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Linear stabilities of the liquid metal mixed convection in a horizontal pipe under bottom
heating and transverse magnetic field are studied through linear global stability analyses.
Three branches of the linear stability boundary curves are determined by the eigenvalue
computation of the most unstable modes. One branch is located in the region of large
Hartmann number and determined by the linear unstable mode which was first revealed by
the numerical simulations of Zikanov, Listratov & Sviridov (J. Fluid Mech., vol. 720, 2013,
pp. 486–516). This branch curve shows that the global unstable mode exists above
a threshold of Hartmann number, which agrees with the experiment of Genin et al.
(Temperature fluctuations in a heated horizontal tube affected by transverse magnetic
field. In Proc. 8th PAMIR Conf. Fund. Appl. MHD, Borgo, Corsica, France, pp. 37–41,
2011). The other two branch curves determined by two different long-wave unstable modes
intersect with each other in the region of small Hartmann number. The critical Grashof
number on these two curves increases exponentially with the increase of the Hartmann
number. Through energy budget analyses at the critical thresholds of these unstable modes,
it is found that, for the unstable mode at large Hartmann numbers, buoyancy is the
dominant destabilizing term which demonstrates the hypothetical explanation of Zikanov
et al. (2013) who regard natural convection as a destabilization mechanism. It is further
revealed that, with respect to the unstable modes on the critical stability curves of small
Hartmann numbers, the dominant destabilization comes from the streamwise shear of
the basic flow. Finally, within the linear unstable region, fully developed nonlinear flow
states of the mixed convection are investigated by direct numerical simulations (DNS)
with several sets of selected dimensionless parameters. The spatio-temporal structures of
these nonlinear flow states are discussed in detail with comparison with the linear unstable
global modes.
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1. Introduction

Liquid metal blankets have been believed to be the most promising candidates (Abdou
et al. 2015) for the blanket design of future fusion reactors due to their three key functions
with heat exchangers, radiation shields and tritium breeders operating at the same time.
Liquid metals as used in tritium breeding or cooling would circulate in all kinds of pipes
and ducts for different blanket designs such as the water cooled, helium cooled lead lithium
blankets (Forest et al. 2020; Ling & Wang 2020) and the dual coolant lead lithium blanket
(Smolentsev et al. 2015). Magnetohydrodynamic (MHD) interactions (Molokov, Moreau
& Moffatt 2007) would occur when the electrically conducting liquid metal moves in a
strong magnetic field that confines the fusion plasma. One of the open issues in the liquid
blanket development is to assess the influence of MHD effects on the fluid dynamics
and heat transfer mechanisms (Smolentsev et al. 2010; Mistrangelo et al. 2021). Under
strong magnetic fields, MHD interactions generally result in significant anisotropy of the
flow distribution and complex hydrodynamic behaviour. Without considering the thermal
effect, on the one hand, the magnetic field can lead to a change of laminar–turbulent
transition mechanism (Moffatt 1967; Davidson 1995; Zikanov et al. 2014) in MHD flows.
The magnetic field usually tends to suppress the production of turbulence and make the
transition from laminar flow to turbulence occur at much higher Reynolds number (Shatrov
& Gerbeth 2010). On the other hand, many specific spatial structures such as shear layers
(Lehnert 1952), inflexion points (Kakutani 1964) and jets (Hunt 1965) may appear in MHD
flows due to the action of the magnetic field, and can produce instabilities of free shear
flow type such as the sidewall jet-induced instability (Priede, Aleksandrova & Molokov
2010, 2012; Priede, Arlt & Bühler 2015). The critical Reynolds number of jet-induced
instability has been revealed to be significantly lower than the Reynolds numbers at which
turbulence is observed in experiments (Moresco & Alboussire 2004) or direct numerical
simulations (Kinet, Knaepen & Molokov 2009).

In liquid metal blankets of magnetic-confinement nuclear fusion reactors, mixed
convection of liquid metals in pipes or ducts is one of the primary flows due to the extreme
conditions of large heat flux and strong magnetic field. Such mixed convection flows have
been revealed to be complex and counterintuitive in a lot of laboratory experiments and
numerical simulations. In the normal cases of strong magnetic field without heat flux,
there exists a laminar–turbulent transition (Zikanov et al. 2014) with the known range
200 < Re/Ha < 400 for typical values of the non-dimensional parameters (the Reynolds
(Re) and Hartmann (Ha) numbers) with respect to isothermal duct, pipe and channel
flows of various liquid metal blankets. However, in the experiments of Genin et al.
(2011) and Belyaev et al. (2015) for liquid metal flows in a heated horizontal tube under
a transverse horizontal magnetic field, unexpected anomalous temperature fluctuations
with low frequency and high amplitude are discovered for strong magnetic fields which
occur at Re/Ha < 200 when the turbulence is usually regarded to be fully suppressed.
Large-amplitude low-frequency pulsations of temperature in the form of isolated bursts or
quasi-regular fluctuations have also been observed in experiments (Melnikov et al. 2014,
2016; Kirillov et al. 2016; Listratov et al. 2016; Belyaev et al. 2020) of a downward flow
in a vertical round pipe and rectangular duct with one wall heated and an imposed strong
magnetic field. The high-amplitude low-frequency fluctuations of velocity and temperature
that appear in flows with strong convection and magnetic field effects are proposed
to be called magneto-convective fluctuations (Belyaev et al. 2021). Magneto-convective
fluctuations obviously have a key impact on the design of the liquid metal blankets of
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Linear instability and nonlinear flow states of magneto-convection pipe flow

future nuclear fusion reactors and relevant magneto-convection flows have been recently
reviewed by Zikanov et al. (2021).

To study hydrodynamical stabilities of the MHD mixed convections in the horizontal or
vertical duct, the quasi-two-dimensional (Q2-D) model proposed by Sommeria & Moreau
(1982) is usually adopted. Through the Q2-D model, Smolentsev, Vetcha & Moreau (2012)
first studied instabilities and transitions in MHD duct flows with a symmetric ‘M-shaped’
velocity profile by imposing an external flow-opposing force. Various instability modes
and transition scenarios have been revealed by varying this external force and the
position of the inflection point. Vetcha et al. (2013) considered upward flows in a vertical
rectangular duct subject to a volumetric heating and a strong transverse magnetic field.
Both bulk instability associated with the inflection point and sidewall boundary layer
instability are predicted by their linear stability analysis. Vo, Pothérat & Sheard (2017)
investigated the linear stability of horizontal Poiseuille–Rayleigh–Bénard flows subjected
to a transverse magnetic field and a vertical temperature gradient. Liu & Zikanov (2015)
further investigated the elevator convection mode for the vertical downward flow using
the Q2-D model. Furthermore, numerical simulations of the MHD mixed convection
are performed on the Q2-D model. For example, Zhang & Zikanov (2018) numerically
investigated the stabilities of the downward flow in a vertical duct with one heated
and three thermally insulated walls under a strong transverse magnetic field. The Q2-D
model is originally proposed in the limit of high interaction parameter (Ha2/Re � 1) and
Hartmann number (Ha � 1). Thus, it is not suitable to study hydrodynamic stabilities of
MHD duct flows in the full physical parameter space, especially to detect the instability
boundary when the unstable threshold occurs at a much lower interaction parameter
and Hartmann number. Even at high Hartmann number, for the mixed convection in a
horizontal duct with imposed transverse horizontal magnetic field, the applicability of
the Q2-D model is not a priori certain due to the numerical discovery of the large-scale
coherent structure (Zhang & Zikanov 2014) which has significant flow and variations of
temperature along the magnetic field lines at the high Grashof regime. Furthermore, the
full linear stability analysis of the horizontal MHD mixed convection has revealed that the
instability thresholds of the steady solutions with symmetrical or asymmetrical rolls occur
at much lower Hartmann number and Grashof number (Hu 2020). This clearly shows that
the Q2-D model is not appropriate for research on the occurrence process or mechanism
of stabilities of the mixed thermal MHD convections in the horizontal duct. Meanwhile,
it is also noticed that the Q2-D model is only suitable for the rectangular cross-section
duct and then is not available to the circular cross-section pipe. These further shows its
limitation of application for general cross-sectional geometries.

Without using the Q2-D model, there exist two other approaches to study MHD mixed
convections in horizontal or vertical channels (ducts or pipes). One is direct numerical
simulation (Ni et al. 2007), the other is linear global stability analysis (Theofilis 2011).
In order to explain the slow high-amplitude fluctuations of temperature appearing in
the experiment of Genin et al. (2011), Zikanov, Listratov & Sviridov (2013) conducted
a linear stability analysis with direct numerical simulations for the liquid metal mixed
convection in a horizontal pipe which is subject to constant flux heating in the lower
half with and an imposed transverse magnetic field. Coherent Q2-D rolls aligned with
the magnetic field are successfully found at a magnetic field strength far exceeding the
laminarization threshold, and transport of the rolls by the mean flow can be used to
explain the experimental phenomenon of low-frequency high-amplitude fluctuations of
temperature. Through similar numerical approaches, Zhang & Zikanov (2014) further
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analysed the liquid metal mixed convection in a horizontal duct with bottom heating
and transverse magnetic field. The same coherent Q2-D rolls are found in the ‘low-Gr’
regime, while a combination of spanwise rolls and streamwise-oriented rolls is revealed
in the ‘high-Gr’ regime. The linear exponential growth rates are computed as functions of
streamwise wavelength for both symmetrical and asymmetrical steady rolls, meanwhile,
the spatial structure of instability modes is exhibited during the stage of exponential
growth. Their main conclusion is that the instability leading to the formation of convection
rolls aligned with the magnetic field is a common feature of the flow invariably observed
at Ha > 200 and sufficiently high Gr. Zikanov & Listratov (2016) further performed
numerical simulations of the downward flow of a liquid metal in a vertical pipe and
attributed the large-amplitude fluctuations of temperature to the growth and quasi-periodic
breakdown of the pairs of ascending and descending jets related to the elevator modes.
Based on the approach of linear global stability analysis, Hu (2020) first studied the linear
stabilities of the symmetrical and asymmetrical steady solutions of a similar MHD mixed
convection to that of Zhang & Zikanov (2014) in a horizontal duct. It is much easier to
obtain the linear critical stability boundary curves for both symmetrical and asymmetrical
steady solutions. Through these boundary curves, it is revealed that their 3-D oscillatory
instabilities occur at large magnetic fields and buoyancy is the dominant destabilizing term
from energy budget analyses. These can explain the results of the experiments of Belyaev
et al. (2015) that temperature fluctuations disappear under moderately strong magnetic
fields, while high-amplitude low-frequency oscillations reappear under a much stronger
magnetic field through a linear instability transition process. Recently, Hu (2021) further
analysed linear global stabilities of a downward flow of liquid metal in a vertical duct
under strong wall heating and a transverse magnetic field. Three-dimensional elevator
and oscillatory unstable modes are revealed through the eigenspectrum computation. The
elevator mode is found to be always unstable and independent of the basic flow profile.
The unstable oscillatory mode is directly related to the basic upward reverse flow and first
occurs at the specific flow structure which has an upward reverse flow near the heating
wall and a downward flow near the opposite wall. The shear Kelvin–Helmholtz instability
due to the existence of an inflection point is found to be the key instability mechanism
of the 3-D oscillatory mode through energy budget analyses. Then, it is concluded
that the appearance of the unstable oscillatory mode may be regarded as an alternative
physical explanation for the high-amplitude, low-frequency pulsations of temperature in
the experiments and related numerical simulations.

Direct numerical simulations have been demonstrated to be an important approach for
the hydrodynamical stability of the liquid metal MHD mixed convection in a horizontal
pipe (Zikanov et al. 2013). However, on one hand, it is difficult to determine the
stability boundary of the MHD mixed convection for large Hartmann numbers through
direct numerical simulations due to considerable computational overhead for each set of
parameters. On the other hand, it is not clear why natural thermogravitational convection
becomes a dominant destabilization mechanism, which only is regarded as a hypothesis
through a flow visualization of physical experiments or numerical simulations. It is easy
to solve the above two difficulties through the linear global stability analysis, which has
been reviewed comprehensively by Theofilis (2011). Linear global stability analysis is
mainly based on the solution of the multi-dimensional eigenvalue and has many successful
applications, especially for non-parallel and 3-D flows (Theofilis 2003). In this paper,
full linear global stability analyses without using the Q2-D approximation for the MHD
mixed convection flows in a circular pipe have been performed successfully. Through the
eigenvalue computation of linear global stability equations with the finite-element method,
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B

Flow y

xzq

g

q

Figure 1. The flow configuration. The pipe is placed horizontally and heated from below with a constant heat
flux q, and the upper half of the pipe wall is assumed to be insulated. Uniform magnetic field B is imposed in
the transverse horizontal direction and gravity field g has a vertical downward direction.

the critical linear stability boundaries of the MHD mixed convection can be plotted in the
parameter plane of the Hartmann number and Grashof number. The critical boundary
for moderate Hartmann number is determined by the unstable mode which was first
found by Zikanov et al. (2013) through direct numerical simulations. The other critical
boundaries for small Hartmann number are also given and determined by different most
unstable modes. At the critical points on these stability boundaries, energy budget analyses
are further performed to study the destabilization mechanism of the corresponding
unstable modes. In order to study the spatio-temporal structures of nonlinear MHD mixed
convection close to the stability boundary curves, direct numerical simulations with the
Fourier-spectral finite-difference method are performed using a modified Openpipeflow
Navier–Stokes solver. It will be seen from these simulations that much more complex
spatio-temporal structures would appear when the simulation parameters get farther and
farther away from the stability boundary. Furthermore, the initial condition dependence of
numerical simulations is also considered for these complex nonlinear states.

2. Physical model and governing equations

2.1. Physical model
The physical model comes from Genin’s experiment and considers a liquid metal flow
along a horizontal electrically insulating pipe subject to bottom uniform heating with
heat flux intensity q and an external constant transverse magnetic field B0, as shown in
figure 1. Mixed convection flow would be produced by a combined action of a pressure
driven flow and thermal buoyancy due to huge temperature gradients with strong magnetic
fields, then such a flow is usually called MHD mixed convection. The liquid metal is
not a magnetizable liquid and is considered as an incompressible, electrically conducting
Newtonian viscous fluid with constant kinematic viscosity ν, electric conductivity σ and
thermal conductivity κ . The pipe wall is assumed to be electrically insulating, the upper
half of the wall is assumed to be thermally insulating and the lower half of the wall has an
imposed constant and uniform heat flux.

The Oberbeck–Boussinesq approximation is applied for the buoyancy force and the
quasi-static model is adopted for the electromagnetic interactions. Then the dimensional
governing equations for the liquid metal pipe flow can be described by the Navier–Stokes
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system

∇ · v = 0, (2.1)

ρ0

[
∂v

∂t
+ v · ∇v

]
= −∇p + ρ0ν∇2v + F b + F l, (2.2)

ρ0cp

[
∂T
∂t

+ v · ∇T
]

= ∇ · (κ∇T) + 1
σ

j2 + Φ + Q. (2.3)

Here, v, p and T are the fields of velocity, pressure and temperature, ρ0 is the reference
value of the fluid mass density, cp is the specific heat capacity, (1/σ)j2 is the loss of
magnetic energy due to Joule dissipation, Φ is the loss of kinetic energy due to viscous
dissipation and Q is other sources of volumetric energy release such as nuclear radiation or
chemical reactions. The buoyancy force F b with the Oberbeck–Boussinesq approximation
is assumed to vary linearly with temperature and is represented as

F b = (ρ − ρ0)g, ρ = ρ0 [1 − β(T − T0)] , (2.4a,b)

where β is the thermal expansion coefficient and g is the gravitational acceleration in the
negative vertical direction. The Lorentz force F l with the quasi-static model is represented
as

F l = j × B0, (2.5)

j = σ (−∇φ + v × B0) , (2.6)

where j is the induced electric current density, φ is the electrostatic potential. It is clearly
seen that, using the quasi-static model, the induced magnetic field can be neglected and the
magnetic field remains undisturbed in the expressions of the Lorentz force (2.5) and Ohm’s
law (2.6). The quasi-static model has been proven to be sufficiently accurate when the
magnetic Reynolds and Prandtl numbers are both small (Roberts 1967; Davidson 2001).
In most laboratory experiments, the magnetic Reynolds number is relatively small and the
induced magnetic field is much weaker than the imposed field.

The current density can be considered to be solenoidal by neglecting displacement
currents and assuming the fluid to be electrically neutral, i.e.

∇ · j = 0. (2.7)

Then by substituting the Ohm’s law into above solenoidal relation, a Poisson equation for
the electrostatic potential is obtained as follows

∇2φ = ∇ · (v × B0). (2.8)

By neglecting all energy dissipation and other energy sources except the Fourier
diffusion term, the temperature equation (2.3) is reduced to

∂T
∂t

+ v · ∇T = χ∇2T. (2.9)

Here, χ = κ/ρ0cp is the thermal diffusivity.
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The boundary conditions on the lower half of the wall include the no-slip condition for
the velocity and constant heat flux for the temperature, i.e.

κ
∂T
∂n

= q, (2.10)

and the boundary conditions on the upper half of the wall are no slip and thermally
insulated, i.e.

∂T
∂n

= 0. (2.11)

2.2. Model non-dimensionalization and reduction
The dimensional governing equations can be further non-dimensionalized by using the
pipe diameter d as the length scale, mean streamwise velocity Um as the velocity scale,
qd/κ as the temperature scale, B0 as the scale of the magnetic field strength and dB0Um
as the scale of the electric potential. Then the dimensionless governing equations can be
written as

∂v

∂t
+ v · ∇v = −∇p + 1

Re
∇2v + f b + f l, (2.12)

∇ · v = 0, (2.13)

∂T
∂t

+ v · ∇T = 1
Pe

∇2T. (2.14)

The buoyancy and Lorentz forces are dimensionalized as

f b = Gr
Re2 Tey and f l = Ha2

Re
j × ex, (2.15a,b)

where the dimensionless parameters including the Reynolds number, Prandtl number,
Péclet number, Grashof number and Hartmann number are defined as

Re = Umd
ν

, Pr = ν

χ
, Pe = Umd

χ
= Re · Pr, (2.16a–c)

Gr = gβqd4

ν2κ
, Ha = B0d

(
σ

ρν

)1/2

. (2.17a,b)

In order to compare our results with those of Zikanov et al. (2013), the same dimensionless
parameters for the Reynolds number and Prandtl number are selected, with Re = 9046 and
Pr = 0.022 in this work.

The boundary conditions at the pipe wall include the no-slip conditions for velocity and
the condition of perfect electric insulation

v = 0,
∂φ

∂r
= 0, at r =

√
x2 + y2 = 1/2. (2.18)

Here, x and y are horizontal and vertical coordinates in the cross-section, respectively. For
the temperature, the condition on the lower half of the wall is

∂T
∂r

= 1, at r = 1/2, (2.19)
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while for the upper thermally insulating half of the wall we have

∂T
∂r

= 0, at r = 1/2. (2.20)

The temperature field can be further decomposed as a sum of the mean mixed
temperature and the resulting temperature deviation

T(x, t) = Tm(z) + θ(x, t). (2.21)

The mean mixed temperature is assumed to be a linear function of the streamwise
coordinate z, which makes the overall energy balance between the heat transfer across the
lower half of the wall with constant heat flux and the streamwise convection heat transfer.
Then its streamwise gradient is given by

dTm

dz
= P

A · Pe
, (2.22)

where P = π/2 is the perimeter of the heated portion of the wall and A = π/4 is the
cross-sectional area of the pipe. Then the temperature governing equation is written as

∂θ

∂t
+ v · ∇θ = 1

Pe
∇2θ − w

dTm

dz
. (2.23)

The pressure can also be decomposed into three parts as follows:

p = p̃(z) + p̆( y, z) + p(x, t). (2.24)

The first part is a linear function of z corresponding to a spatially uniform streamwise
gradient dp̃/dz which pushes the pipe flow. The second part is used to balance with the
buoyancy force from the mean mixed temperature

p̆( y, z) = Gr
Re2 y Tm + cons. (2.25)

Also, the forcing in the streamwise direction from the second part is deduced with

∂ p̆
∂z

= Gr
Re2

dTm

dz
y. (2.26)

We look for the 2-D steady-state solutions in which the velocity, pressure, temperature
(excluding the linear part coming from the bottom heating) and electrostatic potential are
independent of streamwise coordinate, as follows:

vb = V (x, y) = (U(x, y), W(x, y)), (2.27)

p = P(x, y), θ = Θ(x, y), φ = Φ(x, y). (2.28a–c)
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Here, U = (U, V) is the cross-sectional velocity, and W is the streamwise velocity. Thus
the 2-D steady governing systems for the steady flow state are obtained as follows:

(U · ∇s)W = −dp̃/dz − Gr
Re2

dTm

dz
y + 1

Re
∇2

s W + Ha2

Re
Fz, (2.29)

(U · ∇s)U = −∇sP + 1
Re

∇2
s U + Gr

Re2 Θey + Ha2

Re
f , (2.30)

(U · ∇s)Θ = 1
Pe

∇2
s Θ − W

dTm

dz
, (2.31)

∇s · U = 0, (2.32)

F = (−∇Φ + vb × ex) × ex, (2.33)

∇2Φ = ∇ · (vb × ex). (2.34)

Here, ∇s = (∂x, ∂y), F = ( f , Fz) and f = (Fx, Fy). The corresponding boundary
conditions on the walls are the no-slip condition for the velocity

vb = 0, at r = 1/2, (2.35)

fixed heat flux for constant-rate heating on the lower half of the wall and thermal insulation
on the upper half of the wall

∂Θ

∂r
= 1, at r = 1/2, y < 0, (2.36)

∂Θ

∂r
= 0, at r = 1/2, y > 0, (2.37)

as well as zero current flux due to the electrically insulating walls

∂Φ

∂r
= 0, at r = 1/2. (2.38)

3. Numerical methods

3.1. Finite-element method for linear global stability analysis
For linear global stability analysis of the MHD mixed convection in a circular pipe, the 2-D
steady-state solutions of the governing equations should be computed. The Taylor–Hood
finite-element method is used for spatial discretization for the steady governing equations,
and the Newton method is adopted to solve the derived nonlinear system when
the cross-sectional velocity is not zero. A high-level integrated software FreeFem++
(Pironneau, Hecht & Morice 2013) for the numerical solution of nonlinear multiphysics
partial differential equations is adopted for the computation of the steady-state solutions.
The bi-dimensional anisotropic mesh generator BAMG built into FreeFem++ is used to
define the circular cross-section geometry and generate the 2-D triangular meshes. Three
borders are first defined for the 2-D mesh generation, one is the outer wall boundary with
r = 0.5, the other two are internal circles with r = 0.4 and r = 0.3. Then, discrete mesh
points are uniformly distributed on these borders with different numbers. The numbers of
mesh points can be used to control the mesh resolution and further be defined as nr, 0.5nr
and 0.3nr, respectively. This will produce a much larger mesh size for the border with the
smaller circle radius. It is easily seen from figure 1 that the triangular mesh with nr = 100
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Figure 2. Base flow solution of the streamwise velocity (a) and temperature (b) field along the cross-section;
Re = 9046, Pr = 0.022, Gr = 8.298 × 107 and Ha = 102.

has a much smaller mesh size near the pipe wall. Obviously, finer mesh resolution near the
pipe wall is realized and beneficial to improve the numerical accuracy.

Because the mean streamwise velocity is adopted as the velocity scale, it should be
noted that the uniform streamwise pressure gradient dp̃/dz should be adjusted to make the
average streamwise velocity to be positive one, i.e.

1
A

∫
A

W dA = 1. (3.1)

A simple bisection process can be used to satisfy relation (3.1). The Newton iterative
method needs a good initial guess, then the steady-state solutions are computed
continuously from small dimensionless parameters to large ones. In order to verify the
correctness of the 2-D steady-state solutions, the same cases as Zikanov et al. (2013)
for Re = 9046, Pr = 0.022, Gr = 8.298 × 107 with different Hartmann numbers are
considered. Base flow solution of the streamwise velocity and temperature field along
the cross-section for Ha = 102 is first plotted in figure 2, which has the same spatial
distribution as Zikanov et al. (2013). A detailed comparison of the profiles of the
streamwise velocity W of the base flow along horizontal and vertical lines drawn through
the pipe axis is presented in figure 3. It is clearly seen from these figures that the
steady-state solutions obtained by the finite-element method agree very well with those
by direct numerical simulations of Zikanov et al. (2013).

In order to study the asymptotic behaviour in time of generic small-amplitude
perturbations of (V ′, P′, Θ ′, Φ ′) imposed on the steady-state mixed convection, these
perturbations can be expanded as normal modes in the streamwise direction as follows:

(V ′, P′, Θ ′, Φ ′) = (v̂, p̂, θ̂, φ̂) exp(ikz + γ t), (3.2)

where k is the wavenumber in the streamwise direction, and γ = γr + iγi is the
corresponding complex growth rate. By substituting the expressions of the disturbed flow
field V + V ′, P + P′, Θ + Θ ′, Φ + Φ ′ into the governing system, the full global linear
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Figure 3. Profiles of the streamwise velocity W of the base flow along horizontal (a) and vertical (b) lines
drawn through the pipe axis; solid line is obtained by the finite element method with FreeFem++ software,
while triangle symbols are from direct numerical simulations of Zikanov et al. (2013); Re = 9046, Pr = 0.022,
Gr = 8.298 × 107 and Ha = 102.

stability equations are obtained as follows:

γ û + (U · ∇s + ikW) û + (
û · ∇s

)
U = −∂ p̂

∂x

+ 1
Re

(
∇2

s − k2
)

û, (3.3)

γ v̂ + (U · ∇s + ikW) v̂ + (
û · ∇s

)
V = −∂ p̂

∂y

+ 1
Re

(
∇2

s − k2
)

v̂ + Ha2

Re

(
−ikφ̂ − v̂

)
, (3.4)

γ ŵ + (U · ∇s + ikW) ŵ + (
û · ∇s

)
W = −ikp̂

+ 1
Re

(
∇2

s − k2
)

ŵ + Gr
Re2 θ̂ + Ha2

Re

(
∂φ̂

∂y
− ŵ

)
, (3.5)

γ θ̂ + (U · ∇s + ikW) θ̂ + (
û · ∇s

)
Θ

= 1
Pe

(
∇2

s − k2
)

θ̂ − ŵ
dTm

dz
, (3.6)

∂ û
∂x

+ ∂v̂

∂y
+ ikŵ = 0, (3.7)

(
∇2

s − k2
)

φ̂ −
(

∂ŵ
∂y

− ikv̂
)

= 0. (3.8)

Here, v̂ = (û, ŵ) = (û, v̂, ŵ), and the boundary conditions are given by

v̂ = ∂θ̂

∂r
= ∂φ̂

∂r
= 0, at r = 1/2. (3.9)
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Figure 4. Linear growth rate (a) and phase velocity (b) of most unstable mode as a function of wavenumber;
solid line is obtained by the finite-element method with FreeFem++ software, while rectangle and triangle
symbols are from direct numerical simulations of Zikanov et al. (2013) with respect to the streamwise grid
numbers N = 32 and N = 64; Re = 9046, Pr = 0.022, Gr = 8.298 × 107 and Ha = 306.

The spatial discretization of Taylor–Hood finite elements can also be used for the global
linear stability equations. After the spatial discretization of the linear stability equations,
a generalized eigenvalue problem has to be solved in the matrix form as follows:

Aq̂ = γ Bq̂, (3.10)

where q̂ = (v̂, p̂, θ̂, φ̂) is the eigenvector collecting the velocity components, pressure,
temperature and electrostatic potential of each degree of freedom of the discrete problem,
A and B are large sparse complex matrices. In order to facilitate the extraction of the
desired eigenvalues for unstable modes, spectral transformations should be introduced
into the generalized eigenvalue problem. Theofilis (2011) has reviewed a lot of spectral
transformations commonly utilized in the global instability analysis of fluid flows.
Most commonly used is the shift-and-invert strategy which transforms the generalized
eigenvalue problem into a standard eigenvalue problem as follows:

(A − μB)−1Bq̂ = (γ − μ)−1q̂. (3.11)

The shift matrix can be solved by the UMFPACK or MUMPS sparse LU solver and
the standard eigenvalue problem solved with an implicitly restarted Arnoldi algorithm
as provided in the ARPACK software library (Lehoucq, Sorensen & Yang 1998). Thus,
the largest eigenvalues of the transformed matrix now correspond to those eigenvalues of
the original generalized eigenvalue equation which are the closest to the shift value μ.

In order to validate the computation of the eigenspectrum, the linear growth rate
and phase velocity of most unstable mode as a function of wavenumber are plotted in
figure 4 for Re = 9046, Pr = 0.022, Gr = 8.298 × 107 and Ha = 306. Compared with
the numerical simulation results of Zikanov et al. (2013), it is easily found that the linear
growth rates we get from FreeFem++ software are a little higher than their results, this is
especially obvious near the maximum growth rate. It is noticed that Zikanov et al. (2013)
used two different streamwise grid numbers, the larger one (N = 64) is for long-wave
perturbations while the smaller one (N = 32) is for short-wave perturbations. Under these
two mesh resolutions, their phase velocity results of most unstable mode are obviously
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different, also specifically for moderate wavenumbers (k = 5 ∼ 7) where large exponential
growth occurs. Interestingly, it is found that a good agreement between our eigenspectrum
results and numerical simulations of Zikanov et al. (2013) occurs when the exponential
perturbation growth is not very strong.

3.2. Fourier-spectral finite-difference method for direct numerical simulation
For direct numerical simulations, we solve the dimensionless governing equations in
cylindrical coordinates where r, β,z denote the radial (i.e. wall-normal), azimuthal
and axial directions, respectively. Then, the velocity field would be denoted with
v = (ur, uβ, uz). We use a Fourier-spectral finite-difference method for discretizing the
equations. Field variables, i.e. v, p, φ and θ , are expanded with a twofold Fourier expansion

A(r, β, z, t) =
K∑

k=−K

M∑
m=−M

Â(r, t)k,m exp {ikαz + imβ}, (3.12)

in which Â(r, t)k,m is the Fourier coefficient of the (k, m) Fourier mode and is a function
of r and t, α would determine spatial periodicity. In the radial direction, we use a
9-stencil high-order finite-difference method for the discretization. The nonlinear terms
are calculated using the pseudo-spectral technique with the 3/2-rule for dealiasing. Also,
2K and 2M give the total number of Fourier modes used in the axial and azimuthal
directions, respectively. We use the finite-difference scheme, the singularity-removal
technique at the pipe axis and the message passing interface (MPI) parallelization strategy
of OPENPIPEFLOW (Willis 2017). In particular, the singularity removal is achieved by
avoiding a grid point at the pipe axis r = 0 and imposing proper parity conditions on the
velocity, electric potential and temperature in the neighbourhood of the pipe axis. To be
clear, near the pipe axis ur and uβ are odd for even m and even for odd m, whereas uz,
φ and θ are even for even m and are odd for odd m. Technically, the parity condition
is implemented by imposing a homogeneous Dirichlet condition for odd functions and a
homogeneous Neumann condition for even functions at r = 0. The details can be found in
the documentation of OPENPIPEFLOW (Willis 2017).

For the time integration of the Navier–Stokes equations and the heat equation, a
semi-implicit three-level Adams–Bashforth time-integration scheme is adopted. Linear
terms are treated implicitly and the nonlinear term is treated explicitly using a backward
differentiation scheme. The incompressibility condition is imposed using a projection
method (Hugues & Randriamampianina 1998). Since only the lower half-pipe wall is
heated and the upper half-pipe wall is thermally insulated, there will exist a discontinuity
with respect to the heat flux ∂T/∂r at the boundary between the heated and insulated parts
of the pipe wall. In order to use the Fourier-spectral method, we adopt a steep tanh function
to approximate this discontinuity. Assuming the heated part is located at β ∈ [π/2, 3π/2],
then the distribution of the heat flux around the whole pipe wall is given by

q = ∂θ

∂r
(β) = 0.5 − 0.5 tanh

|β − π| − π

2
δ

, (3.13)

where the parameter δ is a control parameter which determines the steepness at the
approximated discontinuity boundary. As shown in figure 5, it is clearly seen that
smaller parameter δ gives rise to steeper boundary for the heat flux. However, a much
smaller parameter δ would need more azimuthal collocation points near the approximated
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Figure 5. The distribution of the heat flux around the whole pipe wall used for direct numerical simulations
with the spectral finite-difference method.

discontinuity boundary and then should be properly chosen to balance the accuracy and
computational cost.

As the steady base flow is streamwise invariant, we can choose to only solve the k = 0
modes to obtain the base flow. It is obvious that the base flow would have 2-D stability in
the cross-section. As a validation, we compare our calculations using the spectral method
with the results using the finite-element method in the previous subsection. The flow
parameters of the test case are Ha = 204, Re = 9046, Gr = 8.298 × 107, Pr = 0.022.
The resolution of the spectral simulation is N = 144 and M = 96 (i.e. 144 grid points
on the radius and 2M = 192 grid points in the azimuthal direction before dealiasing).
The steepness parameter δ = 0.05 and this azimuthal resolution give approximately six
grid points within the smoothing region of the approximated discontinuity of heat flux.
Figure 6(a,b) shows the visualization of the base flow in our spectral simulations for the
streamwise velocity and temperature field in the cross-section. It is seen that the basic
streamwise velocity becomes uniform along the magnetic field direction in the bulk of
the circular pipe for large Hartmann numbers. In figure 6(c,d), the streamwise velocity
and temperature distributions along the vertical and horizontal lines of the cross-section
are compared between our spectral simulation and the finite-element calculation. The
agreement between the two sets of results is excellent with a deviation below 0.5 %. This
agreement validates our methods and particularly the smoothing of the heat flux in our
spectral methods, at least for the base flow calculation.

After obtaining the base flow, we can perturb the base flow with small perturbations
in the spectral space, i.e. small Fourier coefficient of a given mode with the wavenumber
(kα, m) is set to give the initial condition of direct numerical simulations. Then, the linear
growth rate of the unstable mode at a fixed wavenumber can be calculated from the modal
kinetic energy variation between two different time instances, i.e.

γ = 1
2

log KE(t2) − log KE(t1)
t2 − t1

, (3.14)

where γ denotes the linear growth rate, KE = ∫
V(v − vb) dV is the modal kinetic energy

and t1 and t2 are two time instants in the exponentially growing stage. The phase speed of
the leading eigenmode can be calculated as

c = λ
T

, (3.15)

with the streamwise wavelength λ and the period of oscillation T which can be measured
by monitoring the velocity at a fixed point in the flow domain. For the same case with
Ha = 306, Re = 9046, Gr = 8.298 × 107 and Pr = 0.022 as in Zikanov et al. (2013),
the linear growth rates and phase speeds with respect to different wavenumbers can be
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Figure 6. The base flow calculated using the spectral method and finite-element method. Contours of
temperature (a) and streamwise velocity (b) on the pipe cross-section. Data are from our spectral method
simulation. (c) Comparison of temperature distribution on the vertical and horizontal lines through the pipe
centre. (d) Comparison of streamwise velocity on the vertical and horizontal lines through the pipe centre. In
(c,d), symbols are data from our spectral method simulation and lines are from the finite-element simulation.

computed through both the eigenvalue computation of the linear stability equations and
the numerical simulations with the spectral method, as shown in figure 7. Although the
two approaches are different and performed independently, it is clearly seen that a good
agreement is obtained and can be used as a cross-validation of these two approaches. A
further convergence test for the linear growth rate with respect to the steepness parameter δ

is given in table 1, which shows δ = 0.5 with M = 96 can yield good calculation accuracy.
An additional validation of our spectral method against an asymptotic solution of the
basic flow for the MHD pipe flow (without the heating and buoyancy) can be found in
Appendix A. All these tests confirm the correctness of our basic flow calculations.

4. Linear stability analysis

Although the linear growth rate and phase speed of the most unstable mode have been
computed and agree with the results of Zikanov et al. (2013), there exist two main flow
stability questions to answer. The first one is the linear stability boundary of the MHD
mixed convection, while the other one regards the flow destabilization mechanism which
can deepen our understanding of the underlying physical mechanism.

4.1. Linear stability boundary of the MHD mixed convection
Linear stability boundary of the MHD mixed convection is determined by the most
unstable mode, which can be easily computed if there exists only one unstable mode for
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Figure 7. The linear growth rate (a) and the phase speed (b) of the leading eigenmode with respect to different
wavenumbers. Here, the solid line is obtained with the eigenvalue computation of the linear stability equations
while discrete circle symbols are the results by direct numerical simulations using the spectral method. The
dimensionless parameters Ha = 306, Re = 9046, Gr = 8.298 × 107 and Pr = 0.022 are adopted, while the
steepness parameter δ = 0.05 is used for direct numerical simulations.

δ M γ

0.1 48 0.2470
0.05 96 0.2492
0.025 192 0.2496

Table 1. Convergence of the linear growth rate about the smoothing width δ. The flow parameters are Ha =
306, Re = 9046, Gr = 8.298 × 107 and Pr = 0.022, and the streamwise wavelength of λ = 1.0 is considered
for this convergence test.

the parameters under investigation. However, if there exist more than one unstable modes
and especially if they have close linear growth rates, then the linear stability boundary may
become complex and is difficult to obtain. The critical curves for the linear stability of the
MHD mixed convection are first plotted in the Gr–Ha parameter space with Re = 9046
and Pr = 0.022 as shown figure 8. It is clearly seen that there exist three critical curves
located at small and large Hartmann numbers. All the critical curves have been validated
by our direct numerical simulations. The critical curve for large Hartmann number is
determined by the only unstable mode denoted by mode I, which was first revealed by
the numerical simulations of Zikanov et al. (2013). It is easily found that the unstable
mode I occurs above a threshold of the Hartmann number of approximately Ha = 136.33.
Across the threshold, the unstable region for the Grashof number becomes larger and
larger with the increase of the Hartmann number. The upper boundary of the unstable
region increases nearly exponentially while the lower boundary decreases very slowly.
The other two critical curves are located at small Hartmann numbers and determined by
different unstable modes. They intersect at Ha = 37.46 and are denoted by mode II and
mode III, respectively. The critical Grashof number on these two critical curves increases
nearly exponentially with the increase of the Hartmann number, from Grc ∼ 1.2 × 106

at Ha = 20 to Grc ∼ 1.8 × 108 at Ha = 80. Within the unstable region bounded by the
critical curves for the small Hartmann number, there exist many other unstable modes
which are not presented here.
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Figure 8. The critical curves of the most unstable modes in the Gr–Ha parameter space with Re = 9046 and
Pr = 0.022.
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Figure 9. Critical wavenumber (a) and phase velocity (b) of most unstable modes along all the critical curves
as a function of Hartmann number with Re = 9046 and Pr = 0.022.

Along all the critical curves of the most unstable modes in the Gr–Ha parameter space,
the corresponding wavenumber and phase speed as a function of Hartmann number can
be plotted, as shown in figure 9. It is clearly seen that both the critical wavenumber
and phase velocity for small Hartmann numbers are much smaller than those for large
Hartmann numbers. Then, for small Hartmann numbers, long-wave instabilities first occur
at the threshold, and the critical wavenumber is found to increase with the increase of the
Hartmann number. Meanwhile, the phase velocity of these long-wave instabilities even
decreases with the increase of the Hartmann number for the unstable mode II. It is also
seen that at Ha = 67.7 there exists a jump of the critical wavenumber and phase velocity
of mode II. It is carefully checked that this jump is not due to eigenmode transiton, but a
rapid change of the critical parameters for the same unstable mode.
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Figure 10. Spatial structure of the 3-D unstable mode for the perturbations of temperature (a) and vertical
velocity (b) in the horizontal cross-section passing through the axis of the pipe at a critical point of kc = 5.8,
Ha = 136.33, Gr = 5.14 × 107, Re = 9046 and Pr = 0.022.

Spatial structure of the 3-D unstable mode for the perturbations of temperature and
vertical velocity in the horizontal cross-section passing through the axis of the pipe is
presented in figures 10 and 11 at two critical points with large and small Hartmann
numbers, respectively. It is easily seen that the spatial structure for the critical case
of Ha = 136.33 is very similar to the simulation result by Zikanov et al. (2013) for
Ha = 306 and λ = 1.0. Specifically, the simulation result for large Hartmann number
has a more uniform distribution of vertical velocity along the magnetic field direction.
Obviously, there exists only one unstable mode which results in such a similar spatial
structure for different large Hartmann numbers. However, the spatial structure for the
critical case of Ha = 50 is very different, as shown in figure 11. It is easily seen that
the temperature perturbation is distributed near the lateral walls and in the central region,
while the perturbations of three velocity components concentrate in the central region.
Different spatial structures of different critical eigenmodes imply different destabilization
mechanisms, which are further studied in following subsection.

4.2. Energy budget analyses at the critical unstable thresholds
In order to obtain the physical destabilization mechanism, it is usual to perform energy
budget analyses at the critical thresholds for the most unstable mode. First, the linear
stability equations (3.3)–(3.5) are multiplied by the complex conjugate of the velocity
perturbation v̂∗ and then integrated on the cross-section A. After some simplifications, an
equation giving the rate of change of the fluctuating kinetic energy can be derived. At the
critical threshold (Re(λ) = 0) for any unstable mode, kinetic energy budgets can be further
obtained as

Esu + Esv + Esw + Eb + Em + Ed = 0, (4.1)

where Esu, Esv and Esw are the productions of fluctuating kinetic energy by shear of
the basic flow, Eb is the production of fluctuating kinetic energy by buoyancy, Em is
the dissipation of fluctuating kinetic energy by magnetic forces and Ed is the viscous
dissipation of fluctuating kinetic energy. They are defined as follows:

Esu = −Re
(∫

A

[
û
∂U
∂x

û∗ + v̂
∂U
∂y

û∗
]

dx dy
)

, (4.2)
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Figure 11. Spatial structure of the 3-D unstable mode for the perturbations of temperature (a), vertical velocity
(b) and streamwise velocity (c) in the horizontal cross-section passing through the axis of the pipe at a critical
point of kc = 1.69, Ha = 50, Gr = 2.898 × 107, Re = 9046 and Pr = 0.022.

Esv = −Re
(∫

A

[
û
∂V
∂x

v̂∗ + v̂
∂V
∂y

v̂∗
]

dx dy
)

, (4.3)

Esw = −Re
(∫

A

[
û
∂W
∂x

ŵ∗ + v̂
∂W
∂y

ŵ∗
]

dx dy
)

, (4.4)

Eb = Re
(∫

A

Gr
Re2 θ̂ v̂∗ dx dy

)
, (4.5)

Em = Re
(∫

A

Ha2

Re

[
(−∇φ̂ + v̂ × ex) × ex

]
v̂∗ dx dy

)
, (4.6)

Ed = −Re
(∫

A

1
Re

∂v̂i

∂xj

∂v̂∗
i

∂xj
dx dy

)
. (4.7)
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Ha Grc E′
su E′

sv E′
sw E′

b E′
m

Mode I 280 31 837 073 0.00639 −0.00066 −2.91333 4.78354 −0.87594
200 35 398 415 0.02200 −0.00319 −3.40215 5.29818 −0.91484
136.33 51 400 000 0.18356 −0.03819 −3.35641 6.59764 −2.38610
200 203 162 419 0.22068 0.03611 −3.92439 7.56521 −2.89763
280 500 712 609 0.14744 0.10784 −3.61460 7.37147 −3.01260

Mode II 80 179 660 228 0.57890 −0.15466 2.24933 −0.00942 −1.66412
70 109 500 660 0.43082 −0.12390 2.28102 −0.00662 −1.58129
60 60 497 994 0.26298 −0.07942 2.38255 0.00016 −1.56627
50 28 979 058 0.14054 −0.04603 2.21279 0.00300 −1.31030
40 11 842 819 0.05804 −0.02030 1.93550 0.00308 −0.89650

Mode III 30 3 716 334 0.01484 −0.00621 2.13360 0.00048 −1.14272
20 1 182 757 0.00245 −0.00059 1.56199 0.00016 −0.56398

Table 2. Kinetic energy budgets by shear of the basic flow E′
su, E′

sv , E′
sw, buoyancy E′

b and magnetic forces
E′

m at the critical point of the most unstable 3-D mode for different Hartmann numbers with Re = 5000 and
Pr = 0.0321.

All these terms can be further normalized by the viscous dissipation of fluctuating kinetic
energy Ed, then a normalized kinetic energy budget equation is written as

E′
su + E′

sv + E′
sw + E′

b + E′
m = 1, (4.8)

where E′
su = Esu/|Ed|, E′

sv = Esv/|Ed|, E′
sw = Esw/|Ed|, E′

b = Eb/|Ed|, E′
m = Em/|Ed|.

The kinetic energy budgets by shear of the basic flow, buoyancy and magnetic forces
at the critical points of the least stable 3-D modes are presented for different Hartmann
numbers in table 2. For all cases of mode I, it is easily seen that the production
of fluctuating kinetic energy by buoyancy E′

b is the dominant destabilizing term, the
production of fluctuating kinetic energy by the streamwise shear of the basic flow E′

sw
gives a significant stabilization effect and the production of fluctuating kinetic energy
by the cross-sectional shear of the basic flow E′

su and E′
sv is very small and thus has

little effect on the flow stability. According to the values of the stabilizing term E′
m, the

cases on the lower boundary of mode I have a much weaker stabilization effect due to
magnetic forces than those on the upper boundary of mode I. For the cases of mode II
and mode III, it is found that the streamwise shear of the basic flow gives the dominant
production of fluctuating kinetic energy due to positive large values of E′

sw. Then, the
dominant destabilization mechanism is the streamwise shear of the basic flow instead of
buoyancy with negligible terms E′

b. It is also found that, with the increase of Hartmann
number along the critical curves of mode II and mode III, the values of the destabilization
term E′

su as well as stabilization terms E′
sv and E′

m become larger and larger.
Now the dominant destabilization mechanism is revealed to be buoyancy for mode I

as well as streamwise shear of basic flow for mode II and mode III. It is necessary to
plot the spatial distribution of local buoyancy and the local streamwise shear of the basic
flow i.e. the integral terms in the integral formula (4.4) and (4.5), at the critical points for
these modes. As shown in figure 12(a), it is clearly seen that the local buoyancy Eb for the
production of fluctuating kinetic energy is mainly located in the middle and lower parts of
the pipe for mode I. However, the local streamwise shear of the basic flow Esw for mode II
is situated at the upper part of the pipe, as seen in figure 12(b).
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Figure 12. Spatial distribution of (a) the local buoyancy Eb and (b) local streamwise shear of the basic flow Esw
at the critical points of the 3-D unstable modes for (a) mode I with kc = 5.8, Ha = 136.33, Gr = 5.14 × 107

and (b) mode II with kc = 1.69, Ha = 50, Gr = 2.898 × 107; where Re = 9046 and Pr = 0.022.

0 50 100 150 200 250 300

Ha

106
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108

109

Gr

Figure 13. The points in the Ha–Gr plane considered for DNS analysis: (Ha, Gr) = (45, 2 × 107) (circle),
(40, 2 × 107) (up-triangle), (30, 2 × 107) (diamond), (150, 8.298 × 107) (square), (180, 8.298 × 107) (plus)
and (306, 8.298 × 107) (right triangle).

5. Nonlinear flow states

According to the stability boundary curves obtained in the previous section, we can
further study the nonlinear flow states within the linearly unstable parameter regions
through direct numerical simulations. Simulation parameters (Ha, Gr) selected for this
study are shown in figure 13 as symbols, while other parameters are fixed as Re = 9046
and Pr = 0.022.

5.1. Low-Ha branch
Starting from a point close to the neutral stability boundary at (Ha, Gr) = (45, 2 × 107),
we explore horizontally at (Ha, Gr) = (40, 2 × 107) and (30, 2 × 107). For all simulations
in this subsection, the pipe length is chosen to be 12.2 pipe diameters, which is three times
the wavelength of the most unstable mode at (Ha, Gr) = (45, 2 × 107).
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Figure 14. The streamwise velocity on the pipe cross-sections at (Ha, Gr) = (45, 2 × 107). The full velocity
is plotted in the r–β cross-section (a), vertical r–z cross-section (i.e. the y–z plane through the pipe axis)
(b) and horizontal r–z cross-section (i.e. the x–z plane through the pipe axis) (c). The deviation with respect to
the basic laminar flow is shown in (d–f ) and the most unstable linear mode is visualized in (g–i). The location
of the maximum deviation of uz from the basic laminar flow is shitted to the left end of the pipe in all the plots
in the r–z cross-sections. Panels (a,d,g) are plotted at the left end of the pipe.

5.1.1. The case (Ha, Gr) = (45, 2 × 107)

The streamwise velocity fields for the nonlinear flow state and the most unstable mode are
both computed by direct numerical simulations and shown in figure 14. It is clearly seen
that the nonlinear saturated flow exhibits a travelling wave structure that is symmetric
about the vertical plane through the pipe axis. The spatial distributions of the streamwise
velocity in all cross-sections are very similar with respect to both the saturated flow state
and the most unstable mode. Obviously, the reason is that the nonlinear effect is very
weak and the nonlinear flow state is thus dominated by the most unstable mode when the
parameters are very close to the linear stability boundary.

5.1.2. The case (Ha, Gr) = (40, 2 × 107)

At this parameter point, we find that the saturated flow state seems to have a strong
dependence on the initial condition. Direct numerical simulations for this case are
performed with two different initial conditions. The temporal evolution of the flow
is monitored using the kinetic energy KE3D = ∫

V(v− < v >z) dV associated with the
streamwise dependent velocity components, see figure 15.

The first simulation begins with a fully turbulent state and the kinetic energy KE3D is
plotted as the blue curve in figure 15. The flow remains turbulent for several hundred time
units, and then seems to approach a periodic state with large kinetic energy oscillations.
Flow fields for the streamwise velocity at four time instants (marked with four symbols
in figure 15) are visualized in figure 16. The first two columns correspond to the time
instants marked with red circle and green triangle, respectively. Although both of them are
at the peaks of the oscillation in KE3D, the flow field is not identical to that seen in the
r–β cross-section. Nevertheless, by looking at the flow fields in the vertical and horizontal
r–z cross-sections, it can be observed that the two flow fields are nearly identical up to
a phase shift. Therefore, the period of the oscillation of KE3D is not equal to the period
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Figure 15. The kinetic energy of the 3-D flow components (streamwise dependent ones), KE3D, of two
simulations starting from different initial conditions at (Ha, Gr) = (40, 2 × 107). One starts from a fully
turbulent flow simulated at Ha = 30 and the other from a slightly perturbed laminar basic flow, see the blue
and red curves, respectively.
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Figure 16. The quasi-periodic flow state at (Ha, Gr) = (40, 2 × 107). The visualization of the streamwise
velocity field at the four time instants marked by the four symbols on the blue curve in figure 15. Each
column corresponds to a time instant. Panels (a–l) share the same colour scale. From (a,d,g,j) to (c, f,i,l),
r–β cross-section at the left end of the pipe, vertical r–z cross-section and horizontal r–z cross-section.

of the flow field. Furthermore, we compare the flow fields of the first column and the
fourth column corresponding to the two time instants marked with the red circle and blue
square (both are at peaks). These two flow fields seem identical up to a reflection about
the vertical plane through the pipe axis. This means that the two flow fields are separated
by half a period in phase. Then, it can be inferred that the period of the flow field should
correspond to four periods of the oscillation in KE3D, which is nearly 380 time units.
The third column corresponding to the black diamond in figure 15 shows the flow field at
the trough of the oscillation in KE3D, where the velocity perturbations are much weaker
than those at other three peak instants. It seems that the periodic state only maintains
one cycle, and then the flow begins to leave the periodic orbit after t = 1400 because the
oscillation becomes irregular at later times. The temporal evolution of this nonlinear flow
state indicates that there exists an unstable nonlinear periodic solution at the given flow
parameters.

The second simulation starts from random small perturbations and is shown as the red
curve in figure 15. It is clearly seen that there is no high-amplitude periodic oscillation
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Figure 17. Visualization of the flow field of the non-periodic flow state at (Ha, Gr) = (40, 2 × 107), which
was started from a small random perturbation, see the red curve in figure 15. Data are taken at t = 966. Panels
(a–c) to (j–l) show full uz, full θ , uz deviation and θ deviation, respectively.

up to 1100 time units. The flow field is visualized at t = 966 in figure 17. Compared with
the first simulation, although there are some similarities in the spatial distributions of the
flow fields in the cross-sections, there does not exist any regular or periodic structure in
either the signal of KE3D or the flow fields visualized in the pipe cross-sections. However,
it should be noted that we cannot rule out the possibility that the non-periodic state would
also approach some periodic orbits at some time in the future. Both nonlinear states
show little similarity in flow structure with the linear eigenmode (which is similar to
figure 14g–i).

5.1.3. The case (Ha, Gr) = (30, 2 × 107)

When Ha is further decreased to 30, several different initial conditions are used for direct
numerical simulations and the flow evolves into a fully turbulent state in all the cases. The
turbulent flow field is visualized in figure 18. The first column shows an instantaneous uz
field, and the second column shows the corresponding temperature θ field. One can see
that, although the turbulent uz fluctuations (turbulent fluctuation refers to the deviation
from the turbulent mean flow, where the turbulent mean flow refers to the flow averaged in
time and streamwise direction) seem to be homogeneous in the vertical r–z cross-section,
the turbulent temperature θ fluctuations seem to be significant only close to the bottom
heated wall. The third column shows the deviation of the mean flow from the basic laminar
flow. It can be seen that the mean streamwise velocity is faster than the basic flow mainly
close to the top wall, is slower than the basic flow in the middle and only slightly deviates
from the basic flow near the bottom wall. The mean temperature is higher than the basic
laminar flow mainly near the bottom wall, and only slightly deviates from the basic laminar
flow in the upper part of the pipe.

5.2. High-Ha branch
Within the unstable region of mode I at large Ha, as seen in figure 13, three Hartmann
numbers Ha = 150, 180 and 306 with a fixed Grashof number Gr = 8.298 × 107 are
considered to investigate the nonlinear flow states. Obviously, nonlinear flow states are
responsible for the low-frequency high-amplitude fluctuations of temperature appearing
in the experiment of Genin et al. (2011). In order to explain that the high-amplitude
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Figure 18. Visualization of the fully turbulent flow field at (Ha, Gr) = (30, 2 × 107). Panels (a–c) show the
full uz in the r–β cross-section (a), in the vertical r–z cross-section (b) and the turbulent fluctuations of uz in the
vertical r–z cross-section (c). Panels (d–f ) show the full θ field in the same cross-sections. Panels (g,h) shows
the deviation of the turbulent mean of uz and θ with respect to their basic laminar counterparts, respectively.

fluctuations originally come from the global instability mode, it is necessary to compare
the nonlinear flow states with the global unstable eigenmode with respect to the spatial
structure of the flow field.

5.2.1. The case (Ha, Gr) = (150, 8.298 × 107)

This set of parameters is close to the linear stability boundary, and the saturated nonlinear
flow state exhibits a nonlinear travelling wave, as shown in figure 19. From the second
column of this figure, the amplitude of the deviation uz is relatively small and thus
indicates that the nonlinear flow field is only slightly deviated from the basic laminar
flow. Comparing the deviation of uz with the most unstable linear eigenmode (mode I) in
all cross-sections, as shown in the second and third columns, one can see that their spatial
distributions are very similar. Therefore, the saturated nonlinear flow is mainly dominated
by the most unstable eigenmode and the nonlinearity is too weak to change the spatial
structure significantly. This observation is similar to the case with (Ha, Gr) = (45, 2 ×
107), which is close to the linear stability boundary curves of the low-Ha branch. However,
noticeable differences in the flow field from the case with (Ha, Gr) = (45, 2 × 107) can
be observed. Firstly, the dominant flow structures of the large-Ha case have a much
larger streamwise wavenumber, i.e. smaller streamwise wavelength. Secondly, the flow
structures in the r–β cross-section show much simpler symmetrical structures, which are
nearly aligned with the magnetic field. Thirdly, the flow structures extend along the whole
horizontal pipe cross-section, rather than being localized in a narrow region around the
vertical r–z cross-section as in the case with (Ha, Gr) = (45, 2 × 107).

5.2.2. The case (Ha, Gr) = (180, 8.298 × 107)

The case with Ha = 180 is farther from the linear stability boundary compared with the
Ha = 150 case. The simulation is started with small random perturbations, and strong
temporal oscillations in KE3D are observed when the flow develops into a nonlinear state,
as shown in figure 20. The flow fields at three time instants between the trough and peak
of an oscillation (see the symbols in figure 20) are visualized in figure 21. While the
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Figure 19. Visualization of the streamwise velocity field at (Ha, Gr) = (150, 8.298 × 107). Panels (a–c) to
(g–i) show the full uz, uz deviation and uz of the most unstable eigenmode. From (a,d,g) to (c, f,i), r–β, vertical
r–z, and horizontal r–z cross-sections.
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Figure 20. The value of KE3D of the case at (Ha, Gr) = (180, 8.298 × 107). The symbols mark three time
instants at which the flow is visualized in figure 21.

high-amplitude oscillation of KE3D is temporally quasi-periodic, the spatial structure of
flow flied is also quasi-periodic, as shown in the second row for uz deviation. The most
unstable linear eigenmode is visualized in the rightmost column for comparison. It can
be seen that the spatial structure of the flow at the trough of the oscillation is similar
to the linear eigenmode, whereas it deviates noticeably from the linear eigenmode at the
other two time instants, especially at the peak of the oscillation. Besides, the dominant
streamwise wavelength of the quasi-periodic structures seems to slightly differ from that of
the most unstable eigenmode. It can be considered that the quasi-periodic spatio-temporal
structure results from nonlinear modulations of the linear global eigenmode and may be
described by a weak nonlinear analysis. Compared with the Ha = 150 case, the flow
structures become more uniform along the direction of the magnetic field due to the larger
Hartmann number.

5.2.3. The case (Ha, Gr) = (306, 8.298 × 107)

Compared with the (Ha, Gr) = (180, 8.298 × 107) case as seen in figure 21 and figure 22,
the flow for this case shows a much stronger streamwise modulation such that the velocity
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Figure 21. Panels (a–c), (d–f ) and (g–i) show the visualization of the streamwise velocity field at the three
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Figure 22. Visualization of the streamwise velocity and temperature at (Ha, Gr) = (306, 8.298 × 107). Panels
(a–c) to (j–l) show the full uz, full θ , uz deviation and θ deviation, respectively. From (a,d,g,j) to (c–l) are r–β,
vertical r–z and horizontal r–z cross-sections.

fluctuations nearly form localized clusters interspersed with quiescent flow regions. Inside
the clusters, the flow shows some similarities to the flow at the peak of the oscillation for
the (Ha, Gr) = (180, 8.298 × 107) case, as shown in the third columns of both figures.
However, the flow field does not oscillate in time as in the Ha = 180 case. Moreover, the
velocity and temperature structures are nearly uniform along the magnetic field.

The most unstable linear global mode for this case is plotted in figure 23 to compare with
the deviations from the basic flow in the nonlinear state, as seen from the third and fourth
columns of figure 22. It can be seen that the linear flow structures are also nearly uniform
along the magnetic field. However, there are noticeable differences in the distributions of
streamwise velocity and temperature in the vertical r–z plane. From the fourth column in
figure 22 and figure 23(e), the temperature fluctuations are mainly located close to the
centreline of the vertical r–z plane in the linear mode, whereas they are mainly located
close to the top and bottom pipe walls for the nonlinear state. Besides, in the linear case,
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Figure 23. The most unstable mode in the pipe shown in figure 22 at (Ha, Gr) = (306, 8.298 × 107).
(a–c) The streamwise velocity in the r–β, vertical r–z and horizontal r–z cross-sections. (d–f ) Temperature
in the r–β, vertical r–z and horizontal r–z cross-sections.

the high and low temperature regions are arranged alternately along the pipe axis, whereas
for the nonlinear case, the temperature in the lower half of the pipe is always lower than
that of the basic laminar flow while is always higher than the latter in the upper half of
the pipe. These obvious differences of the flow field structure indicate strong nonlinear
effects.

This case has been studied by Zikanov et al. (2013) also, and the authors reported
nonlinear flow structures in the form of convection roll cells. They concluded that the flow
structure of the nonlinear state is very similar to that of the linear unstable mode. However,
as explained above, the structure of the fully developed nonlinear state greatly deviates
from that of the linear mode, although the flow still forms convection roll-cell structures.
The principal reason for the difference is that the setting of their numerical simulations is
different from ours. They adopted a computational domain of 50 pipe diameters with only
a part (approximately 40 diameters) subject to a uniform bottom heating and transverse
magnetic field, without a periodic boundary condition in the streamwise direction, in
order to mimic the experiments of Genin et al. (2011). Therefore, what they obtained is
a nonlinear flow developing from linear instability instead of a fully developed nonlinear
state. Our simulations adopt a much shorter (4π diameters) periodic pipe but with a longer
evolution time for the flow, and the target is the fully developed nonlinear flow state, which
has not been reached in the set-up of Zikanov et al. (2013).

6. Concluding remarks

Linear hydrodynamic stability of liquid metal MHD mixed convection in a horizontal pipe
under bottom heating and transverse magnetic field has been investigated by linear global
stability analyses. First, linear stability boundary curves are given through the eigenvalue
computations of the linear global stability equations with the finite-element method. For
large Hartmann numbers, the linear stability boundary is determined by only one most
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unstable mode (mode I) which has been first found by the numerical simulations of
Zikanov et al. (2013). From the stability boundary curve of the unstable mode I, there exists
a threshold of the Hartmann number across which the unstable region for the Grashof
number becomes larger and larger with the increase of the Hartmann number. For small
Hartmann numbers, in the range of investigated Grashof numbers (106 − 4 × 108) two
intersecting critical curves of linear stability are found to be determined by two different
unstable modes (modes II and III). For these two stability boundary curves, the critical
Grashof number becomes larger with the increase of the Hartmann number. Second,
destabilization mechanisms of these unstable modes are revealed through an energy budget
analysis at their critical unstable thresholds. It is interesting to find that there are two
different instability mechanisms for large and small Hartmann numbers. With respect to
the unstable mode I for large Hartmann number, buoyancy is the dominant destabilizing
term, which agrees with the hypothetical explanation of Zikanov et al. (2013) who regard
natural convection as a destabilization mechanism. However, for small Hartmann numbers,
the dominant destabilization of unstable modes II and III comes from the streamwise shear
of the basic flow. This indicates that shear instabilities still play a leading role under weak
magnetic field.

Fully developed nonlinear flow states of the MHD mixed convection are studied
through direct numerical simulations. Sufficiently close to the linear stability boundary,
the nonlinear effect is so weak that the spatial structure of the flow is very similar
to the structure of the linear global eigenmode that determines the stability boundary.
When the simulation parameters are farther away from the linear stability boundary, the
nonlinear effect becomes increasingly pronounced. Within the linear unstable region of
small Ha, in which the flow instability is shear dominated, the spatio-temporal evolution
of the nonlinear flow states may sensitively depend on the initial conditions. In the
case of (Ha, Gr) = (40, 2 × 107), it is found that, depending on the initial condition,
the flow may develop into either a chaotic state with relatively small fluctuations in the
kinetic energy or a nearly periodic state with large oscillations in the kinetic energy. The
latter suggests the existence of an unstable nonlinear periodic solution of the governing
equations at the investigated parameters. Both nonlinear states show little similarity to
the linear eigenmode, indicating strong nonlinear effects. This result implies a possibility
that these nonlinear flow states may not necessarily bifurcate from the basic flow via the
linear instability, rather, they could bifurcate directly from some nonlinear exact coherent
states, as the nearly periodic state shown in figure 16 suggests. In fact, this is the scenario
for the transition to turbulence in linearly stable hydrodynamic pipe flow, which may
also be expected for the flow here at small Ha and Gr. However, the nonlinear flow
states are not fully turbulent at (Ha, Gr) = (40, 2 × 107), exhibiting large streamwise
structures that do not fill the whole pipe cross-section. In the unstable region at large Ha,
as the (Ha, Gr) = (180, 8.298 × 107) case shows, the nonlinear effect may cause the fully
developed nonlinear state to oscillate quasi-periodically over time with large amplitude,
but the quasi-periodic spatial structure still maintains high similarity to the linear unstable
eigenmode. This suggests that, although the nonlinear effect becomes stronger, the final
nonlinear states still originate from the linear instability. When the parameters are far
away from the linear stability boundary, the flow would develop into fully turbulent flow
in the small-Ha regime, as the (Ha, Gr) = (30, 2 × 107) case shows. Whereas, in the
large-Ha regime, the flow would develop into some nonlinear dynamical states (but not
turbulence) with convection cells aligned with the magnetic field, which, however, deviate
significantly from the linear unstable eigenmode by showing strong nonlinear modulations
in streamwise direction and in the vertical r–z cross-section as well.
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Determining the stability boundary for a single Re requires scanning through the
Ha–Gr plane, and a 2-D base flow needs to be calculated by Newton iteration at each
point of (Ha, Gr), followed by an eigenvalue analysis scanning through the streamwise
wavenumber k. These calculations are already very expensive and, therefore, the current
study has only considered a single Reynolds number. Certainly, providing the dependence
of the linear stability boundary on the Reynolds number is desirable, which will involve
a great amount of computation and will be a subject of our future work. Besides, the
linear stability boundary in large-Gr regime maybe complicated (see Appendix B) and our
study has only covered the regime up to O(108). Exploring the large-Gr regime may be of
interest for some extreme heating conditions. Similarly, the stability boundary at larger Ha
could be complicated also. Whether or not there would exist another stability boundary
at larger Ha above which the flow becomes stable again remains unknown and would be
interesting to determine. However, as the thickness of the Hartmann layer is O(Ha−1),
larger Ha poses severe challenges for numerical analysis. Further studies are needed to
address the stability of the flow in a larger parameter space.
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Appendix A. Velocity profile of MHD pipe flow

Here, as an additional validation of our numerical methods, we show our calculation of
the base flow for the MHD pipe flow, i.e. the pipe flow subject to a transverse magnetic
field without the bottom heating and buoyancy force, for which asymptotic solutions are
available. According to Vantieghem, Albets-Chico & Knaepen (2009), the streamwise
velocity normalized by its value at the pipe axis is

√
1 − y2 outside of the Roberts layers

(Roberts layers are close to the top and bottom pipe walls in our set-up) for an electrically
insulating pipe wall. We performed simulations by setting Gr = 0 in our simulation at
Ha = 102 and 1000. For Ha = 1000, we needed 256 Chebyshev points on the pipe radius
to obtain a converged base flow given the very thin Hartmann layer. The results are
compared with the asymptotic solution in figure 24. It is obvious that our velocity profile
coincides with the asymptotic solution

√
1 − y2 close to the pipe centre (which is outside

of the Roberts layers), and as Ha increases, so that the Roberts layer becomes thinner, the
agreement is obtained in a wider region. This test shows that our base flow is accurately
calculated.

Appendix B. Unstable region at high Gr for large Ha

Our stability boundary at large Ha shows that the flow is stable above the boundary at
large Gr. However, one may expect that, at a fixed Ha, as the bottom heating keeps
increasing, i.e. as Gr increases, the flow would become unstable again. Indeed, the
boundary we computed is by no means complete due to the vast parameter space and thus
high computational cost. It is certainly possible that there are unstable regions at higher
Gr than we considered in figure 8. By DNS, we explored briefly the large-Gr regime and
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Figure 24. Streamwise velocity of the base flow along the vertical line through the pipe axis.
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Figure 25. The unstable region at large Gr. In panel (a), symbols show unstable points that are close to a linear
stability boundary. The region enclosed by the points is an unstable region. (b–d) The streamwise velocity of
the most unstable eigenmodes for the wavenumber k = 9.24 visualized in the r–β cross-section. Panels (b–d)
correspond to the points marked as (b–d) in panel (a), for which the specific parameters can be found in table 3.

indeed observed linear instability, as expected, see figure 25. In table 3, we list the data
corresponding to the parameter points (Ha, Gr) plotted as symbols in figure 25. At these
parameters, however, we did not scan through the streamwise wavenumber but selected a
single wavenumber close to the upper end of the critical wavenumber curve for mode I, see
figure 9(a). The growth rate γ of small disturbances are calculated. The flow is unstable at
these parameters but the growth rates are very small, implying that that they are close to a
stability boundary that encloses an unstable region in the large-Gr regime.
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Ha Gr γ Ha Gr γ

150 8.3 × 108 0.00059588 174 3.4 × 108 0.00135764
140 6.0 × 108 0.00078862 200 4.35 × 108 0.00076262
134 4.5 × 108 0.00123070 224 5.4 × 108 0.00223940
130 3.3 × 108 0.00110420 250 6.52 × 108 0.00062116
130 2.8 × 108 0.00013601 280 7.6 × 108 0.00008076
134 2.6 × 108 0.00047236 290 7.8 × 108 0.00126316
140 2.6 × 108 0.00095078 296 7.8 × 108 0.00238920
150 2.75 × 108 0.00114538

Table 3. The data (Ha, Gr, γ ) for the symbols shown in figure 25. A fixed streamwise wavenumber k = 9.24
is considered for these calculations. This streamwise wavenumber is close to the upper end of the critical
wavenumber curve for mode I as shown in figure 9.
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Figure 26. The saturated nonlinear flow state at (Ha, Gr) = (150, 5 × 108). Panels (a,b) show the velocity uz
and temperature θ deviations with respect to the basic flow, respectively, in the r–β cross-section. Panels (c,d)
show uz and θ deviations in the vertical z–y cross-section through the pipe axis.

The most unstable eigenmode at the three parameter points marked as (b–d) in
figure 25(a) is visualized in figure 25(b–d), respectively. Comparing panels (b,c) with
the unstable eigenmode at lower Gr as shown in figure 19(g), one can notice that the flow
structures are quite different. At lower Gr, the flow structures are located close to the pipe
centre and nearly aligned with the magnetic field, whereas the flow structures at larger
Gr are concentrated close to the heated bottom wall and no obvious alignment with the
magnetic field can be observed. From figure 25(b–d), it can be seen that the flow structures
are gradually elevated toward the pipe centre and seem to be approaching those shown in
figure 19(g) as the parameters change along the stability boundary. This change is likely
a result of the competition between the effects from buoyancy and magnetic field as the
parameters change.

The saturated nonlinear flow state developed from the linear instability is computed at
the point (Ha, Gr) = (150, 5 × 108) (marked by a × symbol in figure 25). The pipe length
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is set to 6.8 pipe diameters, which is ten times of the wavelength of the unstable mode of
k = 9.24. The flow is visualized in figure 26. It can be seen from the figure that the fully
developed flow exhibits a spatially periodic structure, which is clearly not turbulent (the
flow is in fact a nonlinear travelling wave). The flow shown in figure 26(a) is very similar
to the unstable eigenmode shown in figure 25(b,c), indicating that the saturated nonlinear
flow state is dominated by the linear instability and the nonlinearity is weak. The nonlinear
flow state is also computed at the point (Ha, Gr) = (200, 6 × 108) and the situation is
very similar and thus not shown. That the fully developed nonlinear flow is non-turbulent
is similar to the case in the unstable region at lower Gr for large Ha (see figures 19, 21
and 22).
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