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Abstract

We show that any Kawamata log terminal del Pezzo surface over an algebraically closed
field of large characteristic is globally F -regular or it admits a log resolution which lifts
to characteristic zero. As a consequence, we prove the Kawamata–Viehweg vanishing
theorem for klt del Pezzo surfaces of large characteristic.
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1. Introduction

Recently, starting from the work of Hacon and Xu [HX15], many of the classical results of
the minimal model programme (MMP) in characteristic zero have been extended to three-
dimensional varieties over an algebraically closed field k of characteristic p > 5 [Bir16, CTX15,
BW14]. One of the main tools used in [HX15] is the theory of F -singularities, replacing the use of
the classical vanishing theorems, which hold only in characteristic zero (see e.g. [Sch09]). Their
proof of the existence of flips relies on the fact that if char k > 5 and (X,∆) is a one-dimensional
projective klt pair such that −(KX + ∆) is ample and the coefficients of ∆ are contained in the
standard set {1 − (1/n) | n ∈ Z>0}, then (X,∆) is globally F -regular [Wat91, Theorem 4.2].
Thus, it is natural to ask whether this result can be generalised to higher-dimensional varieties.
Unfortunately, in [CTW17] we give a negative answer to this question. Indeed, we show that
over an arbitrary algebraically closed field k of characteristic p > 0, there exists a projective
klt surface X over k such that −KX is ample, but X is not globally F -regular. Thus, even
in large characteristic, it is not known a priori whether klt del Pezzo surfaces admit desirable
properties, such as the Kawamata–Viehweg vanishing theorem and the Bogomolov bound, which
in particular gives a bound on the number of singular points on a klt del Pezzo surface of Picard
number one (see [Lan16] and [KM99, § 9]).
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On log del Pezzo surfaces

The goal of this paper is to show the following.

Theorem 1.1. Let I ⊆ (0, 1) ∩Q be a finite set.
Then there exists a positive integer p(I) which satisfies the following property.
Let (X,B) be a two-dimensional projective klt pair over an algebraically closed field of

characteristic p > p(I) such that −(KX + B) is ample and the coefficients of B are contained
in I.

Then one of the following properties holds:

(1) (X,B) is globally F -regular; or

(2) there exists a log resolution µ : V → X of (X,B) such that (V,Exc(µ)∪ µ−1
∗ (SuppB)) lifts

to characteristic zero over a smooth base (cf. Definition 2.15).

Note that we do not know whether there exists a klt del Pezzo surface in large characteristic
which violates property (2) of Theorem 1.1.

Using the above result, the MMP and the logarithmic version of a result of Deligne–Illusie
[Har98, Corollary 3.8], we prove the Kawamata–Viehweg vanishing theorem for klt del Pezzo
surfaces in large characteristic.

Theorem 1.2. There exists a positive integer p0 which satisfies the following property.

Let (X,∆) be a two-dimensional projective klt pair over an algebraically closed field
of characteristic p > p0. Suppose that there exists an effective Q-divisor B such that
(X,B) is klt and −(KX + B) is nef and big. If D is a Z-divisor on X such that
D − (KX + ∆) is nef and big, then

H i(X,OX(D)) = 0 for any i > 0.

Note that Theorem 1.1 imposes a condition on the coefficients of the boundary divisor B,
but Theorem 1.2 does not need such an assumption.

Finally, we show that Theorem 1.1 does not hold in characteristic two.

Theorem 1.3. There exists a projective klt surface X over F2 which satisfies the following
properties:

(1) −KX is ample;

(2) X is not globally F -split; and

(3) for any log resolution h : W → X of X, the pair (W,Exc(h)) does not lift to characteristic
zero over a smooth base (cf. Definition 2.15).

We prove Theorem 1.1 in § 5, Theorem 1.2 in § 6 and Theorem 1.3 in § 7.

1.1 Sketch of the proof
We now give an overview of some of the steps of the proof of Theorem 1.1.

For simplicity, we assume that I = ∅. Let X be a projective klt surface in large characteristic
and such that −KX is ample. We want to show that at least one of the statements (1) and (2) in
Theorem 1.1 holds true. The idea is that, choosing a suitable ε ∈ Q>0, we consider two different
cases:

(a) X is ε-klt;

(b) X is not ε-klt.
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(a) It is known that, for a fixed algebraically closed field k, the set of all the ε-klt del Pezzo
surfaces over k forms a bounded family [Ale94]. We generalise this boundedness result to mixed
characteristic, i.e. there exists a projective morphism X → S of schemes of finite type over
Spec Z, depending only on ε, such that an arbitrary ε-klt del Pezzo surface X over an arbitrary
algebraically closed field k of characteristic p > 5 is isomorphic to some fibre Xs up to a base
change of the base field. By noetherian induction, we can show that for p� 0, any ε-klt del Pezzo
surface X over an algebraic closed field of characteristic p admits a log resolution µ : V → X
such that (V,Exc(µ)) lifts to characteristic zero over a smooth base. For more details, see § 3.

(b) Assume that X is not ε-klt. In this case, the proof consists of the following three steps.

(I) Since X is not ε-klt, we can extract a prime divisor C with log discrepancy a :=
a(C,X, 0) 6 ε by

f : Y → X, so that KY + (1− a)C = f∗KX .

(II) We run a −(KY + C)-MMP with scaling of C:

(Y,C) =: (Y0, C0) → (Y1, C1) → · · ·→ (Yn, Cn) =: (Z,CZ).

Note that since (Y,∆) is log del Pezzo for some effective Q-divisor ∆, we may run a D-MMP
for any Q-Cartier divisor D. Indeed, let s > 0 be a sufficiently small rational number such that
A := sD − (KY + ∆) is ample. Then,

sD = KY + ∆ +A

and, in particular, a D-MMP coincides with a (KY +∆+A)-MMP. Furthermore, if ε is sufficiently
small, then since 1−a ∈ [1−ε, 1), it follows that each pair (Yi, Ci) is log canonical by the ascending
chain condition for the log canonical threshold [Ale93, Theorem 1.1].

(III) We now consider five different cases as follows:

(i) κ(Z,−(KZ + CZ)) = 2;

(ii) κ(Z,−(KZ + CZ)) = 1;

(iii) κ(Z,−(KZ + CZ)) = 0 and (Z,CZ) is not plt;

(iv) κ(Z,−(KZ + CZ)) = 0 and (Z,CZ) is plt;

(v) κ(Z,−(KZ + CZ)) = −∞.

If one of the cases (i), (ii), or (iii) holds, then we can show that X is globally F -regular,
i.e. Theorem 1.1(1) holds. If case (iv) holds, then Theorem 1.1(2) holds. Finally, we show that
case (v) does not occur if ε is sufficiently small.

We now give some details of the methods we use in the steps above. After step (I), there exists
a rational number b ∈ (1− a, 1), such that (Y, bC) is klt and −(KY + bC) is ample. The easiest
case is if −(KY + C) is ample and (pe − 1)(KY + C) is Cartier for some positive integer e. In
this case, Lemma 2.7 implies immediately that (Z,CZ) is globally F -split, which in turn implies
that X is globally F -regular. However, −(KY + C) is not ample in general, but by running an
MMP in step (II), we can get closer to this situation. Indeed, in case (i) of step (III), we have
that −(KZ +CZ) is nef and big, and after contracting the curves Γ with (KZ +CZ) · Γ = 0, we
may assume that −(KZ + CZ) is ample. By using Lemma 2.7, we can show that X is globally
F -regular. We can apply a similar argument to show that X is globally F -regular in cases (ii)
and (iii) of step (III).

Let us assume now that case (iv) of step (III) holds. In this case, we first show that the set
of pairs (Z,CZ) as in case (iv) forms a bounded family. By noetherian induction, we show that
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for p � 0, any (Z,CZ) has a log resolution π : W → Z such that (W,π−1
∗ CZ ∪ Exc(π)) lifts to

characteristic zero over a smooth base. If W already dominates Y , then the induced birational

morphism W → X is a log resolution as in Theorem 1.1(2). In general, we cannot hope that W

dominates Y , however we can show that Theorem 1.1(2) holds after taking some blow-ups of W .

For more details, we refer to § 4, especially Lemma 4.3.

Finally, let us assume that case (v) of step (III) holds. In particular, Z admits a −(KZ+CZ)-

negative Mori fibre space. Let us assume for simplicity that ρ(Z) = 1 and KZ + CZ is ample.

Since −(KY + bC) is ample, so is its push-forward −(KZ + bCZ). Thus, we may find b′ ∈ (b, 1)

such that

KZ + b′CZ ≡ 0.

In particular, b′ ∈ (1 − ε, 1), and after possibly replacing ε by a smaller number, we derive

a contradiction thanks to the ACC for the log Calabi–Yau pairs [Ale93, Theorem 5.3]

(cf. Lemma 2.3).

2. Preliminaries

If not stated otherwise, we work over an algebraically closed field k of characteristic p > 0. We

say that X is a variety over an algebraically closed field k, if X is an integral scheme which is

separated and of finite type over k. A curve is a variety of dimension one, and a surface is a variety

of dimension two. We say that a scheme X is normal if the local ring OX,x is an integrally closed

integral domain for any point x ∈ X. In particular, if X is a noetherian normal scheme, then

Γ(U,OX) is an integrally closed integral domain for any irreducible affine open subset U of X.

Given a proper morphism f : X → Y between normal varieties, we say that two Q-Cartier

Q-divisors D1, D2 on X are numerically equivalent over Y , denoted D1 ≡f D2, if their difference

is numerically trivial on any fibre of f .

We refer to [KM98] for the classical definitions of singularities (e.g. klt, plt, log canonical)

appearing in the MMP. A log pair (X,∆) consists of a normal variety X and a Q-divisor ∆ > 0

such that KX + ∆ is Q-Cartier. Note that we always assume that a klt (respectively plt, log

canonical) pair (X,∆) is a log pair, and in particular ∆ is an effective Q-divisor. Given a log

pair (X,B) and a divisorial valuation E over X, we denote by a(E,X,B) the log discrepancy

of (X,B) with respect to E. For ε > 0, we say that (X,B) is ε-klt if a(E,X,B) > ε for any

divisorial valuation E over X. A two-dimensional projective log pair (X,∆) is log del Pezzo if

(X,∆) is klt and −(KX + ∆) is ample.

Given a subset I ⊆ [0, 1], we say that I is an ACC (respectively a DCC ) set if it satisfies the

ascending chain condition (respectively the descending chain condition). Given a subset I ⊆ [0, 1],

we define

I+ :=

{ m∑
j=1

ij

∣∣∣∣ ij ∈ I for j = 1, . . . ,m

}
∩ [0, 1],

and

D(I) :=

{
m− 1 + f

m

∣∣∣∣ m ∈ Z>0, f ∈ I+

}
∩ [0, 1].

For the definitions of F -singularities, we refer to [SS10, Definition 3.1] and [CTW17,

Definition 1.6].
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2.1 Log canonical surface singularities
Let X be a normal variety over an algebraically closed field k. Let C be a prime divisor on
X such that KX + C is Q-Cartier and let C ′ → C be its normalisation. Then there exists an
effective Q-Cartier Q-divisor DiffC′ on C ′ such that

(KX + C)|C′ = KC′ + DiffC′ .

Moreover, if (X,C) is log canonical, then the coefficients of DiffC′ are standard coefficients,
i.e. they are contained in the set {1}∪{1− (1/m) |m ∈ Z>0} (see [Kol92, Proposition–Definition
16.5] and [Kol13, Definition 4.2 and Proposition 4.5]).

Let X be a normal surface. A singular point q ∈X is said to be cyclic if the exceptional locus
of the minimal resolution of X at q is a chain of rational curves C1, . . . , Cm. We denote by Γq the
intersection matrix (−Ci · Cj) associated to C1, . . . , Cm. In particular, if d is a positive integer,
then there are only finitely many possibilities for Γq so that det Γq = d (see [Kol13, p. 116]).

A singular point q ∈X is said to be dihedral if the exceptional locus of the minimal resolution
of X at q is the union of rational curves C1, . . . , Cm, with m > 4, where C1, . . . , Cm−2 is a chain
of curves and Cm−1, Cm are (−2)-curves which meet Cm−2 transversally in two distinct points
away from Cm−3 ∩ Cm−2 (see [Kol13, 3.35(3)]).

Lemma 2.1. Let f : X → Y be a proper birational morphism between klt surfaces. If L is a
Cartier divisor on X such that L ≡f 0, then there exists a Cartier divisor LY on Y such that
OX(L) ' OX(f∗LY ). In particular, if D is a Weil divisor on Y such that f∗D is Cartier, then
D is Cartier.

Proof. Since a klt surface is automatically quasi-projective (see e.g. [Fuj12, Lemma 2.2]), by
taking suitable compactifications, we may assume that X and Y are projective. Let h : X̃ → X
be the minimal resolution and let g : X̃ → Y be the induced morphism. It is enough to show
that there exists a Cartier divisor LY on Y such that OX̃(h∗L) ' OX̃(g∗LY ). Let E be the sum
of the exceptional prime divisors of g. By running a (KX̃ + E)-MMP over Y , we may assume
that f is a birational morphism between projective klt surfaces such that ρ(X/Y ) = 1.

By using the base point free theorem over surfaces [Tan15, Theorem 3.2 and Corollary 3.6],
we may apply the same argument as [KM98, Theorem 3.7(4)] to conclude. 2

Lemma 2.2. Let (X,C) be a two-dimensional plt pair, where C is a prime divisor. If q ∈ C is a
singular point of X, then q is cyclic and the coefficient of DiffC at q is given by 1− 1/mq, where
mq := det(Γq). Further, for each Weil divisor D on X, we have that mqD is Cartier around q.

Proof. The first part of the lemma follows from [Kol13, Theorem 3.36]. We are left to show that
if D is a Weil divisor on X, then mqD is Cartier at q. Let f : Y → X be the minimal resolution
of X at q. Then the exceptional divisor is a chain of rational curves C1, . . . , Cr. We may write

f∗D = DY +
r∑
i=1

biCi,

where DY is the strict transform of D in Y and b1, . . . , br ∈ Q. Thus, for any j = 1, . . . , r, we
have

r∑
i=1

biCi · Cj = −DY · Cj .

Since DY ·Cj ∈ Z, it follows that mqbi ∈ Z for each i = 1, . . . , r. Since X is klt at q, Lemma 2.1
implies the claim. 2
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We need the following version of ACC for the nef threshold in dimension one and two.

Lemma 2.3. Let I ⊆ (0, 1] ∩ Q be a DCC set. Then there exists a finite subset J ⊆ I which
satisfies the following property.

Let (X,B) be a projective log canonical pair and let π : X → T be a projective morphism
onto a normal variety T such that π∗OX = OT and:
• dimX 6 2;
• dimT < dimX;
• the coefficients of B belong to I; and
• KX +B ≡π 0.

Then the coefficient of any π-horizontal component of B belongs to J .

Proof. See [Ale93, Theorem 5.3] and [Bir16, Proposition 11.7]. 2

To show Proposition 2.5, we need the following.

Lemma 2.4. Let (X,∆) be a two-dimensional klt pair such that X is smooth away from a closed
point x ∈X. Let f : Y →X be the minimal resolution of X, with exceptional divisors E1, . . . , En
and let ai = a(Ei, X,∆). Assume that n > 8 and let σ be a permutation of {1, . . . , n} such that

aσ(1) 6 aσ(2) 6 · · · 6 aσ(n).

Let ` be a positive integer such that `∆ is a Z-divisor and

`aσ(i) ∈ Z for i = 1, . . . , 8.

Then 2`(KX + ∆) is Cartier.

Proof. We have

KY + f−1
∗ ∆ +

n∑
i=1

(1− ai)Ei = f∗(KX + ∆).

Since X is klt and `f−1
∗ ∆ is integral, by Lemma 2.1, it is enough to show that 2`aj ∈ Z for any

j = 1, . . . , n.
We may assume that x ∈ X is a cyclic or a dihedral singularity, as otherwise, by

the classification of two-dimensional klt singularities, we have that n 6 8 (see e.g. [KM98,
Theorem 4.16]), and the claim follows immediately.

We first assume that x ∈X is a cyclic singularity and E1, . . . , En is a chain of rational curves.
For each i ∈ {2, . . . , n−1}, by taking the intersection with Ei on both sides of the equality above,
we obtain

(−E2
i )ai + f−1

∗ ∆ · Ei = ai−1 + ai+1.

In particular, the numbers a1, . . . , an satisfy the following convexity inequality:

ai 6
ai−1 + ai+1

−E2
i

6
ai−1 + ai+1

2
.

Thus, after possibly replacing σ(1) by another index j ∈ {1, . . . , n} such that aσ(1) = aj , we may
assume that σ(2) is equal to σ(1)−1 or σ(1) + 1, say σ(1) + 1. In particular, `aσ(1), `aσ(1)+1 ∈ Z.

Thus, for each i = 2, . . . , n− 1, we have

(−E2
i )`ai + (`f−1

∗ ∆) · Ei = `ai−1 + `ai+1,

and it follows inductively that `aj ∈ Z for any j = 1, . . . , n. Thus, the claim follows.
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Let us assume now that x ∈ X is a dihedral singularity. Let En−1 and En be two tails of
self-intersection (−2) and let E1, E2, . . . , En−2 be the remaining chain of rational curves [Kol13,
3.35(3)], so that En−2 intersects En−1 and En. For m ∈ {n − 1, n}, by taking the intersection
with Em on both sides of the equality

KY + f−1
∗ ∆ +

n∑
i=1

(1− ai)Ei = f∗(KX + ∆),

we obtain
2am + f−1

∗ ∆ · Em = an−2 + 1.

Thus, it is enough to show that `ai ∈ Z for any i = 1, . . . , n − 2. By assumption, it follows
that

` min
16i6n−2

ai, ` min
16i6n−2
i 6=j1

ai ∈ Z

for some j1 ∈ {1, . . . , n − 2} such that aj1 = min16i6n−2 ai. By applying the same argument as
above to the chain E1, E2, . . . , En−2, we obtain that `aj ∈ Z for every j ∈ {1, . . . , n− 2}. Thus,
the claim follows. 2

Proposition 2.5. Let I ⊆ (0, 1]∩Q be a DCC set. Then there exists a positive integer m0 which
satisfies the following property.

Let (X,∆) be a two-dimensional projective log canonical pair such that:
• X is klt;
• the coefficients of ∆ are contained in I; and
• KX + ∆ ≡ 0.

Then m0(KX + ∆) is Cartier.

Proof. By Lemma 2.3, we may assume that I is a finite set. Further, we may assume that 1 ∈ I.
Let (X,∆) be a log pair as in the proposition.

First, we show that there exists m1 ∈ Z>0, depending only on I, such that m1(KX + ∆) is
Cartier around any closed point q ∈ X such that (X,∆) is not klt at q. By Lemma 2.1, after
taking a dlt modification, we may assume that (X,∆) is dlt at q. If the support of x∆y is singular
at q, then X is smooth at q (see [KM98, Theorem 4.15(1)]), and there is nothing to show. Thus,
we may assume that (X,∆) is plt around q. Let C be the component of b∆c containing q. Since
(X,∆) is plt around q, we know that C is smooth, and so we may write

KC + ∆C = (KX + ∆)|C ≡ 0,

where, by inversion of adjunction, ∆C is a Q-divisor on C such that (C,∆C) is klt. By [MP04,
Lemma 4.3], ∆C has coefficients in D(I). Since D(I) is a DCC set [MP04, Lemma 4.4] and
DiffC 6 ∆C , Lemma 2.3 implies that there are only finitely many possibilities for the coefficients
of DiffC at q, and the existence of m1 follows from Lemma 2.2.

Now we show that there exists m2 ∈ Z>0, depending only on I, such that m2(KX + ∆)
is Cartier around any closed point q ∈ X such that (X,∆) is klt at q. Let f : Y → X be the
minimal resolution at q. We have

KY + f−1
∗ ∆ +

n∑
i=1

(1− ai)Ei = f∗(KX + ∆)
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where E1, . . . , En are the f -exceptional prime divisors, ordered so that

a1 6 a2 6 · · · 6 an.

By Lemma 2.4, if ` is a positive integer such that

`a1, `a2, . . . , `a8 ∈ Z

and such that `∆ is a Z-divisor, then 2`(KX + ∆) is Cartier around q. Thus, it is enough to find
n0 ∈ Z>0, depending only on I, such that n0a1, . . . , n0a8 ∈ Z.

To this end, we first extract a prime divisor E1 such that a(E1, X,∆) = a1 and we obtain a
birational morphism g : Z → X such that

KZ + g−1
∗ ∆ + (1− a1)E1 = g∗(KX + ∆) ≡ 0.

By ACC for the minimal log discrepancy [Ale93, Theorem 3.2], the set {a1}(X,∆),x∈X is an ACC
set, hence {1 − a1} is a DCC set. By Lemma 2.3, there are finitely many possibilities for a1.
Then, we extract E2 with a(E2, X,∆) = a2, and apply the same argument, to show that there
are only finitely many possibilities for a2. Repeating the same argument eight times, we see that
there are finitely many possibilities for a1, . . . , a8. Thus, we may find a positive integer n0 as
above and the claim follows. 2

The following result is well known at least in characteristic zero [Pro01, Lemma 8.3.15]. We
include the proof for the sake of completeness.

Lemma 2.6. Let (Z,C + B) be a two-dimensional Q-factorial log canonical pair, where C is a
prime divisor and B is an effective Q-divisor. Let π : Z → T be a projective morphism onto a
smooth curve T such that π∗OZ = OT . Assume that:
• C is π-horizontal;
• KZ + C +B ≡π 0; and
• ρ(Z/T ) = 1.

Then the following hold:

(1) for every closed point t ∈ T , π−1(t)red is isomorphic to P1;

(2) [K(C) : K(T )] 6 2;

(3) assume that C is normal, and let us define KC + BC = (KZ + C + B)|C by adjunction;
if [K(C) : K(T )] = 2 and the field extension K(C)/K(T ) is separable, then BC is invariant
under the action of the Galois group Gal(K(C)/K(T )).

Proof. Let F := π−1(t)red. Note that F is irreducible, because Z is Q-factorial and ρ(Z/T ) = 1.
Since C is π-horizontal, we obtain

(KZ + F ) · F = KZ · F < (KZ + C +B) · F = 0.

Thus, [Tan14, Theorem 3.19(1)] implies part (1).
Let G be a general fibre of π. Then G is integral [Băd01, Corollary 7.3]. Thus, G ' P1 by

part (1). In particular, it follows that

(KZ +B) ·G > KZ ·G = (KZ +G) ·G = deg(KG + DiffG) > −2,

which implies C ·G = −(KZ +B) ·G 6 2. Thus, part (2) holds.
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We now prove part (3). Note that B is π-vertical, since

0 = (KZ + C +B) ·G > −2 + 2 +B ·G = B ·G,

where G is a general fibre of π. Since ρ(Z/T ) = 1, we obtain KZ + C ≡π 0. Since the divisor
π∗(t)|C is Gal(K(C)/K(T ))-invariant for every closed point t ∈ T , so is B|C . In particular, we
may assume B = 0 and BC = DiffC .

Let Q ∈ T be such that π−1(Q) ∩ C consists of two distinct points Q1, Q2. It is enough to
show that the coefficients of DiffC at the points Q1 and Q2 coincide. We may write π∗Q = mF
where F is a prime divisor and m is a positive integer. By part (1), F ' P1.

We show that the pair (Z,C + F ) is log canonical. We have

0 ∼Q (KZ + C + F )|F = KF + DiffF + C|F .

Since (Z,C+F ) is not plt at the points Q1 and Q2, inversion of adjunction implies that the pair
(F,DiffF + C|F ) is not klt at the points Q1 and Q2. Thus,

DiffF +C|F > Q1 +Q2,

and since deg(DiffF +C|F ) = deg(−KF ) = 2, equality holds. Thus, inversion of adjunction implies
that (Z,C + F ) is log canonical.

Since π|C : C → T is étale over Q, we have mF |C = π∗Q|C = Q1 +Q2 and

(KZ + C + F )|C = KC + DiffC +
1

m
(Q1 +Q2).

In particular, by inversion of adjunction again, the coefficients of DiffC at Q1 and Q2 are equal
to 1− 1/m, and the claim follows. 2

2.2 Global F -adjunction
We now summarise some known results on F -adjunction which we will use in this subsection.
Let X be a normal variety, S a prime divisor and B an effective Q-divisor on X such that
S 6⊆ SuppB. Let ν : S′ → S be the normalisation. Assume that (pe − 1)(KX + S +B) is Cartier
for some e ∈ Z>0 (this is equivalent to saying that the Cartier index of KX+S+B is not divisible
by p). By adjunction, we may write

ν∗((KX + S +B)|S) = KS′ +BS′

(cf. § 2.1). There are natural homomorphisms [Sch14, discussion below Proposition 2.5]

φXS+B : F e∗OX(−(pe − 1)(KX + S +B)) → OX ,

and
φS
′

BS′
: F e∗OS′(−(pe − 1)(KS′ +BS′)) → OS′ .

Let
L := OX(−(pe − 1)(KX + S +B)).

Since S is an F -pure centre of (X,S + B) (see [Sch14, Definition 5.1]), we obtain the following
commutative diagram [Sch14, Remark 5.2].

0 // F e∗ (L ⊗OX
OX(−S))

��

// F e∗L

φXS+B

��

// F e∗ (L|S)

ψ

��

// 0

0 // OX(−S) // OX // OS // 0
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We also obtain the following commutative diagram [Sch09, Lemma 8.1].

F e∗ (L|S)

ψ
��

// F e∗ (ν∗(L|S))

φS
′

BS′��
OS // OS′

Note that the right vertical arrow coincides with φS
′

BS′
by [Das15, Theorem 5.3].

Under some additional assumptions, we will show that if −(KX +S+B) is nef and (S′, BS′)

is globally F -split, then (X,S + B) is globally F -split as well. The following three lemmas

correspond to the cases

κ(X,−(KX + S +B)) = 2, 1 and 0,

respectively.

Lemma 2.7. Let (X,S + B) be a projective log pair where S is a prime divisor and B is an

effective Q-divisor such that S 6⊆ SuppB. Assume that:

(1) −(KX + S +B) is ample;

(2) S is normal and if KS + BS = (KX + S + B)|S is defined by adjunction, then (S,BS) is

globally F -split; and

(3) (pe − 1)(KX + S +B) is Cartier for some positive integer e.

Then (X,S +B) is globally F -split.

Proof. Let L = OX(−(pe − 1)(KX + S +B)). We have the following diagram.

H0(X,F e∗L)

φXS+B

��

// H0(S, F e∗L|S)

φSBS
��

// H1(X,F e∗ (L(−S)))

H0(X,OX)
' // H0(S,OS)

Assumption (2) implies that the right vertical arrow φSBS
is surjective. By Serre vanishing, after

possibly replacing e by a larger multiple, assumption (1) implies that H1(X,F e∗ (L(−S))) = 0.

By a diagram chase, it follows that φXS+B is surjective. Thus, (X,S +B) is globally F -split. 2

Lemma 2.8. Assume that char k > 2. Let (Z,C+B) be a two-dimensional projective Q-factorial

log canonical pair, where C is a prime divisor and B is an effective Q-divisor. Let π : Z → T be

a morphism onto a smooth projective curve T such that π∗OZ = OT . Assume that:

(1) C is π-horizontal;

(2) −(KZ + C +B) ≡ π∗A for some ample Q-divisor A on T ;

(3) C is normal and if KC + BC = (KZ + C + B)|C is defined by adjunction, then (C,BC) is

globally F -split;

(4) (pe − 1)(KZ + C +B) is Cartier for some positive integer e; and

(5) ρ(Z/T ) = 1.

Then (Z,C +B) is globally F -split.
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Proof. Let L := OZ(−(pe − 1)(KZ + C +B)). We have the following commutative diagram.

H0(Z,F e∗L)

φZC+B

��

// H0(C,F e∗L|C)

φCBC
��

H0(Z,OZ)
' // H0(C,OC)

By assumption (3), the right vertical arrow φCBC
is surjective.

By assumptions (2) and (4), we can find an ample Cartier divisor A′ on T such that
L ' OZ(π∗A′) (see [Tan15, Theorem 0.4]). Since π∗OZ = OT , we have that

H0(Z,L) ' H0(T,OT (A′)),

and so the image of the upper horizontal arrow is exactly the G-invariant part: H0(C,F e∗L|C)G,
where G is the Galois group of K(C)/K(T ).

Let f ∈ H0(C,F e∗L|C) be such that φCBC
(f) = 1. Since BC is G-invariant by Lemma 2.6, we

have that φCBC
is G-equivariant. In particular,

φCBC

(
1

|G|
∑
g∈G

g(f)

)
= 1.

We can divide by |G|, because char k > 2 and |G| 6 2 by Lemma 2.6. Thus, φZC+B is surjective
and (Z,C +B) is globally F -split. 2

Lemma 2.9. Let (Z,C+B) be an n-dimensional projective log canonical pair with n 6 2, where
C is a prime divisor and B is an effective Q-divisor. Assume that:

(1) (pe − 1)(KZ + C +B) ∼ 0 for some positive integer e;

(2) H1(Z,OZ) = 0; and

(3) if n = 2, then (Z,C +B) is not plt.

Then (Z,C +B) is globally F -split.

Proof. We only prove the case n = 2, as the case n = 1 is easier.
Let ν : C ′ → C be the normalisation. We may write

ν∗((KZ + C +B)|C) = KC′ +BC′

for some effective Q-divisor BC′ on C ′ (cf. § 2.1). By assumption (3) and by inversion of
adjunction, it follows that xBC′y 6= 0. Thus, by assumption (1), it follows that C ′ is isomorphic
to P1. Therefore, by the same lemma in dimension one, (C ′, BC′) is globally F -split.

Let e be a positive integer satisfying (1) and let

L := OZ(−(pe − 1)(KZ + C +B)).

By assumption (1), we have that L ' OZ . We consider the following commutative diagram.

H0(Z,F e∗L)

φZC+B

��

// H0(C,F e∗ (L|C))

ψ
��

// H1(Z,F e∗ (L(−C)))

H0(Z,OZ)
' // H0(C,OC)
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We now show that ψ is surjective. We have the following commutative diagram.

H0(C,F e∗ (L|C))

ψ

��

α // H0(C ′, F e∗ (ν∗(L|C)))

φC
′

BC′��
H0(C,OC)

' // H0(C ′,OC′)

Since α is induced from the natural homomorphism OC → ν∗OC′ and L ' OZ , it follows that
α is an isomorphism. Since (C ′, BC′) is globally F -split, φC

′
BC′

is surjective. Thus, ψ is surjective
as well.

Since L ' OZ , assumption (2) implies

H1(Z,F e∗ (L(−C))) ' H1(Z,L(−C))

' H1(Z,OZ(−C)) ↪−→ H1(Z,OZ) = 0.

Since ψ is surjective, by a diagram chase it follows that φZC+B is surjective as well, and, in
particular, (Z,C +B) is globally F -split. Thus, the claim follows. 2

2.3 Perturbations
Let (X,S +B) be a log pair such that S is a prime divisor and B is an effective Q-divisor such
that S 6⊆ SuppB. If the Cartier index of KX + S + B is divisible by p, then, in order to apply
the results from the previous subsection, we need to perturb the coefficients of B.

We begin with the following well-known result.

Lemma 2.10. Let (X,∆) be a quasi-projective globally sharply F -split pair. Then there exists
an effective Q-divisor H such that (X,∆ +H) is globally sharply F -split and

(pe − 1)(KX + ∆ +H) ∼ 0

for some positive integer e.

Proof. This follows from the same proof as [SS10, Theorem 4.3(ii)]. 2

Lemma 2.11. Let (X,∆) be a two-dimensional quasi-projective sharply F -pure log pair. Then
there exists an effective Q-divisor H such that (X,∆ +H) is sharply F -pure, and

(pe − 1)(KX + ∆ +H)

is Cartier for some positive integer e.

Proof. Let U ⊆ X be an affine open subset such that none of the irreducible components of ∆
are contained in X\U and such that, around each point of X\U , we have that X is smooth, the
support of ∆ is simple normal crossing and (X,∆) is plt. Since (X,∆) is sharply F -pure and U
is affine, it follows that (U,∆|U ) is globally sharply F -split.

By Lemma 2.10, there exists an effective Q-divisor H ′ on X such that (U, (∆ + H ′)|U ) is
globally sharply F -split and

(pe − 1)(KU + (∆ +H ′)|U ) ∼ 0,
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for some positive integer e. Since X is smooth around each point of X\U , it follows that
(pe − 1)(KX + ∆ +H ′) is Cartier on X. For every positive integer d, we have

(KX + ∆ +H ′)−
(
KX + ∆ +

1

pd + 1
H ′
)

=
pd

pd + 1
H ′.

Thus, for every sufficiently large positive integer d, there exists e(d) ∈ Z>0 such that

(pe(d) − 1)

(
KX + ∆ +

1

pd + 1
H ′
)

is Cartier.
Let H := (1/(pd + 1))H ′. It is enough to show that, after possibly replacing d by a larger

value, the pair (X,∆+H) is sharply F -pure around any point q ∈ X\U . By assumption, around
q we have that X is smooth, the support of ∆ is simple normal crossing and (X,∆) is plt. Thus,
if q is not contained in the support of x∆y and d is sufficiently large, then (X,∆+H) is strongly
F -regular. On the other hand, if q is contained in the support of x∆y then the claim follows from
inversion of adjunction (see e.g. [Sch09, Main Theorem] and [Das15, Theorem A]). 2

Lemma 2.12. Assume that char k > 2. Let (Z,C + B) be a two-dimensional projective sharply
F -pure pair, where C is a prime divisor and B is an effective Q-divisor. Let π : Z → T be a
morphism onto a smooth projective curve T such that π∗OZ = OT . Assume that:

(1) (Z,B) is klt;

(2) −(KZ + C +B) ≡ π∗A for some ample Q-divisor A on T ;

(3) C is π-horizontal;

(4) ρ(Z/T ) = 1; and

(5) (pd − 1)B is a Z-divisor for some positive integer d.

Then there exists an effective Q-divisor E, whose support is contained in some fibres of π,
such that (Z,C +B + E) is log canonical and

(pe − 1)(KZ + C +B + E)

is Cartier for some positive integer e.

Proof. By Lemma 2.6, there exists a non-empty open subset T 0 ⊆ T such that the induced
morphism π−1(T 0) → T 0 is a P1-bundle. By assumptions (2) and (5), it follows that, after
possibly shrinking T 0, there exists a positive integer d such that

(pd − 1)(KZ + C +B)|π−1(T 0) ∼ 0.

By Lemma 2.6(1), every fibre of π is irreducible. Thus, we may write

(pd − 1)(KZ + C +B) ∼
r∑
i=1

aiFi +
s∑
j=1

bjF
′
j ,

where ai, bj ∈ Z, Fi = π−1(ti)red, and F ′j = π−1(t′j)red, with

t1, . . . , tr, t
′
1, . . . , t

′
s ∈ T,
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so that (Z,C +B) is plt (respectively not plt) along Fi (respectively at some point of F ′j). Since
xC+By = C is π-horizontal and (Z,B) is klt, by inversion of adjunction we can find αi ∈ Q>0 for
i= 1, . . . , r such that (Z,C+B+

∑r
i=1 αiFi) is log canonical and (pe1−1)(KZ+C+B+

∑r
i=1 αiFi)

is Cartier around
⋃r
i=1 Fi for some e1 ∈ Z>0.

Fix an index 1 6 j 6 s. It is enough to find e2 ∈ Z>0 such that (pe2 − 1)bjF
′
j is Cartier. By

construction, there exists a zero-dimensional log canonical centre z ∈ F ′j of (Z,C + B). Since
(Z,B) is klt, it follows that z ∈ C. Let mz be the Cartier index of F ′j at z. Since z ∈ C, it follows
that mzF

′
j ·C > 1. We can write π∗(π(z)) = mF ′j for some positive integer m. Lemma 2.6 implies

that mF ′j · C = π∗(π(z)) · C 6 2. Thus,

1

mz
6 F ′j · C 6

2

m
,

and, in particular, 2mz > m. Since mz divides m, it follows that either m = mz or m = 2mz.
By applying Lemma 2.10 to an affine open neighbourhood U of z, we can find e3 ∈ Z>0 and

an effective Q-divisor H on U such that (U, (C +B)|U +H) is sharply F -pure and

(pe3 − 1)(KU + (C +B)|U +H) ∼ 0.

Since z ∈ Z is a zero-dimensional log canonical centre of (Z,C + B), it follows that z is not
contained in the support of H. Therefore, (pe3 − 1)(KZ + C +B) is Cartier around z. Since

(pd − 1)(KZ + C +B) ∼
r∑
i=1

aiFi +
s∑
j=1

bjF
′
j ,

it follows that (pe4 − 1)bjF
′
j is Cartier around z for some e4 ∈ Z>0. Since m ∈ {mz, 2mz}, we

have that 2(pe4−1)bjF
′
j is Cartier. Since char k 6= 2, we can find e2 ∈ Z>0 such that (pe2−1)bjF

′
j

is Cartier. Thus, the claim follows. 2

2.4 Flat families of log pairs and liftability
Definition 2.13. Given a reduced noetherian separated scheme T , a flat family of log pairs
(X ,B) over T consists of the data of:
• a normal scheme X and an effective Q-divisor B on X such that KX + B is Q-Cartier;
• a separated and flat morphism of finite type π : X → T such that all the fibres of π are

geometrically normal; and
• for each irreducible component Bi of B, the induced morphism π|Bi : Bi → T is flat and all

of the fibres of π|Bi are geometrically integral.

Definition 2.14. Let (X ,B) be a flat family of log pairs over a reduced noetherian separated
scheme T and let (X,B) be a log pair over an algebraically closed field k. We say that (X,B) is
a geometric fibre of (X ,B), if there exists a cartesian diagram

X

��

β // X

��
Spec k

α // T

such that β∗(B) = B, where if we write B =
∑r

i=1 biBi with B1, . . . ,Br prime components, then
we define

β∗(B) :=
r∑
i=1

biβ
−1(Bi).
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Note that, for each i = 1, . . . , r, the scheme-theoretic inverse image β−1(Bi) is a prime divisor
on X.

Definition 2.15. Let X be a smooth variety over a perfect field k of characteristic p > 0, and
let D be a simple normal crossing divisor on X. Write D =

∑r
i=1Di, where Di are the irreducible

components of D. We say that the pair (X,D) lifts to characteristic zero over a smooth base if
there exist:
• a scheme T smooth and separated over SpecZ;
• a smooth and separated morphism X → T ;
• effective Cartier divisors D1, . . . ,Dr on X such that the scheme-theoretic intersection⋂

i∈J Di for any subset J ⊆ {1, . . . , r} is smooth over T ; and
• a morphism α : Spec k → T ;

such that the base changes of the schemes X ,D1, . . . ,Dr over T by α : Spec k → T are isomorphic
to X,D1, . . . , Dr, respectively.

We refer to [EV92, Definition 8.11] for the definition of liftability to the second Witt vectors
W2(k).

Remark 2.16. Under the same assumption as in Definition 2.15, if (X,D) lifts to characteristic
zero over a smooth base, then (X,D) also lifts to W2(k). Indeed, since W2(k) is a henselian local
ring [Fu15, Proposition 2.8.4], and T is smooth over SpecZ, the morphism Spec k → T lifts to a
morphism SpecW2(k) → T by [Fu15, Proposition 2.8.13]:

X ×T W2(k)

��

// X

��
SpecW2(k) // T.

3. Proof of the main theorem for ε-klt log del Pezzo

The goal of this section is to prove the main theorem for ε-klt log del Pezzo pairs, for any fixed
ε > 0 (Proposition 3.2). The idea of the proof is that the family of ε-klt log del Pezzos over SpecZ
is bounded (Lemma 3.1). The same result is known to hold over a fixed algebraically closed field
[Ale94, Theorem 6.9]. Our argument follows the same methods, however we include the proof
for completeness.

Let S be a noetherian separated scheme, let Y be a scheme which is projective and flat over
S and let H be an invertible sheaf on Y , which is ample over S. Let φ ∈ Q[t] be an arbitrary

polynomial. We define Hilbφ,HY/S to be the Hibert functor such that, for any scheme T over S,

Hilbφ,HY/S(T ) is the set of closed subschemes in Y ×S T which are flat over T , and with Hilbert

polynomial equal to φ with respect to the pull-back of H on Y ×S T (see [FGIKNV05, § 5.1]

for more details). We also define Divφ,HY/S to be the functor such that, for any scheme T over

S, Divφ,HY/S(T ) is the set of effective Cartier divisors on Y ×S T which are flat over T , and with

Hilbert polynomial equal to φ with respect to the pull-back of H on Y ×S T (see [FGIKNV05,
§ 9.3]).

Since Hilbφ,HY/S is representable by a projective scheme over S (see [FGIKNV05, Theorem 5.14

and § 5.1.3]), it follows that Divφ,HY/S is representable by a quasi-projective scheme over S (see

[FGIKNV05, Theorem 9.3.7]).
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Lemma 3.1. Let I ⊆ (0, 1) ∩Q be a finite set and let ε > 0.
Then there exists a flat family of log pairs (X ,B) over a reduced quasi-projective scheme T

over SpecZ, such that every ε-klt log del Pezzo pair (X,B) over any algebraically closed field k
of characteristic p > 5, with the coefficients of B contained in I, is a geometric fibre of (X ,B).

Proof. There exist positive integers b and n which satisfy the following property (see e.g. [Wit15,
Corollary 1.4 and Remark 6.3]): for every (X,B) over k as in the lemma, we can find a very
ample divisor H on X such that:
• |H| embeds X into Pbk;
• nB is Cartier;
• |φX,i| 6 b for all i > 0 where φX =

∑
i>0 φX,it

i ∈ Q[t] is the Hilbert polynomial of X with
respect to H; and

• |ψnB,i| 6 b for all i > 0 where ψnB = ψnB,1t+ ψnB,0 ∈ Z[t] is the Hilbert polynomial of nB
with respect to H.

We may assume that I = (0, 1)∩ (1/n)Z. Further, since dimX = 2, we have that 2φX ∈ Z[t]
and deg φX = 2.

In particular, if G is the functor defined by

G :=
⋃
φ

Hilb
φ,OPbZ/Z

(1)

Pb
Z/Z

where the union is taken over all φ =
∑
φit

i ∈ Q[t] such that 2φ ∈ Z[t], deg φ = 2, and |φi| 6 b
for all i > 0, then X ∈ G(Spec k).

By [FGIKNV05, Theorem 5.14 and § 5.1.3], the functor G is representable by a projective
scheme S over SpecZ. Let U ⊆ PbZ×ZS be its universal closed subscheme. Let H be the pull-back
of OPb

Z/Z
(1) to U . Then H is ample over S. We have

(nB ⊆ X) ∈
⋃
ψ

Divψ,HU/S(Spec k),

where the union is taken over all ψ = ψ1t+ ψ0 ∈ Z[t] such that |ψ0| 6 b and |ψ1| 6 b.

Let T be the reduction of the scheme representing
⋃
ψ Divψ,HU/S . Note that T is quasi-projective

over Spec Z. Let B′ be the universal effective Cartier divisor on X := U ×S T . Let B := (1/n)B′.
Take a generic point ζ of T . By taking a base change of some finite morphism of an open subset
of T , we may assume that the fibres of the irreducible components of B over ζ are geometrically
integral. Thus, there exists an open subscheme U ⊆ T , such that (X|U ,B|U ) is a flat family of log
pairs. By replacing T by U q T\U and repeating the same argument to T\U , we may conclude
the proof. 2

We now show the main result of this section.

Proposition 3.2. Let I ⊆ (0, 1) ∩Q be a finite set and let ε > 0. Then, there exists a positive
integer p(I, ε) which satisfies the following property.

Let (X,B) be an ε-klt log del Pezzo pair over an algebraically closed field of characteristic
p > p(I, ε) such that the coefficients of B are contained in I. Then there exists a log resolution
µ : V → X of (X,B) such that (V,Exc(µ) ∪ µ−1

∗ (SuppB)) lifts to characteristic zero over a
smooth base.
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Proof. We fix a positive integer p(I, ε) > 5. We will replace p(I, ε) by a larger number if necessary.
By Lemma 3.1, there exists a flat family of log pairs (X ,B) over a reduced quasi-projective scheme
T over SpecZ, such that every pair (X,B) as in the Proposition is a geometric fibre of the pair
(X ,B).

Claim. Let T ′ be an irreducible component of T such that the field K(T ′) is of characteristic
zero.

Then there exists a dominant morphism S → T ′ from an integral scheme S which satisfies
the following properties.

(a) The scheme S is smooth over Spec Z.

(b) If we set XS := X ×T S, then there exists a projective birational morphism µS : VS → XS
over S such that the induced morphism µS,s : Vs → Xs between any fibres over s ∈ S is birational,
VS is smooth over S, and

Exc(µS) ∪ (µS)−1
∗ (SuppB)

is simple normal crossing over S, i.e. all the strata are smooth over S.

We first show the Proposition, assuming the Claim. By noetherian induction, we can find a
surjective morphism ( ∐

16i6α

Si

)
q
( ∐

16j6β

S′j

)
→ T

such that all Si and S′j are separated integral schemes of finite type over Spec Z, any K(Si)
(respectively K(S′j)) is of characteristic zero (respectively pj > 0), and each Si satisfies properties
(a) and (b). Then the proposition follows after possibly increasing p(I, ε) so that p(I, ε) > pj for
all j = 1, . . . , β.

We now show the claim. We set S := T ′. It is enough to show that properties (a) and (b)
hold after possibly replacing S by a finite cover (i.e. a finite surjective morphism from an integral
scheme) of an open subset.

By our assumption, the field K(S) = OS,ξ is of characteristic zero, where ξ is the generic
point of S. Thus, after replacing S by an open subset, we may assume that S is smooth over
Spec Z, hence property (a) holds.

Let (Xξ, Bξ) be the base change to the algebraic closure ξ of the generic fibre (Xξ, Bξ) and
take a log resolution µξ : Vξ → Xξ of (Xξ, Bξ). After replacing S by a finite cover of an open
subset, we may assume that there exists a projective birational morphism over S

µS : VS → XS

whose base change to ξ is the same as Vξ → Xξ, where XS := X ×T S.
We check that property (b) holds, after replacing S by an open subset. Indeed, since

µξ : Vξ → Xξ is a projective birational morphism of surfaces, so are the morphisms VS,s → XS,s
between the geometric fibres, for any geometric point s in an open neighbourhood of ξ. Moreover,
Vξ and any stratum of Exc(µξ) ∪ (µξ)

−1
∗ (SuppBξ) are smooth, hence VS and all the strata of

Exc(µS) ∪ (µS)−1
∗ (SuppB) are smooth. 2

Remark 3.3. By Proposition 3.2, it follows that ε-klt log del Pezzo pairs in large characteristic
satisfy Theorem 1.1(2). By [SS10, Theorem 1.2] and noetherian induction, it follows that
Theorem 1.1(1) holds for ε-klt log del Pezzo pairs in large characteristic. However, we do not use
this fact in this paper.
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4. Liftability to characteristic zero

The goal of this section is to study plt pairs (Z,CZ +BZ), such that xCZ +BZy = CZ is a prime
divisor and KZ + CZ + BZ ≡ 0. These pairs appear in the proof of Theorem 1.1, after running
a suitable MMP, starting from some model over a log del Pezzo pair (X,B) (cf. § 5).

We first show that, in large characteristic, such a pair (Z,CZ +BZ) admits a log resolution
which lifts to characteristic zero (Proposition 4.2). Then, in order to show that also the pair
(X,B) admits a log resolution which lifts to characteristic zero, we study the behaviour of such
a liftability property under blow-ups (Lemma 4.3).

The following result is a consequence of Lemma 3.1.

Lemma 4.1. Let I ⊆ (0, 1) ∩Q be a DCC set.
Then there exists a flat family of log pairs (X , C+B) over a reduced quasi-projective scheme T

over SpecZ, such that any two-dimensional projective plt pair (X,C+B), over any algebraically
closed field k of characteristic p > 5, satisfying:
• bC +Bc = C;
• the coefficients of B are contained in I;
• KX + C +B ≡ 0; and
• C is ample;

is a geometric fibre of (X , C + B).

Proof. As in the proof of Proposition 2.5, there exists a positive integer m depending only on I
such that

m(KX + C +B) ∼ 0 and mC is Cartier

for any pair (X,C +B) satisfying the assumptions in the Lemma.
In particular, 2m(KX + 1

2C + B) is Cartier, and if ε ∈ (0, 1/2m), then (X, 1
2C + B) is

ε-klt. Thus, Lemma 3.1 implies that there exists a flat family (X , 1
2C + B) of log pairs such that

(X, 1
2C+B) is a geometric fibre of (X , 1

2C+B). In particular, (X , C+B) is the required family. 2

Proposition 4.2. Let I ⊆ (0, 1) ∩Q be a finite set.
Then there exists a positive integer p(I) which satisfies the following property.
For any two-dimensional projective plt pair (Z,C + B) over an algebraically closed field of

characteristic p > p(I) such that:
• xC +By = C;
• C is ample;
• KZ + C +B ≡ 0; and
• the coefficients of B are contained in I;

there exists a birational morphism π : W → Z such that:
• W is a smooth projective surface and Supp(π−1

∗ (C+B))∪Exc(π) is simple normal crossing;
and

• (W, Supp(π−1
∗ (C +B)) ∪ Exc(π)) lifts to characteristic zero over a smooth base.

Proof. We can apply the same argument as in the proof of Proposition 3.2 after replacing (X,B)
(respectively Lemma 3.1) by (Z,C +B) (respectively Lemma 4.1). 2

Lemma 4.3. Let Z be a smooth projective surface over an algebraically closed field k of
characteristic p > 0 and let D be a reduced simple normal crossing divisor on Z. Let π : Z ′ → Z
be the blow-up at a point q contained in the singular locus of D and let E be the π-exceptional
(−1)-curve. If (Z,D) lifts to characteristic zero over a smooth base, then so does (Z ′, π−1

∗ D+E).
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Proof. We may write D =
∑n

i=1Di, where D1, . . . , Dn are the irreducible components. Since
(Z,D) lifts to characteristic zero, there exists a pair (Z,D =

∑n
i=1Di) over a smooth separated

scheme T over SpecZ and a morphism α : Spec k → T , such that the base changes of the
schemes X ,D1, . . . ,Dn over T by α : Spec k → T are isomorphic to X,D1, . . . , Dn, respectively,
and satisfy the same properties as in Definition 2.15.

By assumption, there exist unique Di, Dj such that q ∈ Di ∩ Dj . Let C be the irreducible
component of Di ∩ Dj such that q ∈ C. Let π : Z ′ → Z be the blow-up along C. Then, Z ′ is a
lift of Z ′. Indeed, since Di ∩ Dj is smooth over T , so is C. It follows that Z ′ is smooth over T
and has connected fibres over T (see e.g. the proof of [Liu02, § 8, Theorem 1.19]). By [Liu02],
the exceptional divisor E of π is a P1-bundle over C. Thus, all the assumptions in Definition 2.15
hold true for the pairs (Z ′, π−1

∗ D + E) and (Z ′, π−1
∗ D + E) over T . 2

Remark 4.4. By Lemma 4.3, we may assume that the log resolution appearing in Theorem 1.1(2)
factors through the terminalisation η : W → X of (X,B), i.e. if we write

KW +BW = η∗(KX +B),

then (W,BW ) is terminal.

5. Non-ε-klt case and proof of Theorem 1.1

In § 3, we showed that ε-klt log del Pezzo surfaces form a bounded family. The goal of this section
is to study log del Pezzo surfaces (X,B) over an algebraically closed field k, which are not ε-klt
for 0 < ε� 1. In particular, this yields a proof of our main theorem (Theorem 1.1).

Our method consists of constructing a log canonical pair (Z,CZ + BZ) from (X,B), such
that bCZ +BZc = CZ is prime and −(KZ +CZ +BZ) is nef. If KZ +CZ +BZ is not numerically
trivial, then, by using global F -adjunction (see § 2.2), we show that (Z,CZ + BZ) is globally
F -split, provided that the characteristic of k is large enough. This in turn implies that (X,B) is
globally F -regular.

Unfortunately, if KZ + CZ + BZ is numerically trivial, then (Z,CZ + BZ) does not need
to be globally F -split [CTW17, Theorem 1.1]. Thus, we need to consider two different cases,
depending on whether (Z,CZ + BZ) is plt or not. If the pair is plt (respectively non-plt), then
we show that condition (2) (respectively condition (1)) of Theorem 1.1 holds.

Proposition 5.1. Let I ⊆ (0, 1) ∩Q be a finite set.
Then there exists a rational number ε(I) > 0 which satisfies the following property.
Let (X,B) be a two-dimensional projective klt pair over an algebraically closed field such

that:
• −(KX +B) is ample;
• (X,B) is not ε(I)-klt; and
• the coefficients of B are contained in I.

Then there exist birational morphisms

Y

f
��

g // Z

X

of projective klt surfaces such that if we denote C = Exc(f), CZ = g∗C, BY = f−1
∗ B and

BZ = g∗BY , then C is a prime divisor, CZ 6= 0:

838

https://doi.org/10.1112/S0010437X16008265 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008265


On log del Pezzo surfaces

(1) if a = a(C,X,B) so that

KY + (1− a)C +BY = f∗(KX +B),

then a ∈ (0, ε(I)];

(2) there exists a Q-divisor B+
Y > BY such that

KY + C +B+
Y = g∗(KZ + CZ +BZ)

and
Exc(g) = Supp(B+

Y −BY );

(3) −(KZ + CZ +BZ) is nef;

(4) (Z,CZ +BZ) is log canonical; and

(5) (Z, bCZ+BZ) is klt and −(KZ+bCZ+BZ) is ample for some rational number b ∈ (1−a, 1).

Proof. Pick any rational number ε(I) ∈ (0, 1) such that ε < 1− c for any c ∈ I. We will replace
ε(I) by a smaller number, if necessary.

Let (X,B) be a log pair which satisfies the assumptions in the Proposition. Let C be an
exceptional divisorial valuation such that a := a(C,X,B) is minimal and let f : Y → X be
a projective birational morphism such that Exc(f) = C. By assumption, a ∈ (0, ε(I)]. Thus,
part (1) holds.

Since −(KX+B) is ample, we can find a rational number b ∈ (1−a, 1) such that (Y, bC+BY )
is klt, and −(KY + bC +BY ) is ample. We run a −(KY + C +BY )-MMP with scaling of C:

(Y,C +BY ) =: (Y0, C0 +B0)
g0−−−→ (Y1, C1 +B1)

g1−−−→ · · ·
· · ·

gn−1−−−→ (Yn, Cn +Bn) =: (Z,CZ +BZ),

where Ci := (gi−1)∗Ci−1 and Bi := (gi−1)∗Bi−1.
By definition of the MMP with scaling, we get a sequence of rational numbers

b < b0 6 b1 6 · · · 6 bn−1

such that
bi := max{t > b | −(KYi + tCi +Bi) is nef}

and gi : Yi → Yi+1 is a birational morphism, such that ρ(Yi/Yi+1) = 1 and

KYi + biCi +Bi = g∗i (KYi+1 + biCi+1 +Bi+1).

Since −(KYi+bCi+Bi) is ample for any i= 0, . . . , n, each step of the MMP is (KYi+bCi+Bi)-
negative, and in particular (Yi, bCi +Bi) is klt. Thus, part (5) holds.

Since the coefficients of BZ belong to the finite set I and (Z, bCZ+BZ) is klt, by ACC for the
log canonical threshold in dimension two [Ale93, Theorem 1.1], after possibly replacing ε(I) by
a smaller value depending only on I, we may assume that the pair (Z,CZ +BZ) is log canonical,
hence part (4) holds.

Since Ci is gi-ample for all i = 0, . . . , n− 1, it follows that CZ 6= 0. We may write

g∗(KZ + CZ +BZ) = KY + C +BY +R

for some g-exceptional Q-divisor R on Y . Since the MMP is −(KY +C+BY )-negative, it follows
that R > 0 and the support of R coincides with the exceptional locus of g. In particular, if
B+
Y = BY +R, then part (2) holds.
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Thus, it is enough to show part (3). We assume by contradiction that −(KZ + CZ + BZ)
is not nef. Thus, there exists a −(KZ + CZ + BZ)-negative Mori fibre space π : Z → T and, in
particular,

(KZ + CZ +BZ) · F > 0

for any curve F contained in a fibre of π. On the other hand, since −(KZ + bCZ +BZ) is ample,
it follows that

(KZ + bCZ +BZ) · F < 0.

Thus, CZ is π-horizontal and we can find a rational number b′ ∈ (b, 1) such that

KZ + b′CZ +BZ ≡π 0.

Since 1− ε(I) < b < b′ < 1, after possibly replacing ε(I) by a smaller number depending only on
I, we get a contradiction by Lemma 2.3. Thus, part (3) holds. 2

Before we proceed with the proof of Theorem 1.1, we recall the following criterion for global
F -regularity.

Lemma 5.2. Let (Z,C +B) be a log pair, where bC +Bc = C is a reduced divisor. Let H be an
effective Q-divisor on Z such that Z\ Supp(H + C) is affine. Assume that:

(1) (Z,B) is strongly F -regular; and

(2) there exists δ > 0 such that (Z,C +B + δH) is globally F -split.

Then (Z, λC +B) is globally F -regular for every λ ∈ [0, 1).

Proof. This follows from [SS10, Theorem 3.9]. 2

We now prove Theorem 1.1.

Proof of Theorem 1.1. Let ε(I) > 0 be the positive rational number as in Proposition 5.1 and let
p(I) := p(I, ε(I)) be the positive integer as in Proposition 3.2. We will replace ε(I) (respectively
p(I)) by a smaller (respectively larger) value if necessary.

Let (X,B) be a log del Pezzo pair over an algebraically closed field of characteristic p > p(I).
If (X,B) is ε(I)-klt, then Proposition 3.2 implies Theorem 1.1(2). Thus, we may assume that
(X,B) is not ε(I)-klt. By Proposition 5.1, there exist birational morphisms

Y

f
��

g // Z

X

which satisfy the properties of Proposition 5.1.

Claim. After possibly replacing p(I) by a larger value depending only on I, the following hold:

(a) (pe − 1)BZ is a Z-divisor for some e ∈ Z>0;

(b) (Z,CZ +BZ) is sharply F -pure and (Z, λCZ +BZ) is strongly F -regular for any λ ∈ [0, 1);
and

(c) if (Z, λCZ +BZ) is globally F -regular for any λ ∈ [0, 1), then (X,B) is globally F -regular.
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We now prove the Claim. Part (a) is clear. Parts (4) and (5) of Proposition 5.1 imply that

(Z, λCZ + BZ) is klt for any λ ∈ [0, 1). Thus, after possibly replacing p(I) by a larger number

depending only on I, by [CGS16, Theorem 1.1], we may assume that (Z, λCZ +BZ) is strongly

F -regular. By [CTW17, Proposition 3.3], (Z,CZ +BZ) is F -pure, hence it is sharply F -pure by

part (a). Thus, part (b) holds.

We now show part (c). Assume that (Z, λCZ + BZ) is globally F -regular for any λ ∈ (0, 1).

By (2) of Proposition 5.1, if λ ∈ (0, 1) is a rational number which is sufficiently close to one, then

KY + λC +B′Y = g∗(KZ + λCZ +BZ),

for some Q-divisor B′Y > BY . By [HX15, Proposition 2.11], it follows that (Y, λC + BY ) is

globally F -regular for some λ ∈ (0, 1). By [CTW17, Lemma 2.2], it follows that (X,B) is globally

F -regular as well. Thus, part (c) holds and this completes the proof of the Claim.

By Proposition 5.1(3), it follows that −(KZ +CZ +BZ) is nef. By [Tan14, Theorem 1.2], it

is semi-ample. In order to prove Theorem 1.1, we consider the following four cases separately:

• κ(Z,−(KZ + CZ +BZ)) = 2;

• κ(Z,−(KZ + CZ +BZ)) = 1;

• κ(Z,−(KZ + CZ +BZ)) = 0 and (Z,CZ +BZ) is not plt;

• κ(Z,−(KZ + CZ +BZ)) = 0 and (Z,CZ +BZ) is plt.

If one of the first three cases (respectively if the last case) holds, then we will show that

part (1) (respectively part (2)) of Theorem 1.1 holds. If CZ is normal, then we define (CZ , BCZ
)

by adjunction

(KZ + CZ +BZ)|CZ
= KCZ

+BCZ
.

Case 1: κ(Z,−(KZ + CZ + BZ)) = 2. Since −(KZ + CZ + BZ) is semi-ample, we can contract

the curves Γ with (KZ +CZ +BZ) · Γ = 0. In this contraction, CZ is not contracted, because if

(KZ + CZ +BZ) · CZ = 0, then C2
Z < 0, which contradicts

(1− b)C2
Z = (KZ + CZ +BZ) · CZ − (KZ + bCZ +BZ) · CZ > 0.

Thus, by [HX15, Proposition 2.11], we may assume that −(KZ +CZ +BZ) is ample. By [Tan14,

Theorem 3.19] and

(KZ + CZ) · CZ 6 (KZ + CZ +BZ) · CZ < 0,

it follows that CZ ' P1.

By Lemma 2.11, there exists an effective Q-divisor H such that (Z,CZ + BZ + H) is log

canonical and the Cartier index of KZ +CZ +BZ +H is not divisible by p. After replacing H by

H + H ′ for some ample effective Q-divisor H ′, we may assume that Z\SuppH is affine. After

replacing H by a smaller multiple, we may assume that −(KZ + CZ +BZ +H) is ample.

We now show that (CZ , BCZ
+H|CZ

) is globally F -split. If (CZ , BCZ
+H|CZ

) is not klt, then

Lemma 2.7 implies that (CZ , BCZ
+H|CZ

) is globally F -split. If (CZ , BCZ
+H|CZ

) is klt, then

by [CGS16, Corollary 4.1], after possibly replacing p(I) by a larger value depending only on I,

we may assume that (CZ , BCZ
) is globally F -regular. After possibly replacing H by a smaller

multiple again, we may assume that (CZ , BCZ
+H|CZ

) is globally F -split.

By Lemma 2.7, it follows that (Z,CZ + BZ + H) is globally F -split. Thus, part (b) of the

Claim and Lemma 5.2 imply that (Z, λCZ + BZ) is globally F -regular for any λ ∈ [0, 1). By

part (c) of the Claim, it follows that (X,B) is globally F -regular.
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Case 2: κ(Z,−(KZ+CZ+BZ)) = 1. Since−(KZ+CZ+BZ) is semi-ample, there exist a morphism
π : Z → T onto a smooth projective curve T and an ample Q-divisor A on T such that π∗OZ =OT
and −(KZ + CZ + BZ) ≡ π∗A. By Proposition 5.1(5) and by [HX15, Proposition 2.11], after
running a (KZ +bCZ +BZ)-MMP over T , we may assume that π : Z → T is a (KZ +bCZ +BZ)-
negative Mori fibre space. In particular, CZ is π-horizontal. By [Tan14, Theorem 3.19] and

(KZ + CZ) · CZ 6 (KZ + CZ +BZ) · CZ < 0,

it follows that CZ ' P1.
By part (a) of the Claim, we can apply Lemma 2.12, and there exists an effective Q-divisor

E, whose support is contained in some fibres of π, and such that (Z,CZ+BZ+E) is log canonical
and the Cartier index of KZ +CZ +BZ +E is not divisible by p. After possibly replacing E by
a smaller multiple, we may assume that −(KZ +CZ +BZ +E) ≡ π∗A′ for some ample Q-divisor
A′ on T . In particular, −(KCZ

+BCZ
+ E|CZ

) is ample.
By the same argument as in Case 1, (CZ , BCZ

+E|CZ
) is globally F -split. Thus, by Lemma 2.8,

(Z,CZ +BZ + E) is globally F -split. Again by the same argument as in Case 1, it follows that
(X,B) is globally F -regular.

Case 3: κ(Z,−(KZ+CZ+BZ)) = 0 and (Z,CZ+BZ) is not plt. By Proposition 2.5, after possibly
replacing p(I) by a larger value depending only on I, we may assume that (pe−1)(KZ+CZ+BZ)
is Cartier for some positive integer e. Thus, Lemma 2.9 implies that (Z,CZ + BZ) is globally
F -split. By Proposition 5.1(5), it follows that −(KZ +bCZ +BZ) is ample, and in particular also
CZ is ample. Thus, part (b) of the Claim and Lemma 5.2 imply that (Z, λCZ +BZ) is globally
F -regular for any λ ∈ [0, 1). By part (c) of the Claim, it follows that (X,B) is globally F -regular.

Case 4: κ(Z,−(KZ +CZ +BZ)) = 0 and (Z,CZ +BZ) is plt. By Proposition 4.2, after possibly
replacing p(I) by a larger number depending only on I, there exists a log resolution π : W → Z
of (Z,C +B) such that

(W,DW := Supp(π−1
∗ (C +B)) ∪ Exc(π))

lifts to characteristic zero over a smooth base. We may write

KW +D′W = π∗(KZ + CZ +BZ)

for some Q-divisor D′W on W . Note that SuppD′W ⊆ SuppDW . By Proposition 5.1(2), the
birational morphism g : Y → Z only extracts prime divisors E such that a(E,W,D′W ) =
a(E,Z,CZ +BZ) < 1. Thus, there exists a sequence of blow-ups

ϕ : V := Wm
ϕm−1−−−→ · · · ϕ1−→ W1

ϕ0−→ W0 := W

which satisfies the following properties.
• We define a divisor Di on Wi inductively by

D0 := DW ,

KWi+1 +Di+1 = ϕ∗i (KWi +Di).

• Each ϕi is the blow-up of a point contained in Sing(SuppDi).

• The composite arrow ψ : V
ϕ−→ W

π−→ Z factors through Y .
Note that each Di is a reduced simple normal crossing divisor. Therefore, by Lemma 4.3,

(V, ψ−1
∗ (CZ +BZ)∪Exc(ψ)) lifts to characteristic zero over a smooth base. Thus, part (2) of the

theorem holds. 2
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6. Kawamata–Viehweg vanishing for log del Pezzo surfaces

The goal of this section is to prove Theorem 1.2. We begin with the following lemma.

Lemma 6.1. Assume that char k > 2. Let (X,∆) be a two-dimensional projective klt pair.
Suppose that there exists a log resolution µ : V → X of (X,∆) such that

(V,Exc(µ) ∪ µ−1
∗ (Supp ∆))

lifts to W2(k). Let D be a Z-divisor on X such that D − (KX + ∆) is ample.
Then,

H i(X,OX(D)) = 0 for any i > 0.

Proof. Let
M = KV + pµ∗(D − (KX + ∆))q.

We may find a µ-exceptional Q-divisor E > 0 such that:
• M = KV + pµ∗(D − (KX + ∆))− Eq; and
• µ∗(D − (KX + ∆))− E is ample.

Note that {µ∗(D − (KX + ∆)) − E} is simple normal crossing and lifts to W2(k). Since
char k > 2, [Har98, Corollary 3.8] implies that

H i(V,OV (M)) = 0

for every i > 0. Consider the Leray spectral sequence:

Ei,j2 := H i(X,Rjµ∗OV (M))⇒ H i+j(V,OV (M)) =: Ei+j .

We have

µ∗OV (M) = µ∗OV (pµ∗(D) +KV − µ∗(KX + ∆)q)

= µ∗OV (xµ∗(D)y + (effective exceptional Z-divisor))

' OX(D),

where the second equality holds because (X,∆) is klt and D is a Z-divisor. Since Ei,j2 = 0 for
j > 0 by the relative Kawamata–Viehweg vanishing theorem for a proper birational morphism
between surfaces, we obtain

H i(X,OX(D)) = Ei,02 ' E
i = H i(V,OV (M)) = 0

for i > 0. Thus, the claim follows. 2

Proof of Theorem 1.2. After possibly perturbing B and ∆, we may assume that −(KX +B) and
D− (KX + ∆) are ample. Given I := ∅, let p0 := p(I) be the positive integer whose existence is
guaranteed by Theorem 1.1. We divide the proof into five steps.

Step 1. We first prove the Theorem assuming that ∆ = B = 0.

Theorem 1.1 implies that X is globally F -regular or X admits a log resolution µ : V → X
such that (V,Exc(f)) lifts to W2(k). In the first case, by Serre vanishing, if e is a sufficiently
large positive integer and i > 0, we have

H i(X,OX(D)) ↪→ H i(X,F e∗OX(peD − (pe − 1)KX))

' H i(X,OX(D + (pe − 1)(D −KX))) = 0.
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On the other hand, if X admits a log resolution µ : V → X such that (V,Exc(f)) lifts to W2(k),
then Lemma 6.1 implies the claim.

Step 2. We now prove the theorem under the assumption that D is nef.

Let f : X → Y be a proper birational contraction obtained by running a (−KX)-MMP. Since
(X,B) is log del Pezzo, it follows that Y is klt and −KY is big and semi-ample. Moreover, there
exists an f -exceptional Q-divisor ∆1 > 0 such that

KX + ∆1 = f∗KY .

Let g : Y → Z be the morphism induced by −KY and let

h : X
f−→ Y

g−→ Z

be the composite morphism. Then −KZ is ample and

KX + ∆1 = h∗KZ .

By Theorem 1.1, Z is globally F -regular or it admits a log resolution µ : V → Z such that
(V,Exc(µ)) lifts to characteristic zero over a smooth base.

If Z is globally F -regular, then [HX15, Proposition 2.11] implies that (X,∆1) is also globally
F -regular. Thus, we may find a Q-divisor ∆2 > ∆1 such that (X,∆2) is globally F -regular,
−(KX + ∆2) is ample, and (pe1 − 1)(KX + ∆2) is Cartier for some e1 ∈ Z>0. Since D is nef, by
Fujita vanishing, if e is a sufficiently divisible positive integer, for any i > 0 we have

H i(X,OX(D)) ↪→ H i(X,F e∗OX(peD − (pe − 1)(KX + ∆2))) = 0,

and the theorem follows.
Thus, we may assume the existence of the log resolution µ, as above. Since ∆1 > 0, the

birational morphism h : X → Z only extracts prime divisors E with a(E,Z, 0) ∈ (0, 1]. By
Remark 4.4, we may assume that µ : V → Z factors through X, after possibly replacing V by
some blow-up of V :

µ : V
µX−−→ X

h−→ Z.

There exists an h-exceptional Q-divisor ∆2 > ∆1 such that (X,∆2) is klt and −(KX + ∆2) is
ample. Since µ−1

X (∆2) ⊆ Exc(µ), Lemma 6.1 implies the theorem.

Step 3. We now show that we may assume that there exists a D-negative Mori fibre space
g : X → Z onto a smooth projective curve Z.

Let f : X → Y be the birational contraction of a curve E such that D · E 6 0. We want to
show

H i(X,OX(D)) = H i(Y,OY (f∗D)).

Let DY = f∗D. Then D = f∗DY + cE for some c ∈ Q>0, which implies

f∗OX(D) = OY (DY ).

Since D − (KX + ∆) is ample, the relative Kawamata–Viehweg vanishing in the birational case
implies

H i(X,OX(D)) ' H i(Y, f∗OX(D)) = H i(Y,OY (DY )).
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Since (X,B) is log del Pezzo, we may run a D-MMP and may assume that one of the following

holds:

• D is nef;

• ρ(X) = 2, and there exists a D-negative Mori fibre space X → Z onto a smooth projective

curve Z; or

• ρ(X) = 1, and −D is ample.

If D is nef, then we may apply Step 2. In the last case, we may assume that ∆ = B = 0,

and we may apply Step 1. Thus, we may assume that there exists a D-negative Mori fibre space

g : X → Z onto a smooth projective curve Z.

Step 4. We now show that we may assume that the following hold:

(a) there exists a curve E on X such that E2 < 0;

(b) B = bE for some b ∈ [0, 1); and

(c) ∆ = 0.

If every curve C on X is nef, then we may assume that ∆ = B = 0, and apply Step 1. Thus,

we may assume that there exists a curve E on X such that E2 < 0 and part (a) holds.

By Step 3, we may assume that there exists a D-negative Mori fibre space g : X → Z onto

a smooth projective curve Z. In particular, ρ(X) = 2, and any curve C on X, which is different

from E, is nef. Thus, we may assume that part (b) holds. Similarly, we may assume that ∆ = δE

for some δ ∈ [0, 1). Let F be a general fibre of g. Then D · F < 0. Consider the short exact

sequence

0 → OX(D) → OX(D + F ) → OF (D|F ) → 0.

Since H0(F,OF (D|F )) = H1(F,OF (D|F )) = 0, it is enough to show that H i(X,OX(D+F )) = 0

for any i > 0. Repeating the same method finitely many times, it is enough to show that

H i(X,OX(D + nF )) = 0 for some positive integer n and for any i > 0. Since D − (KX + δE) is

ample, the divisor

D + nF −KX = (D − (KX + δE)) + (nF + δE)

is also ample for n� 0. Therefore, after possibly replacing D by D + nF , we may assume that

∆ = 0 and part (c) holds.

Step 5. We now prove the theorem in the general case.

We may assume that parts (a), (b) and (c) of Step 4 hold. If KX ·E < 0, then −KX is ample

by Kleiman’s criterion and we may assume that B = 0. Thus, the theorem follows by Step 1.

Therefore, we may assume that KX ·E > 0. Let f : X → Y be the birational morphism which

contracts E. We may write

KX + b′E = f∗KY

for some b′ ∈ [0, b). Thus, by Theorem 1.1 and Remark 4.4, Y is globally F -regular or it admits

a log resolution V → Y which factors through X such that (V,Exc(µ)) lifts to W2(k):

µ : V
µX−−→ X → Y.

In the latter case, since Exc(µX) ⊆ Exc(µ), we may apply Lemma 6.1. Thus, we may assume that

Y is globally F -regular. By [HX15, Proposition 2.11], (X, b′E) is globally F -regular, and so is X.
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Step 4(c) implies that D−KX is ample, Therefore, by Serre vanishing, if e is a sufficiently large
positive integer, we have

H i(X,D) ↪→ H i(X, peD − (pe − 1)KX) = H i(X,KX + pe(D −KX)) = 0.

Thus, the theorem follows. 2

7. Example in characteristic two

The goal of this section is to show Theorem 1.3. We begin with the following two preliminary
results.

Lemma 7.1. Let T → Spec Z be a smooth morphism from an integral scheme T and letW → T
be a flat projective morphism. Fix a morphism α : Spec Fp → T and an embedding K(T ) ↪→ C.
Let WFp

:=W ×T Fp, and WC :=W ×T C. If WFp
is a smooth projective rational surface, then

the following hold:

(1) WC is a smooth projective rational surface; and

(2) ρ(WC) = ρ(WFp
).

Proof. Since being smooth and geometrically integral are open properties, it follows that WC is
a smooth projective surface.

By upper semi-continuity, it follows that H i(WC,OWC) = 0 for any i > 0 and H2(WC,
OWC(−KWC)) = 0. Thus, by the rationality criterion, it follows that WC is a rational surface and
part (1) holds.

Note that, for any sufficiently large positive integer e, the morphism α factors as follows

α : Spec Fp → Spec Fpe → T.

Let WFpe
:= W ×T Fpe . After possibly replacing e by a larger number, we may assume that

WFpe
is obtained as a sequence of blow-ups of P2

Fpe
or a P1-bundle over P1

Fpe
, whose centres are

Fpe-rational points. By counting the rational points, it is easy to check that the zeta function of
WFpe

can be written as

ZWFpe
(t) =

1

(1− t)(1− pet)ρ(WFp )
(1− p2et)

.

On the other hand, we obtain

ρ(WFpe
) = deg(1− pet)ρ(WFp )

= dimCH
2(WC,C) = ρ(WC),

where the second equality follows from a consequence of the Weil conjecture [FK88, ch. IV,
Remark (b) after Theorem 1.2]. Thus, part (2) holds. 2

Lemma 7.2. Let k be an algebraically closed field of characteristic two. Then there exist six
distinct points q0, . . . , q5 ∈ P2

k which satisfy the following properties:

(1) if g : Z → P2
k is the blow-up at q0, . . . , q5, then Z is a smooth del Pezzo surface;

(2) Z is not globally F -split; and

(3) if C is the smooth conic passing through q1, . . . , q5, then, for every point q ∈ C, the line L
passing through q0 and q is tangent to C.

846

https://doi.org/10.1112/S0010437X16008265 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008265


On log del Pezzo surfaces

Proof. The smooth cubic surface Z of Fermat type is not globally F -split [Har98, Example 5.5].

We can find six points q0, . . . , q5 ∈ P2
k such that the blow-up along these points is isomorphic

to Z. Let g : Z → P2
k be the induced morphism. Then parts (1) and (2) hold.

By contradiction, we assume that there exists a line L on P2
k, passing through q0, such that

C + L is simple normal crossing. Let CZ and LZ be the proper transforms on Z of C and L,

respectively. By part (1), there exists a point q ∈ C ∩ L with q 6= qi for any i = 1, . . . , 5, and, in

particular, CZ ∩ LZ 6= ∅. There exists a reduced g-exceptional divisor EZ on Z such that

KZ + CZ + LZ + EZ = g∗(KP2
k

+ C + L) ∼ 0,

and (Z,CZ +LZ +EZ) is log canonical but not plt. By Lemma 2.9, (Z,CZ +LZ +EZ) is globally

F -split. Thus, Z is globally F -split, contradicting part (2). Thus, part (3) holds. 2

We now prove the main result of this section.

Proof of Theorem 1.3. Let q0, . . . , q5 ∈ P2
F2

be as in Lemma 7.2. For any i = 1, . . . , 5, let Li be

the line in P2
F2

passing through q0 and qi. Note that each Li is tangent to C by Lemma 7.2(3).

Let

π : Y → P2
F2

be the birational morphism constructed as follows. First, we consider the blow-up Z → P2
F2

at the

points q0, . . . , q5. Then, we consider the blow-up Y → Z at the points q′1, . . . , q
′
5, where q′i is

the intersection point of the proper transforms on Z of C and Li. In particular, ρ(Y ) = 12.

By the same argument as in [KM99, § 9, An interesting example in non-zero characteristic], we

can find curves E2, E3, . . . , E12 on Y with

E2
2 = −6, E2

m = −2, Ei · Ej = 0

for any m = 3, . . . , 12 and distinct i, j = 2, . . . , 12. Let f : Y → X be the birational morphism

which contracts all these curves. Then X is a projective klt surface with ρ(X) = 1. By [KM99],

−KX is ample. Thus, part (1) holds.

By Lemma 7.2(2), Z is not globally F -split. By [CTW17, Lemma 2.2], it follows that Y is

not globally F -split and by [HX15, Proposition 2.11], it follows that X is not globally F -split.

Thus, part (2) holds.

We now show part (3). By contradiction, we assume that there exists a log resolution

h : W → X such that (W,Exc(h) =
∑n

i=2Ci) lifts to characteristic zero over a smooth base,

i.e. there exists a smooth morphism T → Spec Z, a closed immersion of schemes Ci ⊆ W
projective and flat over T for any i = 2, . . . , n, and a morphism α : Spec F2 → T such that

the base changes of Ci ⊆ W by α is Ci ⊆ W and such that W and all the strata of {Ci} are

smooth over T . We may assume that T is an integral scheme. Note that K(T ) is of characteristic

zero. Fix an embedding K(T ) ↪→ C, and let WC :=W ×T C. By Lemma 7.1, we have

n = ρ(W ) = ρ(WC).

The birational morphism f : Y → X constructed above is the minimal resolution of X. Thus,

h factors as

h : W
g−→ Y

f−→ X
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and may assume that g∗Ci = Ei for any i = 2, . . . , 12. We can find a sequence of blow-ups

g : W =: Wn
gn−→ Wn−1

gn−1−−−→ · · · g13−−→ W12 := Y

with ρ(Wr) = r for any r = 12, . . . , n. We may assume that the proper transform of Exc(gr) on
W is Cr.

By invariance of the intersection numbers, the two intersection matrices (Ci ·Cj) and (Ci,C ·
Cj,C) coincide. Thus, we can construct the corresponding sequence over C, i.e. a sequence of
blow-ups:

gC : WC =: Wn,C
gn,C−−→ Wn−1,C

gn−1,C−−−−→ · · ·
g13,C−−−→ W12,C := YC

such that ρ(Wr,C) = r for every r = 12, . . . , n and such that the proper transform of Exc(gr,C)
on WC is Cr,C. Indeed, it is easy to check that the push-forward of Ci,C on Wi,C is a (−1)-curve
and that the curves E2,C := (gC)∗C2,C, . . . , E12,C := (gC)∗C12,C satisfy

E2
2,C = −6, E2

m,C = −2, Ei,C · Ej,C = 0

for any m = 3, . . . , 12 and distinct i, j = 2, . . . , 12. Note also that E`,C is isomorphic to P1
C for

any ` = 2, . . . , 12. Let
fC : YC → XC

be the birational morphism which contracts E2,C, . . . , E12,C. Then XC is a projective klt surface
with exactly 11 singular points. Moreover, since ρ(WC) = n, it follows that ρ(XC) = 1.

Further, for any invertible sheaf A on W which is ample over T , we have

0 > g∗f∗KX · A|W = g∗Cf
∗
CKXC · A|WC .

Thus, −KXC is ample. On the other hand, [KM99, Theorem 9.2] implies that XC admits at most
six singularities, a contradiction. Thus, part (3) holds. 2
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