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Abstract
For an integer q� 2, a graph G is called q-Ramsey for a graph H if every q-colouring of the edges of
G contains a monochromatic copy of H. If G is q-Ramsey for H yet no proper subgraph of G has this
property, then G is called q-Ramsey-minimal for H. Generalizing a statement by Burr, Nešetřil and Rödl
from 1977, we prove that, for q� 3, if G is a graph that is not q-Ramsey for some graph H, then G is
contained as an induced subgraph in an infinite number of q-Ramsey-minimal graphs for H as long as H
is 3-connected or isomorphic to the triangle. For such H, the following are some consequences.

• For 2� r < q, every r-Ramsey-minimal graph for H is contained as an induced subgraph in an
infinite number of q-Ramsey-minimal graphs for H.

• For every q� 3, there are q-Ramsey-minimal graphs for H of arbitrarily large maximum degree,
genus and chromatic number.

• The collection {Mq(H) : H is 3-connected or K3} forms an antichain with respect to the subset
relation, whereMq(H) denotes the set of all graphs that are q-Ramsey-minimal for H.

We also address the question of which pairs of graphs satisfy Mq(H1)=Mq(H2), in which case H1 and
H2 are called q-equivalent. We show that two graphs H1 and H2 are q-equivalent for even q if they are
2-equivalent, and that in general q-equivalence for some q� 3 does not necessarily imply 2-equivalence.
Finally we indicate that for connected graphs this implication may hold: results by Nešetřil and Rödl and
by Fox, Grinshpun, Liebenau, Person and Szabó imply that the complete graph is not 2-equivalent to any
other connected graph. We prove that this is the case for an arbitrary number of colours.

2010 MSC Codes: 05D10

1. Introduction
A graph G is q-Ramsey for H, denoted by G→ (H)q, if every q-colouring of the edges of G
contains a monochromatic copy of H. Many interesting questions arise when we consider those
graphs G which are minimal with respect to G→ (H)q. A graph G is q-Ramsey-minimal forH (or
q-minimal for H) if G→ (H)q and G′� (H)q for every proper subgraph G′ �G. We denote the
family of such graphs by Mq(H). The fact that Mq(H) �=∅ for every graph H and every integer
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q� 2 is a consequence of Ramsey’s theorem [24]. Burr, Erdős and Lovász [7] initiated the study
of properties of graphs in M2(Kk) in 1976, where as usual Kk denotes the complete graph on k
vertices. Their seminal paper raised numerous questions on minimal Ramsey graphs that were
addressed by various mathematicians in subsequent years [5, 6, 9, 22, 26].

Various graph parameters have been studied for graphs in Mq(H), the most prominent being
the Ramsey number rq(H), which is the smallest number of vertices of a graph inMq(H). When
H is the complete graph we also write Rq(k) for rq(Kk). Estimating Rq(k) or even R2(k) is one of
the fundamental open problems in Ramsey theory. It is known that 2k/2+o(k) � R2(k)� 22k−o(k),
where the best lower bound is due to Spencer [27] improving a result by Erdős [11], and the
best known upper bound is due to Conlon [10] improving earlier bounds by Erdős and Szekeres
[12], Rödl [18] and Thomason [29]. Quite surprisingly, some other parameters could be deter-
mined precisely. Nešetřil and Rödl [23] showed, for example, that the smallest clique number of
a graph in Mq(H) is exactly the clique number of H, extending earlier work by Folkman [14].
Furthermore, the smallest chromatic number and the smallest connectivity of a graph in Mq(H)
are known for allH and q� 2; see [7] and [9]. A parameter of ongoing interest is sq(H), the small-
est minimum degree of a graph G ∈Mq(H). The value of s2(H) is known for some graphs H,
including cliques [7], complete bipartite graphs [17], trees and cycles [28], and complete graphs
with a pendant edge [15]. The asymptotic behaviour of sq(Kk) was considered when q→ ∞ in
[16, 19], and when k→ ∞ in [20].

In this paper we are interested in the interplay between Mq(H) and Mr(H′) when q �= r
or when H and H′ are non-isomorphic. Clearly, every graph G that is a q-minimal graph for
some graph H is r-Ramsey for H, for all 2� r� q, and thus contains an r-minimal graph as an
induced subgraph. Our first contribution complements this observation in the sense that every
r-minimal graphG can be obtained this way from a q-minimal graphG′ as long asH satisfies some
connectivity conditions. Following standard notation wewriteH ∼=H′ ifH andH′ are isomorphic.

Theorem 1.1. Let H be a 3-connected graph or H ∼=K3 and let q> r� 2 be integers. Then for every
F ∈Mr(H) there are infinitely many graphs G ∈Mq(H) such that F is an induced subgraph of G.

In fact this result is an immediate consequence of the following more general statement.

Theorem 1.2. Let H be a 3-connected graph or H ∼=K3, let q� 2 be an integer and let F be a graph
which is not q-Ramsey for H. Then there are infinitely many graphs G ∈Mq(H) such that F is an
induced subgraph of G.

For the assertions of Theorems 1.1 and 1.2 to hold it is clearly necessary that H is Ramsey
infinite, that is, Mq(H) is infinite. Some graphs including, for example, star forests with an odd
number of edges, are known not to be Ramsey infinite. Faudree [13] provided a full characteriza-
tion of forests that are Ramsey infinite. Furthermore, it follows from [25, Corollary 4] by Rödl and
Ruciński thatH is Ramsey infinite ifH contains a cycle. It may well be possible that the assertions
of Theorems 1.1 and 1.2 hold for all graphs H that are Ramsey infinite.

The 2-colour version of Theorem 1.2 was proved by Burr, Nešetřil and Rödl [9], extending
earlier work by Burr, Faudree and Schelp [8], who proved the statement for q= 2 and whenH is a
complete graph. However, it is this multicolour version which implies Theorem 1.1 as a corollary.
As in [9] for q= 2, Theorem 1.2 also implies the existence of multicolour Ramsey-minimal graphs
with arbitrarily large maximum degree, genus and chromatic number. Indeed, it is well known
that, for a fixed graph H containing a cycle and for a fixed integer k, the uniform random graph
G(n, p) does not containH as a subgraph, and hasmaximum degree, genus and chromatic number
at least k with probability tending to 1 as n→ ∞, for some p= �(1/n). Take F in Theorem 1.2 to
be such a graph drawn from G(n, p).

Another implication of Theorem 1.2 that we find noteworthy is the following.
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Corollary 1.3. Let H be a 3-connected graph or H ∼=K3 and let q� 2 be an integer. Suppose that
Mq(H)⊆Mq(H′) for some arbitrary graph H′. ThenMq(H)=Mq(H′).

We provide the short argument in Section 3. Another way to view Corollary 1.3 is that if both
H and H′ are 3-connected or isomorphic to K3, then the two setsMq(H) andMq(H′) are either
equal or incomparable with respect to the subset relation, that is, the set

{Mq(H) : H is 3-connected or K3}
forms an antichain with respect to the subset relation. We find it instructive to note at this point
that for such H,H′, in fact,Mq(H)=Mq(H′) is only possible if H is isomorphic to H′.

Theorem 1.4. Let H and H′ be non-isomorphic graphs that are either 3-connected or isomorphic to
K3. ThenMq(H) �=Mq(H′) for all q� 2.

It is now natural to ask which pairs of graphs H and H′ do satisfy Mq(H)=Mq(H′). For
an integer q� 2 let us call two graphs H and H′ q-Ramsey equivalent (or just q-equivalent) if
Mq(H)=Mq(H′). The notion was introduced by Szabó, Zumstein and Zürcher [28] in the case
of two colours to capture the fact that s2(H)= s2(H′) for some graphs H and H′ merely because
M2(H)=M2(H′). We are particularly interested in the relationship between 2-colour equiva-
lence and multicolour equivalence, that is, what can we infer from known results for two colours
to more colours?

To briefly survey which pairs of graphs are known to be 2-equivalent, let H + sH′ denote the
graph formed by the vertex-disjoint union of a copy ofH and s copies ofH′, where we omit swhen
s= 1. It is straightforward to see that Kk is 2-equivalent to Kk + sK1 if and only if s� R(k)− k;
see e.g. [28]. For k� 4, Kk and Kk +K2 are known to be 2-equivalent. In fact, Szabó, Zumstein
and Zürcher [28] proved that for 2� t� k− 2 and s< (R(k− t + 1, k)− 2(k− t))/2t the graphs
Kk and Kk + sKt are 2-equivalent, where R(k, �) denotes the smallest integer n such that every
red/blue-colouring of the edges of Kn contains a red copy of Kk or a blue copy of K�. For the
case t = k− 1, Bloom and the second author [3] show that Kk and Kk +Kk−1 are 2-equivalent
for all k� 4. (The requirement k� 4 is necessary in both [28] and [3]. Furthermore, the result
in [28] is optimal up to a factor of roughly 2; the result in [3] is optimal in the sense that Kk +
Kk−1 cannot be replaced by Kk + 2Kk−1. We comment on these non-equivalence results further
below.) Axenovich, Rollin and Ueckerdt [1] provide a tool to lift these 2-equivalence results to
q-equivalence.

Theorem 1.5 (Theorem 10 in [1]). If two graphs H and H′ are 2-equivalent and H ⊆H′, then H
and H′ are q-equivalent for every q� 3.

In particular, the pairs Kk and Kk + sKt are q-equivalent for every q� 3 whenever they are 2-
equivalent. It would be desirable to remove the condition H ⊆H′ from Theorem 1.5. In general,
the following lifts 2-equivalence (without the subgraph requirement) to q-equivalence for even q.

Observation 1.6. Let a, b, q, r be non-negative integers such that q, r� 2. If H and H′ are q- and
r-equivalent then they are (aq+ br)-equivalent.

Indeed, the result follows by induction on a+ b� 1 with the case a+ b= 1 given by assump-
tion. Without loss of generality suppose that H and H′ have been shown to be n-equivalent,
where n= (a− 1)q+ br. Now suppose G is a graph such that G→ (H)n+q. We claim that then
G→ (H′)n+q as well. Fix an (n+ q)-colouring c : E(G)→ [n+ q] of the edges of G, where [m]
denotes the set {1, . . . ,m}, and consider the (uncoloured) subgraphs G1 given by the q colour
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classes 1, . . . , q and G2 given by the n colour classes q+ 1, . . . , q+ n. Note that we must have
G1 → (H)q or G2 → (H)n, since we could otherwise recolour G with n+ q colours without a
monochromatic copy of H, a contradiction. By equivalence in n and q colours we then have that
G1 → (H′)q or G2 → (H′)n, and hence the original colouring of G admits a monochromatic copy
ofH′, so G→ (H′)n+q as claimed. Similarly, every graph G that is (n+ q)-Ramsey forH′ needs to
be (n+ q)-Ramsey for H, which impliesMn+q(H)=Mn+q(H′).

Theorem 1.6 implies in particular that if two graphs H and H′ are 2- and 3-equivalent, then
they are q-equivalent for every q� 2. We wonder whether it is true that two graphs H and H′ are
3-equivalent if they are 2-equivalent and whether this can be shown using ad hocmethods.

So far, we have investigated what we can deduce for q� 3 colours when we know that H and
H′ are 2-equivalent. What can we deduce when H and H′ are not 2-equivalent? To examine this
question let us return to the example of disjoint cliques from above. It is easy to see that K6 is 2-
Ramsey for K3 yet fails to be Ramsey for the triangle and a disjoint edge; see e.g. [28]. This shows
that K3 and K3 +K2 are not 2-equivalent. The following then implies that, in general, nothing can
be deduced from non-2-equivalence.

Theorem 1.7. The graphs K3 +K2 and K3 are q-equivalent for all q� 3.

In fact there are infinitely many pairs of graphs that are not 2-equivalent, yet they are
q-equivalent for some q� 3. To see this, let us first mention how the criterion in [28] general-
izes to more than two colours. For integers q, k1, . . . , kq � 2, let R(k1, . . . , kq) denote the smallest
integer n such that any colouring of the edges of Kn with colours [q] contains a monochromatic
copy of Kki in colour i, for some i ∈ [q]. We write Rq(k1, k2, . . . , k2) when k2 = k3 = · · · = kq.

Theorem 1.8. Let k, t, q be integers such that q� 2 and k> t� 2. If s< (Rq(k− t + 1, k, . . . , k)−
q(k− t))/qt then Kk and Kk + sKt are q-equivalent.

For q= 2 and t� k− 2 this is Corollary 5.2(ii) in [28], and the argument easily generalizes
to q� 3 colours. We provide the proof for completeness in Section 4. For q= 2, Theorem 1.8
is known to be best possible up to a factor of roughly 2. Specifically, Fox, Grinshpun, Person,
Szabó and the second author [15] show that for k> t� 3 the graphs Kk and Kk + sKt are not
2-equivalent if s> (R(k− t + 1, k)− 1)/t. This result implies the optimality of the equivalence
of Kk and Kk +Kk−1 in [3] and the optimality up to a factor of roughly 2 in [28] mentioned
above. The consequence of this non-equivalence result in [15] and Theorem 1.8 is that, for given
k> t� 3, the graphs Kk and Kk + sKt are not 2-equivalent, but they are q-equivalent for some
large enough q, if we take s such that (R(k− t + 1, k)− 1)/t < s< (Rq(k− t + 1, k, . . . , k)− q(k−
t))/qt.

The previous discussion shows that in general we cannot deduce non-q-equivalence for
q� 3 from non-2-equivalence. However, all of the examples above that witness this phenomenon
have at least one of H, H′ being disconnected. When both graphs H and H′ are 3-connected or
isomorphic to K3, then H and H′ are not q-equivalent for any q� 2, by Theorem 1.4. In fact, it
remains an open question, first posed in [15], whether there are two non-isomorphic connected
graphs H and H′ that are 2-equivalent. A theorem by Nešetřil and Rödl [23] implies that any
graph that is q-equivalent to the clique Kk, for some q� 2, needs to contain Kk as a subgraph.
Fox, Grinshpun, Person, Szabó and the second author [15] show that Kk is not 2-equivalent to
Kk ·K2, the graph on k+ 1 vertices formed by adding a pendant edge to Kk. We lift this result to
any number of colours.

Theorem 1.9. For all k, q� 3, Kk and Kk ·K2 are not q-Ramsey equivalent.
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Together with the result in [23], this implies that, for all q� 3, Kk is not q-equivalent to any
connected graph other than Kk. We wonder whether one can prove in general that if two graphs
H andH′ are connected and not 2-equivalent, then they are not q-equivalent for any q� 3. In our
proof of Theorem 1.9 the graph Kk cannot be replaced by, say, Kk missing an edge.

The rest of the paper is organized as follows. In Section 2, we fix our notation and describe
the method of signal senders. We also include the proof of Theorem 1.4 there. In Section 3 we
prove Theorem 1.2 and Corollary 1.3. Section 4 contains the results related to Ramsey equivalence,
that is, we prove Theorem 1.8, which we obtain as a corollary to a slightly more general result, as
well as both Theorem 1.7 and Theorem 1.9. In the final section we discuss open problems.

2. Preliminaries
Notation. For a graph G= (V , E) we write V(G) and E(G) for its vertex set and edge set,
respectively, and we set v(G)= |V(G)| and e(G)= |E(G)|. Throughout the paper we assume that
E(G)⊆ (V(G)

2
)
and that both V and E are finite. A graph F is called a subgraph of a graph G,

denoted by F ⊆G, ifV(F)⊆V(G) and E(F)⊆ E(G). LetG, F andH be graphs such that F ⊆G and
V(G)∩V(H)=∅. We write G− F for the graph with vertex set V(G) and edge set E(G) \ E(F),
and G+H for the graph formed by the vertex-disjoint union of G and H, i.e. the graph with
vertex set V(G)∪V(H) and edge set E(G)∪ E(H). When F or H consist of a single edge e we also
write G− e and G+ e, respectively. For a subset A⊆V(G), let G[A] denote the induced subgraph
on A, i.e. the graph with vertex set A and edge set consisting of all edges of G with both endpoints
in A. A subgraph F of G is called an induced subgraph if F =G[V(F)]. Given a path P in a graph
G, the length of P is the number of edges of P. For two subsets A, B⊆V(G), we write distG (A, B)
for the distance betweenA and B, i.e. the length of a shortest path inGwith one endpoint in A and
the other endpoint in B. Given a subgraph F ⊆G, we also write distG (A, F) for distG (A,V(F))
and distG (A, e) if F consists of a single edge e. A q-colouring of a graph G is a function c that
assigns colours to edges, where the set S of colours has size q and, unless specified otherwise, we
assume that S= [q]= {1, . . . , q}. We call a q-colouring H-free if there is no monochromatic copy
of H.

Signal senders. For the proofs of Theorems 1.2, 1.4 and 1.9 we use the idea of signal sender graphs,
which was first introduced by Burr, Erdős and Lovász [7]. Let H be a graph and let q� 2 and
d� 0 be integers. A negative (positive) signal sender S= S−(q,H, d) (S= S+(q,H, d)) is a graph S
containing distinguished edges e, f ∈ E(S) such that

(S1) S� (H)q,
(S2) in everyH-free q-colouring of E(S), the edges e and f have different (the same) colours, and
(S3) distS (e, f )� d.

The edges e and f in the definition above are called signal edges of S. The following was proved by
Rödl and Siggers [26], generalizing earlier proofs by Burr, Erdős and Lovász [7] and Burr, Nešetřil
and Rödl [9].

Lemma 2.1. Let H be 3-connected or H =K3, and let q, d� 2 be integers. Then there exist negative
and positive signal senders S−(q,H, d) and S+(q,H, d).

In the proofs of Theorems 1.2, 1.4 and 1.9 we construct graphs using several signal senders.
Assume that G is some graph and let e1, e2 ∈ E(G) be two disjoint edges. We say that we join e1
and e2 by a signal sender S(q,H, d) if we add a vertex-disjoint copy S̃ of a signal sender S(q,H, d)
to G and then identify the signal edges of S̃ with e1 and e2, respectively.
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Theorem 1.4 is an easy consequence of the existence of signal senders; we prove it here to serve
as a simple example of the method of signal senders.

Proof of Theorem 1.4. Without loss of generality let H �H′. Let S= S+(q,H′, d) be a positive
signal sender, where d = v(H)+ 1. If S→ (H)q, then we are done since S� (H′)q by (S1). So we
may assume that there is an H-free colouring ϕ : E(S)→ [q]. Now construct a graph G as follows.
Fix a copy H̃ of H′ and an edge e that is vertex-disjoint from H̃. Then, for every f ∈ E(H̃), join
e and f by a copy of the signal sender S so that e is always identified with the same signal edge
of S. Then G→ (H′)q. Indeed, for a q-colouring of G, there is a monochromatic copy ofH′ in one
of the copies of the signal sender S, or every edge in H̃ has the same colour as e, by (S2) and by
construction of G. In either case, there is a monochromatic copy of H′.

Moreover, G� (H)q. Consider the colouring of E(G) defined by colouring each copy of S
using ϕ. Note that any two copies of S intersect in the edge e only (and at most one vertex in
H̃). Since e is always identified with the same signal edge in S, this colouring is well-defined. Now
every copy of H in G is contained in a copy of the signal sender S since H �H′, H is 3-connected
or H ∼=K3, and since distG (e, H̃)> v(H) by the choice of S and (S3). However, ϕ is H-free (on
each copy of S), so none of these copies of H is monochromatic.

3. Proof of Theorem 1.2
In order to prove Theorem 1.2, we first establish the existence of certain gadget graphs. Let F andH
be graphs and let d, q� 2 be integers. LetG be a graph containing both an induced subgraph F̃ that
is isomorphic to F and an edge e that is vertex-disjoint from F̃.G is called an (H, F, e, q, d)-indicator
if distG (̃F, e)� d and the following hold for every i, j ∈ [q].

(I1) There exists an H-free q-colouring of G such that F̃ is monochromatic of colour i.
(I2) In every H-free q-colouring of G in which F̃ is monochromatic of colour i, e has colour i.
(I3) If f is any edge of F̃, then there exists an H-free colouring of G− f in which F̃ − f is

monochromatic of colour i and in which e has colour j.

Note that it would be enough to say that the subgraphs and edges in properties (I2) and (I3) above
should have the same or different colours respectively, without mentioning explicit colours i and
j (since we can swap the colours by symmetry). Nevertheless, we find it more convenient to state
the properties in the above manner, so that we do not need to repeat the argument of swapping
colours over again.

The notion of indicators for q= 2 was introduced by Burr, Faudree and Schelp [8], who estab-
lished their existence in the case whenH is a clique and F �⊇H, but with d not being specified; see
Lemma 3 in [8]. We find the definition above to be a suitable generalization for q� 3 to be able to
prove existence while still being useful gadgets for the proof of Theorem 1.2.

By definition it is necessary that F does not contain a copy of H for an (H, F, e, q, d)-indicator
to exist. Under the assumption that H is suitably connected this turns out to be sufficient. We
need one more ingredient, though, which allows us to combine indicators (and signal senders) by
identifying certain edges without creating new copies ofH. We say that an (H, F, e, q, d)-indicator
G has property T if there is a collection of subgraphs {Tf ⊆G | f ∈ E(̃F)} such that

(T1) V(Tf )∩V (̃F)= f and f ∈ E(Tf ) for all f ∈ E(̃F),
(T2) V(G)= ⋃

f∈E(̃F) V(Tf ) and E(G)= ⋃
f∈E(̃F) E(Tf ), and

(T3) for all distinct f1, f2 ∈ E(̃F) and all v ∈V(Tf1 )∩V(Tf2 ) we have v ∈V (̃F) or distG (v, F̃)� d,

where F̃ is the fixed induced copy of F in G.
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Figure 1. Indicator for q= 4 and F = {f1, f2} being a
matching.

Lemma 3.1. Let H be 3-connected or H =K3, let F be a graph that does not contain a copy of
H, let e be an edge that is vertex-disjoint from F, and let q, d� 2 be integers. Then there exists an
(H, F, e, q, d)-indicator G that has property T .

Similar to the convention for signal senders we say that, for given graphs F ⊆G and an edge
e ∈ E(G) that is vertex-disjoint from F, we join F and e by an (H, F, e, q, d)-indicator when we add
a vertex-disjoint copy of an (H, F, e′, q, d)-indicator G′ to G and identify the copy of F in G′ with
F ⊆G and identify the edge e′ in G′ with e in G.

The proof of Lemma 3.1 proceeds by induction on e(F). When F is a matching of two edges,
however, we need gadget graphs with a stronger property than (I3). We prove their existence first.

Lemma 3.2. Let H, F, e, q, d be as in Lemma 3.1 and assume that F = { f1, f2} is a matching. Then
there exists an (H, F, e, q, d)-indicator G2 with distG2 ( f1, f2)� d that has property T , where instead
of (I3) we have that

(I3′) for � ∈ {1, 2} there exists an H-free colouring of G2 in which f� has colour i and both, e and
f3−� have colour j.

Proof. We construct G2 as follows. Start with a copy F̃ of F and an edge e that is vertex-disjoint
from F. By a slight abuse of notation we refer to f1 and f2 for the copies of the two edges of
F. Let {e1, e2, . . . , eq−1} be a matching of q− 1 edges that are vertex-disjoint from F̃ and e. Let
H1,H2, . . . ,Hq−1 be copies of H that are vertex-disjoint from f1, f2, e1, e2, . . . , eq−1 and such that
any two copies Hi and Hj intersect in one fixed edge which we identify with e. Furthermore,

(i) join f1 and e1 by a negative signal sender S1 = S−(q,H, d) and for every 2� k� q− 1 join
f2 and ek by a negative signal sender Sk = S−(q,H, d),

(ii) for every 1� k< � < q join ek and e� by a negative signal sender Sk,� = S−(q,H, d),
(iii) for every 1� k� q− 1 and every edge g ∈ E(Hk − e) join ek and g by a positive signal

sender Sk,g = S+(q,H, d).

Note that the existence of the signal senders in (i)–(iii) is given by Lemma 2.1. Call the resulting
graph G2; an illustration can be found in Figure 1 for the case that q= 4. It should be clear that
distG2 (e, F̃)� d and distG2 ( f1, f2)� d. Thus, it remains to prove that G2 satisfies properties (I1),
(I2), (I3′) and property T . Without loss of generality we may assume that i= q.

In the light of these properties, we first observe that every copy of H in G2 either is one of
the subgraphs Hk with k ∈ [q− 1] or is contained completely in one of the signal senders from
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(i)–(iii). Indeed, let a copy H′ of H be given and assume first that H′ contains at least one vertex
v from a signal sender S such that v is not incident with one of the signal edges of S. Due to the
fact that H is 3-connected or H =K3 and the fact that signal edges always have distance at least
d > v(H), it must hold that H ⊆ S. Assume then that H′ does not contain such a vertex. Then
H′ must be contained in the union of all Hk with k ∈ [q− 1]. As these subgraphs all intersect
only in the edge e and since H is 3-connected or H ∼=K3, we must have V(H′)=V(Hk) for some
k ∈ [q− 1].

For property (I1), define a q-colouring ofG2 as follows. Colour the edges of F̃ and ewith colour
q, and for every k ∈ [q− 1] colour the edges ofHk − e and ek with colour k. Moreover, colour every
signal sender from (i)–(iii) with an H-free q-colouring preserving the colours already chosen for
the signal edges. Note that this is possible by properties (S1) and (S2), because the signal senders
may only intersect in their signal edges and the colours above have been chosen in such a way
that the signal edges of negative/positive signal senders receive different/identical colours. The
resulting q-colouring of G2 is H-free as it is H-free on every signal sender and on every subgraph
Hk with k ∈ [q− 1].

For property (I2), let c : E(G2)→ [q] be an H-free q-colouring of G2 such that F̃ is monochro-
matic of colour q. Then c(e1) �= c( f1)= q and c(ek) �= c( f2)= q for every k ∈ [q− 1], by prop-
erty (S2) for the negative signal senders in (i). Similarly, by property (S2) for the negative signal
senders in (ii) we obtain that c(ek) �= c(e�) for every 1� k< �� q− 1. Therefore, it must hold
that {c(ek) : k ∈ [q− 1]} = [q− 1]. Applying (S2) for the positive signal senders in (iii), we finally
deduce that Hk − e must be monochromatic in colour c(ek). Therefore, in order to prevent any
copy Hk of H from becoming monochromatic we must have c(e) /∈ [q− 1], i.e. c(e)= q.

For property (I3′), let f = f�, � ∈ [2] be one of the two edges of F̃. We define a colour-
ing c : E(G2)→ [q] as follows. Set c( f�)= c(e3−�)= q, c(e)= c( f3−�)= j and colour the edges
e�, e3, e4, . . . , eq−1 with distinct colours from [q− 1] \ {j}. Colour the edges ofHk − e with colour
c(ek) for every k ∈ [q− 1]. Finally, colour every signal sender from (i)–(iii) with anH-free colour-
ing preserving the colours already chosen for the signal edges. Analogously to the verification of
property (I1) this is possible and it results in an H-free q-colouring of G2. Property (I3′) follows.

For property T note that the choice Tf1 = S1 and Tf2 =G2[V(G2) \V(S1 − e1)] satisfies
(T1)–(T3).

Proof of Lemma 3.1. Without loss of generality we may assume that d > v(H). We proceed by
induction on e(F).

If e(F)= 1 then let G= S+(q,H, d) be a positive signal sender, which exists by Lemma 2.1, and
identify its signal edges with e and f , where f is the unique edge of F. Then properties (I1) and (I2)
hold by properties (S1) and (S2) for positive signal senders. Property (I3) follows since F − f has
no edges, and by (S1) again, after possibly swapping colours. Property T holds with Tf =G.

Suppose now that e(F)� 2. We construct G as follows. Start with a copy F̃ of F and an edge
e that is vertex-disjoint from F̃. Let e1 be an edge that is vertex-disjoint from e and F̃, and let
f1, f2, . . . , fe(F) be the edges of F in any order. For clarity of presentation, we assume that the edges
of F̃ are labelled f1, f2, . . . , fe(F) as well. Let G1 be an (H, F − f1, e1, q, d)-indicator that has prop-
erty T as given by induction, and let G2 be an (H, { f1, e1}, e, q, d)-indicator that has property T as
given by Lemma 3.2. Now join F̃ − f1 and e1 by G1 and join f1 and e1 by G2. An illustration can be
found in Figure 2.

First observe that distG (e, F̃)�min{distG2 (e, f1), distG2 (e, e1)}� d and distG (e1, f1)� d.
Furthermore, every copy of H in G must be either a subgraph of G1 or of G2. To see this, let
H′ be a copy of H in G. Assume first that H′ contains a vertex from V(G2) \ (e1 ∪ f1). Since
distG2 (e1, f1)� d > v(H), H′ cannot use vertices from both e1 and f1, and thus we conclude that
H′ ⊆G2 since either H ∼=K3 or H is 3-connected. Assume then that H′ does not use vertices
from V(G2) \ (e1 ∪ f1). This implies that V(H′)⊆V(G1), so we are done unless f1 is an edge of
H′ (note that by definition, the vertices of f1 are vertices of F̃ − f1 and hence of G1). Assume
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Figure 2. Recursive construction of indicators.

towards a contradiction that f1 is an edge of H′. Furthermore, we may assume that H′ contains a
vertex v ∈V(G1) \ (V (̃F)∪ e1) since F̃ does not contain a copy of H. Let Tf2 , . . . , Tfe(F) be the sub-
graphs of G1 given by property T . Then v ∈V(Tg) for some g ∈ E(F − f1), by (T2). Furthermore,
g is unique since otherwise distG (v, f1)�min{distG1 (v, F̃), distG2 (e1, f1)}� d > v(H) by (T3), a
contradiction sinceH is connected. In fact, this shows that no vertex of V(H′) \V (̃F) is contained
in the intersection V(Tg1 )∩V(Tg2 ) for distinct g1, g2 ∈ E(̃F − f1). Now, g cannot be incident with
both endpoints of f1, and V(Tg)∩V (̃F)= g by (T1). When H ∼=K3, this already implies that v
together with the vertices of f1 cannot form a copy of H. When H is 3-connected, we then find
a vertex w /∈V(Tg) which is incident with f1 and three internally vertex-disjoint v-w-paths in H′.
Among these paths there is at least one path that does not contain a vertex from g; call this path
P. Since v ∈V(Tg) and w /∈V(Tg) there must be an edge e= xy on P such that x ∈V(Tg) and
y /∈V(Tg). But now x /∈ g =V(Tg)∩V (̃F), and thus we conclude that x /∈V (̃F) and e= xy /∈ E(̃F).
Using (T2) and y /∈V(Tg) it follows that e ∈ E(Tg′) for some g′ ∈ E(̃F − f1 − g). But then x is a
vertex in V(H′) \V (̃F) which is contained in the intersection V(Tg)∩V(Tg′) for distinct g, g′ ∈
E(̃F − f1). We have already explained that such a vertex does not exist, a contradiction.

For property (I1), let c1 be an H-free q-colouring of G1with F̃ − f1 and e1 having colour q, as
provided by properties (I1) and (I2) forG1. Analogously, let c2 be anH-free q-colouring ofG2 with
{e1, f1} and e having colour q. The combination of the two colourings is an H-free q-colouring c
of G, as every copy of H is contained in either G1 or G2. Moreover, F̃ is monochromatic in colour
q, as claimed.

For property (I2), let c be an H-free q-colouring of G such that F̃ is monochromatic of colour
q. Then c(e1)= q by property (I2) of G1. But then {e1, f1} is monochromatic in colour q, which
implies that c(e)= q by property (I2) of G2.

For property (I3), let f ∈ E(̃F). Assume first that f = f1. As in (I1) there exists an H-free
q-colouring c1 of G1 with F̃ − f1 and e1 having colour q. Moreover, using property (I3) of G2
we know that there is an H-free q-colouring c2 of G2 − f1 such that c2(e1)= q and c2(e)= j. The
combination of the two colourings is a q-colouring as desired, since every copy of H is contained
in either G1 or G2. Now assume that f �= f1. By property (I3) of G1 there is an H-free q-colouring
c1 of G1 − f such that F̃ − { f1, f } is monochromatic in colour q and with e1 having colour j. By
property (I3′) ofG2 there is anH-free q-colouring ofG2 such that c2( f1)= q and c2(e)= c2(e1)= j.
The combination of the two colourings is a q-colouring, as desired for property (I3).

For property T , let Tf2 , . . . , Tfe(F) be the subgraphs for f2, . . . , fe(F) given by property T of G1 ⊆
G. Moreover, set Tf1 =G2. Then (T1) holds for G, since (T1) holds for G1 by induction and since
V(G2)∩V (̃F)= f1 and f1 ∈ E(G2). Property (T2) is given for G, since

V(G)=V(G1)∪V(G2)=
⋃

f∈F̃−f1

V(Tf )∪V(Tf1 )
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Figure 3. Construction of G for q= 3.

by property (T2) for G1, and since

E(G)= E(G1)∪ E(G2)=
⋃

g∈E(̃F)
E(Tg).

For (T3), let v ∈V(Tfi)∩V(Tfj) for some i �= j where v /∈V (̃F). If i= 1 or j= 1, then v ∈ e1 and
thus distG (v, F̃)� d. Otherwise, by (T3) for G1 and the construction of G, we conclude that

distG (v, F̃)�min{distG1 (v, F̃ − f1), distG2 (e1, f1)}� d.
Proof of Theorem 1.2. LetH, q and F be as in the theorem statement. By assumption, there exists
an H-free q-colouring of F. Let F1, . . . , Fq denote its colour classes. We construct a graph G as
follows. Let {r1, . . . , rq, e1, . . . , eq, f1, . . . , fq} be a matching that is vertex-disjoint from F = F1 ∪
· · · ∪ Fq. Now join these matching edges and the edges of F by signal senders and indicators as
follows. Set d = v(H)+ 1.

(i) For every 1� k< �� q, join rk and r� by a negative signal sender Sk,� = S−(q,H, d).
(ii) For every k ∈ [q] and every g ∈ Fk, join rk and g by a positive signal sender Sk,g =

S+(q,H, d).
(iii) For every k ∈ [q], join Fk and ek by an (H, Fk, ek, q, d)-indicator Ik that has property T .
(iv) For every k ∈ [q], join ek and fk by a negative signal sender S−

k = S−(q,H, d).
(v) For every k ∈ [q− 1], join fk and fk+1 by a positive signal sender S+

k = S+(q,H, d).

The existence of the signal senders and indicators in (i)–(v) follows from Lemmas 2.1 and 3.1. An
illustration of the construction can be found in Figure 3.

Similar to the constructions for Lemma 3.1, we first show that every copy of H in G is a sub-
graph of either F or one of these signal senders or one of these indicators. Let H′ be a copy
of H in G. Assume first that there is a signal sender S from (i), (ii), (iv) or (v), and a vertex
v ∈V(H′)∩V(S) that is not incident to any of the signal edges of S. Then H′ ⊆ S, since the signal
edges have distance at least d in S and since H is 3-connected or a triangle. So we may assume
that V(H′)⊆V(F)∪ ⋃

k∈[q] V(Ik). If V(H′)⊆V(F) then we are done. Thus, we may also assume
that H′ contains a vertex v from V(Ik) \V(F) for some k ∈ [q]. Let {Tg | g ∈ E(Fk)} be the col-
lection of subgraphs of Ik given by property T of Ik. By (T2) we know that v ∈V(Tg) \V(F)
for some g ∈ E(Fk). Moreover, the only edges of G containing v are contained in Ik or in
S−
k , by construction. When H′ ∼=K3 we can immediately deduce that V(H′)⊆V(Ik), since we
have already assumed that V(H′)∩ (V(S−

k ) \ ek)=∅. Let V(H′)= {v, x, y} in this case. By prop-
erty (T2) we have vx ∈ E(Tg′) for some g′ ∈ E(Fk). If g �= g′ holds, then v ∈V(Tg)∩V(Tg′) and
therefore distIk (v, F)� d = 4 by property (T3), which yields H′ ⊆ Ik. Hence we may assume that
g = g′ and vx ∈ E(Tg); analogously we may assume that vy ∈ E(Tg). If xy ∈ E(Ik), then we are
done. So we may also assume that xy ∈ E(F). Then by property (T1) we get {x, y} ⊆V(Tg)∩
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V(F)= g and thus xy= g ∈ E(Tg), again implying thatH′ ⊆ Ik. Consider next the case when H′ is
3-connected. We already know that we may assume that V(H′)⊆V(F)∪ ⋃

k∈[q] V(Ik) and that
there is a vertex v from V(Ik) \V(F) for some k ∈ [q]. Again, by (T2) there is an edge g ∈ E(Fk)
with v ∈V(Tg) \V(F). If H′ ⊆ Tg then we are done. So we may assume that H′ contains an edge
which does not belong to E(Tg). By the 3-connectivity ofH′ we then find a v-y-path P inH′ which
does not use vertices from g, and such that the edge xy ∈ E(P′) which is incident with the endpoint
y does not belong to E(Tg). Let P be a shortest such path. Then x ∈V(Tg). Since P does not use
vertices of g and since V(Tg)∩V(F)= g by (T1), we have x /∈V(F). In particular, the only neigh-
bours of x in V(F) need to belong to g, and hence y /∈V(F). It follows that y ∈V(Ik) \V(F) and
xy ∈ E(Ik), since all the indicators intersect in V(F) only. Hence, using (T1) and since xy /∈ E(Tg)
by the choice of P, we find an edge g′ ∈ E(Fk − g) such that xy ∈ E(Tg′). But then x ∈V(Tg) \V(F)
is a vertex that lies in the intersectionV(Tg)∩V(Tg′) for distinct g, g′ ∈ E(Fk). Applying (T3) leads
to distIk (x, F)� d and hence H′ ⊆ Ik.

We now prove that (G− f )� (H)q for every f ∈ E(F). Without loss of generality let f ∈ Fq. We
define a colouring c : E(G− f )→ [q] as follows. Colour all edges of Fq − f and rq with colour q,
and for every k ∈ [q− 1] colour the edges of Fk + {ek, rk}with colour k. Set c(eq)= 1 and c( fk)= q
for every k ∈ [q]. Finally, colour every indicator from (iii) and every signal sender from (i), (ii), (iv)
and (v) with anH-free q-colouring preserving the colours already chosen. For Iq this is possible by
property (I3) and for all other indicators this is possible by properties (I1) and (I2). For the signal
senders this is possible by properties (S1) and (S2), as the colours above have been chosen in such
a way that the signal edges of negative/positive signal senders receive different/identical colours.
We claim that c is H-free. Indeed, any copy of H is contained as a subgraph either in F or in one
of the indicators or signal senders, as we have shown above. The colouring on each indicator and
signal sender isH-free, and it isH-free on F since each of F1, . . . , Fq receives a distinct colour, and
each Fi is H-free by assumption.

We next show that G→ (H)q. Assume that there exists an H-free q-colouring c. By prop-
erty (S2) of the negative signal senders in (i), we find that c(rk) �= c(r�) for all k, � ∈ [q] with
k �= �. Without loss of generality let c(rk)= k for all k ∈ [q]. By property (S2) of the positive
signal senders in (ii), it then follows that Fk needs to be monochromatic in colour k for every
k ∈ [q]. Using property (I2) of the indicators in (iii), we conclude that c(ek)= k must hold for
every k ∈ [q], and applying property (S2) of the negative signal senders in (iv) we then deduce
c( fk) �= k for every k ∈ [q]. But then, using property (S2) of the positive signal senders in (v), we
obtain c( f1)= c( fk) �= k for every k ∈ [q], a contradiction.

Finally, letG′ ⊂G be a subgraph ofG that is q-Ramsey-minimal forH. Then f ∈ E(G′) for every
f ∈ E(F) since (G− f )� (H)q. Thus G′ is a q-Ramsey-minimal graph for H which contains F as
an induced subgraph.

In order to obtain infinitely many such q-Ramsey-minimal graphs, set G0 =G′ and obtain
further such q-Ramsey-minimal graphs Gi iteratively as follows. Let Fi be the disjoint union of
v(Gi−1) copies of F. Since Fi is not q-Ramsey for H, we can repeat the above argument and thus
create a q-Ramsey-minimal graph Gi for H which contains Fi as an induced subgraph. Note that
then Gi also contains F as an induced subgraph and v(Gi)� v(Fi)> v(Gi−1) holds.

Proof of Corollary 1.3. Suppose that for two graphs H and H′ we have Mq(H)⊆Mq(H′) and
Mq(H′)�Mq(H). Let G ∈Mq(H′) \Mq(H). If G is q-Ramsey forH, then for some subgraph G′
of G we have that G′ ∈Mq(H)⊆Mq(H′) by assumption. If G′ =G this contradicts G �∈Mq(H),
and if G′ is a proper subgraph of G then this contradicts G ∈Mq(H′) as G is not minimal. On the
other hand, if G is not q-Ramsey for H then there exists a graph G′ such that G⊆G′ ∈Mq(H)⊆
Mq(H′), by Theorem 1.2 and assumption. Since G ∈Mq(H′) by assumption it follows that
G=G′, a contradiction to G �∈Mq(H).
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4. Ramsey equivalence results
In this section we prove Theorems 1.7, 1.8 and 1.9. We start with the proof of Theorem 1.8,
which is a corollary of the following slightly more general statement. This multicolour ver-
sion is a straightforward generalization of the argument for two colours in [28, Theorem 3.1].
Theorem 1.8 follows by repeatedly applying this theorem to pairs Hi−1 =Kk + (i− 2)Kt and
Hi =Kk + (i− 1)Kt with 2� i� s+ 1.

Theorem 4.1. Let q� 2, let a1 � a2 � · · ·� as � 1 and define Hi:=Ka1 + · · · +Kai for 1� i� s.
If Rq(a1 − as + 1, a1, . . . , a1)> q(a1 + · · · + as−1), then Hs and Hs−1 are q-equivalent.

Proof. It is clear that every graph G that is q-Ramsey for Hs is also q-Ramsey for Hs−1. Now let G
be a graph that is q-Ramsey for Hs−1. We need to show that G is q-Ramsey for Hs. Suppose for a
contradiction that G �→ (Hs)q and let c : E(G)→ [q] be a q-colouring of the edges of G without a
monochromatic copy ofHs. Without loss of generality, we may assume that there is a copy ofHs−1
in colour 1, and let S1 be its vertex set. Since c has no copy ofHs in colour 1, the colouring restricted
to V(G) \ S1 has no copy of Kas in colour 1. Now, recursively for every colour j= 2, . . . , q, let ij
be the largest index such that V(G) \ (S1 ∪ · · · ∪ Sj−1) contains a monochromatic copy of Hij in
colour j (where we take H0 to be the empty graph), and let Sj be its vertex set. Since c has no
monochromatic copy of Hs we have that ij < s for all j ∈ [q]. Now c restricted to V(G) \ (S1 ∪
· · · ∪ Sq) does not contain a monochromatic copy of Ka1 , since by the maximality of ij there is no
copy of Hij+1 =Hij +Kaij+1 in colour j in V(G) \ (S1 ∪ · · · ∪ Sj−1) and since aij+1 � a1 for every
j ∈ [q].

As in the proof of Theorem 3.1 in [28], we now recolour some edges of G. We have

|S1 ∪ · · · Sq| = |V(Hs−1)| + |V(Hi2 )| + · · · + |V(Hiq)|
� q(a1 + · · · + as−1)
< Rq(a1 − as + 1, a1, . . . , a1).

Hence, by the definition of the Ramsey number we can recolour the edges inside S1 ∪ · · · ∪ Sq
without a monochromatic copy of Ka1−as+1 in colour 1 and without a monochromatic copy of
Ka1 in colour j, for all 2� j� q. All edges between S1 ∪ · · · ∪ Sq and V \ (S1 ∪ · · · ∪ Sq) receive
colour 1, and all remaining edges retain their original colour. It is now easy to see that there is no
monochromatic copy of Ka1 , which is a contradiction to G→ (Hs−1)q.

It turns out that Theorem 1.8 already implies Theorem 1.7 for q� 4. We need two more
ingredients for the case q= 3.

Observation 4.2. Let G be a graph such that G→ (K3)3, and let c be a 3-colouring of the edges of
G. If there is a monochromatic copy of K3 in every colour, then there is a monochromatic copy of
K3 +K2.

Proof. We first note that χ(G)� R3(3)= 17, where χ(G) is the chromatic number of G; see e.g.
Theorem 1 in [21]. Let V0 be the set of vertices belonging to the three monochromatic triangles,
each of a different colour, which exist by assumption. Then G[V(G)\V0] contains an edge, as
otherwise χ(G)� χ(G[V0])+ 1� 10. This edge then forms a monochromatic copy of K3 +K2
along with one of the three monochromatic triangles.

The next theorem was proved by Bodkin and Szabó (see [4], and [3] for a proof).

Theorem 4.3 (Theorem 2 in [3]). If G→ (K3)2 and G �→ (K3 +K2)2 then K6 ⊆G.
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Proof of Theorem 1.7. For k= 3 and t = 2, Theorem 1.8 implies that K3 and K3 +K2 are
q-equivalent if Rq(2, 3, . . . , 3)= Rq−1(3)> 3q. This inequality follows for q� 4 easily by induc-
tion on q with the induction start given by the fact R3(3)= 17> 4 · 3.

It remains to prove thatK3 andK3 +K2 are 3-equivalent. Clearly, any graph which is 3-Ramsey
for K3 +K2 is also 3-Ramsey for K3. Now let G be a graph that is 3-Ramsey for K3 and let c be a 3-
colouring of G using colours red, blue and yellow. Let R, B and Y denote the subgraphs formed by
the red, blue and yellow edges, respectively. We need to show that we can find a copy of K3 +K2
in one of R, B or Y .

Suppose first that none of the subgraphs of G formed by the union of any two of R, B, Y is a
2-Ramsey graph for K3. Then the subgraph R∪ B can be recoloured red/blue without monochro-
matic copies of K3. Hence there must exist a (yellow) copy of K3 in Y , since G→ (K3)3. Similarly
we argue that there is also both a blue and a red copy ofK3 inG. We are then done by Theorem 4.2.

Suppose now that without loss of generality R∪ B is 2-Ramsey for K3. Then by Theorem 4.3
either there is a copy of K3 +K2 in R or in B (and we are done), or K6 is a subgraph of R∪ B, say
on vertex set S. Now we find either a red or a blue copy of K3 +K2 in S, or both a red and a blue
copy of K3 on S.

We claim that G contains a further (not necessarily monochromatic) copy of K3 in V(G) \ S.
Suppose not. Then we recolour G as follows. Let v ∈ S and colour the edges of G[V(S) \ {v}] with
red and blue without a monochromatic copy of K3 (i.e. a red and a blue C5). Colour all edges
incident to v in S yellow and colour all edges in V(G) \ S blue. Finally, colour all edges between
V(S) \ {v} and V(G) \ S yellow and all those between v and V(G) \ S red. Unless there is a triangle
in V(G) \ S, this colouring does not contain a monochromatic copy of K3, a contradiction to G→
(K3)3. Let T be this triangle in G− S. If any of the edges of T is red or blue, then this edge forms
a monochromatic copy of K3 +K2 with one of the monochromatic triangles in S. Otherwise, all
edges of T are yellow, and we are done again by Theorem 4.2.

We now turn to the proof of Theorem 1.9. To show the non-equivalence of two graphs
H andH′, we need to construct a graph that is q-Ramsey for one of the graphs, say forH, and not
q-Ramsey forH′. Recall that the signal senders in Section 2 provide us with graphs that can enforce
certain predefined colour patterns. We now introduce suitable colour patterns. Following nota-
tion of [16], we call a graph F on n vertices (n, r, k)-critical if Kk+1 �⊆ F and every subset S⊆V(F)
of size |S|� n/r satisfies Kk ⊆ F[S]. A sequence of pairwise edge-disjoint graphs F1, . . . , Fr on the
same vertex set V is called a colour pattern on V .

Lemma 4.4 (Lemmas 4.2 and 4.4 in [16]). Let k� 2, r� 3 be integers. Then there exists a colour
pattern F1, . . . , Fr on vertex set [n], for some n, such that each Fi is (n, r, k)-critical.

Remark. The results in [16] include bounds on n in terms of r, which is unnecessary for our
purpose. Without these bounds, the lemma can actually be proved by a now standard application
of the probabilistic method.

Next we state a lemma that captures the effect of repeated application of the pigeonhole prin-
ciple in a coloured bipartite graph. Its proof is a straightforward generalization of the proof of
Lemma 2.6(a) in [15].

Lemma 4.5. Let G= (A∪ B, E) be a complete bipartite graph with a q-colouring c : E→ [q] of its
edges. Then there exists a subset B′ ⊆ B with |B′|� |B|/q|A| such that, for every vertex a ∈A, the set
of edges from a to B′ is monochromatic.

We are ready to prove Theorem 1.9.
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Figure 4. An illustration of the graph Gq+1 when q= 3 and k= 5. Bold edges indicate complete bipartite graphs.

Proof of Theorem 1.9. Fix k� 3. The proof proceeds by induction on q. For q= 2, there exists a
graph G2 that satisfies G2 →Kk and G2�Kk ·K2, by [15]. So assume that q� 2 and let Gq be a
graph such that Gq → (Kk)q and Gq� (Kk ·K2)q. We construct a graph Gq+1 with the properties
Gq+1 → (Kk)q+1 and Gq+1� (Kk ·K2)q+1.

Let r = q|V(Gq)|+qk2 + 1, and let F = F1 ∪ · · · ∪ Fq be a colour pattern such that each Fi is
(n, r, k− 1)-critical for some n. The existence of F follows from Lemma 4.4. (Note that we only
use q pairwise edge-disjoint graphs, where the lemma in fact provides r such graphs Fi.) We con-
struct Gq+1 as follows. Let G̃q be a copy of Gq, say on vertex set V0. Let V1, . . . ,Vk−2 be pairwise
vertex-disjoint sets of size n= |V(F)| that are disjoint from V0. Let {e1, . . . , eq} be a matching of
size q, (vertex-) disjoint from V0 ∪ · · · ∪Vk−2. For each 1� j� k− 2, let F(j) = F(j)1 ∪ · · · ∪ F(j)q
be a copy of F on vertex set Vj. Additionally, add all edges between Vi and Vj for all 0� i<
j� k− 2. Finally, we join edges by signal senders in the following way. For all 1� i< j� q, join
ei and ej by a negative signal sender S− = S−(q+ 1,Kk, k). And for all 1� i� q and every edge
e ∈ F(1)i ∪ · · · ∪ F(k−2)

i , join e and ei by a positive signal sender S+ = S+(q+ 1,Kk, k). Both signal
senders S− and S+ exist by Lemma 2.1. The resulting graph is Gq+1; an illustration can be found
in Figure 4.

Claim 4.6. Gq+1� (Kk ·K2)q+1.

Proof. Consider the following (q+ 1)-colouring of the edges of Gq+1. By inductive hypothesis
of Gq, there exists a (Kk ·K2)-free colouring c0 : E(G̃)→ [q] of the edges in V0. For all 1� i� q,
colour the edges of F(1)i ∪ · · · ∪ F(k−2)

i and the edge ei in colour i. Colour all edges between any Vi
and Vj, 0� i< j� k− 2, with colour q+ 1. Note that all pairs of edges that are joined by copies
of S+ have the same colour. There exists a Kk-free (q+ 1)-colouring c+ of S+ by property (S1),
and by property (S2) both signal edges have the same colour in c+. Extend the partial colouring of
Gq+1 to every copy of S+ using c+ (possibly permuting the colours so that the colouring agrees on
the already coloured signal edges). Similarly, any two edges that are joined by copies of S− received
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distinct colours (edge ei received colour i for i ∈ [q]), and there exists a Kk-free (q+ 1)-colouring
c− of S− by property (S1) in which the two signal edges have distinct colours. Extend the partial
colouring further to every copy of S− using c−, again permuting colours when needed.

We claim that this gives a (Kk ·K2)-free (q+ 1)-colouring of Gq+1. First note that any copy
of Kk is either contained in V0 ∪ · · · ∪Vk−2 or is contained in one of the copies of a signal
sender. This follows since the intersection of the vertex set of every copy of S+ (or S−) and
V0 ∪ · · · ∪Vk−2 ∪ ⋃

k∈[q] ek contains at most the two signal edges of the signal sender, and since
the distance between those two edges is at least k in Gq+1. The colouring is Kk-free on every
copy of a signal sender by the choice of the colourings c+ and c−. Next, note that the edges
of colour (q+ 1) in V0 ∪ · · · ∪Vk−2 form a (complete) (k− 1)-partite graph as no edge inside
Vi, 0� i� k− 2, has colour q+ 1. Thus there is no monochromatic copy of Kk in colour q+ 1
in Gq+1. Furthermore, for every 1� i� q, the graph formed by edges of colour i on vertex set
V1 ∪ · · · ∪Vk−2 is isomorphic to the vertex-disjoint union of copies of Fi which is (n, r, k− 1)-
critical and thus Kk-free. It follows that the only monochromatic copies of Kk are contained in V0.
The colouring on V0 only uses the colours [q], whereas all edges between V0 and V(Gq+1) \V0
have colour q+ 1. Furthermore, the colouring on V0 is Kk ·K2-free, by inductive assumption.
Therefore, if there is a monochromatic copy of Kk, then it must be contained in V0, and then
there is no pendant edge to that copy of the same colour.

Claim 4.7. Gq+1 → (Kk)q+1.

Proof. Let c : E(Gq+1)→ [q+ 1] be a (q+ 1)-colouring and suppose that there is no monochro-
matic copy of Kk in this colouring. Then c is Kk-free on every copy of S−. Thus the two edges
ei and ej receive different colours for all 1� i< j� q, by property (S2) of a negative signal
sender. After permuting colours we may henceforth assume that the edge ei has colour i for
1� i� q. Furthermore, c is Kk-free on every copy of S+ which joins e and ei, for each i ∈ [q]
and e ∈ F(1)i ∪ · · · ∪ F(k−2)

i . This implies that the graph

F(1)i ∪ · · · ∪ F(k−2)
i is monochromatic of colour i for every i ∈ [q], (4.1)

by property (S2) for positive signal senders.
We now apply Lemma 4.5 to the bipartite graph between V0 and V1 and deduce that there is

a set V ′
1 ⊆V1 with |V ′

1|� |V1|/q|V0| such that, for every vertex v ∈V0, the set of edges from v to
V ′
1 is monochromatic. Now |V1|/q|V0| � |V1|/r by choice of r. Hence, for every i ∈ [q] there is a

monochromatic copy of Kk−1 in colour i in V ′
1, say on vertex set W(i)

1 , since F(i)1 is (n, r, k− 1)-
critical and monochromatic of colour i, by (4.1). LetW1 = ⋃

i∈[q] W
(i)
1 and note that |W1|� qk. If

there exists a vertex v ∈V0 such that all the edges from v toW1 ⊆V ′
1 have colour i for some i ∈ [q]

then the vertices W(i)
1 ∪ {v} form a monochromatic copy of Kk in colour i and we are done. We

may thus assume that all edges between V0 andW1 have colour q+ 1.
Iteratively assume that we have defined W1, . . . ,W� for some � = 1, . . . , k− 3, such that for

every i, j ∈ [�] with i �= j we have that Wi ⊆Vi of size |Wi|� qk, Wi contains a monochromatic
copy of Kk in every colour j ∈ [q], all edges between V0 and

⋃
i∈[�] Wi have colour q+ 1, and

all edges between Wi and Wj have colour q+ 1. We then obtain W�+1 in V�+1 by repeating the
argument above, where V0 is replaced by V0 ∪W1 ∪ · · · ∪W�. Note that this set has size at most
|V0| + qk2. Thus the subset V ′

�+1 ⊆V�+1 that we obtain by application of Lemma 4.5 has size at
least |V�+1|/q|V0|+qk2 � |V�+1|/r by choice of r. The rest of the argument is analogous.

Thus either we find a monochromatic copy of Kk in one of the colours 1, . . . , q, or we obtain
sets W1, . . . ,Wk−2 that form a complete (k− 2)-partite graph in colour q+ 1 and such that all
edges between V0 and

⋃
i∈[k−2] Wi are present and have colour q+ 1. If any of the edges in V0 has
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colour q+ 1, then this edge together with one vertex from eachWi, i ∈ [k− 2], forms amonochro-
matic copy ofKk in colour q+ 1, andwe are done again. Otherwise, no edge inV0 has colour q+ 1.
But the graph on V0 is isomorphic to Gq, which means that in any q-colouring of the edges in V0
there is a monochromatic copy of Kk in at least one of the colours.

This finishes the proof of Theorem 1.9.

5. Concluding remarks
Minimal minimum degree of minimal Ramsey graphs.We have proved that Kk and Kk ·K2 are
not q-equivalent for any q� 3. The proof proceeds by induction on q with the base case given by
the non-equivalence in two colours from [15]. The 2-distinguishing graph G2 constructed in [15]
actually has a stronger property, namely that G� (Kk ·K2)2 and every (Kk ·K2)-free colouring
of G2 has a fixed copy of Kk being monochromatic. This stronger property was used there to
construct a graph G′ that is 2-minimal for Kk ·K2 and that contains a vertex of degree k− 1, i.e.
s2(Kk ·K2)� k− 1. The classical paper by Burr, Erdős and Lovász contains the proof of s2(Kk)=
(k− 1)2, that is, adding a pendant edge to Kk changes the behaviour of s2( · ) drastically.

Problem 5.1. Determine sq(Kk ·K2) for q� 3. Specifically, is it true that sq(Kk ·K2)� sq(Kk), and
if so, how small is the ratio sq(Kk ·K2)/sq(Kk)?

It is known that sq(Kk)=O(q2( ln q)8(k−1)2 ) for k� 4, where the implicit constant is inde-
pendent of q [16]. For fixed k, this bound is tight up to a factor that is polylogarithmic in q.
Furthermore, sq(K3)= �(q2 log q) [19].

The construction of G2 in [15] does not generalize in a straightforward manner to more than
two colours. The q-distinguishing graph Gq, q� 3, from the proof of Theorem 1.9 contains
signal senders and thus does not have the stronger property of having a fixed copy of Kk that
is monochromatic in every (Kk ·K2)-free q-colouring of Gq as G2. In particular, our graphs Gq
cannot be used (per se) for constructions showing upper bounds on sq(Kk ·K2).

From 2-(non)-equivalence tomulticolour-(non)-equivalence.We have seen in the Introduction
that 2-equivalence of H and H′ implies q-equivalence for every even q. More generally,
Theorem 1.6 implies that two graphs are q-equivalent for every q� 3 if they are known to be
2-equivalent and 3-equivalent. We reiterate our question from the Introduction here.

Question 5.2. Is it true that any two 2-equivalent graphs H and H′ are also 3-equivalent?

Or are there two graphsH andH′ that are, say, 100-equivalent but not 101-equivalent?We also
said in the Introduction that in general one cannot deduce that H and H′ are not q-equivalent
for q� 3 from the mere fact that they are not 2-equivalent. All examples had H or H′ being
disconnected. Is this a coincidence?

Question 5.3. Let H and H′ both be connected graphs that are 3-equivalent. Is it true that they
are 2-equivalent as well?

This question may have an affirmative answer, for the trivial reason that there are no two con-
nected non-isomorphic graphs H and H′ that are q-equivalent for any q� 2. This question was
first posed in [15] for two colours, and we extend it here to any number of colours.

Question 5.4. For given q� 2, are there two non-isomorphic connected graphs H and H′ that
are q-equivalent?
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Since Kk is not q-equivalent to any other connected graph (see the discussion preceding
Theorem 1.9) and since any two 3-connected graphs are not q-equivalent for any q� 2 by
Theorem 1.4, it is generally believed that the answer to this question is no.

Adding a connected graph to a clique. We have seen that Kk is Ramsey equivalent to Kk +H
where H is a collection of vertex-disjoint cliques. What other graphs H have that property? Here
we concentrate on the 2-colour case to highlight how little is known. Of course, all the following
questions have natural analogues in the multicolour setting.We know thatKk andKk +Kk are not
Ramsey equivalent (since the clique onR2(k) vertices is a distinguisher) and thatKk andKk +Kk−1
are Ramsey equivalent. The following three questions are, of course, related, we find each of them
interesting.

Question 5.5.

• What is the largest value of t = t(k) such that there is a connected graph H on t vertices so
that Kk and Kk +H are Ramsey equivalent?

• What is the largest value of t = t(k) such that Kk and Kk + St are Ramsey equivalent, where
by St we denote the star with t vertices (in alignment with the previous question)?

• What is the largest value of t = t(k) such that Kk and Kk + Pt are Ramsey equivalent, where
by Pt we denote the path with t vertices?

The second question is from [15]. Note that the equivalence of Kk and Kk +Kk−1 implies that
the answer to these questions is at least k− 1. Moreover, it is easy to obtain an upper bound
of roughly R(k), i.e. exponential in k. To the best of our knowledge nothing better is known.
Specifically, we wonder whether Kk and Kk + Sk are Ramsey equivalent. If the answer is affirma-
tive then this may shed light on whether Kk +Kk−1 ·K2 and Kk are Ramsey equivalent. Slightly
more ambitious is the following.

Problem 5.6. Are Kk and Kk +K−
k Ramsey equivalent, where K−

k denotes the clique on k vertices
with one edge deleted?

An affirmative answer would imply that R(K−
k )< R(Kk), an inequality conjectured to be true,

but only known for k� 6; see e.g. [2].
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[7] Burr, S., Erdős, P. and Lovász, L. (1976) On graphs of Ramsey type. Ars Combin. 1 167–190.

https://doi.org/10.1017/S0963548320000036 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000036


554 D. Clemens, A. Liebenau and D. Reding

[8] Burr, S., Faudree, R. and Schelp, R. (1977) On Ramsey-minimal graphs. In Proc. 8th Southeastern Conference on
Combinatorics, Graph Theory and Computing, pp. 115–124.
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