllables
faster than infrequent syllables (Chen et al., 2002, 2003; Zhou &Marslen-Wilson, 1994)
as do classroom L2 learners (Wiener et al., 2019; Wiener & Lee, 2020).

In speech, each Mandarin syllable can be produced with up to four different lexical
tones (Gandour, 1983; Howie, 1976). Figure 1 plots the four tones with their canonical
fundamental frequency (F0) contours when spoken in isolation. Importantly, the seg-
mental sequence composing each syllable constrains the probability of the four tones. For
example, gei only forms a Mandarin word with the dipping third tone as gei3.Gei1, gei2,
and gei4 are all nonwords. Another example is the syllable zhou, which forms a word with
all four tones. Yet, roughly 90% of all spoken zhou tokens in SUBTLEX-CH appear with
the first tone as zhou1. L1 Mandarin speakers’ linguistic knowledge therefore includes
which syllable-tone combinations correspond to words, which combinations are non-
words, and which combinations are most likely to occur in speech (Fox &Unkefer, 1985;
Wang, 1998; Wiener & Turnbull, 2016).

Such statistical information directly contributes to L1 Mandarin word recognition. In
an eye-tracking study,Wiener and Ito (2015) demonstrated that nativeMandarin speakers
draw on this syllable-tone co-occurrence probability information during the early stages
of spoken word recognition. Participants were simultaneously presented with an array of
four frequency-controlled Chinese characters and an auditory stimulus corresponding to
one of them. The experimental manipulation involved a target (e.g., zhou2) and a tonal
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competitor, which shared the target’s syllable but differed in tone (e.g., zhou1). Upon
hearing a syllable’s initial acoustic information, such as the onset of zhou, listeners
initially looked to the character with the most probable tone (e.g., zhou1). For infrequent
syllables, these predictive looks regularly occurred even if the tone of the competitor was
incongruent with the incoming acoustic information (e.g., zhou2, which starts with a
distinctively lower onset F0 than zhou1; see Figure 1). This effect of tonal probability,
however, was short-lived—starting from roughly 300ms to 700ms after the onset of the
syllable—and looks to the highly probable competitor were significantly higher only for
infrequent target syllables. Wiener and Ito, consistent with previous research on
homophony (e.g., Luce & Pisoni, 1998; Vitevitch & Luce, 1998, 1999; Vitevitch
et al., 1999), claimed that tone is less informative for the identification of highly frequent
Mandarin syllables with a large number of homophonousmorphemes. As an example, yi
—the ninth most frequent syllable in SUBTLEX-CH—with the falling fourth tone can
be written with nearly 100 semantically and orthographically distinct characters (Yin,
1984). Tonal informationmay not help select specific yi lexical candidates because word
identification for frequent syllables like yi typically requires additional context or
morphemes (Packard, 1999, 2000; Zhou & Marslen-Wilson, 1994, 1995). In contrast,
tone is more informative for the identification of infrequent syllables like zhou, which
appear with far fewer homophones in sparse neighborhoods (e.g., Chen et al., 2009; Li &
Yip, 1998; Wiener & Ito, 2016).
Thus, L1 Mandarin speakers make use of syllable-tone dimension-based statistical

information for online word recognition. Recent findings indicate that intermediate L2
classroom learners familiar with lexical tone appear to exhibit similar dimension-based
statistical learning of a CV-syllable and tone (Wiener et al., 2018). L1 English adults
enrolled in an intermediate L2Mandarin language course took part in a multiday artificial
tonal language-learning task (e.g., Caldwell-Harris et al., 2015; Wewalaarachchi et al.,
2017). The syllable-tone input was designed to mimic Mandarin’s varying syllable
frequency and conditional tone probabilities. After four consecutive days of training,

FIGURE 1. Four Mandarin tones spoken in isolation by a native female talker (left). Artificial language tones
spoken in isolation by four talkers (right).
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L2 learners demonstrated comparable statistical experience-based early looks to more
probable targets given the perceived syllable. Like the native speakers tested in Wiener
and Ito (2015), the L2 learners’ predictive looks were primarily observed for low-
frequency syllables. These looks were rapidly shifted to the correct symbols if the initial
probability-based prediction was incongruent with the acoustic information.

What remains unclear is whether knowledge of lexical tone is necessary for learners to
track its statistical regularities. Statistical learning of a nonnative speech cue may only
emerge only once learners are consciously aware of the novel cue’s importance in word
recognition. The present study serves as a follow-up to Wiener et al. (2018) to examine
whether adult listeners unfamiliar with lexical tone, that is, the typical adult learner in a
beginner Mandarin classroom language course, can learn statistical regularities involving
syllable-tone co-occurrences with conscious attention.

TALKER VARIABILITY AND L2 TONAL WORD RECOGNITION

The present study additionally investigates how variability in the speech signal affects
L2 learning and word recognition. With respect to Mandarin tones, previous research
established that learners struggle to distinguish between low-F0-onset tones 2 and
3 and high-F0-onset tones 1 and 4, even after extended L2 classroom experience (e.g.,
Hao, 2012, 2018; Leather, 1983; Pelzl, 2019; Pelzl et al., 2019). For many L2 learners,
this perceptual confusion increases when faced with multitalker speech. Figure 1
(right) illustrates how the same four syllable-tone productions vary across talkers in
their F0 onset, contour, and range, a circumstance that could lead to tonal errors among
L2 learners (e.g., Chang&Bowles, 2015; Lee et al., 2009, 2010, 2013; Qin et al., 2019;
Shen & Lin, 1991).

Wang et al. (1999) first explored whether exposure to more varied, multitalker input
improves beginner L2 Mandarin learners’ tone categorization. Participants heard Man-
darin syllable-tone words from four talkers and were asked to categorize the speech
according to its tone type. After 2 weeks of multitalker training, participants improved in
their overall tone categorization. This learning even generalized to new tokens and
speakers. Yet, follow-up multitalker studies (Perrachione et al., 2011; Sadakata &
McQueen, 2014) that controlled for individual tonal aptitude found that only learners
with strong perceptual abilities benefited from greater talker variability—those learners
with weak abilities saw little improvement (though see Dong et al., 2019 for conflicting
results).

Whereas greater talker variability may improve L2 tonal categorization, limited
evidence suggests it may also cause uncertainty during L2 spoken word recognition.
The L2 learners tested onWiener et al. (2018)’s artificial language demonstrated a greater
reliance on tonal probability information when talker variability increased. Learners
trained and tested on input from four talkers across the four days of training looked more
to probable targets and recovered more slowly from incorrect predictions than those
trained and tested on input from the same talker. The authors argued that as learners’
uncertainty about the tone category increased with multitalker input, they relied more on
their statistical knowledge of syllable-tone co-occurrence to predict the intended target.

Thus, for intermediate L2 learners still learning to categorize tones, reliance on tonal
probability information increased when faced with greater acoustic variability in the
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input. Because neither Wang et al. (1999) nor Wiener et al. (2018) tested truly naïve
listeners, the current study aims to clarify how multitalker input affects naïve listeners’
learning of syllable-tone words and their reliance on statistical information for spoken
word recognition.

STATISTICAL LEARNING OF TONE AND EXPLICIT INSTRUCTION

The present study looks for evidence to support an innate statistical learning mechanism
that facilitates language learning and processing using a process of extracting distribu-
tional information for sounds occurring in the continuous speech signal (Gómez &
Gerken, 2000; Maye et al., 2002; Saffran, 2003). Whereas the majority of research on
the statistical learning of L2 speech sounds has focused on consonants and vowels (e.g.,
Escudero et al., 2011; Wanrooij et al., 2013), we test whether this mechanism extends to
the statistical learning of lexical tones.
Previous research on statistical learning of tone suggests that listeners can learn

distributional regularities of words with tones, but it remains unclear how tonal informa-
tion is represented in leaners’ lexicons. A study by Wang and Saffran (2014) paired nine
unique artificial tones with nine CV syllables to form three trisyllabic tonal words (e.g.,
bidatu with each syllable carrying a different tone contour). Adult participants were
instructed to listen to a 9-minute continuous stream of speech containing these words.
Learners could therefore track regularities involving the syllable-only, the tone-only, or
the syllable-tone combinations as “words.” After the familiarization phase, participants
heard a word from the training along with a new word that reversed the order of the
syllables (e.g., tudabi). Participants had to indicate which of the two CV strings sounded
more familiar. Monolingual English listeners performed the task at chance, whereas
monolingual Mandarin listeners successfully discriminated previously heard words from
nonwords (though the two monolingual groups did not differ statistically). Interestingly,
two groups of bilinguals (Mandarin–English bilinguals and English and a nontonal L2
bilinguals) both discriminated words from nonwords better than the two monolingual
groups. The authors concluded that experience with multiple languages—irrespective of
whether the languages are tonal—resulted in an increased ability to discover patterns in
new stimuli.
A follow-up study by Potter et al. (2017) used the stimuli and task ofWang and Saffran

(2014) to test two groups of listeners: a monolingual English control group and an L1
English group currently learning Mandarin. The two groups discriminated words from
nonwords with nearly identical accuracy levels of 55%. When tested 6 months later, the
participants enrolled in the L2 Mandarin course improved to 66% while the monolingual
control group remained slightly above chance (53%). Potter et al. argued that this
improvement demonstrates that the L2 learners transferred their classroom experience
to the statistical learning task. However, it is unclear what cues the participants were
tracking: syllable regularities, tone regularities, or syllable-tone regularities.
Critically, the stimuli used in Wang and Saffran (2014) and Potter et al. (2017)

presented syllables with the same tone, that is, there were no phonotactically identical
sequences distinguished only by tone. Therefore, tones from their artificial language did
not signal lexical contrast. Evidence from neuroimaging and eye-tracking data (Malins &
Joanisse, 2010, 2012) suggests that lexical tone processing, where sound is associated to
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symbol and thus used for word identification, may fundamentally differ from nonlexical
tone processing. The present study manipulates the tonal distribution separately from the
syllable distribution to clarify whether novice listeners can extract statistical regularities
of tone-syllable co-occurrences and use such information for online word recognition
involving sound-symbol pairs. As we outline in the following text, this approach involves
training participants on a larger set of items to set up the distribution of tone-syllable
correspondences, and then testing participants with a smaller critical set of items to see the
effect of frequency of co-occurrence.

The present study additionally aims to test the effect of explicit instruction on lexical tone
acquisition and statistical learning. Previous research reports that adult performance in
statistical learning tasks improves when explicit instructions to attend to the stimuli are given
(e.g., Ong et al., 2015; Saffran et al., 1997; Turk-Browne et al., 2010). Ong et al. (2015)
trained naïve L1 English listeners on Thai tonal minimal pairs and measured participants’
ABX discrimination before and after training. Participants improved their statistical learning
of tone, but only if their auditory attentionwas encouraged using a cover task. Thus, statistical
learning may be more effective if learners are instructed to attend to specific acoustic
dimensions that matter for learning novel words. Ong et al.’s finding may also explain
why the intermediate L2 participants tested inWiener et al. (2018)were able to track syllable-
tone co-occurrences: These learners had more than a year of explicit Mandarin classroom
training and were clearly aware of tonal cues in the stimuli. However, as with the Potter et al.
(2017) andWang and Saffran (2014) stimuli, the Ong et al. stimuli were not lexical in nature
and participants’ learning was assessed with phonetic discrimination tasks only. Thus,
listeners may not have categorized tones as lexical cues. The present study makes the lexical
function of tone overt to listeners using sound-symbol pairs, and tests whether explicit
instruction facilitates acquisition of lexical tone and its statistical regularities.

RESEARCH QUESTIONS

RQ1. To what extent does listeners’ experience with lexical tone affect their
dimension-based statistical learning of syllable-tone co-occurrences? Can adult listeners
unfamiliar with lexical tone learn syllable-tone statistical regularities?

RQ2. To what extent does multitalker input modulate the reliance on statistical infor-
mation for online L2 spokenword recognition?Do learners exposed tomultiple talkers rely
on statistical knowledge to a greater degree than learners exposed to only one talker?

RQ3. To what extent does explicit instruction of lexical tone facilitate dimension-based
statistical learning? Can naïve listeners who are not explicitly aware of lexical tone still
track syllable-tone statistical regularities?

EXPERIMENT

METHOD

Participants

Eighty native speakers of American English with no previous experience in Mandarin or
another tonal language participated in the study (Mage = 20.9, SD = 4.0). All participants
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were undergraduates at a Midwestern university and had normal or corrected vision,
normal speech and hearing, and no formal musical training. Tonometric (Mandell, 2015)
was used to control for pure pitch perception.1 All participants had previously studied at
least one nontonal European language during secondary school (e.g., French, German,
Italian, Russian, or Spanish). Participants were asked to self-rate their L2 abilities on a
4-point Likert scale (1: beginner; 4: fluent:Mspeaking = 2.1, SD = 0.8;Mlistening = 2.1, SD =
0.7). No participant self-rated as a fluent speaker or listener of an L2 or studied another
language at the time of testing. All participants were paid for their time.

Materials

Eight consonants /p, ph, f, k, kh, m, ts, ɹ/ and six vowels /a, i, ə, ia, iu, ai/ were used to
construct 24 Mandarin-like CV syllables (see Supplementary Materials for full stimuli).
Each syllable was paired with four tonal contours similar to those in Mandarin (Figure 1).
Only 82 of the possible 96 syllable-tone co-occurrences were used to approximate the
natural rate of syllable-tone gaps within the Mandarin lexicon (see Myers, 2002, 2010;
Wang, 1998). To introduce homophony within the artificial language, 48 syllable-tone
homophones were added, resulting in 130 total nonce words—a rate of homophony
approximating that of spokenMandarin (see Duanmu, 2007, 2009). Each noncewordwas
given a unique symbol (Figure 2). These nonce symbols—like Chinese characters—
served to disambiguate homophonous syllable-tone co-occurrences (seeWiener, 2015 for
details on symbol creation). This meant that some syllable-tone combinations mapped to
multiple symbols whereas other syllable-tone combinations only mapped to one symbol.
To manipulate the statistical distribution of syllables and tones within the artificial

language, 66 of the 130 items in the language served as fillers. The remaining 64 items
served as critical items. Among the 64 critical items, two factors—syllable token
frequency and syllable-conditioned tonal probability—were crossed to make four
within-subject stimulus conditions. Syllable frequency was manipulated by increasing
or decreasing the number of syllable tokens to which participants were exposed, irre-
spective of tone. Thirty-two of the 64 test items had high syllable frequency (F+: 28 tokens
per day for a total of 896 tokens) while the other 32 items had low syllable frequency (F�:
16 tokens per day for a total of 512 tokens). For each syllable, a particular tone type was

FIGURE 2. A: Example of five fi3 homophones. B: Sample 4-AFC slide; target (fi1, top-left), tonal competitor
(fi3, top-right), rhyme competitor (ri1, bottom-right), and distractor (ka2, bottom-left). C: Exam-
ple of explicit training slide for fi3.
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assigned to be the most probable (P+; occurring in 50% of the tokens) while another tone
type served as the least probable (P�; occurring in roughly 10% of the tokens); the other
two tones had identical mid-range probabilities. These frequency and probability values
approximated those used in Wiener and Ito (2015) while providing a reasonable amount
of input for participants to learn the artificial language based on pilot results. Figure 3
illustrates the input to participants. Each syllable-tone input varied in the number of
symbols to which it mapped, which presumably affected participants’ certainty about the
identity of the target.

These frequency and probabilitymanipulations resulted in four within-subject stimulus
conditions: F+P+, F+P�, F�P+, F�P�. Filler homophones were used to manipulate
tonal probabilities, which allowed for the target test items to visually appear the same
number of times. For example, on each day of training and testing, the syllable-tone
combination fi3 was presented 10 times using the four rightmost nonce symbols in

FIGURE 3. Illustration of syllable-tone input and match to symbols.
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Figure 2A. By continually showing participants these four symbols throughout the
experiment, the probability of the syllable fi appearing with tone 3 greatly increased.
The leftmost nonce symbol in Figure 2A functioned as the test item and visually appeared
four times each day, which is the same number of times as the three respective critical item
symbols for fi1, fi2, and fi4. Thus, the critical test items’ symbols appeared with identical
frequency while the phonological occurrence of a syllable with a particular tone varied
through manipulation of filler homophone symbols.
All auditory stimuli were recorded by four (two male and two female) native Mandarin

talkers at 16 bits/44,100 Hz. Figure 1 (right) shows an example of fi1, fi2, fi3, and fi4
produced by each talker. Acoustic analysis of the stimuli confirmed previously reported
temporal differences; tones 2 and 3 were longer in duration than tones 1 and 4 (Ho, 1976;
Moore & Jongman, 1997; Zee, 1980). Mean duration of each tone type was comparable
across the four talkers: tone 1 (F(3,96) = 0.166, p = 0.69); tone 2 (F(3,96) = 0.825, p =
0.37); tone 3 (F(3,96) = 3.28, p = 0.08); and tone 4 (F(3,96) = 0.114, p = 0.73).

Design and Procedure

To control for the potential influence of particular sound-symbol pairs on learning,
participants were randomly assigned to one of two presentation lists that counterbalanced
sound-symbol mapping. Participants took part in 30-minute training-testing sessions on
four consecutive days thereby allowing for overnight consolidation of word learning
(Qin&Zhang, 2019). Participants performed the tasks in the same order each day: passive
listening, shadowing, naming (with feedback), and 4-alternative forced-choice (4-AFC)
with eye-tracking (with feedback).2 Figure 4 shows the daily training and testing routine.
Participants first completed a self-paced passive listening task (131 trials). They were

seated in a sound-attenuated booth with a computer monitor and given headphones. A
symbol and its audio label were simultaneously presented. Participants were told to
remember the sound-symbol pair andmouse click to advance to the next trial. Participants
next shadowed the speech (131 trials; because the results are beyond the scope of this
article, see Wiener et al., 2020 for discussion). After a sound-symbol pair was presented,
participants were asked to repeat the perceived word as clearly and accurately as possible.
The symbol remained on screen until the participant mouse clicked to advance to the next
trial. After completing the shadowing task, participants performed a naming task (64 tri-
als). These trials, which only tested the 64 critical items in the language, first presented a
symbol on screen. Participants were told to produce the symbol’s syllable-tone as
accurately as possible and to guess if they were unsure. The symbol remained on screen
until the participant mouse clicked, at which point feedback about the correct audio label
was presented using headphones. Participants ended each day of training with the 4-AFC
task, which is the focus of this article.

FIGURE 4. Daily training and testing routine.

164 Seth Wiener, Kiwako Ito, and Shari R. Speer

https://doi.org/10.1017/S0272263120000418 Published online by Cambridge University Press

https://doi.org/10.1017/S0272263120000418


In the 4-AFC task, participants’ eye movements were first calibrated using the Clear-
view 5-point calibration program. At the start of each trial, participants fixated on the
center of the screen while listening to a carrier phrase “I will say…” (“wo3 yao4 shuo1”
spoken in Mandarin), followed by simultaneous presentation of four symbols and the
target symbol’s audio label, that is, a slide was not previewed. Participants were told to
click on the symbol that matched the perceived audio while their eye movements were
continuously recorded at 50 Hz using a Tobii 1,750 system. After clicking, correct targets
were highlighted with a red box so that feedback could guide learning. There were 48 total
trials (16 target trials with four in each stimulus condition and 32 filler trials) with a
2 second intertrial interval.

The 16 target trials (consisting of symbols only from the 64 critical items) showed the
target and three other trained test items: a tonal competitor, a rhyme competitor, and a
distractor. Figure 2B shows a sample trial from the high token frequency, low-probability
condition (F+P�) with fi1 (P�) as the target (top left). The three other on-screen items
included a tonal competitor, which shared the same syllable but had the opposite tonal
probability (e.g., P+ fi3; top right); a rhyme competitor, which shared the same vowel and
tone but had a different onset (e.g., ri1; bottom right); and a distractor, which had a wholly
dissimilar syllable and tone (e.g., ka2; bottom left). Position of the target and competitors
was fully counterbalanced across days and trials.

To test the effect of talker variability, half of the participants were trained and tested
on a single female talker (single-talker condition). Participants in this condition heard
speech from Female 1 during all four tasks: the 4-AFC test consisted of a familiar
syllable-tone exemplar spoken by a familiar talker. The other half of the participants
were trained and tested on four different talkers (multitalker condition): the 4-AFC test
consisted of a familiar syllable-tone learned in the first three tasks but spoken by a
particular talker for the first time. For instance, participants heard fi1 in the first three
training tasks spoken by Male 1. Participants were then tested in the 4-AFC task on
Female 2’s production of fi1.

To test the effect of instruction, half the participants were given no instructions
regarding lexical tone whereas the other half were explicitly trained. At the start of each
daily training session, participants in the explicit training condition took part in a
5-minute, self-paced computerized lesson on the four tones using thema tone quadruplets
as practice sounds. This lesson was presented in English and emphasized the four tones’
F0 contours following modern L2 classroom pedagogy for introducing isolated mono-
syllables (e.g., Shen, 1989; Xing, 2006; Yang, 2017). Participants were first told to “pay
attention to the pitch or tone of the syllable.” Participants then simultaneously heard a
syllable tone while its pinyin was displayed onscreen with tone diacritics. After partic-
ipants mouse clicked on the screen, the syllable-tone was presented again over head-
phones while the syllable’s rendered F0 contour was displayed on screen (generated
through Praat; Boersma & Weenink, 2016). Thus, participants were trained to associate
the four F0 contours with the four tonal categories. At the conclusion of the lesson,
participants were told that the “pitch or tone of the syllable is important for symbol
learning.”

For the explicit group, nonce symbols were displayed alongside the symbol’s syllable-
tone label in pinyin and the tone’s rendered F0 contours during the passive learning and
shadowing phases of daily training. Figure 2C shows an example for the fi3 target
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containing the pinyin and tone contour. Participants in the no-instruction group were only
shown the nonce symbol. Hereafter, we refer to the between-subject variables talker
variability (single-talker/multitalker) and phonetic instruction (explicit/nonexplicit) as
training conditions while the within-subject variables syllable token frequency (F+/F�)
and tonal probability (P+/P�) as stimulus conditions.

Predictions

We predict higher 4-AFC mouse-click accuracy for those participants trained with
explicit instruction to attend to F0 contours, which should increase awareness of the
phonological role of tones (e.g., Chun et al., 2015; Godfroid et al., 2017; Liu et al., 2011;
Saito &Wu, 2014). Explicit training may interact with talker variability such that explicit
tone instruction is effective only for highly familiar or low variability speech. In this
outcome, participants explicitly trained on single-talker input may demonstrate the
highest overall mouse-click accuracy. Participants trained on multitalker input may show
little to no effect of explicit instruction given the challenge associated with multitalker
tones (e.g., Lee et al., 2010; Wang et al., 1999).
Participants’ eye movements within the first 1,000 ms will reveal whether syllable-tone

co-occurrence probabilitieswere used during online spokenword recognition. In particular,
we test whether participants activate the most probable (P+) tone upon hearing a syllable’s
initial acoustic information (RQ1). This will be shown in anticipatory fixations to the more
probable (P+) symbol as compared to the less probable (P�) symbol. If talker variability
challenges participants’ perception of tone (e.g., Wiener et al., 2018), participants exposed
tomultitalker input may rely on probabilistic information to a greater degree and look to the
symbol with the more probable (P+) tone (RQ2). If explicit instruction facilitates statistical
learning of tone distributions, participants explicitly trained on tonemay respondwithmore
anticipatory eye movements to more probable (P+) visual candidates (RQ3).

RESULTS

4-AFC MOUSE-CLICKS

Mean 4-AFC mouse-click accuracy was calculated for each of the four groups for each
day. Figure 5A shows the changes in accuracy (with 95% confidence intervals) across the
4 days of testing (x-axis). Participants performed above chance (.25) on Day 1 regardless
of the training conditions (bar color) and demonstrated overall average daily improve-
ments with each training/testing session. Figure 5B plots Day 4 results by stimulus (x-
axis) and training conditions (bar color). Participants in the two single-talker training
conditions had roughly equal mean accuracies across the four stimulus conditions. In
contrast, participants in the two multitalker training conditions had the lowest mean
accuracy for low-frequency low-probability (F�P�) targets and the highest mean accu-
racy for low-frequency high-probability (F�P+) targets.
To test the effects of training conditions and stimulus conditions on the mouse-click

accuracy, Day 4 (i.e., the final day of testing) mouse-click results were analyzed using
mixed-effect logistic regression models with the lme4 package (Bates et al., 2015) in R
(version 3.6.1; R Core Team, 2019). The inclusion of fixed and random effects of all
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models in this article were evaluated by first building the maximally appropriate model
with random intercepts and slopes: glmer(4-AFC accuracy ~ talker variability� syllable
frequency � probability � instruction + (1 + instruction � talker variability|item) + (1 +
syllable frequency� probability|subject), family = “binomial”). Next, effects that did not
improve the model fit as assessed through the lmertest package (Kuznetsova et al., 2017)
were removed. See Supplementary Materials for power analyses carried out using the
simr package in R (Green & MacLeod, 2016). All models in this article treated fixed
effects as contrast coded variables (1,�1). The final 4-AFC logistic regression model did
not include instructional manner as a main effect (χ2 = 0.01, p = .92) or as part of any
interaction (χ2s < 2, ps > .1). Talker variability was not included as amain effect (χ2= 2.42,

FIGURE 5. A: Mean daily 4-AFC accuracy by training conditions. B: Mean Day 4 4-AFC accuracy by
stimulus and training conditions. Error bars in both figures indicate 95% confidence intervals.

TABLE 1. Summary of mixed-effect regression on Day 4 4-AFC mouse-click accuracy

Estimate SE z p

(Intercept) 0.46 0.06 7.50 < .001
Syllable frequency 0.14 0.05 2.35 0.02
Tonal probability 0.21 0.05 3.62 < 0.001
Freq:Prob �0.17 0.06 �2.85 0.004
Talker variability:Prob �0.19 0.06 �3.22 0.001

Note:High frequency, high probability, and single-talker were all coded as 1.R code: glmer(accuracy ~ syllable
frequency � probability + talker variability: probability + (1+variability|item) + (1+syllable frequency �
probability|subject), family = “binomial”).
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p= .11), as a two-way interactionwith syllable frequency (χ2 = 0.02, p= .88), or as a three-
way interaction with syllable frequency and tonal probability (χ2 = 3.11, p = .07). See
Table 1 for final model specification and output.
Themodel revealed (positive) main effects of syllable frequency and tonal probability and

two separate (negative) two-way interactions between syllable frequency and probability, and
between talker variability andprobability.The difference indirection of these effects indicates
that the main effects were not additive. For low-frequency (F�) items, there was an effect of
probability and for low-probability (P�) items, there was an effect of frequency. In other
words, nodifferencewas foundbetweenprobability conditions for F+ items (p= .24)3; for F�
items, high-probability tones (P+) were identified more accurately than P� tones (p < .01).
For P+ tones, no difference was found between frequency conditions (p = .12); for P� tones,
F+ itemswere identifiedmore accurately thanF� items (p< .01). For single-talker speech, no
difference was found between probability conditions (p = .74); for multitalker speech, P+
tones were identified more accurately than P� tones (p < .001).
To summarize, tonal probability was useful for the identification of low-frequency

syllables only (F�P+, F�P�). No difference due to tonal probability was found for items
containing high-frequency syllables (F+P+, F+P�). Moreover, this effect of tonal prob-
ability was primarily driven by participants exposed to multitalker input. Participants
exposed to single-talker input did not identify P+ items more accurately than low-
probability targets. These results suggest that participants unfamiliar with tone languages
can learn syllable-tone statistical regularities (RQ1), but they rely on this information to a
greater extent when the stimuli contain high talker variability (RQ2). Explicit instruction
had no apparent effect on participants’ ability to extract statistical information (RQ3).

FIGURE 6. Loess-smoothed grand mean fixation proportions from the onset of the target word across 4 days
of testing.
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Eye Fixations

To examine the overall time course of shifts in eye fixations and to determine the sizes of
analysis windows, we first plotted the loess-smoothed (Cleveland, 1979) grand mean
fixations to the target and competitors across all training and stimulus conditions on all
4 days (Figure 6). Looks to each visual candidate began at chance (.25) at the critical word
onset and looks to the target and tonal competitor diverged from looks to the rhyme
competitor and distractor at about 250 ms after that. In accordance with previous studies
that report that approximately 200 ms (from critical auditory input) is required to plan and
execute an eye movement (e.g., Matin et al., 1993), the initial divergence reflects accurate
detection of syllable onset. Looks to the tonal competitor peaked between 750 ms and
1,000 ms and dropped below chance (.25) by approximately 1,500 ms.

Figure 7 magnifies the 300–1,500 ms time window in which tonal competition was
above chance. The figure plots the loess-smoothed fixation functions for the target and
tonal competitor by training and stimulus conditions on Day 4. Both high-probability
conditions (1st and 3rd columns) showed an early divergence between the target and
tonal competitor, and the looks to the tonal competitor remained at or below chance
after 300 ms, regardless of training condition. In these conditions where the target had

FIGURE 7. Loess-smoothed mean fixation proportions to Day 4 target and tonal competitor by stimulus and
training conditions (0–1,500 ms).
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the most probable tone, looks to the less probable tonal competitor did not exceed
looks to the target at any point in time. In contrast, the two low-probability conditions
(2nd and 4th columns) showed looks to the tonal competitor at or above chance from
300 ms until 900 ms. For the two multitalker conditions (1st and 2nd rows), looks to
the tonal competitor exceeded looks to the target competitor from roughly 300 ms
until 900 ms.
To test whether looks to the target differed across training and stimulus conditions, the

empirical logit (elogit) and the associated weights were calculated for 200 ms time
intervals for each trial and participant. Four consecutive weighted mixed-effects models
were tested from 300 ms until looks to the tonal competitor peaked at 1,100 ms. Model
effect structure for each window followed the method outlined in the previous section by
starting with the full model: lmer(elog target ~ talker variability � syllable frequency �
probability � instruction + (1 + instruction � talker variability|item) + (1 + syllable
frequency� probability|subject), weights =weight). The finalmodel only contained tonal
probability as a fixed effect. Syllable frequency, instructional method, and talker vari-
ability (and all interactions containing these variables) did not significantly improve the
model’s fit at any time window (χ2s < 3, ps > .05). Given the number of models built,
Bonferroni correction was used for all reported p-values. Table 2 reports the final model
along with its output for each 200 ms window.
From 300 to 500 ms, a marginal effect of tonal probability was found. Participants

looked to targets with high-probability (P+) tones at a marginally greater proportion than
to targets with low-probability (P�) tones. From 500 to 700ms and 700 to 900ms, a main
effect of tonal probability was found. Participants looked to P+ targets at a significantly
higher proportion than to P� targets. From 900 to 1,100ms, P+ targets were looked to at a
marginally greater proportion than P� targets.
To confirm whether this reduction in looks to the P� target was due to participants

looking to the more probable P+ tonal competitor, the weighted elogit of the tonal
competitor was analyzed following the same procedure as outlined for looks to the target
(Table 3). Once again, neither syllable frequency nor instructional method nor talker
variability (nor any interactions) significantly improved the model’s fit (χ2s < 3, ps > .05).

TABLE 2. Summary of weighted mixed-effect regressions on Day 4 target fixations

Estimate SE t p

300–500 ms:
(Intercept) �0.80 0.06 �12.28 < .001
Tonal probability 0.12 0.07 1.87 0.10
500–700 ms:
(Intercept) �0.62 0.05 �12.66 < .001
Tonal probability 0.12 0.05 2.48 0.03
700–900 ms:
(Intercept) �0.45 0.04 �12.33 < .001
Tonal probability 0.15 0.04 4.06 < .01
900–1,100 ms:
(Intercept) �0.35 0.03 �10.52 < .001
Tonal probability 0.08 0.03 2.26 0.05

R code: lmer(elog target ~ probability + (1|item) + (1 + probability|subject), weights = weight)
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No significant effects of predictor factors were found in the 300–500 ms model. From
500 to 700 ms, participants looked to P+ tonal competitors at a marginally higher
proportion than they looked to P� tonal competitors. From 700 to 900 ms, a main effect
of tonal probability was found: participants looked to P+ tonal competitors at a higher
proportion than to P� tonal competitors irrespective of syllable token frequency. No
significant effects were found in the 900–1,100 ms window.

To summarize the eye-fixation results, from 300 to 1,100 ms, participants looked to
high-probability (P+) candidates at a higher proportion than to corresponding low-
probability (P�) candidates. These looks were independent of syllable frequency, talker
variability, and instructional method. From 500 to 900 ms, participants looked at P+
targets and P+ tonal competitors at significantly higher rates than P� targets and P� tonal
competitors across all training conditions (RQ1). Talker variability in the input (RQ2) and
explicit instruction (RQ3) did not appear to affect the use of syllable-tone statistical
information during online spoken word recognition.

DISCUSSION

This study examined whether adult listeners unfamiliar with lexical tone are able to track
statistical regularities in syllable-tone co-occurrences in a manner similar to L1 and
intermediate L2 Mandarin listeners. We additionally explored whether multitalker input
increases the reliance on this statistical information during spoken word recognition and
whether explicit instruction to attend to specific tone contours facilitates this statistical
learning.We trained participants for four consecutive days on our artificial tonal language
and took Day 4 eye movements as our measure of online predictive processing.

Results from the Day 4 4-AFC task indicated that tonal probability information was
useful for identifying items containing low-frequency (F�) syllables only. No differences
were found for items containing high-frequency (F+) syllables. Moreover, this effect of
tonal probability was primarily driven by participants exposed to multitalker input.
Participants in the single-talker condition did not show a statistically significant advantage
in their mouse-click results for high tonal probability (P+) over low-probability (P�)
items. Analyses of the Day 4 eye movements revealed that participants across all training
conditions looked to P+ targets and tonal competitors at a significantly greater proportion
than corresponding P� targets and tonal competitors from 500 to 900 ms. These eye
movements were independent of instructional method or talker variability.

TABLE 3. Summary of weighted mixed-effect regressions on Day 4 tonal competitor
fixations

Estimate SE t p

500–700 ms:
(Intercept) �0.07 0.05 �12.42 < .001
Tonal probability �0.12 0.06 �2.06 0.10
700–900 ms:
(Intercept) �0.64 0.05 �12.80 < .001
Tonal probability �0.13 0.05 �2.62 0.04

R code: lmer(elog competitor ~ probability + (1|item) + (1 + probability|subject), weights = weight)
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Taken together, our mouse-click and eye-movement results indicate that learners
unfamiliar with lexical tone were able to track the relative frequency of CV syllables
and the probabilities of such syllables co-occurring with particular F0 contours. This
dimension-based statistical learning occurred independently of the variability in the
speech input or the instructions used to teach tone. Early-stage L2 acquisition thus appears
to involve not only tracking nonnative speech cues’ distributions, such as phonetic
continua and phonemic contrasts (e.g., Escudero et al., 2011; Hayes-Harb, 2007;
Hayes-Harb & Masuda, 2008), but also multiple co-occurring cues that vary along
acoustic-phonetic dimensions. Importantly, our results strengthen the claim that adult
nonnative listeners can track tonal regularities at not just the phonetic level (e.g., Ong
et al., 2017; Potter et al., 2017; Wang & Saffran, 2014) but also at the lexical level as in
Mandarin.
Remarkably, this dimension-based statistical learning took place even without any

explicit instruction of tone’s acoustic characteristics. Unlike Ong et al. (2015), we found
statistical learning of syllable-tone co-occurrences independent of instructional method.
Participants trained explicitly on visualized tone contours and a pinyin-like romanization
did not differ in mouse-click accuracy or proportion of eye fixations as compared to those
participants who were not explicitly trained. Previous instructional method studies on
nonnative tone acquisition typically used small, evenly distributed sets of syllable-tones
with pinyin-like text (e.g., Showalter & Hayes-Harb, 2013), auditory-only stimuli devoid
of visual cues (e.g., Godfroid et al., 2017), or tone-only discrimination tasks (e.g., Ong
et al., 2015). In our study, the artificial language contained a large number of items
(including syllable-tone homophones) and nonce symbols more closely resembling
Mandarin. Our design thus may have better simulated the challenges involved in L2
acquisition (see Ettlinger et al., 2016 for discussion of artificial languages’ external
validity) by capturing the increased perceptual competition among new L2 sound
categories and lexical candidates typically observed during spoken L2 word recognition
(e.g., Escudero et al., 2008;Weber&Cutler, 2004, 2006).We note that the present study’s
Day 4 mean accuracy across training and stimulus conditions was approximately 60%
with learners primarily making tonal mistakes. This is much lower than the posttraining
ceiling performances typically observedwith relatively small, symmetric stimuli syllable-
tone sets (e.g., Wong & Perrachione, 2007).
With respect to talker variability, our results did not support Wang et al.’s (1999)

finding that multitalker input leads to improved tonal categorization among classroom
Mandarin L2 learners already familiar with tone. Unexpectedly, we observed no differ-
ence in overall 4-AFC accuracy between the single-talker and multitalker groups. A
difference, however, was observed for the low-frequency syllables; for participants
trained and tested on multiple speakers, low-frequency syllables with low-probability
tones (F�P�) had the lowest average accuracy while low-frequency syllables with high-
probability tones (F�P+) had the highest average accuracy (Figure 5B). For participants
trained and tested on the same speaker, no such difference was found. There are at least
three factors that may have contributed to this two-way interaction between syllable
frequency and talker variability.
First, for true beginner learners like the participants tested in the present study, talker

variability may have hindered learning the low-frequency, low-probability tones. There
may have been too much variation in the F0 contours across the four talkers and too few
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exemplars to learn from. Thus, the difference observed in 4-AFC results between the F�
items may have reflected the challenge of learning highly varied tones with a limited
number of exemplars. Under this account, as L2 learners accrue greater awareness of tonal
categories andweigh F0movement cuesmore heavily over time, F0 variabilitymay prove
to be more beneficial in tonal word learning (e.g., Barcroft & Sommers, 2014). For
instance, intermediate and advanced learners may gradually encode more robust tone
categories given more varied input, which is in line with Wang et al.’s (1999) results.

Second, greater variability in the input may have led to a greater tendency to rely on
experience-based distributional processing as a means of accommodating the acoustic
variability (e.g., Nixon & Best, 2018; Nixon et al., 2016; Wiener et al., 2018). This
probability-based account is in line with the eye-fixation results. Figure 8 plots the loess-
smoothed mean fixations to the low-probability (P�) and high-probability (P+) tonal
competitors across all trials, irrespective of syllable frequency. This figure demonstrates
that upon hearing the P+ target, participants looked to the P� tonal competitor at nearly
identical rates across variability training conditions (Figure 8, left). In contrast, upon
hearing the P� target (Figure 8, right), participants exposed to multiple talkers looked
proportionally more often to the P+ tonal competitor from about 300 to 700 ms. This
increase in looks to the more probable tonal competitor demonstrates an emerging
tendency for learners to rely greater on probability-based tone processing in the face of
multitalker input.

Further support for this claim was found in a post-hoc analysis4 involving participants’
overall 4-AFC rate of improvement from the first day of testing to the last day of testing
(see Supplementary Materials for additional details including statistical analysis). This
also acknowledges a third potential contributor to our results: individual differences in
learning aptitude and/or perceptual abilities (among other factors; see Bowles et al., 2016;

FIGURE 8. Day 4 loess-smoothed mean fixations to the tonal competitor across all high-probability P+ and
low-probability P� trials by talker variability.
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Chandrasekaran et al., 2010; Theodore et al., 2019). Whereas none of the tested partic-
ipants demonstrated a pitch deficiency, it remains possible that only participants with
strong perceptual abilities benefited from the greater variability in the input while those
participants with weak abilities saw no gains (e.g., Perrachione et al., 2011; Sadakata &
McQueen, 2014). Our post-hoc analysis revealed that participants with lower four-day
improvement rates relied more heavily on tonal probability information, and that this
effect was particularly robust for those tested on multitalker input. In particular, listeners
with lower improvement rates were less certain of the intended tonal category of the
incoming speech signal and therefore relied more heavily on their knowledge of syllable-
tone co-occurrence probabilities. The difference between the early eye-movement data
and the resulting mouse clicks may have reflected learners’ difficulties in recovering from
their initial probability-based predictions, which led to the errors in the 4-AFC task
(Figure 5B). In contrast, those learners with higher improvement rates may have been
better at recovering from incorrect initial predictions and ultimately identifying the correct
target. These preliminary results extend individual differences research (e.g., Perrachione
et al., 2011; Sadakata &McQueen, 2014) by demonstrating how learners with lower tonal
improvement rates may use statistical knowledge to bootstrap their learning of tone. We
note, however, that recent evidence suggests different levels of learner aptitude may not
necessarily lead to better or worse learning from high (or low) talker variability training
input (Dong et al., 2019). Additional research in this domain is needed to clarify the role of
individual differences in tone learning.
Finally, we acknowledge that the 4-AFC and eye-fixation results may also be

accounted for by an error-driven learning mechanism (e.g., Nixon 2018, 2020) rather
than a purely statistical learning mechanism. Similar to the present study, Nixon (2020)
trained Native English speakers on an artificial tonal language and demonstrated that the
cue-outcome order of stimuli affects tone learning. Nixon presented participants with a
control cue (e.g., VOT) or a critical cue (e.g., tone) and trained participants to associate the
cue with an outcome (e.g., image). After this pretraining phase, the critical cue was
presented with a second cue (e.g., nasal) in the main training phase. Testing involved only
the second cue. Nixon found that when the critical cue was learned in the pretraining
phase, it “blocked” learning of the second cue (e.g., Kamin, 1969). Nixon next manip-
ulated the temporal order of cues and outcomes by presenting either a discriminative order
(cues followed by images) or nondiscriminative order (images followed by cues). Nixon
found that discriminative structures, which allow for feedback from prediction error,
resulted in better learning of predictive cues, particularly for items with fewer exemplars
(i.e., low token frequency). Additionally, discriminative structures allowed better down-
weighting or unlearning of nondiscriminative cues.
In the present study, we varied the cue-outcome order in different ways. The first two

daily tasks (Figure 4) involved the simultaneous presentation of the syllable-tone (cue)
and symbol (outcome). The naming task presented the nonce symbol (i.e., the outcome)
first and required participants to produce the syllable-tone cue—a task analogous to
presenting Chinese learners with a written character and asking them to produce its
syllable-tone combination (see Chung, 2003). This may have allowed for feedback from
prediction error in line with Nixon’s (2020) design; however, all participants were given
feedback irrespective of naming accuracy. It is unclear whether such feedback guided
learning of incorrect responses (e.g., Arnon & Ramscar, 2012; Ramscar et al., 2010;
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2013). Moreover, we note that feedback from our naming production task may work in a
fundamentally different way than that from a perceptual identification task. For beginner
L2 learners especially, production abilities may lag behind perceptual abilities, which
could influence learning (e.g., Baese-Berk & Samuel, 2016). Our fourth and final daily
task involved simultaneous presentation of the cue and outcome. For this 4-AFC
identification task, feedback was again provided after each mouse click irrespective of
accuracy. To what degree this feedback influenced the mouse-click and eye-fixation data
remains unclear. Our future work will aim to test how the cue-order outcome and
discriminative structures in line with Nixon’s (2020) proposal contribute to the present
study’s observed learning of tone.

CONCLUSION

In this study we established that adult participants unfamiliar with lexical tone are able to
track syllable conditioned tonal probabilities. This statistical learning occurs irrespective
of the amount of talker variability in the speech signal or participants’ explicit instructed
awareness of tone. Future research is needed to fully tease apart whether the underlying
mechanism driving this learning is statistical in nature (e.g., Maye et al., 2002; Saffran,
2003) or error driven (e.g., Nixon, 2020) and to what degree individual differences affect
this learning. Finally, there is a need for future research to examine the pedagogical
implications of this work and investigate how classroom Mandarin learners track the
occurrence and co-occurrence regularities of syllables and tones and to what degree the
timing of acoustic cues and semantic outcomes affect this learning.

SUPPLEMENTARY MATERIALS

To view supplementary material for this article, please visit http://dx.doi.org/10.1017/
S0272263120000418.

NOTES

1All participants were able to reliably discriminate two pure tones differing by 20 Hz (or lower) as a
screening threshold. Due to a data logging error, however, individual results were lost and thus not included as
covariates in the regression analysis.

2We acknowledge that the four tasks are not independent of one another. SeeWiener (2015) for a complete
discussion of the tasks, which is beyond the scope (and word limit) of the present study.

3Reported p-values obtained from releveling the model.
4We thank the anonymous reviewer for suggesting this post-hoc analysis.
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