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The Nyquist–Shannon criterion indicates the sample rate necessary to identify
information with particular frequency content from a dynamical system. However,
in experimental applications such as the interrogation of a flow field using particle
image velocimetry (PIV), it may be impracticable or expensive to obtain data at the
desired temporal resolution. To address this problem, we propose a new approach
to identify temporal information from undersampled data, using ideas from modal
decomposition algorithms such as dynamic mode decomposition (DMD) and optimal
mode decomposition (OMD). The novel method takes a vector-valued signal, such as
an ensemble of PIV snapshots, sampled at random time instances (but at sub-Nyquist
rate) and projects onto a low-order subspace. Subsequently, dynamical characteristics,
such as frequencies and growth rates, are approximated by iteratively approximating
the flow evolution by a low-order model and solving a certain convex optimisation
problem. The methodology is demonstrated on three dynamical systems, a synthetic
sinusoid, the cylinder wake at Reynolds number Re= 60 and turbulent flow past the
axisymmetric bullet-shaped body. In all cases the algorithm correctly identifies the
characteristic frequencies and oscillatory structures present in the flow.

Key words: low-dimensional models, nonlinear dynamical systems

1. Introduction
Fluid flows of practical interest typically exhibit complex spatio-temporal behaviour,

and the analysis of such flows frequently relies upon interrogating large collections of
high-dimensional velocity field snapshots. A widely employed strategy is to attempt
to extract coherent structures from the snapshots, that is, spatial features of dynamic
importance to the flow that can be used to facilitate its analysis, modelling or control.
For canonical flows, coherent structures such as vortex-shedding modes of bluff bodies
flows (Choi and Kim 2008) or spatial streaks in wall-bounded flows (Orlandi 1994)
are well known, and the suppression of such structures may motivate a flow control
strategy. However, for less-studied flows, coherent structures may not be known a
priori and must therefore be sought directly from the snapshot data, necessitating the
development of automatic, data-driven, structure extraction algorithms.

Perhaps the most widely used structure extraction methodology is proper orthogonal
decomposition (POD) (Holmes, Lumley & Berkooz 1996), which decomposes an
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ensemble of snapshots into orthogonal flow fields ranked by their energetic content.
However, POD does not make use of the fact that underlying data are sampled from
a dynamical system, meaning that low-energy, low-ranked structures may still be of
importance to the system’s behaviour (Noack et al. 2003). If the data are sampled
at a constant time step, however, the dynamic mode decomposition (DMD) (Schmid
2010) can be applied to incorporate temporal information when extracting modes.
DMD can be viewed either as fitting a low-order linear model to the evolution of
temporal POD coefficients (Wynn et al. 2013) or, alternatively, as an approximation
to the underlying Koopman operator of the system (Rowley et al. 2009). DMD has
received much recent interest both in terms of its application to analysis of different
classes of flows (such as bluff body flows (Muld, Efraimsson & Henningson 2012;
Bagheri 2013; Tissot et al. 2014), boundary layers (Grilli et al. 2012; Sayadi et al.
2014), cavity flows (Schmid 2010; Seena & Sung 2011; Vinha et al. 2016) or jet
flows (Rowley et al. 2009; Schmid 2010; Schmid, Violato & Scarano 2012; Semeraro,
Bellani & Lundell 2012)) but also in terms of its theoretical development. In particular,
a number of generalisations of the DMD algorithm have recently been proposed, with
each seeking to address various deficiencies of the algorithm. Examples of the recent
developments include: establishing an appropriate way of selecting the most important
DMD modes (Chen, Tu & Rowley 2012; Jovanovic, Schmid & Nichols 2014), finding
an optimal low-order projection basis (Wynn et al. 2013), improving the robustness
of the method to observation noise (Wynn et al. 2013; Hemati, Rowley & Nichols
2017), establishing a stronger link to the Koopman operator (Williams, Kevrekidis
& Rowley 2015) or accounting for input/output systems (Proctor, Brunton & Kutz
2014).

A fundamental requirement of dynamic mode extraction algorithms is that they
must be applied to a data set of flow snapshots sampled at a constant time step
δt between subsequent snapshots. However, once δt has been chosen, the Nyquist
sampling criterion (Nyquist 1928) indicates that an inherent limitation is placed
upon the maximum frequency that can be extracted from a data set. This issue was
discussed in Tu et al. (2014) in terms of current capabilities of PIV systems. The
acquisition rate of a classical PIV system does not typically exceed 15 Hz, implying
an upper limit upon the sampling rate which is not sufficient to investigate temporal
characteristics of turbulent flows. Time-resolved PIV (TRPIV) systems exist that are
capable of producing sampling rates in the range of 1–10 kHz (Adrian and Westerweel
2011), nonetheless, they still may not be sufficient to investigate frequencies of
interest. Additionally, tomographic PIV (tomo-PIV) was introduced recently (Elsinga
et al. 2006), allowing the measurement of three velocity components. In such a
case, the number of measurements drastically increases, especially in a combination
with TRPIV systems, leading to high computational cost of the data processing and
consequently establishing a need to obtain dynamical information from potentially
undersampled data.

An attempt to extend the DMD algorithm to regularly undersampled data sets
is presented in Leroux & Cordier (2016), where a low-dimensional state space
is constructed using POD modes, missing snapshots are reconstructed using an
Expectation–Maximisation algorithm and DMD modes are estimated as a solution
to a multiple regression problem. However, perhaps the most widely employed
methodology to extract coherence from temporally downsampled data is compressive
sampling (Candes & Tao 2006a,b; Donoho 2006). Now, as will be discussed in
§ 2.2, compressive sampling is most effective at extracting sub-Nyquist frequency
information in the situations where data snapshots are sampled randomly in time.
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Dynamic reconstruction for subsampled or irregularly sampled data 135

This is at odds with the requirement of DMD-based modal extraction methodologies
of a constant separation time step. In Tu et al. (2014) this problem was addressed by
first performing compressive sampling directly on a temporally downsampled velocity
field data ensemble, then subsequently using DMD to extract coherent structures.
However, applying the compressive sampling algorithm requires one to pre-specify a
basis such that representation of the data in the chosen basis is approximately sparse
(see § 2.2). Such knowledge is often not available a priori. In this paper we propose
an alternative to this strategy, the irregularly sampled optimal mode decomposition
(is-OMD) algorithm. The motivation for our approach is to extend traditional modal
extraction methods so that they can be applied to data sampled at non-constant
time steps. Thus, the arbitrary choice of projection basis implied by a direct use of
compressive sampling can be avoided, meaning that is-OMD provides a more flexible
method for the analysis of high-dimensional temporally subsampled data ensembles.
Further on, a proposed method makes use of already existing DMD-like algorithms,
making is-OMD readily and easily implementable.

We discuss the performance of the is-OMD algorithm in terms of its ability to
extract coherent spatial features with associated and accurate dynamical information,
and whether such information can be used to reconstruct the instantaneous state of the
flow from subsampled data. Section 2.1 provides an outline of the is-OMD algorithm
followed by a rigorous stability analysis in § 3. A robust extension to the algorithm in
terms of estimation of mode shapes and instantaneous unknown snapshots is presented
in § 4. Section 5 demonstrates an example of a synthetic system for which is-OMD
provides an improvement over compressive sampling in terms of frequency estimation,
whilst § 6 provides a practical discussion of implementation of the algorithm to the
canonical example of the cylinder wake. The demonstration of the applicability of the
is-OMD algorithm to dynamically more complicated turbulent axisymmetric wake is
presented in § 7.

2. Dynamic modes of downsampled and irregularly sampled data
Let f (x, t) denote the state of a dynamical system which depends upon a spatial

variable x and temporal variable t. Suppose first that the system is sampled at p spatial
locations (xi)

p
i=1 and at equally spaced time steps tn= nδt to provide a data ensemble

wn = ( f (xi, tn))
p
i=1 ∈Rp, n= 0, . . . ,N. (2.1)

The DMD algorithm extracts dynamical information by approximating the evolution
between subsequent snapshots. In particular, letting Up ∈ Rp×N be the matrix whose
columns are the POD modes of the first N snapshots {w0, . . . ,wN−1}, DMD produces
(Wynn et al. 2013) a matrix S ∈RN×N which minimises the residual error

N∑
i=1

‖wi+1 − UpSUT
p wi‖

2. (2.2)

In other words, DMD searches for the optimal linear model to describe the evolution
of a set of temporal POD coefficients over the time step δt. Upon taking an eigenvalue
decomposition S = P∆P−1, the DMD modes of the system are defined to be the
columns of UpP, with each mode corresponding to an eigenvalue of S describing the
mode’s growth rate and frequency.

Now, increasing the time step δt between sample points may decrease the accuracy
of the extracted dynamical information. For a simple illustrative example, figure 1
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FIGURE 1. The error in frequency estimation for a range of uniform time steps between
consecutive snapshots.

shows the error between the true frequencies (ωj)
5
j=1= ( jπ10−2)5j=1 and those identified

by DMD from snapshots sampled from the one-dimensional sinusoidal system

f (x, t)=
5∑

i=1

sin(x+ωit), 06 x6 2π, t> 0, (2.3)

for varying snapshot spacings 106 δt6 120. It can be seen that the error in each of
the five system frequencies is zero until, respectively, δt exceeds 100, 50, 33, 25 and
20. This corresponds exactly to the Nyquist condition that the sampling rate must be
at least twice the frequency to be identified, that is, δt6π/ωj = 100/j. This presents
the natural question of whether it is possible to reduce this error and correctly identify
a system’s dynamical information in the case of undersampling. In signal processing,
the established method for achieving such an aim is compressive sampling, which is
typically applied to irregularly sampled data ensembles.

2.1. Irregularly sampled data

Consider the snapshots W = (wn)
N
n=0 ⊂ Rp described in (2.1), sampled with constant

time step δt. An alternative to varying δt, as discussed above, is to instead view δt as
a minimal time step representing the highest possible frequency of data collection, but
assume that only a subset U ⊂W of snapshots may be used for analysis. We refer to
U as the analysis data ensemble and define it by choosing a subset J ⊂{0, 1, . . . ,N},
re-labelling ui :=wi for each index i∈J , and setting U ={ui : i∈J }. Finally, let 1ti be
the sample times between successive snapshots in U which are, possibly non-constant,
integer multiples of δt. The schematic representation of such a sampling strategy is
presented in figure 2.

It will be assumed that W is sampled at a sufficiently high rate that it contains all
dynamical information of interest concerning the state trajectory f (x, t). The question
which we aim to address is to what extent W can be reconstructed from knowledge
of the analysis data set U only. Compressive sampling presents a standard method of
answering such a problem.
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FIGURE 2. Downsampled and regularly sampled data.

2.2. Compressive sampling
Extracting coherent dynamical information from a downsampled data ensemble U may
be possible if the underlying system is sparse, or compressible, when expressed in
particular temporal basis. To describe this, first collect the high-frequency sampled
snapshots W into a matrix

W :=

 ↑ ↑

w0 · · · wN
↓ ↓

 ∈Rp×(N+1). (2.4)

The state trajectory W is said to be compressible if there exists a matrix Ξ = (ξij)∈

R(N+1)×(N+1) such that it can be approximately represented in the form

W ≈ ŴΞ , (2.5)

where Ŵ ∈Rp×N is sparse in the sense that it has only k non-zero columns, with k�N.
Letting ŵi denote the columns of ŵ, and rewriting the decomposition (2.5) as

wi ≈

N∑
j=0

ŵjξji, i= 0, . . . ,N, (2.6)

it is clear that the each column ŵj ∈ Rp represents a spatial structure, while the
respective row (ξji)

N
i=0 of Ξ describes its temporal evolution. For this discussion we

make the assumption that a temporal basis Ξ is known for which a columnwise
sparse solution Ŵ to (2.5) exists.

Next, write the analysis data ensemble U in matrix form

U =

↑ ↑

u1 · · · um
↓ ↓

=WΘ, (2.7)

by defining an appropriate binary matrix Θ ∈ RN+1×m, m = |J |, which encodes the
particular time steps at which data are available. The aim of compressive sampling is
to determine W from knowledge of U only. In view of (2.5) and (2.7), one way to
achieve this is to seek a columnwise sparse solution Ŵ to

U = ŴΞΘ, (2.8)

which would then provide an approximation to the full signal via W ≈ ŴΞ .
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Note that, since m 6 N, equation (2.8) is overdetermined, meaning that the
imposition of sparsity is necessary to obtain a well-posed problem. The most widely
used approach to sparsity promotion is to penalise the `1-norm of Ŵ subject to
the constraint (2.8). However, apart from in the scalar-valued case p = 1, this will
impose entrywise sparsity rather than the desired columnwise sparsity of Ŵ . Methods
to avoid this problem typically use greedy algorithms such as orthogonal matching
pursuit (OMP) (Tropp & Gilbert 2007) or compressive sampling matching pursuit
(CoSaMP) (Needell & Tropp 2009). Rather than minimising the `1-norm of Ŵ , such
methodologies analyse the correlation of the matrix ΞΘ with the downsampled data
ensemble U. They are iterative algorithms in which, upon each iteration, one sparse
vector (a column of Ξ ) is added to the solution. Hence, the outputs of the algorithms
are sparse, with the sparsity of the solution equal to the number of iterations.

An important fact is that the sampling strategy, encoded by Θ , plays a significant
role in determining the performance of compressive sampling algorithms. In particular,
a known requirement is that the chosen temporal basis Ξ has a low coherence with the
sampling strategy Θ (where coherence is defined maxj,k |〈(θji)

N
i=0, (ξik)

N
i=0〉|) (Candes

& Wakin 2008). A common way to achieve this is to use Bernoulli and Gaussian
random measurements, which are known to be incoherent with many canonical bases,
including the typical Fourier basis (Candes & Wakin 2008). That is, if periodic
structures are sought in time, then an aperiodic sampling strategy is beneficial for
extracting them from downsampled data. We reiterate that DMD-type modal extraction
methods do not currently support sampling at non-constant time intervals, meaning
that any potential benefits of such a strategy may not be realised using current
techniques. We now expand upon this observation and propose an extension to DMD
to enable its application to a general irregularly sampled data ensemble of the form
U described in figure 2.

2.3. Dynamic decomposition of irregularly sampled data
The application of DMD to the regularly sampled data set W , as discussed above, can
be obtained by minimising the cost (2.2) with respect to the dynamics matrix S. This
cost function corresponds to projecting each snapshot wi onto its POD coefficients
via UT

pwi, transforming these coefficients under the mapping S, lifting the result back
to create a modified flow field UpSUT

pwi, and finally comparing this flow field to the
snapshot wi+1. Consequently, DMD can be viewed in terms of constructing an optimal
model of the form wi 7→ UpSUT

pwi which best approximates the one-step snapshot
evolution across the entire data ensemble. Solving the DMD optimisation problem is
computationally undemanding: the calculation of Up is simply POD(w0, . . . , wN−1);
while, since (2.2) is quadratic, an analytical solution for S can easily be obtained by
differentiating the cost and solving the resulting linear equation (Wynn et al. 2013).

Now, if one attempts to apply a similar approach to the irregularly sampled data
ensemble U , a natural generalisation of (2.2) is to consider the modified cost function

N∑
i=0

‖ui+1 − UpSni UT
p ui‖

2
=

N∑
i=0

‖wi+ni − UpSni UT
pwi‖

2, (2.9)

where ni :=1ti/δt ∈N is the number of minimal time steps δt between each sample
point in U . In other words, if there are ni minimal time steps between available data
vectors ui+1 and ui we seek to model the system evolution over an interval of length
1ti = niδt by the iterated linear mapping (UpSUT

p )
ni = UpSni UT

p .
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1 2 3

FIGURE 3. Schematic representation of a single iteration of the is-OMD algorithm. Given
an initial guess for the dynamics LMLT – represented by solid lines – over each time step
and the slack variables (step 1), the slack variables are first updated (step 2) before being
fixed to allow an update of L and M (step 3).

Such a formulation encounters two immediate problems. First, the DMD choice
of Up = POD(w0, . . . , wN−1) cannot be made since U may not contain all such
data snapshots. Second, and more importantly, since in general ni > 1, the modified
cost (2.9) is at least of quartic order with respect to S, meaning that an analytical
solution is no longer available. To attempt to avoid these problems, consider the
related optimisation problem

min
ω̂i,L,M

N∑
i=0

‖ω̂i+1 − LMLTω̂i‖
2, (2.10a)

s.t. ω̂i ∈Rp, i= 0, . . . ,N, (2.10b)
ω̂i = ui, i ∈J , (2.10c)

LTL= I, L ∈Rp×r, M ∈Rr×r. (2.10d)

Now, the variable space of (2.10) is considerably extended with respect to DMD.
The low-order model ω̂i 7→ LMLTω̂i approximating snapshot evolution over one
minimal time step δt now has both its projective component L and dynamics matrix
M as optimisation variables. This is the approach taken in the OMD algorithm (Wynn
et al. 2013) and avoids the need to calculate POD modes. More importantly, higher
powers of the dynamics matrix M are avoided by introducing ‘slack’ state variables
ω̂ j ∈ Rp corresponding to each underlying minimal time step jδt. The analysis data
ensemble U is then employed by enforcing the constraint ω̂i = ui, i ∈ J . Finally,
again following the OMD formulation, the user-defined parameter r6N − 1 specifies
the rank of the sought approximating dynamics LMLT. For completeness, we note
that (2.10) reduces to the DMD algorithm in the case that W = U , r = N − 1 and
L= POD(w0, . . . ,wN−1). The OMD algorithm is recovered in the case that W = U .

Despite the removal of higher orders of M from the cost function, (2.10) cannot be
solved directly. Indeed, the inclusion of the slack state variables ω̂i ∈ Rp makes the
problem overdetermined, while the products of decision variables – for example, in
the LMLTω̂i term – indicate that the problem is non-convex. To begin to address these
difficulties, we propose a two-step iterative solution method indicated schematically in
figure 3: first, the model variables L and M are fixed and the slack variables ω̂i are
updated by solving a least-squares problem; second, the updated slack state variables
are fixed, allowing M and L to be updated using the standard OMD algorithm applied
to the regularly temporally sampled fields ω̂i.
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The first of these steps – minimising (2.10a) with respect to ω̂i only, subject
to constraints (2.10b), (2.10c) – is simply a least-squares problem. However,
since typically p = O(105−6), the problem is memory-intensive and likely to be
ill-conditioned. Instead, we only seek to minimise the model error over the subspace
Im(L) ⊂ Rp, where L is fixed within the slack variable update subiteration. This is
achieved by considering the projected quadratic cost

‖LLT
(
ω̂i+1 − LMLTω̂i

)
‖

2
= ‖L

(
LTω̂i −MLTω̂i

)
‖

2
= ‖ci+1 −Mci‖

2, (2.11)

where ci := LTω̂i ∈ Rr. Since r � p, minimising (2.11) with respect to ci is
advantageous to minimising (2.10a) with respect to ω̂i. Consequently, the first step
of the pairwise optimisation is to solve the constrained least-squares problem

min
ci

N∑
i=0

‖ci+1 −Mci‖
2, (2.12a)

s.t. ci = LTui, if i ∈J , (2.12b)
ci ∈Rr, (2.12c)

upon which the slack state variables are updated by lifting up via ω̂i ← Lci. After
this update, the ω̂i are fixed and L,M are updated via the OMD algorithm [L,M]←
OMD((ω̂i)

N
i=0). It is proved in appendix A that this two-step procedure is guaranteed

to decrease the cost (2.10a) which, being bounded below, implies that it will converge
asymptotically.

A subtle characteristic of the OMD algorithm (step 6 in algorithm 1) is that the cost
function of the minimisation problem (2.13) is invariant under rotations of L (Wynn
et al. 2013). In particular, for any orthogonal matrix R̃ such that R̃

T
R̃ = I , the pairs

[L,M] and [LR̃, R̃
T
MR̃] have equivalent costs. The explanation of this behaviour is that

OMD identifies a subspace Im(L)⊂Rp upon which a low-order representation of the
system dynamics can be provided, and that each LR̃ is just a member of the same
equivalence class describing this subspace. For visualisation purposes, we therefore
propose in steps 10–12 of algorithm 1 to choose a rotation of L which ranks its
columns by their energetic contribution to the known data.

The is-OMD procedure is summarised in algorithm 1 which outputs: (i) estimated
intermediate snapshots wi, i /∈ J ; (ii) a projection matrix L and (iii) an approximate
dynamics matrix M . The appropriate choice of initial projection and dynamics
matrices, L0, M0, will be discussed in detail in § 6.1 where it is demonstrated that a
sensible choice is to set the initial dynamics matrix to be a small perturbation of the
identity matrix with normal distribution of standard deviation σ , (M0)ij=N(0, σ 2)+ δij,
and the projection space to be POD modes of the analysis data ensemble U ,
L0 = POD(U). Additionally, the beneficial impact of choosing a large value of r
will be established in § 6.2.

A natural variant of algorithm 1 is to use DMD in place of OMD in step 6, in
which case Lk := POD((wk

i )
N
i=0) would be fixed in step 6 within each iteration. Note

that in this case, a final rotation of L in steps 10–12 is unnecessary. Finally, it should
be noted that the notion of dynamic modes has not yet been defined in the context
of algorithm 1. This will be discussed subsequently in § 4.1.
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Algorithm 1 is-OMD

1: inputs U = {ui : i∈J }, L0 ∈Rp×r satisfying LT
0 L0= I , M0 ∈Rr×r, k= 1, and ε > 0.

2: repeat
3:

(ck
i )← arg min

(ci)

N∑
i=1

‖ci −Mk−1ci−1‖
2,

s.t. ci = LT
k−1ui if i ∈J .

(2.13)

4: wk
i ← Lk−1ck

i , i /∈J .
5: wk

i ← ui, i ∈J .
6:

[Lk,Mk]← arg min
L,M

N∑
i=1

‖wk
i − LMLTwk

i−1‖
2,

s.t. LTL= I,

L ∈Rp×r, M ∈Rr×r.

(2.14)

7:

Sk←

N∑
i=1

‖wk
i − LkMkL

T
kw

k
i−1‖

2. (2.15)

8: k← k+ 1
9: until (Sk − Sk−1) < ε

10: R̃ΣV
T
← svd

(
LT

k U
)

11: M← R̃
T
MkR̃

12: L← LkR̃
13: return (wi)

N
i=0,M ∈Rr×r and L ∈Rp×r.

3. Algorithmic considerations
We now discuss feasibility of the slack variable subproblem (2.13) and comput-

ational complexity of the algorithm 1. Since the model update subproblem (2.14) is
an application of OMD or DMD, we refer to (Wynn et al. 2013) for a discussion of
this step’s performance. Furthermore a detailed proof demonstrating that the cost (Sk)
is monotone decreasing (and hence, convergent) is presented in appendix A.

3.1. Convexity of the slack variable update

The equality constrains ci=LTui, i∈J of (2.13) represent time steps at which data are
available. Without loss of generality, we consider the problem in which J = {0, N},
since the general optimisation problem can be broken into a number of independent
subproblems of this form. Now, it is not difficult to prove that (2.13) can be written
as the unconstrained least-squares problem

min
ξ
‖Aξ − b‖2

2, (3.1)
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where

A=



M 0 . . . 0

−I
. . .

. . .
...

0
. . .

. . . 0
...

. . .
. . . M

0 . . . 0 −I


∈RNr×(N−1)r, b=


LTuN

0
...

0
−MLTu1

 ∈R
Nr, (3.2a,b)

and ξ =
(
cT

N−1 · · · cT
1

)T
∈R(N−1)r. Consequently, (2.13) is convex and admits the solution

ξ = (ATA)−1ATb provided the matrix A is full rank. This is true, and follows from
the easily shown fact that Aξ = 0⇔ ξ = 0. Finally, we note that solving a series of
independent subproblems has significant advantages in terms of computational memory
savings and improved numerical stability due to a reduced condition number of (ATA)
compared to the case where ξ and b contain LTui and ci for all i ∈J .

3.2. Computational complexity

The computational cost of the algorithm 1 consists of that associated with the two
optimisation subproblems; the least-squares problem (2.13) and the modal optimisation
(2.14) where dynamic model is updated via OMD (or DMD). Solving the least-squares
problem using, for example, the Moore–Penrose pseudoinverse of A ∈ RNr×(N−1)r has
complexity O(N3r3). Moreover, as discussed in § 3.1 the full least-squares problem can
be broken down into a number of smaller, independent, subproblems corresponding to
Ni intermediate time steps, each of which can be solved at a low computation burden.
For example, (Ni = 10, r = 40) and (Ni = 20, r = 60) can be solved in 0.01 s and
0.3 s on a standard desktop computer, respectively, and each subproblem could be
parallelised, if required.

For the modal optimisation subproblem (2.14), a discussion of the computational
performance of OMD and DMD can be found in (Wynn et al. 2013). Both the total
number of slack variables N and the approximation rank r affect computation time
in addition to the underlying dynamic characteristics of the specific system to which
the each algorithm is applied. With respect to the examples considered subsequently:
for the cylinder flow in § 6, the is-OMD algorithm converges with a tolerance of
10−2 after 80 iterations of algorithm 1, with each call of OMD in subproblem (2.14)
requiring 8.0 s (N = 500, r = 50), giving a total computation time for is-OMD of
640 s; for the application to PIV snapshots of turbulent flow past an axisymmetric
bluff body in § 7, is-OMD converges to the same tolerance in only 10 iterations but
with a higher cost of 13.8 s (N = 120, r = 30) for each OMD subproblem, resulting
in a total computation time of 138 s.

Finally, we note that since both OMD and algorithm 1 are iterative, a possible
method to improve algorithmic efficiency would be to apply a (small) fixed number
of OMD iterates at each subproblem (2.14). Alternatively, one may apply DMD in
place of OMD in subproblem (2.14) to reduce the computational cost. This will be
explored in future work. All computations were performed using MATLAB on a
standard desktop PC with a 3.4 GHz quad-core Intel i7 processor and 16 GB RAM.
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4. Mode extraction and approximation of intermediate snapshots
In order to describe the performance of algorithm 1, consider first a one-dimensional

synthetic sinusoidal system

f (x, t)=
∑

j

Aj sin(kix+ωjt) exp(γjt), 06 x6 1, t> 0, (4.1)

with exponential growth rates γj, amplitudes Aj > 0, frequencies ωj > 0 and
wavenumbers kj > 0. A reference data set W = {wi}

900
i=1 is created where each snapshot

wi =

(
f
(

j
Nx
, iδt
))Nx

j=0

, i= 1, . . . , 900, (4.2)

is sampled at Nx = 104 equally spaced points.
Downsampled, analysis data sets U = {wi}i∈J ⊂ W are created by defining a

subsampling strategy J ⊂ {1, . . . , N}, and associated with each downsampled set is
an average sampling time step

1tav :=
1
|J |

∑
i∈J

1ti, (4.3)

where 1ti is the time step between subsequent elements of U . For each frequency
ωj, let δt∗j := π/ωj denote the largest sampling time step which satisfies the Nyquist
criterion for that particular frequency. Of interest will be the situations in which
1tav/δt∗j > 1, indicating cases where, on average, downsampling may prevent accurate
frequency identification.

We consider data sampled from (4.1) in the case of two frequencies ω1=π/20,ω2=

2π/25, respective amplitudes A1= 1,A2= 0.5, wavenumbers k1= 10, k2= 100, growth
rates γ1 = 0.01, γ2 = 0.05 and minimal time step δt = 1. The analysis data ensemble
U is selected with an average sampling time step satisfying

1tav

δt∗1
=

7
8
,

1tav

δt∗2
=

6
5
, (4.4a,b)

meaning that we would expect, according to the Nyquist criterion, to accurately
extract ω1 but not ω2. Such a selection of an average sampling time step provides
a downsampled data ensemble U of cardinality |U | = 45, i.e. only 5 % of the
time-resolved ensemble W is retained. Algorithm 1 is initialised with (M0)ij =

N(0, σ 2)+ δij, that is, a small perturbation of the identity matrix with σ =
√

0.3, and
L0 = POD(U), where U is the analysis data ensemble in a matrix form.

Figure 4 presents the eigenvalues of the matrix M obtained from the is-OMD
algorithm, demonstrating that the is-OMD algorithm accurately identifies the
oscillatory and exponential parts of the dynamics corresponding to both resolved
and undersampled frequencies. For results presented in figure 4 the proportional
eigenvalue error is O(10−6) for both λ1 and λ2. Additionally, figure 4 presents the
most energetic columns of L. These structures have the shape of sinusoids with an
amplitude and wavenumber specified by Aj and kj. Columns of L retain the prescribed
values of kj, albeit with a visible interaction between k1 and k2.

As discussed in § 2.3, the columns of L should be viewed as spanning a subspace
of Rp appropriate to the system dynamics and, consequently, there is no direct
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FIGURE 4. Dynamic matrix M obtained using the is-OMD algorithm for the synthetic
sinusoidal system with exponential dynamics (a), structures present in the system
corresponding to k = 100 (b) and to k = 10 (c) represented by most energetic columns
of L and is-OMD modes Φ is-OMD obtained using algorithm 2.

correspondence between eigenvalues of M and columns of L. In the OMD algorithm,
dynamic modes Φ are defined as the embedding of the eigenvectors of M into a
high-dimensional vector space using projection L, i.e. Φ = LP, where M = PΛP−1,
indicating that each mode corresponds directly to a particular eigenvalue. Now,
despite the identification of accurate spectral information and projection basis vectors
indicated in figure 4, it is the case that the columns of LP lack coherence. In
particular, the lack of time-resolved data manifests itself in corrupting the eigenvectors
of M . Although L and M may still be of sufficient quality to construct an approximate
low-order model of the system, if one would like to define dynamic modes the
following alternative mode extraction post-processing step is proposed.

4.1. Dynamic mode extraction

Given a data ensemble (wi)
N
i=0, a typical description (Rowley et al. 2009; Schmid

2010; Chen et al. 2012) of dynamic modes Φi and eigenvalues λi is that they describe
the evolution of the first N − 1 snapshots according to

wi =

N∑
j=1

λi
jΦj⇒W =ΦV , (4.5)

where W = [w0, . . . ,wN−1],Φ = [Φ1, . . . ,ΦN] and V is the Vandermonde matrix

V :=


1 λ1 λ2

1 · · · λ
N−1
1

1 λ2 λ2
2 · · · λ

N−1
2

...
...

...
. . .

...

1 λN λ2
N · · · λN−1

N

 . (4.6)

In particular, for V constructed using DMD eigenvalues, DMD modes can be
interpreted as arising from the solution to the minimisation problem

min
ΦDMD
‖W −ΦDMDV‖. (4.7)

In view of the observation that accurate spectral information may be identified by
algorithm 1, we seek to adapt this approach to calculate dynamic modes from the
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output of algorithm 1. In particular, consider the output M with eigenvalues λi obtained
from a data ensemble with known data only at points J ⊂ {0, . . . , N}. From this,
construct a reduced Vandermonde matrix VJ containing r rows and only the columns
whose indices are in J . The dynamic modes associated with algorithm 1 are given
in terms of the solution to the reduced minimisation problem

min
Φ
‖U −ΦVJ ‖

2. (4.8)

This is a least-squares problem with solution, Φ, from which the dynamic is-OMD
modes are defined as

Φ is-OMD
j =

Φj

‖Φj‖
. (4.9)

It is noted that computation of the dynamic modes through an inversion of VJ can
be restrictive in the sense that it is assumed that temporal evolution corresponding
to coherent structures is highly periodic. In applications where this is not case an
alternative approach may be required: an example is presented in § 7 where dynamic
modes are obtained by introducing rate constraints to the low-dimensional dynamics.

A technical consideration is that an accurate solution to the problem (4.8) requires
V to be full rank. However, it is known that Vandermonde matrices are typically
ill-conditioned (Williams 2011). For this reason, it is also desirable to remove rows
of the Vandermonde matrix corresponding to eigenvalues which are of comparative
unimportance to the system dynamics. This can be achieved by taking a QR
decomposition with column pivoting V T

J = QRP̃
T
, where QTQ = I , R is an upper

triangular matrix and P̃ is a column permutation matrix such that absolute diagonal
values of R, |rii|, are decreasing. A tolerance, 0< t̃< 1, is chosen, and the number or
rows retained, n, is set to n=max{i : |rii|> t̃|r11|}. The intention is that the condition
number of the reduced matrix is decreased since rows corresponding to dynamically
unimportant eigenvalues (which typically possess a large negative real part) are
discarded. The number of removed rows will depend on the tolerance t̃, which has
to be set such that majority of dynamically irrelevant eigenvalues are discarded but
all of the dynamically relevant features are retained. An appropriate way to select t̃
is outlined in § 6.2, and the post-processing step is summarised in algorithm 2.

Algorithm 2 Dynamic Mode Post-Processing

1: inputs U = {ui : i ∈J }, [λ1, . . . , λr]
T
= eig(M is-OMD ), 0< t̃< 1.

2: VJ = (vJ )ji← λ
i−1
j , for i ∈J and j= 1, . . . , r.

3: QRP̃
T
← qr(V T

J ), such that |rjj|> |rii| for j< i.
4: n←max{i : |rii|> t̃|r11|}.
5: P̃←[ p̃1, . . . , p̃n], where p̃i are columns of P̃.
6: VJ ← P̃

T
VJ .

7: Φ← arg min
Φ

‖U −ΦVJ ‖
2.

8: Φ is-OMD
j ←Φj/‖Φj‖

9: Λis-OMD
←[λ1, . . . , λr]

TP̃
10: return Φ is-OMD

∈Rp×n,Λis-OMD
⊂ [λ1, . . . , λr]

T.

Using the eigenvalues obtained previously, the is-OMD modes of the system
(4.1) are obtained from (4.8) for a Vandermonde matrix conditioned with t̃ = 0.01.
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Figure 4 shows modes corresponding to identified eigenvalues, which accurately
match the prescribed spatial wavenumbers k1 and k2. Note the difference between
the columns of L in figure 4, where there is a visible interaction between both
wavenumbers, a phenomenon which is not evident in Φ is-OMD. Although L is not used
in the calculation of Φ is-OMD, its inclusion in the variable space of algorithm 1 allows
for greater freedom in the estimation, which may lead to more accurate λi and, hence,
more accurate dynamical modes.

4.2. Intermediate snapshot reconstruction
Despite the fact that the intermediate snapshot variables wi in algorithm 1 provide
the freedom with which accurate spectral information can be obtained, these
variables typically contain high-frequency content not present in the reference
data. However, using the eigenvalues Λis-OMD

= [λ1, . . . , λn] and dynamic modes
Φ is-OMD

= [Φ1, . . . , Φn] obtained from algorithm 2, it is possible to obtain an
improved approximation of intermediate snapshots corresponding to time steps i /∈J .

To do this, consider the interpretation of the modal decomposition output described
through (4.5). At each of the known analysis data snapshots (uk)k∈J we consider the
projection (Φ is-OMD)Tuk =: (aj)

r
j=1 ∈Rr and subsequently extrapolate via

w̃i =

n∑
j=1

λi
jajΦj, k= 1, . . . , nk − 1, (4.10)

where nk is the number of minimal time steps δt between successive snapshots uk and
uk+1.

The above technique is applied to the system (4.1) with the same parameters as
in § 4.1, with eigenvalues λj and dynamic modes Φj obtained with algorithm 2, to
produce intermediate snapshots w̃i. Figure 5 presents the temporal evolution of the
snapshot error εi = ‖w̃i −w

ref
i ‖

2/‖w
ref
i ‖

2, where it can be seen that due to the linear
nature of the system, the error increases linearly when w̃i is estimated further away
from known snapshots ui. However, since the eigenvalues λ are estimated accurately,
snapshot extrapolation gives a small error εi < 10−4.

5. A comparison with compressive sampling
The statistical performance of both is-OMD and compressive sampling in terms of

the ability to extract frequency content from undersampled data will be analysed on
the one-dimensional synthetic sinusoidal flow

f (x, t)=
∑

j

Aj sin(kjx+ωjt), 06 x6 1, t> 0, (5.1)

with amplitudes Aj > 0, frequencies ωj > 0 and wavenumbers kj > 0. Similarly to the
system in § 4, reference data set W = {wi}

900
i=1 is generated where each snapshot

wi =

(
f
(

j
N
, iδt
))Nx

j=0

, 0= 1, . . . , 900, (5.2)

is sampled at Nx = 104 equally spaced points in 0 6 x 6 1. Algorithm 1 will be
compared with the compressive sampling approach developed in Tu et al. (2014),
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5
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t

FIGURE 5. Temporal evolution of the snapshots reconstruction error
εi = ‖w̃i −w

ref
i ‖

2/‖w
ref
i ‖

2, where w̃i is defined by (4.10).

which will be referred to here as CS-DMD. CS-DMD is implemented by first
obtaining an approximation of the fully resolved data set, W , from the analysis
data set U using a CoSaMP algorithm (Needell & Tropp 2009). Subsequently, the
DMD eigenvalues corresponding to W are obtained. Accuracy is described by the
proportional error in extracted frequency

ελ :=
|ωj − Im(λ)|

ωj
, (5.3)

where λ are the eigenvalues obtained by each of the two methods.

5.1. Robustness of CS-DMD and is-OMD
We consider data sampled from (5.1) in the case of two frequencies ω1=π/20, ω2=

2π/25, with respective amplitudes A1= 1,A2= 0.5, and minimal time step δt= 1. The
analysis data ensemble U is selected with an average sampling time step satisfying

1tav

δt∗1
=

7
8
,

1tav

δt∗2
=

6
5
, (5.4a,b)

as in § 4.
The first step of CS-DMD is to apply compressive sampling to U to form an

approximation Ŵ to the fully resolved data ensemble W . Recall from § 2.2 that this
is achieved by (i) choosing and fixing a temporal basis Ξ , then (ii) successively
adding a number, k say, of elements of this basis which best correlate with the
available data. Motivated by the fact that the underlying data sampled from (5.1)
are sparse in the Fourier basis, we set Ξ to be the inverse Fourier Transform and
obtain approximations Ŵk ≈W corresponding to extracting k= 4, 8 and 20 dominant
basis vectors. DMD is then applied to each Ŵk to determine the identified eigenvalue
information.

Since we do not want to assume a priori the number of dynamically important
structures present in a given data set, it is desirable that the accuracy of the frequency
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FIGURE 6. The DMD eigenvalue lattice obtained using snapshots reconstructed with CS-
DMD for different numbers of sparse structures (a–c), with λis-OMD, is given for r = 45.
The Fourier spectrum obtained by compressive sampling for k= 20 is shown in (d).

information provided by CS-DMD behaves predictably with the requested number of
basis elements k. Figure 6 indicates that this is not the case. Indeed, the frequencies
ωi are accurately identified only in the case k = 8, with k = 4 failing to identify the
higher frequency ω2, while the choice k= 20 results in an underapproximation of ω1.

For k = 4, inaccuracy arises from the discrete Fourier frequencies implied by the
chosen basis Ξ . Since the fully resolved data ensemble contains 900 samples, the
chosen basis contains only discrete frequencies ωF = (2πn/900)900

n=0, k of which are
used to express the data. For this particular example, no single ωF coincides with
ω1 = π/20. Instead there are multiple values of ωF in a small neighbourhood of ω1
and, since A1 > A2, the CoSamp algorithm applied with k = 4 (incorrectly) identifies
a pair of frequencies ωF close to ω1. The result is improved for k = 8, which is
sufficiently large to resolve both ω1 and the higher frequency ω2. However, for k= 20
it is shown in figure 6(d) that compressive sampling identifies Fourier frequencies ωF

not present in the underlying system, in addition to those close to the true values
ω/π= 0.05, 0.08. Upon application of DMD to Wk, these extra frequencies result in
an incorrect identification of ω1.

Such a lack of robustness with respect to k is not evident in the application
of algorithm 1 to this example, which, as can be seen in figure 6(a–c), correctly
identifies the two underlying frequencies in the data using a model of order r = 45.
The is-OMD results in figure 6(a–c) present only four eigenvalues of interest. The
eigenvalues of relevance were chosen based on the energetic criterion similar to
approaches in Rowley et al. (2009), Chen et al. (2012), Jovanovic et al. (2014),
where the magnitudes of the DMD modes are examined. Here, the magnitude of a
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FIGURE 7. The relative contribution of the is-OMD modes.

solution to (4.8), ‖Φk‖2, is assessed and eigenvalues with the largest magnitude of
the associated modes are selected. Note that, if VJ contains dynamically unimportant
eigenvalues with large decay rate, the associated modes will have an excessively
large magnitude in order to compensate for the low value of λi−1

j at later time
steps. Therefore, in order to obtain a meaningful ranking of modes based on the
energy criterion, it is important to remove dynamically unimportant rows of VJ

using algorithm 2. Here, (4.8) is solved using VJ conditioned with t̃= 10−3 retaining
nine rows of Vandermonde matrix, and consequently nine structures. Figure 7 shows
a relative energetic contribution of each mode to the system dynamics defined as
|Xk| = ‖Φk‖2/

∑
j ‖Φk‖2, demonstrating a clearly visible drop in ‖Φ̃k‖2 between

dynamically important and unimportant eigenvalues and allowing the identification of
frequencies presented in figure 6(a–c).

Note that another variable prescribed a priori in the CS-DMD methodology is
the rank r of the DMD approximation, which is upper bounded by the number of
extracted basis vectors k. The CS-DMD results presented in figure 6 were obtained
with DMD approximation of rank r= 4 as opposed to r= 45 of the is-OMD results.
The reason for selecting this rank for the CS-DMD approximation can be explained
if the maximal case r = k is instead considered. With this choice, DMD eigenvalue
information will replicate the Fourier frequencies which most accurately correlate with
the analysis data ensemble, U . Figure 8(a) presents the relative contribution of each
mode for r = k = 20. Although the frequencies corresponding to the most dominant
modes are close to the true values, it is nonetheless not clear from figure 8(a) how
to choose a threshold which will allow frequencies of dynamical importance to be
retained. A similar situation occurs in figure 8(c) for r= k= 8.

For r= k= 8 eigenvalues coincide with ωF which lie in a small neighbourhood of
ω1 and ω2 with a small error ελ corresponding to those frequencies. However, it is
shown in figure 6(b) that if a combination k = 8, r = 4 is used, ελ decreases further.
Based on these observations, in § 5.2 where a statistical sample of sinusoidal flows is
investigated, for CS-DMD methodology a combination of k= 8 and r= 4 is utilised.
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FIGURE 8. The output of the CS-DMD methodology for different values of k and r where
k= r. The importance of modes and corresponding eigenvalue spectrum for k= r= 20 is
shown in (a,b) while those corresponding to k= r= 8 are presented in (c,d).

5.2. Frequency estimation analysis: statistical comparison between compressive
sampling and is-OMD

To study the differences in performance of is-OMD and compressive sampling, both
methodologies were applied to the system (5.1) for a range of frequencies and average
sampling rates. In particular, the lower frequency is fixed, as above, to ω1 = π/20,
while the higher system frequency takes one of values

ω2(n)=ω1 +
nπ

100
, n= 1, . . . , 20. (5.5)

Subsequently, for each of value of ω2(n) a number of downsampled analysis data
ensembles Unm are constructed whose average sampling rates satisfy

1tav(Unm)

δt∗2
= 1+

m
20
, m= 1, . . . , 55, (5.6)

that is, each exceeds the Nyquist criterion to differing degrees. This is achieved by
constructing fully resolved data sets

Wnm =

{
f
(

x, i
(

1+m/20
1+ n/5

))
: 06 x6 1, i= 1, . . . , 900

}
(5.7)
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FIGURE 9. Average proportional frequency error ελ corresponding to ω1 (a) and ω2 (b) for
each 1tav/δ

∗

2 ; and corresponding to each ω2 when ελ is averaged over a range of different
downsampling ratios 1tav/δ

∗

2 (c).

and sampling non-uniform analysis data ensembles Unm ⊂ Wnm, each of cardinality
|Unm| = 45. Note that the fully resolved data set is varied for each pair (n,m) in order
that analysis data sets with different average downsampling rates (as a proportion of
δt∗2) can be constructed to possess the same proportion, 5 %, of elements to the fully
resolved ensemble.

The CS-DMD and is-OMD algorithms are applied to each data set Unm. Motivated
by § 5, we apply the CoSamp algorithm with sparse basis matrix Ξ as the inverse
Fourier transform and set the sparsity level to k = 8. Algorithm 1 is initialised with
(M0)ij = N(0, σ 2) + δij, that is, a small perturbation of the identity matrix with σ =
√

0.3, and L0 = POD(Unm), with the modelling dimension set as r= |Unm| = 45.
Figures 9(a) and 9(b) show the proportional frequency error ελ corresponding to

ω1, ω2, respectively, averaged over the different values of 1tav(Unm)/δt∗2 . Note that,
since the data are sampled in such a way to achieve a particular value of 1tav/δt∗2 , the
corresponding downsampling ratio for δt∗1 is 1tav/δt∗1 = (1tav/δt∗2)(ω1/ω2), meaning
that 1tav/δt∗1 are not similarly grouped. Consequently, a discrete set of values is
defined, S = {1.02, 1.04, . . . ,1.92}, and for each element Si results satisfying
|1tav/δt∗1 − Si| < 0.01 are grouped together and averaged accordingly. It is clear
from figure 9(a,b) that the proportional frequency error is reduced by application of
algorithm 1 in comparison to CS-DMD.

Figure 9(c) shows the proportional frequency error ελ corresponding to ω2, as ω2 is
varied, each averaged over the 55 different values of the downsampling ratio 1tav/δt∗2 .
The CS-DMD error is approximately constant, while to is-OMD error decays as |ω1−

ω2| increases. It should be noted that such a pattern can be observed if the OMD
algorithm is applied to fully time-resolved snapshots W which contain observation
noise. This is, pairs of eigenvalues satisfying |Im(λi) − Im(λj)| � 1 are sensitive to
observation noise.

6. Numerical example: cylinder wake
Algorithms 1 and 2 are applied to the numerical results of the circular cylinder flow

at Re= 60 and their performance is analysed on the limit cycle regime. The numerical
data were obtained using the in-house solver called Pantarhei, which was validated
for the cylinder flow in Lu & Papadakis (2011, 2014). The code uses the finite
volume method in an unstructured grid. The spatial terms of Navier–Stokes equations
were discretised using a second-order central scheme and the system was advanced
in time using a second-order, three-point backward scheme. The domain used for
the simulations was 48D long and 32D wide, where D is the cylinder diameter.
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The distance between cylinder location and upstream and downstream boundaries
is respectively 16D and 32D. The total number of cells was 62 791. The grid was
non-uniform with the minimum grid spacing h ≈ D/60 near the cylinder boundary.
Uniform inflow (U∞ = 1), convective outflow and symmetric boundary conditions on
the lateral sides of the domain were imposed. Additionally, a no-slip condition was
imposed on the cylinder boundary. Density and viscosity of the flow were modified
accordingly to achieve the desired Reynolds number. This dynamical system exhibits
a pair of vortices oscillating at a shedding frequency together with the series of
higher harmonics; each oscillating at an integer multiple of the shedding frequency.
These values can be extracted by applying the OMD algorithm to time-resolved data.

The performance of is-OMD will be assessed by comparing the eigenvalue
information between eigenvalues retained in the post-processing algorithm 2, Λis-OMD,
and λOMD from the OMD algorithm applied to time-resolved data. Three aspects of
algorithm initialisation and their impact on the extraction of dynamic information are
discussed here: the initialisation of L0 and M0; the projection rank r; and sampling
strategy J . A downsampled data set U is extracted randomly from a reference data
set W uniformly sampled at δt= 0.25s containing 30 snapshots per shedding period.
Here, it is convenient to introduce the following quantities related to the sampling
strategy: 1tav =

∑
i∈J 1ti/|J |, 1tmin =min{1ti | i ∈ J } and 1tmax =max{1ti | i ∈ J }.

Unless stated otherwise, U is sampled such that 1tav = 10δt without constraints on
1tmin and 1tmax. Applying a Nyquist criterion to data downsampled at a constant
1t = 10δt, such downsampling is sufficient to resolve the vortex-shedding frequency
but not satisfactory if the objective is to identify higher-frequency modes.

6.1. Initial condition analysis
To assess the most appropriate properties of L0 and M0 to initialise is-OMD, three
classes of initial condition are considered:

(i) L0 is set to POD modes of the known data, U, and an identity matrix chosen to
approximate M0, i.e. L0 = POD(U), M0 = I r;

(ii) L0= POD(U) and an identity matrix with entries perturbed by noise used for M0:
(M0)ij =N(0, σ )+ δij;

(iii) OMD is applied to data undersampled with a constant time step 1t, U, to obtain
L0 and M0, i.e. [M0, L0] =OMD(U).

The motivation for [M0, L0] = OMD(U) is that in systems exhibiting limit cycle
behaviour, their dynamics does not qualitatively change with time. In such a case, two
sets of data can be acquired, one with non-uniform 1t which is used as an input to
is-OMD, U, and a second one which is uniformly subsampled, U. In such a case U
is not sufficient to obtain all the dynamics of interest; however, the output of OMD
can still be used for L0 and M0.

In order to consider the role of the initial conditions, the same downsampling
strategy and approximation rank r are used for all three cases. In particular, U is
sampled non-uniformly, with 1tav = 10δt and without constraints on 1tmin and 1tmax,
while the projection rank is set to r = 75. The dimensions of both data sets W , U
are W ∈ Rp×750, U ∈ Rp×75, i.e. |I| = 750 and |J | = 75. The U ∈ Rp×75 was sampled
such that 1tav = 10δt, which is sufficient to resolve a time scale of 2/3T , where T is
a shedding frequency. Note that cylinder flow contains harmonics with time scales of
T/n for n ∈ Z+, meaning that 2/3T is not sufficient to resolve the subharmonic with
a time scale of T/2.
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FIGURE 10. Eigenvalues of the dynamic matrix M obtained using the is-OMD algorithm
for different initial conditions (a). The error in eigenvalue magnitude for identity matrices
with σ ∈ [10−9, 10−2

] (b), obtained for the projection rank r= 75.

The extracted dynamical information for M0 = I r, [M0, L0] = OMD(U) and
(M0)ij = N(0, σ ) + δij with σ = 10−2, 10−3 are presented in figure 10. In all of the
analysed cases, only the eigenvalues retained in algorithm 2 for t̃= 0.3 are presented.
The Strouhal number is defined as St= fD/U∞, where D is the cylinder diameter and
U∞ is the inflow velocity. Assuming that flow field was non-dimensionalised using
a cylinder diameter and an inflow velocity, the Strouhal number can be extracted
from the phase information of each eigenvalue, St = Im(λ)/(2π). The magnitude of
the eigenvalue provides the information about the growth rate, which is expressed in
such a way so that growth rate, β, follows β t, i.e. β = exp(Re(λ)). The reference
eigenvalues in figure 10 were obtained by applying the OMD algorithm to W
for r = 30, and consist of the asymptotic eigenvalues representing the limit cycle
behaviour and eigenvalues at β = 0.9 characterising relaxation of the flow onto its
limit cycle (Bagheri 2013). The primary objective is to assess the accuracy at which
the is-OMD algorithm approximates the asymptotic eigenvalues, since the values at
β = 0.9 correspond to dynamics at extremely low energy for the chosen data set W .

In the case where M0 = I r, a majority of the eigenvalues of M are characterised
by Re(λ) � 0 and are discarded in algorithm 2 due to the choice of t̃. None of
the frequencies present in the system are recovered. For [M0, L0] = OMD(U), only
frequencies within time-scale range of U are correctly estimated (i.e. St ∈ [−0.2, 0.2]).
Figure 10 demonstrates that noise must be added to M0 in order to extract high-
frequency harmonics. It is interesting to note that as the standard deviation increases,
more frequency information is recovered. In particular, for an order of magnitude
increase in σ , an additional conjugate pair of eigenvalues is correctly identified and
the growth rate of all eigenvalues, β, is more accurate.

In order to further demonstrate a beneficial influence of noise addition, a repeated
analysis was performed for (M0)ij = N(0, σ )+ δij with σ ∈ [10−9, 10−2

]. Accuracy in
the estimation of seven most dominant eigenvalues is analysed and the proportional
error is defined as ε :=

∑7
i=1 |λ

true
i − λ

is-OMD
i |/

∑7
i=1 |λ

true
i |. Figure 10 demonstrates that

ε decreases as σ increases. It is clear that, in order for the is-OMD algorithm to
successfully recover dynamical information, a certain degree of flexibility has to be
included in M0. For M0 = I r and [M0, L0] = OMD(U), the dynamics corresponding
to dominant structures present in the system, i.e. constant mean mode and shedding
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vortices, are strongly embedded in the initial matrix structure. In such cases the
objective function can be significantly reduced in few iterations, indicating that such
a M0 predetermines a local minimum of (2.10). This problem appears to be avoided
simply by randomly perturbing the initial matrices. Note that it is possible to adjust
a frequency range of the eigenvalue spectrum of (M0)ij = N(0, σ ) + δij by adjusting
a value of σ , where larger value of σ will cover larger range of frequencies. If the
system exhibits primarily low-frequency dynamics it is desirable to set σ to a lower
value such that an eigenvalue spectrum of M0 is in a neighbourhood of the expected
range of the frequencies of interest.

6.2. Rank size analysis
It was demonstrated in § 5.1 that setting a high value of k in the CS-DMD approach
induces Fourier modes corresponding to high-frequency oscillations not present in
time-resolved data. It is therefore important to consider the impact of the equivalent
parameter in the is-OMD algorithm, that is, the dimension r of Im(L). It will be
demonstrated here that larger r improves accuracy in the recovered eigenvalues, which
consequently leads to an improved accuracy of Φ is-OMD in algorithm 2. An analysis
in terms of the eigenvalue and mode estimation is performed for r = [25, 50, 75]
using the same sampling strategy as in § 6.1 and setting (M0)ij = N(0, 0.3) + δij,
L0 = POD(U).

Figure 11 presents eigenvalue lattices for different values of r and demonstrates
a positive impact of increasing r on the accuracy of the dynamic estimation. When
r increases, a progressively greater number of asymptotic eigenvalues is recovered
and their growth rates β converge towards the correct value of 1. The number of
modes which can be calculated is proportional to the number of recovered eigenvalues.
For r of 25, 50 and 75 there are respectively one, three and four conjugate pairs
of eigenvalues that are estimated with small error, and with growth rate β > 0.95.
The dynamic modes are estimated as a solution to (4.8) which in turn depends upon
VJ being constructed using accurate eigenvalues. Figure 13 shows dynamic modes
corresponding to eigenvalues with β > 0.95 obtained for r = 75, and it demonstrates
that the mode shapes closely resemble the coherent structures obtained from time-
resolved data (figure 12). The dynamic modes of similar precision can be obtained for
other eigenvalues presented in 11, where β > 0.95, therefore mode shapes for r= 25
and r= 50 are omitted here.

Note that for r = 25 and r = 75 a pair of eigenvalues is recovered which contains
an error in β. Figure 14 shows the corresponding dynamic modes. Although these
structures are not as coherent as for eigenvalues where β >0.95, there is nonetheless a
resemblance to the structures present in the flow (figure 12). It is expected that when r
is increased even further the eigenvalue accuracy improves, leading to better precision
in the estimation of the dynamic modes. In practice, when L0=POD(U) and (M0)ij=

N(0, σ )+ δij are used, r is only limited by |J |. This quantity is usually much higher
than for the results presented here, and the choice of r would be limited only by the
processing cost.

When unknown data sets are reconstructed using (4.10), the value of r impacts the
accuracy of estimated snapshots, W̃ = [w̃1, . . . , w̃N] for i /∈ J , through the precision
and number of reconstructed eigenvalues λj and dynamic modes Φj, and is expected to
improve when r is increased. This fact is confirmed in figure 11, which presents the
evolution of the error norm, εr = (1/|I|)

∑
i∈I ‖W̃ −W ref

‖
2/‖W ref

‖
2 for r ∈ [10, 70].

There is a visible decay in the value of εr, where εr is less than 5 % for r > 30.
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FIGURE 11. Eigenvalues of the dynamic matrix M for r = [25, 50, 75] (a). The error
εr = (1/|I|)

∑
i∈I ‖W̃ −W ref

‖
2/‖W ref

‖
2 for (M0)ij =N(0, 0.3)+ δij with different r (b).
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FIGURE 12. Modes Φ = LP obtained by applying the OMD algorithm to a time-resolved
cylinder flow data.
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FIGURE 13. Modes Φ is-OMD corresponding to eigenvalues with β > 0.95 obtained using
the is-OMD algorithm for r= 75.

Note that, despite being governed by nonlinear Navier–Stokes equations, cylinder flow
in the limit cycle is known to be well approximated by a linear model consisting
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FIGURE 14. Modes Φ is-OMD corresponding to eigenvalues presented in figure 11 with
β < 0.95; St= 0.28, β = 0.91 for r= 25 (a) and St= 0.69, β = 0.81 for r= 75 (b).
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FIGURE 15. The error εt̃ = (1/|J |)
∑

i∈J ‖w̃i+ni − ui+ni‖/‖ui+ni‖ for different t̃ (a) and
retained is-OMD eigenvalue spectrum for t̃= 0.21 (b).

of oscillating structures. For more dynamically complex systems, the value of εr is
expected to have a larger magnitude than values presented in figure 11.

Finally, we note that the accuracy of W̃ depends upon the value of λj used
in (4.10). The number and choice of λj is determined based on the number of
retained rows in VJ , which is conditioned with an appropriate value of t̃. When
t̃ is small, a majority of λj in VJ are retained, including dynamically unimportant
values, introducing an error in W̃ . On the other hand, if t̃ is large, dynamically
relevant λj are removed. In order to find an appropriate value of t̃, and consequently
number of retained λj, let us compare snapshots estimated using (4.10) with reference
measurements. Starting an extrapolation at each i ∈ J a snapshot is estimated at the
time step when the next measurements is acquired, i.e. w̃i+ni , where ni := 1ti/δt is
the number of minimal time steps δt between the next element of U . Performing
a comparison with all of the available measurements, a proportional error metric
εt̃ = (1/|J |)

∑
i∈J ‖w̃i+ni − ui+ni‖/‖ui+ni‖ is defined, and t̃ is estimated such that the

resulting w̃i+ni minimises εt̃.
An example for the cylinder flow is-OMD results with r = 70 is presented in

figure 15, which shows εt̃ for w̃i+ni estimated with t̃ ∈ [10−4, 1]. For this particular
case, εt̃ is minimised at t̃= 0.21, where W̃ is calculated using the nine most dominant
eigenvalues (figure 15). Although t̃ = 0.21 gives the smallest values of εt̃, there is
a clear trough visible for t̃ ∈ [0.01, 0.75], and setting t̃ to any value in that range
will give a good estimation of snapshots at i /∈J . In figure 11, each value of εr was
obtained for W̃ estimated with the smallest value of t̃.
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6.3. The importance of random sampling
One of the key properties of the compressive sampling methodology, described
in § 2.2, is its reliance on non-uniform sampling (Candes & Tao 2006b). Here, it
is demonstrated that is-OMD can also be improved by random sampling. Three
different sampling strategies are analysed, with approximately the same |J | and 1tav
for different 1tmin and 1tmax. Depending on 1tmin, it is possible to use the Nyquist
sampling criterion to estimate the range of different time scales that can be recovered
as a multiple of shedding time scale T . Setting (M0)ij =N(0, 0.3)+ δij, L0 = POD(U)
and r= 70, is-OMD is applied to the following sampling strategies.

(i) Uniform sampling: U is sampled uniformly with 1t = 10δt. Such a sampling
strategy corresponds to three snapshots per shedding period and is sufficient to
resolve time scales greater than 2/3T . In particular |J | = 79 and |I| = 781.

(ii) Random sampling (large variance): U is sampled non-uniformly such that 1tmin=

3δt (0.2T) and 1tmax = 17δt (1.15T), which results in |J | = 80 and |I| = 783.
Together 1tmin and 1tmax encompass 3 % of |J |.

(iii) Random sampling (small variance): U is sampled non-uniformly such that 1tmin=

6δt (0.4T) and 1tmax = 14δt (0.95T), which results in |J | = 79 and |I| = 783.
Together 1tmin and 1tmax encompass 5 % of |J |.

Figure 16 shows the eigenvalues retained using the algorithm 2 with t̃ = 0.1
for all three cases. Recall that the limit cycle dynamics of the cylinder flow are
characterised by structures oscillating with frequency n/T , where n ∈Z+, and having
corresponding time scales of T/n. For the cylinder data used at in the analysis, a
uniform time step 1t= 10δt is high enough to recover T but not sufficient to extract
higher-frequency dynamics. Figure 16 shows that when the is-OMD algorithm is
applied to uniformly sampled data, high-frequency dynamics are not recovered. When
non-uniform sampling strategies are used, although 1tav = 10δt, there is enough
phase variation due to changes in 1t to extract further frequencies. Both random
strategies recover the dynamics within ranges determined by the Nyquist sampling
criterion corresponding to 1tmin, which are indicated in figure 16 with dotted lines.
In both cases an additional pair of eigenvalues corresponding to frequencies beyond
recoverable bounds is identified. Additionally, it can be observed that higher deviation
from 1tav positively impacts the accuracy of the recovered dynamics, not only in
terms of number of recovered frequencies but also in the estimation of β.

7. Application to the turbulent wake of an axisymmetric bluff body
The ability of the is-OMD algorithm to recover the frequency information from

subsampled data was demonstrated in §§ 5 and 6 for systems with dominant
periodicity. For a more challenging test case, we consider the application of
is-OMD to PIV snapshots of the turbulent wake of an axisymmetric bluff body. The
experimental set-up is detailed in Oxlade et al. (2015) and consists of a bullet-shaped
model with base diameter D= 0.1965 m and a length-to-diameter ratio of L/D= 6.48.
The inflow velocity is U∞= 15 m s−1, which gives the diameter Reynolds number of
ReD = 1.88× 105. The wake velocity is measured inside a PIV interrogation window
extending 1.72D in the streamwise direction and being 1.5D wide. A schematic
representation of the experimental set-up is shown in figure 17. Time-resolved data
are collected in a series of independent experiments lasting 3.79 s, each with a
frequency of 720 Hz.

It is known Sevilla & Martínez-Bazán (2004), Grandemange et al. (2012),
Rigas et al. (2014) that a large-scale anti-symmetric structure corresponding
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FIGURE 16. Eigenvalue lattice for different sampling strategies.
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FIGURE 17. Schematic representation of the experimental model and PIV field of view.

to vortex shedding is present in the wake and oscillates at the approximate
vortex-shedding frequency Stsh ≈ 0.22. This is confirmed by examining the power
spectrum in figure 18(h) of the streamwise velocity, averaged over the region
D 6 x 6 1.72D, −0.375D 6 y 6 0.375D in which the shedding is expected to be
observed. It is possible to identify this frequency and its associated structure by
applying the OMD algorithm to the time-resolved data. Indeed, applying OMD to a
data ensemble of N= 1000 snapshots, sampled at 720 Hz and setting r= 30 produces
an OMD mode with frequency (D/2πU∞)Im(λ) = 0.21 whose real and imaginary
parts are shown in figure 18(a,d).

It should be noted that, even when applied to the highly resolved data ensemble,
the frequency content is somewhat sensitive to the particular implementation of the
OMD algorithm. For example, varying the length of the data ensemble 100 6 N 6
1000 and the model rank 206 r6 200 provides OMD eigenvalues λ satisfying 0.186
(D/2πU∞)Im(λ)6 0.26. Such behaviour is not unexpected due to the relatively broad
peak in the spectrum observed in figure 18(h), and we note that similar sensitivity was
observed when applying the more widely employed DMD algorithm.

We now undersample the data to determine if is-OMD is able to extract the
dominant vortex-shedding frequency at Stsh ≈ 0.22. In particular, it is assumed that
only every 12th snapshot is available, resulting in a data ensemble sampled at 60 Hz.
Following § 6.3 we apply the is-OMD algorithm to an analysis ensemble U formed

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

34
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.340


Dynamic reconstruction for subsampled or irregularly sampled data 159

0.20.40.60.81.01.21.41.6 0.20.40.60.81.01.21.41.6 0.20.40.60.81.01.21.41.6

0.20.40.60.81.01.21.41.60.20.40.60.81.01.21.41.60.20.40.60.81.01.21.41.6

 0
–0.2
–0.4

0.2
 0.4
0.6

–0.6

 0
–0.2
–0.4

0.2
 0.4
0.6

–0.6

 0
–0.2
–0.4

0.2
 0.4
0.6

–0.6

 0
–0.2
–0.4

0.2
 0.4
0.6

–0.6

 0
–0.2
–0.4

0.2
 0.4
0.6

–0.6

 0
–0.2
–0.4

0.2
 0.4
0.6

–0.6

0 0.2 0.4 0.6 0.8 1.00 0.2 0.4–0.2–0.4

–0.005
–0.010
–0.015
–0.020
–0.025
–0.030

0

10

5

15

20

(a) (b) (c)

St St

PS

(d ) (e) ( f )

(g) (h)

Power spectrum

FIGURE 18. The OMD mode ΦOMD corresponding to StD ≈ 0.22 obtained from
time-resolved data is shown in (a,d); the corresponding is-OMD mode Φsh in (b,e); and its
projection Φ∗sh onto first 30 POD modes of U in (c, f ). Eigenvalues of the corresponding
dynamic matrix M is-OMD are shown in (g) with the pair of shedding eigenvalues highlighted;
(h) shows the mean power spectrum of streamwise velocities in a selected wake region.

by taking a random sample of the 60 Hz data. Specifically, we let the time-step
snapshots in U be one of the values 1t = j/60, where j ∈ {1, 2, 3}, with a uniform
probability of choosing any of the three possible values of 1t. This approach provides
an undersampled data ensemble satisfying 1tav/δtNyq ≈ 1.12 – that is, the average
time step 1tav is greater than the one specified by the Nyquist criterion corresponding
to the Stsh.

Frequency identification: the spectrum λ(M) obtained by is-OMD is shown in
figure 18(g) and contains an eigenvalue pair corresponding to the shedding frequency
at St = 0.23. This eigenvalue pair was selected based upon the proportion of data
spanned by each of the modes (see appendix B) and, in this case, the shedding
eigenvalue pair is ranked as the third most important. Two other dynamically
significant eigenvalue pairs correspond to low-frequency structures with St = 0.006
and St = 0.07, an order of magnitude smaller than StSh. It is interesting to note that
wake structures are known to possess frequency content at approximately these values
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(Rigas et al. 2014), specifically a random reorientation of the shedding reflectional
plane (St≈ 0.002) and an axisymmetric pulsation of the vortex cores (St≈ 0.06).

Mode extraction: for this example, the contribution of the shedding mode to the
total energy of the wake is approximately 75 % lower than that of the cylinder wake
studied in § 6. Furthermore, although a (relatively wide) spectral peak at Stsh≈ 0.22 is
visible in figure 18(h), a projection of the shedding structure onto the underlying data
will not produce a purely periodic signal. For this reason, obtaining dynamic modes
through an inversion of the Vandermonde matrix, which essentially assumes periodic
evolution of the temporal coefficients between known snapshots, is overly restrictive.
Instead, it is more appropriate to impose a looser rate constraint upon the unknown
mode coefficients ci appearing in the least-squares problem of the is-OMD algorithm.
Specifically, by replacing step 3 of Algorithm 1 by

ck
i = arg min

ci∈Rr

N∑
i=1

‖ci −Mci−1‖
2, (7.1a)

s.t. ci = LTui, if i ∈J , (7.1b)
|(ci+1)n − (ci)n|6 γ max

j∈J
|(cj)n|, n= 1, . . . , r, (7.1c)

where (ci)n denotes the nth element of ci ∈Rr and γ >1 is a parameter. In other words,
a restriction is placed upon the coefficients ci to ensure that between each minimal
time step, each of its elements does not vary by more than a proportion γ of its largest
observed value on the known data. Subsequently, we let Φ = LP, where M = P−1ΛP.

The real and imaginary parts of the mode ΦSh associated with St = 0.23 are
presented in figure 18(b,e) and were obtained by setting γ = 3.75. Although less
coherent than the OMD modes obtained from time-resolved data, both Re(Φsh) and
Im(Φsh) possess anti-symmetric and spatially out-of-phase structures present in the
modes obtained from time-resolved data. For comparison, the spatial locations of the
anti-symmetric structures visible in figure 18(a,d) are overlaid and indicate reasonable
agreement between the OMD and is-OMD modes. Furthermore, coherency of the
mode can be improved through a projection Φ∗Sh = UpUT

pΦSh, where Up ⊂ POD(U),
suppressing the spatial noise present in the structure. An example of Φ∗Sh obtained
through a projection using first 30 POD modes of U is presented in figure 18(c, f ).
We emphasise that the constraint (7.1c) is significantly less restrictive than the one
imposed in the Vandermonde-based post-processing Algorithm 2. An interesting
direction of future research will be to determine the optimal form of constraint
required for effective spectral and mode information, dependent upon the intermittency
of the underlying data ensemble.

Statistical analysis: To quantify the improvement of is-OMD over OMD applied to
downsampled data, a statistical analysis akin to that presented in § 5.2 is performed.
The experimental data are undersampled using a range of uniform time steps δt to
obtain data sets sampled at frequencies in the range 18–240 Hz, which in terms of
δtNyq is equivalent to 0.1416 δt/δtNyq 6 1.875. Subsequently, randomly sampled data
ensembles U are created in an analogous manner to the one used to obtain results
in figure 18(b,g), i.e. the time step between known snapshots is 1t = jδt, where j ∈
{1, 2, 3}, which gives the average time step 1tav ≈ 2δt. The is-OMD algorithm is
applied to U and the eigenvalue corresponding to the shedding structure is identified
using the methodology described in appendix B. Note that, due to the chosen sampling
strategy, U contains 50 % of data used to obtain the OMD approximation. Finally,
the error ελ = |λsh − λ|/|λsh| is computed, where λ corresponds to the eigenvalues
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FIGURE 19. (a) Proportional eigenvalue error ελ for a range of δt/δtNyq; (b) the
eigenvalues obtained for δt/δtNyq < 1, where the x-axis represents St= (D/2πU∞)Im(λ).

obtained using either OMD algorithm applied to the uniformly downsampled data or
the is-OMD algorithm applied to U. The reference shedding eigenvalue λsh is defined
as λsh = i(2πU∞/D)Stsh.

The eigenvalues obtained for δt/δtNyq < 1 and the values of ελ for the considered
range of δt/δtNyq are presented in figure 19. Due to the identified sensitivity of the
OMD algorithm to the approximation rank r and of the is-OMD algorithm to the
analysis data ensemble, figure 19(a) presents an average value of ελ corresponding
to results obtained for r ∈ [20, 30, . . . , 60] in the case of the OMD algorithm and,
in the case of the is-OMD algorithm, for five different values of U each satisfying
1tav ≈ 2δt. Figure 19(a) demonstrates that the is-OMD algorithm provides a visible
improvement for all values of δt except when δt/δtNyq ≈ 1, where both methods
are similarly accurate. Further insight into the differences between both results can
be obtained from figure 19(b), where the OMD output gives eigenvalues which are
concentrated around a lower frequency than Im(λsh) and have more negative growth
rate than is-OMD results. It is reiterated that the is-OMD results were obtained using
only half of the data used to obtain the OMD approximation with 1tav >δt, implying
a beneficial impact of the randomness in the data acquisition on the accuracy of the
eigenvalue estimation.

8. Conclusions
Here, a methodology was presented which provides a way to extract dynamical

information from data sampled at irregular time steps, below the Nyquist–Shannon
criterion. Information concerning temporal dynamics is obtained using the proposed
is-OMD algorithm, which can be interpreted as solving an OMD optimisation problem
where the majority of snapshots are treated as unknowns. It is assumed that no a
priori information about the dynamics is available and at each iteration two problems
are solved in a pairwise manner; modal decomposition (using DMD or OMD) to
update an estimate of the dynamics and reconstruction of intermediate snapshot
with a least-squares technique. Further, mode recovery is improved by assuming
that the system can be approximated using a Vandermonde matrix and by solving
an appropriate minimisation problem. The is-OMD methodology’s performance is
analysed on synthetic sinusoidal flow and on flow past a circular cylinder at a
low Reynolds number, showing improvement over compressive-sampling-based mode
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FIGURE 20. A representation of an allocation of indices to different sets in the is-OMD
problem.

extraction methodologies. Furthermore, the analysis on the turbulent flow demonstrated
a potential of the is-OMD algorithm to be applicable to more complicated dynamical
systems.
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Appendix A. Monotonicity of (Sk)

To facilitate the analysis let I={0, 1, . . . ,N} denote all time steps of interest, recall
that J ⊂I denotes points of known data and introduce two new subsets: J − contains
time step indices immediately preceding those in J ; and J + which contains indices
representing time steps immediately after those in J . This assignment is indicated in
figure 20. It is assumed for simplicity that J − ∩J +=∅ and we note that if |J | =m
then |J − ∪J +| = 2(m− 1). Recalling that wk

i = ui, i ∈J and letting J 0
:= I \ (J ∪

J + ∪J −), the residual Sk can be written

Sk =
∑
i∈J 0

∥∥wk
i − LkMkL

T
kw

k
i−1

∥∥2
+

∑
i∈J +

∥∥wk
i − LkMkL

T
k ui−1

∥∥2

+

∑
i∈J −

∥∥ui+1 − LkMkL
T
kw

k
i

∥∥2
. (A 1)

THEOREM 1. Let Sk be the residual (2.15) from algorithm 1. Then Sk > Sk+1> 0 and
there exists S∗ > 0 such that Sk→ S∗, k→∞.

Proof. For each k> 0, LkLT
k :Rp

→Rp is a projection. Estimating the first two terms
of (A 1) from below by their projections onto Im(Lk) and decomposing the final term
into contributions from the image and kernel of Lk give

Sk >
∑
i∈J 0

‖LkL
T
k

(
wk

i − LkMkL
T
kw

k
i−1

)
‖

2
+

∑
i∈J +
‖LkL

T
k

(
wk

i − LkMkL
T
k ui−1

)
‖

2

+

∑
i∈J −

[
‖LkL

T
k

(
ui+1 − LkMkL

T
kw

k
i

)
‖

2
+ ‖

(
I − LkL

T
k

)
ui+1‖

2
]
. (A 2)

Now, since LT
k Lk = I , it follows that ‖Lkv‖ = ‖v‖, for any v ∈Rr. Hence,
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Sk >
∑
i∈J 0

‖LT
kw

k
i −MkL

T
kw

k
i−1‖

2
+

∑
i∈J +
‖LT

kw
k
i −MkL

T
k ui−1‖

2

+

∑
i∈J −

[
‖LT

k ui+1 −MkL
T
kw

k
i ‖

2
+ ‖

(
I − LkL

T
k

)
ui+1‖

2
]
. (A 3)

Recalling that ck
i = LT

kw
k
i and writing di = LT

k ui,

Sk >
∑
i∈J 0

‖ck
i −Mkck

i−1‖
2
+

∑
i∈J +
‖ck

i −Mkdi−1‖
2

+

∑
i∈J −

[
‖di+1 −Mkck

i ‖
2
+ ‖

(
I − LkL

T
k

)
ui+1‖

2
]
. (A 4)

Now, the first three terms of (A 4) are exactly of the form of the optimisation problem
(2.13) of algorithm 1. Hence, by optimality,

Sk >
∑
i∈J 0

‖ck+1
i −Mkck+1

i−1 ‖
2
+

∑
i∈J +
‖ck+1

i −Mkdi−1‖
2

+

∑
i∈J −

[
‖di+1 −Mkck+1

i ‖
2
+ ‖

(
I − LkL

T
k

)
ui+1‖

2
]
. (A 5)

Note that values of di do not change between subsequent iterations due to constraints
imposed in the optimisation problem (2.13).

The subsequent step 4 in the algorithm consists of approximating time-resolved
snapshots wi with the ‘backwards’ embedding using the columns of Lk. Again, using
the identity ‖Lkv‖

2
= ‖v‖2, for v ∈Rr,

Sk >
∑
i∈J 0

‖Lkck+1
i − LkMkck+1

i−1 ‖
2
+

∑
i∈J +
‖Lkck+1

i − LkMkdi−1‖
2

+

∑
i∈J −

[
‖Lkdi+1 − LkMkck+1

i ‖
2
+ ‖

(
I − LkL

T
k

)
ui+1‖

2
]
. (A 6)

In step 4 of Algorithm 1, wk+1
i = Lkck+1

i , and, hence, it is true that LT
kw

k+1
i = ck+1

i ,
which implies that the above expression is equivalent to

Sk >
∑
i∈J 0

‖wk+1
i − LkMkL

T
kw

k+1
i−1 ‖

2
+

∑
i∈J +
‖wk+1

i − LkMkL
T
k ui−1‖

2

+

∑
i∈J −

[
‖LkL

T
k ui+1 − LkMkL

T
kw

k+1
i ‖

2
+ ‖

(
I − LkL

T
k

)
ui+1‖

2
]
. (A 7)

Again, using the fact that ‖v‖2
=‖LkLT

k v‖
2
+‖(I −LkLT

k )v‖
2 for any v ∈Rp, the final

two terms in the above inequality can be combined to show that

Sk >
∑
i∈J 0

‖wk+1
i − LkMkL

T
kw

k+1
i−1 ‖

2
+

∑
i∈J +
‖wk+1

i − LkMkL
T
k ui−1‖

2

+

∑
i∈J −
‖ui+1 − LkMkL

T
kw

k+1
i ‖

2. (A 8)
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Finally, invoking optimality of the [L, M]-update optimisation subproblem (2.14)
gives

Sk >
∑
i∈J 0

‖wk+1
i − Lk+1Mk+1LT

k+1w
k+1
i−1 ‖

2
+

∑
i∈J +
‖wk+1

i − Lk+1Mk+1LT
k+1ui−1‖

2

+

∑
i∈J −
‖ui+1 − Lk+1Mk+1LT

k+1w
k+1
i ‖

2

= Sk+1. (A 9)

Hence, (Sk)k>0 is a monotone decreasing sequence which is bounded below by 0.
Therefore, there exists S∗ > 0 such that Sk→ S∗, k→∞. �

Appendix B. Scaling of the modes and eigenvalues
To provide a ranking of the OMD modes, recall that OMD seeks matrices L ∈

Rp×r,M ∈Rr×r which minimise the sum of squares of the residuals r i=wi+1−LMLTwi,
given a data ensemble [ w1 ··· wN ]. This provides an approximation[

w2 · · · wN
]
≈ LMLT

[
w1 · · · wN−1

]
= LP ·ΛP−1LT

[
w1 · · · wN−1

]
=: ΦA, (B 1)

where the columns of Φ = LP are the OMD modes, M =PΛP−1 is an eigendecompo-
sition of M and A = (αij) := ΛP−1LT

[ w1 ··· wN−1 ] ∈ Rr×N . Noting that the coefficients
multiplying ith OMD mode correspond to the ith row of A, we define the modal
ranking in terms of the constants

N∑
j=1

|αij|
2. (B 2)

Such a scaling incorporates the energetic contribution of each mode to the underlying
data ensemble in addition to the magnitude of each mode’s corresponding eigenvalue,
implying, for example, that rapidly decaying modes will be penalised.
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