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Abstract

Simulation of the water balance in cropping systems is an essential tool, not only to monitor
water status and determine drought but also to find ways in which soil water and irrigation
water can be used more efficiently. However, besides the requirement that models are phys-
ically correct, the spatial representativeness of input data and, in particular, accurate precipi-
tation data remain a challenge. In recent years, satellite-based soil moisture products have
become an important data source for soil wetness information at various spatial-temporal
scales. Four different study areas in the Czech Republic and Austria were selected representing
Central European soil and climatic conditions. The performance of soil water content outputs
from two different crop-water balance models and the Metop Advanced SCATterometer
(ASCAT) soil moisture product was tested with field measurements from 2007 to 2011.
The model output for soil water content shows that the crop model Decision Support
System for Agrotechnology Transfer performs well during dry periods (<30% plant available
soil moisture (ASM), whereas the soil water-balance model SoilClim presents the best results
in humid months (>60% ASM). Moreover, the model performance is best in the early growing
season and decreases later in the season due to biases in simulated crop-related above-ground
biomass compared with the relatively stable grass canopy of the measurement sites. The
Metop ASCAT soil moisture product, which presents a spatial average of soil surface moisture,
shows the best performance under medium soil wetness conditions (30–50% ASM), which is
related to low variation in precipitation frequency and under conditions of low-surface bio-
mass (early vegetation season).

Introduction

Soil water content is one of the key resources in crop production and is influenced by climate,
soil and hydrological conditions as well as vegetation (Saue & Kadaja 2014). Rainfall, irrigation
and the capillary rise of groundwater towards the root zone contribute towards crop available
water. Soil evaporation, crop transpiration, runoff and percolation losses remove water from
the crop stand and increases depletion of available soil water (Allen et al. 1998). Under semi-
arid conditions, as in many Central European regions, insufficient soil moisture during the
vegetation period is a major cause of crop yield reduction or even crop failure. Plants suffer
water stress when root zone water supply fails to meet the evapotranspiration demand
(Saseendran et al. 2015), resulting in a reduction in crop yield quantity and quality. Plant
water demand depends on multiple factors, such as genetic characteristics of the specific
plant, its stage of growth, accumulated biomass and leaf area, prevailing weather conditions,
crop management and soil characteristics (Sastri 1993; Wilhite 1993; Mebane et al. 2013).

Knowledge of soil water balance characteristics in cropping systems can help to determine
actual crop available water in the root zone and to design effective management strategies to
use and conserve soil water (Aydin 2008). With this aim, many modelling concepts have been
developed in recent decades to simulate soil and crop water balance processes (Allen et al.
1998; White et al. 2011). Soil water balance models range from functional, such as the tipping
bucket systems models, to mechanistic, which contain models such as those based on Darcy
(1856) or Richards’ equation (1941; Addiscott & Wagenet 1985). Depending on the degree
of simplifications implemented, these models require a number of empirical assumptions to
represent the extremely large degree of non-linearity and space-time variability of water
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dynamics in the soil (Porporato et al. 2004). The numerous
physical processes considered in soil water balance models
include water infiltration from rainfall or irrigation, redistribution
of infiltrated water in the soil water zone, plant water uptake
(mainly in the form of actual evapotranspiration) and percolation
out of the soil reservoir. Most of these processes can be described
by more or less physically based models of water transport in the
soil-plant-root system. Independent of their physical sophistica-
tion, they are all based on assumptions (i.e. not considered or
unknown specific processes, determining factors of soil water bal-
ance) and require field data for estimation and calibration of
model parameters (Panigrahi & Panda 2003). Despite this, soil
water balance models are useful tools for agro-ecological analyses
and practical applications. One of the main uses of soil water bal-
ance models is an indication of drought for irrigation scheduling,
i.e. procedures determining the timing and amount of crop irriga-
tion requirements (Linker et al. 2016). Also under rainfed
schemes, these models are powerful tools to predict crop response
under different climatic and management scenarios (Campos
et al. 2016). In addition, models and information about the avail-
able supply of soil moisture are of great importance in the context
of early warning systems and can optionally be used in dealing
with compensation to farmers in cases of extreme event (e.g.
drought, moisture surplus) impacts (Možný et al. 2012).

However, one must consider uncertainties, which are involved
in model applications, as for example caused by incomplete
knowledge of the processes and inputs involved for a specific
crop and crop environment (Eitzinger et al. 2008, 2013a).
Another main driver for the uncertainty in model outputs are cli-
mate, soil and management input data (Bouman 1994; Nonhebel
1994; Pachepsky & Acock 1998; Soltani et al. 2004; Masutomi
et al. 2009). In addition, crop models are sensitive to the variabil-
ity and spatial scale of the weather data inputs (Semenov & Porter
1995; Mearns et al. 1997; Tatsumi et al. 2011).

Comparing model results with field observations or inter-
comparison of different types of model provide information on
the performance of the models and reveal their strengths and
weaknesses, as several studies in Europe and worldwide have
shown (Palosuo et al. 2011; Rötter et al. 2012; Eitzinger et al.
2013a; Kollas et al. 2015; Battisti et al. 2017; Huang et al.
2017). This is important in selecting appropriate models for prac-
tical applications in water management and helps to validate
whether or not a model is better at representing soil water content
in comparison with the given soil water measurements.

While in the past plant available water was estimated exclu-
sively by in situ measurements or model simulations, in recent
years remote sensing has played an increasingly important role
in receiving spatial information on soil surface conditions
(Martínez-Fernández et al. 2016). Several satellite soil moisture
products are available from microwave, optical and thermal sen-
sors (Brocca et al. 2017). The current study focuses only on active
and passive microwave-based products, in particular on the
Advanced SCATterometer (ASCAT) soil moisture product.
Active radar sensors provide measurements independent of
atmospheric conditions and derive important characteristics
about the earth’s surface, such as surface soil wetness. This is sup-
ported by the fact that such satellite products can be acquired day
and night, penetrate the vegetation canopy and obtain informa-
tion about the first few centimetres of the ground below the sur-
face (Wagner et al. 2013). By observing the different dielectric
responses of wet and dry soil, satellite-based estimates of surface
soil moisture (SSM) can be performed using, e.g. measurements

from European Remote Sensing satellites 1 and 2 (ERS-1/2) and
Metop ASCAT. It should be borne in mind, however, that one
limit of remote sensing soil moisture data is that it provides infor-
mation to a depth of only a few centimetres below the surface.

Reliable estimates of evapotranspiration, water balance and soil
water content, with regard to their proper temporal and spatial
representativeness, are crucially important when soil-vegetation-
atmosphere models are applied. Therefore, any water balance cal-
culations should be tested prior to application at different sites
and environments. The main objective of the current study was
to assess the quality of two process-based models of different
complexity and the Metop ASCAT soil moisture product, as a
complementary source for near SSM information, in comparison
with field measurements at four sites across a climatic gradient
representing rain-fed agriculture of Central Europe. The crop
growth model Decision Support System for Agrotechnology
Transfer (DSSAT; Jones et al. 2001, 2003) and the soil water bal-
ance model SoilClim (Hlavinka et al. 2011) were used to compare
model outputs with field measurements of soil moisture within
the 0–40 cm layer, the main root zone of the plant.

Materials and methods

Study sites and the incidence of land cover types on Advanced
SCATterometer grid

For the purposes of the study, three locations in the Czech
Republic (Doksany 50°27′N, 14°10′E, 158 m a.s.l.; Dyjákovice
48°46′N, 16°18′ E, 185 m a.s.l.; Kroměřiž 49°17′N, 17°23′E,
201 m a.s.l.) and one location in Austria (Groß-Enzersdorf 48°
12′N, 16°33′E, 157 m a.s.l.) were chosen (Fig. 1). The area com-
prising these locations is influenced by a continental-type climate,
where winters are usually cold, with frequent strong frosts and
limited snow cover, and summers are hot and periodically dry
(Table 1). The four locations were situated in the middle of the
ASCAT pixel (Fig. 2).

Corine Land Cover data 2006 and 2012 (http://land.coperni-
cus.eu/pan-european/corine-land-cover) were used for assessing
land cover within the ASCAT pixel. These data revealed
that land use of the four ASCAT grids were characterized by
mainly agricultural land use, to similar extents (0.70–0.90),
which was also mostly non-irrigated arable land (Doksany =
0.87; Dyjákovice = 0.89; Kroměřiž = 0.93; Groß-Enzersdorf = 0.93
of arable land). From further statistical reports of the larger region
representing Groß-Enzersdorf, around 0.25 were covered by sum-
mer crops (such as maize) and 0.75 by winter crops (such as cer-
eals). The highest acreage of artificial surfaces among all four
study site grids was visible in Groß-Enzersdorf with around
0.14, including also some Vienna suburbs. Kroměřiž was charac-
terized by a higher acreage of forest and semi-natural areas (0.18).
Water bodies occupied only small areas from 0.0 (Dyjákovice) to
0.02 (Doksany and Groß-Enzersdorf) of the grid land cover
(Fig. 2).

Soil moisture measurement

All three Czech sites were part of the soil moisture measurement
network of climatological stations, which monitor soil moisture
content at the 0–0.1 m, 0.1–0.5 m and 0.5–0.9 m layers using sen-
sors placed within the natural soil profile under short grass cover
(Možný et al. 2012). The stations use three sensors, one horizontal
and two vertical. A detailed pedological survey to determine the
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wilting point (lower limit of plant extractable soil water = LL) and
field capacity (drained upper limit = DUL) was carried out for all
layers (Kirkham 2014). Sensors were first installed at the Doksany
station in 1991. Since 1998, the measurement system has also
been introduced at other stations. The original measurements
using VIRRIB sensors (www.amet.cz) had been gradually replaced
by the more accurate TRIFO3G sensors (www.asconsult.cz). Both
sensors use the dielectric method to measure soil moisture (Topp
et al. 1980). TRIFO3G sensors featured a high-quality three-rod
probe for permanent use in different soils. The standard length
of the 100% stainless steel probe is 0.4 m. TRIFO3G sensors
have an accuracy of ±1% for volumetric soil moisture mea-
surements under controlled laboratory conditions and are fac-
tory-calibrated for most agricultural soils. Measurements can be
carried out in both extreme clay soils and sandy soils.

The soil water content measurement for Austrian arable soil
was taken from an agrometeorological station of a representative
site near Groß-Enzersdorf, where the atmospheric model input
parameters were measured. The Campbell Scientific CS615
water content reflectometer (Campbell Scientific Inc. 1995) was
used to measure the volumetric water content from 0 to 30 cm
soil depth under a natural grass canopy. All measured data used
are based on 10-min measurement intervals.

The four stations measured volumetric soil water content at
different soil depths under short grass cover. The daily mean
soil water content at 0–40 cm in the three Czech Sites and 0–
30 cm in Groß-Enzersdorf was used to calculate plant available
soil moisture (ASM). Plant ASM data were derived from the his-
tory of measurements: long-term reasonable minimum was used

as the lower limit (i.e. wilting point) and maximum as the
upper limit (i.e. field capacity). The result was given as an ASM
percentage (%), where the wilting point of soil represented a
value of 0% and field capacity corresponded to 100%. In the
case of Kroměřiž station, observed soil water content was missing
for the period from March to 9 June 2010 due to technical pro-
blems with measurements and for Groß-Enzersdorf these data
were only available from 2007 until 2010. The set of stations
included within the study was selected after careful consideration.
For this reason, the winter periods were omitted from the analysis,
because of problems due to soil water often appearing in the form
of ice.

Models for simulating soil-crop water balance applied

Two diverse model approaches were applied, differing in the com-
plexity of simulated processes of crop growth and soil-water bal-
ance processes.

(i) Decision Support System for Agrotechnology Transfer is a
software application program, which comprises crop simula-
tion models for over 40 crops. They are process-based, man-
agement-oriented models, which simulate the daily time-step
effects for instance of the cultivar, crop management, wea-
ther, soil, water and nitrogen on crop growth, phenology
and yield (Jones et al. 2001, 2003). The CERES and CSM-
CROPGRO models are part of the DSSAT (v4.0.2.0) software
(Jones et al. 2003). In the current study, CERES-Barley
(Otter-Nacke et al. 1991) and CERES-Maize (Jones &

Fig. 1. General map of the four study locations Doksany, Kroměřiž, Dyjákovice and Groß-Enzersdorf.
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Table 1. Mean annual temperature and precipitation sum (1981–2010) of Groß-Enzersdorf, Doksany, Dyjákovice and Kroměřiž as well as the soil water characteristics (up to 1 m soil depth) and area percentage of the
different soil classes in Austrian (AUT_soil) and Czech sites (CZ_soil)

Austria Czech Republic

Groß-Enzersdorf Doksany Dyjákovice Kroměřiž

Mean annual temperature
(1981–2010)

10.3 °C 9.5 °C 9.9 °C 9.4 °C

Mean precipitation sum
(1981–2010)

516 mm 466 mm 500 mm 573 mm

Soil classes LL DUL SAT Area percentage (%) LL DUL SAT Area percentage (%) Area percentage (%) Area percentage (%)

AUT_soil 1 0.04 0.09 0.14 1.9

AUT_soil 2 0.11 0.23 0.29 14.7

AUT_soil 3 0.21 0.4 0.48 61.3

AUT_soil 4 0.17 0.4 0.47 22.1

CZ_soil 1 0.12 0.37 0.43 3.9 10.8 32.2

CZ_soil 2 0.13 0.36 0.42 46.8 28.2 52.6

CZ_soil 3 0.14 0.34 0.40 1.8 6.9 8.3

CZ_soil 4 0.16 0.33 0.39 21.1 26.5 1

CZ_soil 5 0.14 0.29 0.42 5.1 0.7 0

CZ_soil 6 0.15 0.27 0.40 20 26.2 1

CZ_soil 7 0.08 0.19 0.40 0.6 0 0.3

CZ_soil 8 0.09 0.18 0.38 0.4 0.7 4.5

CZ_soil 9 0.13 0.20 0.30 0 0.2 0.3

CZ_soil 10 0.06 0.11 0.26 0.2 0 0

LL, lower limit of plant extractable soil water; DUL, drained upper limit; SAT, saturated soil water content.
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Kiniry 1986) were examined. The one-dimensional soil water
balance model in DSSAT was developed by Ritchie & Otter
(1985; Jones & Ritchie 1991; Jones 1993; Ritchie 1998) and
computed the daily change in soil water content by soil
layer due to infiltration of rainfall and irrigation, vertical
drainage, unsaturated flow, soil evaporation and root water
uptake processes. Soil evaporation, plant transpiration and

root water uptake processes were separated out in the new
DSSAT-CMS into a soil-plant-atmosphere module to create
more flexibility for expanding and maintaining the model.
Water content varied between LL, DUL and the saturated
soil water content (SAT) in each soil layer. Once the water
content of a given layer was above DUL, water was drained
to the next layer with the ‘tipping bucket’ approach, a profile-

Fig. 2. Corine map 2012 and the land use acreages (in %) according to the Corine Land Cover data 2006 and 2012 of the four investigated grid areas representing
years 2007–2011.
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wide drainage coefficient. If available, saturated hydraulic
conductivity (Ksat) for water flow of each specific soil layer
could be added to control vertical drainage from one layer
to the next. This feature permitted soil to retain water
above the DUL for layers that had sufficiently low Ksat for
water flow. In that case, soil layers may become saturated
for sufficient time to cause root death, reduced root water
uptake, anoxia-induced stress and decreased nitrogen (N) fix-
ation. Water between SAT and DUL was available for root
uptake subject to the anoxia-induced problem, which was
triggered when air-filled pore space fell below 2% of total
volumetric pore space (Boote et al. 2008). Soil water infiltra-
tion was the difference between precipitation and surface run-
off, which was calculated using the soil conservation service
(SCS) method (Soil Conservation Service 1972). In addition,
the model included a modification to the SCS-curve number
(SCS-CN) method by Williams et al. (1984), which compen-
sated for soil layers and also for initial soil water content at
the time of precipitation. Irrigation was supposed as an addi-
tive component of total precipitation (Jones et al. 2003).

The soil-plant-atmosphere module calculated evaporation
of water from the soil surface and root water uptake (transpir-
ation) from each layer and communicated this to the soil
water balance module. Each day, the soil water content of
each layer was updated by adding or subtracting daily water
flows to or from the layer as a result of each process
(Hoogenboom et al. 2003).

(ii) The SoilClim model (Hlavinka et al. 2011) was specifically
designed and validated to describe soil moisture and soil tem-
perature. The key water balance components of SoilClim are
based on a modification of the concept and model formula-
tion in FAO Irrigation and Drainage paper No. 56 (Allen
et al. 1998), including the Penman-Monteith approach for
reference evapotranspiration estimates. SoilClim considered
dynamically simulated vegetation cover development, from
which crop coefficients (Kc) for estimates of soil evaporation
(in case of bare soil) and crop evapotranspiration (after crop
emergence) were derived. In addition, changes in root depth,
crop height and leaf area index (LAI) and its effect were also
assumed. The soil profile was divided into two layers of 0–
40 cm and 40–100 cm depth. Also, in this case, the ‘tipping
bucket’ approach was used to estimate soil water content
and actual evapotranspiration as a function of water availabil-
ity. It also considered snow cover effect through the
SnowMAUS module (Trnka et al. 2010), proportional runoff
in case of precipitation above a certain threshold and partial
percolation (simplified imitation of macropore flow), but did
not account for a capillary rise from deeper layers. Compared
with the crop models, it did not account for the lasting effect
of drought on the canopy (in principle, the LAI was not
reduced as a result of water stress) and it estimated only
LAI value, not the total above-ground biomass. Therefore,
the crop component and, in particular, negative feedback
between drought intensity and biomass development was
greatly simplified (Hlavinka et al. 2011).

Metop Advanced SCATterometer soil moisture

ASCAT is a real-aperture radar onboard the series of Metop satel-
lites. Two Metop satellites are currently operational in the same
sun-synchronous orbit (Metop-A since 2006 and Metop-B since
2012), separated by 50 min. The launch of a third and final

Metop satellite (Metop-C) is planned in 2018. The ASCAT instru-
ment measures the Normalized Radar Cross Section (NRCS), also
called backscatter, at C-band (5.255 GHz) in vertical polarization
(VV) (Figa-Saldaña et al. 2002). The spatial resolution of the
ASCAT Level 1b backscatter products is either 25–34 km or
50 km, depending on the filter size used to average the Level 1b
full resolution product. The revisit time for central Europe is usu-
ally once or twice a day for one Metop satellite. The SSM product
was retrieved from the backscatter measurements, using a time
series-based change detection approach initially developed for
the ERS-1/2 scatterometers by Wagner et al. (1999). A new inter-
annual vegetation correction has been used in the soil moisture
retrieval algorithm, which deviates from the original formulation
using climatology in order to account for seasonal vegetation
biases. This new feature and other improvements are planned
for implementation in the official Metop ASCAT soil moisture
products generated and distributed by the Satellite Application
Facility on Support to Operational Hydrology and Water
Management (H SAF, http://hsaf.meteoam.it) project in the near
future. The derived SSM product had a spatial resolution of 25–
34 km and corresponded to a depth of 2–3 cm. The soil moisture
information was defined by the degree of saturation ranging from
0% (dry, corresponds to a wilting point) to 100% (wet, corre-
sponds to saturated soil water content). In order to obtain soil
moisture at deeper soil layers from remotely sensed SSM products,
the so-called soil water index (SWI) can be computed. The soils in
the study areas were mainly medium soil types according to their
soil water storage capacity and did not vary much. The SWI
attempted to estimate root-zone soil moisture using an exponen-
tial filter approach proposed by Wagner et al. (1999) based on a
two-layer water balance model. The computation of SWI
depended only on a single parameter, the characteristic time T,
defined in days. This related to infiltration time and characterized
the temporal variation of soil moisture in the root-zone profile.
However, T could not be related to a certain depth, since the infil-
tration rate depended on various soil properties. An appropriate T
value needed to be empirically defined depending on the study
area and application. In the current study, SWI was computed
using T = 2 days (ASCAT SWI T2), which gave a good comprom-
ise between high-frequency components from precipitation events
and root-zone changes. There could be a certain absolute bias
related to the applied soil water capacity; however, relative trend
changes should still be well represented, which was the focus of
the comparison. The impact of spatial variability of precipitation
on soil water balance was normally higher relative to the soil
impact during summer in the case study region. An attempt to
assess the quality of ASCAT SWI using in situ data from the
International Soil Moisture Network had shown good agreement
(Paulik et al. 2014), giving confidence in the root-zone represen-
tativeness of SWI. This approach is simple, but no study has yet
shown that advanced approaches give superior results that
would justify the added complexity of the approach (Manfreda
et al. 2014). In addition, more and more researchers are attempt-
ing to relate profile and SSM directly with statistical methods such
as neural networks. These methods also work quite well despite
being, in practice, as simple as the SWI.

Data processing

The time period considered in the current study for comparison
of the different approaches of soil water content determination
ranged from 2007 until 2011. For the evaluation, only the months
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March to September were used. Maize and spring barley crops
were simulated in daily steps with the CERES models, while
SoilClim simulated grass, maize and spring barley, also daily.
The different plants were simulated on the one hand to cover
the whole growing season with crops (spring barley and maize)
and on the other hand to achieve a plant diversity representative
of the region. The growing season for spring barley was from
March until July, and for maize was from May until September/
October. The DSSAT simulations included only the period of
sowing until maturity, whereas SoilClim simulations covered the
whole year; both models started their simulations one day before
a predefined sowing date (see below).

The model input requirements included weather and soil con-
ditions, plant characteristics and crop management (Hunt et al.
2001). Weather input data were obtained from the weather sta-
tions Doksany (CZ), Dyjákovice (CZ) and Kroměřiž (CZ), pro-
vided by the Czech Hydrometeorological Institute, as well as
Groß-Enzersdorf (A), available from the Austrian Met Service
(ZAMG) (Fig. 1). The data contained daily maximum and min-
imum temperature, solar radiation, precipitation, wind speed
and air humidity for the period 2007–2011.

Ten soil classes according to available water capacity were
applied to the Czech sites Doksany, Dyjákovice and Kroměřiž
and four at the Austrian site Groß-Enzersdorf in Marchfeld
(Table 1) (Thaler et al. 2012, 2017). The relative ASM for the
first soil layer of 0–40 cm depth was used to calculate an area-
weighted average of the region, forming the basis for soil moisture
comparisons. ASM was derived from the soil classes and finally,
the model results for each soil profile were recalculated/averaged
based on spatial representation.

To validate the two CERES models, simulated outcomes were
compared with measured results obtained from field trials. The
CERES barley model for spring barley was calibrated for the cul-
tivar ‘Magda’ using agrotechnological, phenological, yield and
weather data from an experimental site at Fuchsenbigl,
Marchfeld (48°12′N, 16°44′E, 157 m a.s.l.) for the periods 1989–
95, 1998 and 2001/02. The discrepancy between simulated and
observed dates of anthesis and physiological maturity varied
from 0 to 7 days, and the simulated yield was within 20% of
the measured values for each year (R2 = 0.57, RMSE = 623 kg/
ha) (Eitzinger et al. 2013b). The CERES-maize model was cali-
brated in the same way and verified for the periods 1998–1999
and 2001–2002 using data for the cultivar ‘Parzival’. The differ-
ence between simulated and observed dates of maize anthesis
for calibration varied from 0 to 4 days. Simulated grain yields
mostly agreed with the measured data (R2 = 0.93, RMSE =
153 kg/ha) and the deviation in annual yield predictions was
<20%.

SoilClim was not calibrated using any specific cultivars because
the real representation of cultivars within individual regions was
unknown. Spring barley, maize and grass parameters were based
on calibrations described in Hlavinka et al. (2011). For grass,
the cover was approximated not directly to certain species but
for typical regularly cut cover from meteorological stations. This
calibration was based on Allen et al. (1998) and soil moisture
measurements from four stations in Central Europe and 14 sta-
tions in the USA (Hlavinka et al. 2011).

All simulations were conducted for rain-fed farming condi-
tions for spring barley, maize and grass, respectively. The sowing
date was calculated with predefined temperature sums from 1
January: a temperature sum of 80 °C was used as sowing date
for spring barley and 520 °C for maize (temperature base 0 °C).

This approach was selected since there were no experiments
that would appropriately represent the conditions through the
all selected regions and included years. Further initial conditions
of soil water content according to measured values on grassland
sites one day before sowing were added in both models. For
spring barley, grass can be used as a good reference, because
grass is not actively growing earlier at the case study site after
the winter period when barley is sown, and thus the water balance
after the dormant winter period should be very similar. Maize is
sown about 4–6 weeks later where grass is already growing, having
additional water use as compared with bare soil. The difference in
evaporation of short grass compared with bare soil is, however,
relatively small (Kc factor about 0.2 v. 0.4) and the uncertainty
from, e.g. spatial precipitation variability in comparison with
the other scales applied can be much higher. The relatively
small error coming from this assumption is therefore limited.
Spring barley was fertilized with 40 kg N/ha, 25 kg phosphorus
(P)/ha and 170 kg potassium (K)/ha at tillering (growth stage
(GS) 21–23, Zadoks et al. 1974) and 40 kg N/ha at stem elong-
ation or jointing (GS 31–33), the amount that farmers currently
use in these areas. Maize simulated fertilization of 80 kg N/ha,
39 kg P/ha, 166 K/ha at tillering (GS 21–23) and 55 kg N/ha at
stem elongation or jointing (GS 31–33).

Methods used for evaluating and comparing model
performance

The DSSAT crop growth models, soil water balance model
(SoilClim) and remote sensing based (Metop ASCAT) estimated
soil moisture were evaluated with measured soil moisture values.
Here, ASM, calculated from the model outputs and measured
values, and the degree of saturation (%) from ASCAT SWI T2
were compared. The comparison of soil moisture measured by
remote sensing satellites and in situ instruments was complicated
by the fact that different spatial and temporal variabilities (e.g.
land use, soil composition, mean soil water content, etc.)
influenced the soil moisture characteristics (Nicolai-Shaw et al.
2015). In order to verify the spatial and temporal representative-
ness, soil moisture from two global land surface models was
used as an additional data source. The ERA-Interim/Land data
set from the European Centre for Medium-Range Weather
Forecasts represented a global atmospheric reanalysis including
6-hourly land surface parameters for the period 1979–2010
(Balsamo et al. 2012). The spatial resolution of the data set was
approximately 80 km and soil moisture information was provided
for four depth layers (0.00–0.07 m, 0.07–0.28 m, 0.28–1.00 m and
1.00–2.55 m). The second data set was based on the Noah model
provided by NASA’s Global Land Data Assimilation System
(GLDAS) and contained atmospheric and land surface para-
meters on a global 0.25° grid (Rodell et al. 2004). From early
2000-ongoing, the GLDAS Noah data set provided 3-hourly soil
moisture observations for four layers (0.00–0.10 m, 0.10–0.40 m,
0.40–1.00 m and 1.00–2.00 m). For both land surface models,
soil moisture from the second layer was used as a qualitative ref-
erence in order to understand soil moisture dynamics at a spatial
scale comparable with Metop ASCAT. Global Land Data
Assimilation System and ERA-Interim/Land were used only for
the visual presentation and not for calculations.

In the current study it was hypothesized that, (i) at site level,
ground-based modelling should provide estimates of soil moisture
with higher accuracy compared with the Metop ASCAT soil mois-
ture product and (ii) the process-based crop model (DSSAT)
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should provide superior results compared with the simple water
balance model (SoilClim), particularly under frequent water stress
conditions. In addition, it was expected that (iii) the Metop
ASCAT soil moisture product would provide a good estimate of
annual changes in water availability and that (iv) it would be
able to distinguish extreme (drought/wet) seasons, making it a
potential tool for regional drought monitoring.

For assessing and comparing model performance, a set of stat-
istical parameters was calculated: the root mean square error
(RMSE), the mean absolute error (MAE), the percent bias
(PBias), the index of agreement (d) and the least-squares coeffi-
cient of determination R2. The measured values were used as
‘ground truth’ references for the relative changes, not for absolute
soil water content. The relative change (decreasing or increasing
of soil water content trend at any time) should be reflected regard-
less of vegetation cover, in particular for short-term changes
chiefly driven by precipitation and soil evaporation. Differences
in evaporation from vegetation may, however, introduce slight
biases depending on the season and crop-specific water needs.

Beside the classical model performance metrics, Triple
Collocation Analysis (TCA) was also applied. This is a statistical
tool used for error characterization, first introduced by Stoffelen
(1998) and defined as follows:

i = ai + biQ+ 1i i elem [X, Y, Z]

where [X, Y, Z] presents three spatially and temporally collocated
data sets; Θ is the unknown true soil moisture state; αi and βi are
systematic additive and multiplicative biases of data set i in terms
of the true state, and εi is additive zero-mean random noise. The
following assumptions are made by the error model: (i) true soil
moisture signal and the observations are linear, (ii) signal and
error stationarity, (iii) errors and the soil moisture signal are
independent (error orthogonality), and (iv) errors of the three
spatially and temporally collocated data sets are independent
(zero error cross-correlation) (Gruber et al. 2016). More detail
about the computation and consequences if certain assumptions
are not met can be found in Gruber et al. (2016). Triple
Collocation Analysis simultaneously estimates the error variances
of three spatially and temporally collocated data sets, which are
related linearly to the hypothetical (unknown) truth with uncor-
related errors, introduced a new representation of the error in
terms of Signal-to-Noise ratio (SNR):

SRNi[dB] = 10 log(SNR) = 10 log
b2
i s

2
Q

s2
1i

The SNR, expressed in dB, indicates the relationship between
signal variance and noise variance; s2

i presents the data set var-
iances. For example, 0 dB means that the signal variance is
equal to the noise variance, and ±3 dB means that the signal vari-
ance is twice/half that of the noise variance. Triple Collocation
Analysis does not assume any of the data sets to represent the
‘ground truth’ (Gruber et al. 2016).

Results

Overall assessment of model performances for the four study
sites

Five years (2007–2011) of daily in situ soil moisture measure-
ments for all four weather station sites together were compared

with model data and the Metop ASCAT soil moisture product.
The linear regression model was able to explain between 23%
(ASCAT SWI T2) and 58% (CERES-Barley) of the variance by
the model (R2); thus, from poor correspondence to rather good.
The relative average difference between model estimates and in
situ measurements (RMSE) for ASM was 19–21% in all crop
models and 26% in the ASCAT SWI T2. The lowest variation
and RMSE could be found in CERES-Barley, the highest in
ASCAT SWI T2 (results not shown).

The comparison between measured and different simulated or
estimated soil moisture for all four study areas separately is pre-
sented in Fig. 3. The data sources include point-scale from in
situ data, plot-scale from model simulation and large-scale from
satellite data. In Doksany, SoilClim and ASCAT SWI T2 show
good agreement with measured values. In the time-frame 2007
and 2009, ASCAT SWI T2 captured soil moisture in Djakovice
very well. In Kroměřiž, ASCAT SWI T2 underestimated ASM
during the two humid vegetation periods 2010 and 2011, whereas
the models fit well with in situ values. The models and Metop
ASCAT in Groß-Enzersdorf agree very well between 2007 and
2009. Comparing the time series to ERA-Interim/Land and
Noah GLDAS indicates that both global land surface models
show only large-scale variations and are not able to capture the
fine daily changes of a single in situ station. Normally, data are
matched in order to remove systematic differences related to
scale, layer depth and measurement/model characteristics
(Brocca et al. 2013).

A 30-day moving average, showing the differences between soil
moisture measured, simulated and estimated, is presented in
Fig. 4. This approach should help to remove seasonal influences
and uncover similar short-term anomalies. The daily soil moisture
values were compared with the moving average and it was deter-
mined whether they exceeded or fell below the mean values.
Seasonal biases can be seen in all data sources due to scale differ-
ences, different layer depth and seasonal biases based on short-
comings of the measurements and models.

Often, SoilClim-Maize simulated ASM better than CERES-
Maize; furthermore, in all the stations apart from Doksany,
ASCAT SWI T2 showed good agreement, especially in 2009
and 2010.

The site-specific model and ASCAT SWI T2 performances are
included in Table 2 based on measured soil water content. During
the 5 years investigated (March–September periods), the analogies
between Doksany and Kroměřiž were very striking. In fact, in
both cases, the crop model DSSAT and ASCAT SWI T2 underes-
timated soil moisture in the first soil layer, whereas SoilClim gen-
erated overestimates. Moreover, for these sites the lowest MAE
(10–16% ASM), RMSE (14–21% ASM) and highest d (0.8–0.9)
results could be found in CERES-Barley and CERES-Maize. On
the other hand, the PBias for ASCAT SWI T2 showed the best
average tendency of the simulated values (−7%) in Doksany.

In Groß-Enzersdorf, as in the previous two stations, CERES-
Barley performed best (for all the main parameters) followed by
SoilClim-Grass. Special mention must be made of the very low
PBias of just 2.9% in CERES-Maize.

Dyjákovice, on the other hand, behaved differently: the
SoilClim simulations (barley and maize) presented the lowest
MAE (14% ASM), RMSE (19% ASM) and PBias (−10 to −12%)
values and all simulations tended to underestimate the first soil
moisture layer. The index of agreement with a value of 0.7–0.8
indicated good simulation quality and the R2 ranged from 0.4
to 0.6.

584 S. Thaler et al.

https://doi.org/10.1017/S0021859618000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859618000011


In a second step, TCA was applied for the four study areas.
Figure 5 presents the SNR and R2 for measured (in situ), ASCAT
as well as the different models (third reference). Of particular note
was the low R2 value of ASCAT in the CERES-Maize simulations
(with the only exception of Groß-Enzersdorf). This was reflected
also by the negative SNR for ASCAT, whereas the measured values
showed a high signal. In other words, measured and simulated
values presented similar signals, whereas ASCAT did not fit in.

It must be noted that the sample size could have an effect on
SNR since its uncertainty increased with decreasing number of

samples (Zwieback et al. 2012). This effect could be seen for mea-
sured and ASCAT SNR, which should indicate a similar behaviour
to the third reference. However, the SNR values were spread. In
addition, the requirements of the error model (see above) might
not all be perfectly fulfilled, which was another source of uncer-
tainty in the SNR results.

The highest variation could be found in Kroměřiž, whereas in
Dyjákovice all the three approaches present similar results with an
R2 between 0.4 and 0.6 and SNR around 3 dB, meaning that the
signal variance was twice as high as the noise variance (except

Fig. 3a. The course of in situ measured, models simulated (DSSAT and SoilClim), remote sensing (ASCAT SM, ASCAT SWI T2) and modelled (ERA and Noah GLDAS)
estimations of soil water content during 2007–2011 in Doksany, Dyjákovice, Kroměřiž and Groß-Enzersdorf. Model estimates and in situ measurements represent a
soil depth of 0–40 cm.
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for CERES-Barley). Dyjákovice was also the study site, which
demonstrated a different behaviour for the classic statistical para-
meters to the other three locations (see above and Fig. 6).

The performance of the model’s soil water balance outputs
may change during the growing season due to deviations of

simulated v. real vegetation dynamics, which can influence mod-
els’ site-specific, as well as ASCAT SWI T2, uncertainties. In the
latter, this is an issue of deviations of spatial crop type acreages as
it represented grid averaged values. In the following, the differ-
ences of simulated and measured soil moisture, RMSE, PBias

Fig. 3b. Continued.

586 S. Thaler et al.

https://doi.org/10.1017/S0021859618000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859618000011


and d for each study area for monthly as well as growing season
time scales are discussed (Tables 3–6).

Performance of available soil moisture estimates at different
periods of the growing season

Combining data from all four stations into one data set revealed
low deviation of monthly means between measured and simulated
ASMs at the beginning of the growing season for CERES-Barley

(March), CERES-Maize (April) and SoilClim-Maize (April). In
particular, the models at Doksany and Kroměřiže performed bet-
ter than the other sites and their RMSE values were low.
SoilClim-Barley and SoilClim-Grass did not show this behaviour
to that extent. It should be borne in mind that the measurement
sites were under short grass with relatively small changes in root
water uptake due to very low seasonal change in active above-
ground biomass, in comparison with the simulated crops with a
higher seasonal variation of biomass-driven water demand.

Fig. 4a. 30-day moving average of soil moisture and their daily deviations for CERES-Maize, SoilClim-Maize, ERA-Interim/Land, ASCAT SWI T2 and in situ for
Doksany, Dyjákovice, Kroměřiž and Groß-Enzersdorf (grey = below and black = exceeded the moving average). Model estimates and in situ measurements represent
a soil depth of 0–40 cm.
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Thus, the better agreement in the early season with low crop bio-
mass can be explained.

The monthly difference between measured ASM and ASCAT
SWI T2-based SM was relatively high compared with ASM
based on the crop model outputs. From March until May these
differences were mainly negative, and the PBias also presented

an underestimation (except at Groß-Enzersdorf), but from July
the ASCAT SWI T2 estimations were principally overestimated.

At all locations, the CERES models, apart from CERES-Maize
in Kroměřiže, showed primarily a negative PBias during periods
of the fully established canopy (barley: May–July and maize:
June–September) caused by seasonal above-ground biomass

Fig. 4b. Continued.
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change. In contrast, the SoilClim soil water content outputs here
more often showed a positive PBias, with the only exception of
Dyjákovice, being the most humid place.

The results from this comparison showed that simulated soil
moisture values vary widely at all sites and in all years due to
the dynamics in above-ground biomass, besides the weather con-
ditions. However, an almost tripartite behaviour could be found
when the incidence of wet periods on soil moisture simulation
performances were observed. In fact, DSSAT performed best for
dry periods and although ASCAT simulated well for moderate
soil moisture, soil water contents and related ASM during wet
periods were well simulated by SoilClim (with only a few excep-
tions) (Tables 3–6).

Performance of available soil moisture estimates under dry,
moderate and wet soil conditions

Considering all four sites, soil water contents and related ASM of
dry periods were best simulated by DSSAT models while
CERES-Maize performed very well under moderate dry and
CERES-Barley under extremely dry conditions. Overall, DSSAT
models simulated realistically up to 30% ASM. There are only a
few outliers observed in Groß-Enzersdorf (April 2009) and
Kroměřiže (June–July 2009) for unknown reasons. The RMSE
values were also quite low in this range, especially in Doksany,
being the driest place in the current study (Fig. 6).

Mainly positive differences between simulated and measured
soil moisture could be seen during dry periods in all the four loca-
tions for the SoilClim simulations (up to 50% ASM). High RMSE
values were also seen here, especially in Kroměřiže (Fig. 6). The
PBias showed high positive values during very dry periods, espe-
cially in Doksany, Groß-Enzersdorf and Kroměřiže, whereas in
humid periods the model generally underestimated (Tables 3–6).

Another very interesting pattern could be seen at Doksany,
Dyjákovice and Kroměřiž, where the average monthly RMSE
(respectively, 20 and 26% ASM) of the ASCAT SWI T2 estima-
tions were considerably higher but at the same time the RMSE

standard deviation of ASCAT SWI T2 (6 and 10% ASM) was
much lower than in the different crop models. An exceptional
case was given in Groß-Enzersdorf, where almost all the crop
models (with the only exception of CERES-Maize) obtained a
very low RMSE standard deviation (results not shown).

Advanced SCATterometer SWI T2 grid-based estimates per-
formed at its best for moderate soil moisture conditions at all
sites between 30 and 50% of the site-based measured ASM. In
this range, the product showed also the lowest RMSE values in
all cases (Fig. 6). Below about 30% ASM, ASCAT SWI T2 sho-
wed a positive difference between observed and simulated ASM,
but a negative difference above this limit. The same pattern was
shown by PBias, with a threshold of 33% ASM. By looking at
the whole growing season, ASCAT SWI T2 estimations corre-
sponded best to reality when the measured soil moisture ranged
between approximately 30% and 50% ASM (Doksany 38–47;
Dyjákovice 31–52; Kroměřiže 34–36 and Groß-Enzersdorf 29–
37%) (Tables 3–6).

An extreme drawback of using ASCAT was noticed during
very humid periods, where the RMSE scored very high (Fig. 6).
Advanced SCATterometer was not able to catch high daily pre-
cipitation sums. In general, all crop models also showed a negative
difference during very humid seasons, but less than ASCAT-based
ASM estimates (results not shown).

SoilClim-Maize and Barley showed the best performance in
Doksany, Kroměřiže and Groß-Enzersdorf during wet soil condi-
tions. However, for Dyjákovice only SoilClim-Grass was a good
predictor for humid periods, whereas during dry periods
SoliClim-Maize and Barley showed the lowest differences (until
60% ASM) and shared a similar behaviour with DSSAT (Tables
3–6).

In Doksany and Groß-Enzersdorf, RMSE v. mean monthly
measured values showed a large spread, whereas Dyjákovice and
Kroměřiže showed clearer trends (Fig. 6). In Dyjákovice, the
RMSE increased with humidity in all approaches. In Kroměřiže,
during dry periods, high SoilClim RMSE values for coupled to
very high ASCAT RMSE during wet months could be found.

Table 2. Comparative statistics (MAE, RMSE, PBias, d and R2) of model performance against measured soil water contents for the four study areas from March until
September

MAE
(%ASM)

RMSE
(%ASM)

PBias
(%) d R2

MAE
(%ASM)

RMSE
(%ASM)

PBias
(%) d R2

Doksany (2007–2011) Dyjákovice (2007–2011)

CERES-Barley 10.1 14.0 −11.8 0.9 0.7 18.0 23.9 −24.0 0.8 0.5

SoilClim-Barley 16.6 18.7 34.8 0.8 0.6 14.0 19.2 −12.1 0.8 0.4

CERES-Maize 12.1 16.0 −11.3 0.9 0.6 15.6 21.2 −20.9 0.8 0.6

SoilClim-Maize 19.0 21.4 47.7 0.8 0.6 13.5 18.5 −9.6 0.8 0.4

SoilClim-Grass 12.7 15.7 20.2 0.8 0.6 17.4 22.2 −24.4 0.8 0.4

ASCAT SWI T2 15.1 19.1 −6.8 0.8 0.4 18.3 23.3 −25.5 0.7 0.4

Kroměřiž (2007–2011) Groß-Enzersdorf (2007–2010)

CERES-Barley 16.2 21.1 −22.9 0.8 0.5 12.6 15.2 −14.7 0.9 0.7

SoilClim-Barley 17.0 22.2 16.0 0.7 0.3 15.2 19.2 21.1 0.8 0.6

CERES-Maize 15.9 20.9 13.8 0.8 0.5 17.6 22.8 2.9 0.8 0.5

SoilClim-Maize 18.8 24.5 27.1 0.7 0.3 15.9 19.9 22.5 0.9 0.6

SoilClim-Grass 19.0 23.6 6.4 0.7 0.2 15.6 18.5 11.7 0.8 0.5

ASCAT SWI T2 28.7 34.4 −38.8 0.5 0.1 21.3 25.9 −27.4 0.7 0.3
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Table 3. Doksany: differences of simulated and observed soil moisture, RMSE (% ASM), PBias (%) and Index of Agreement for month and growing season (gs) 2007–2011

Doksany

Year 2007 2008 2009 2010 2011

Month 3 4 5 6 7 8 9 gs 3 4 5 6 7 8 9 gs 3 4 5 6 7 8 9 gs 3 4 5 6 7 8 9 gs 3 4 5 6 7 8 9 gs

% ASM (mean)

Measured 51 20 19 22 8 20 23 23 54 58 32 35 45 23 16 38 61 35 20 24 45 30 17 33 63 49 45 29 28 63 55 47 64 41 39 48 59 78 73 57

Simulated-observed values (%ASM)

CERES-Barley −2 3 0 0 6 19 4 −10 −2 7 6 2 −4 −9 −26 −2 −11 −5 1 −17 −22 −16 3 5 −24 −35 −52 −26

SoilClim-Barley 16 21 17 22 25 21 27 21 20 31 22 14 21 25 19 5 18 21 24 21 13 14 16 −8 6 17 8 15 20 7 10 −9 3 1 −6 −2 −1 −20 −5

CERES-Maize −11 7 4 −4 −5 −11 −6 −9 16 4 −13 −14 −10 −21 7 6 −10 −22 −16 −11 −3 2 2 19 10 3 −9 −4 −19 −26 −21 −48 −20

SoilClim-Maize 4 23 25 22 22 33 19 18 31 13 17 29 14 −4 28 30 19 10 20 14 25 20 15 21 17 16 −13 9 0 −5 −3 −11 −1

SoilClim-Grass 8 0 12 21 27 16 27 16 4 1 5 18 21 18 21 13 6 4 12 26 21 6 9 12 8 2 3 10 17 17 1 9 −5 −8 −9 −5 0 −12 −24 −9

ASCAT SWI T2 9 −11 −10 −2 31 27 26 10 10 6 −8 −19 −8 9 11 0 23 −14 −3 5 −5 5 8 3 −3 5 6 −21 1 1 −7 −2 −24 −6 −18 −30 −36 −24 −29 −24

RMSE (% ASM)

CERES-Barley 3 5 6 6 5 19 9 11 8 13 6 5 7 10 17 8 7 8 18 10 12 7 9 27 36 25

SoilClim-Barley 16 21 18 22 25 22 27 22 23 31 24 18 22 25 24 9 18 22 24 22 14 15 19 7 18 8 16 22 9 14 14 4 8 9 11 10 20 12

CERES-Maize 3 10 8 6 7 8 7 17 10 14 15 13 4 10 9 14 23 20 15 8 6 11 22 15 14 7 21 31 25 49 25

SoilClim-Maize 14 24 25 22 24 34 25 27 33 18 19 29 25 14 29 30 21 12 20 23 22 20 16 24 18 20 9 4 11 6 11 9

SoilClim-Grass 10 2 15 22 28 18 28 19 6 7 9 20 24 18 22 18 8 4 15 26 23 7 9 15 9 5 5 12 19 19 6 12 8 10 10 7 10 17 24 13

ASCAT SWI T2 16 11 14 12 32 28 27 22 11 8 9 24 13 10 13 14 24 16 11 8 12 8 10 14 15 10 17 22 9 11 13 14 32 9 20 31 37 25 31 28

PBias (%)

CERES-Barley −4 17 2 −7 1 31 12 −29 −14 4 9 7 −21 −37 −48 −7 −11 2 −60 −55 −18 6 13 −61 −73 −31

SoilClim-Barley 31 101 88 99 314 106 120 89 32 97 64 31 92 154 64 8 51 110 101 47 45 84 53 6 37 27 55 32 13 25 −14 7 2 −12 −3 −1 −27 −8

CERES-Maize −13 39 16 −50 −27 1 −4 45 9 −57 −89 −6 −12 36 27 −22 −75 −95 −21 −12 6 8 30 19 13 −11 −39 −44 −28 −66 −33

SoilClim-Maize 122 121 112 270 113 147 136 109 91 29 75 177 79 89 141 124 42 33 119 78 46 68 56 33 30 42 16 0 −8 −5 −15 −4

SoilClim-Grass 16 1 62 96 338 83 121 67 8 1 17 53 46 78 132 40 10 10 59 108 48 21 53 36 13 5 7 36 63 27 2 18 −8 −21 −23 −9 −1 −16 −32 −16

ASCAT SWI T2 18 −54 −54 −11 385 140 115 43 19 10 −25 −54 −19 38 68 0 37 −39 −15 22 −12 15 48 8 −4 10 13 −72 5 2 −13 −5 −38 −16 −45 −63 −61 −31 −40 −42

Index of agreement

CERES-Barley 0.9 1.0 1.0 1.0 1.0 0.3 0.9 0.9 0.9 0.9 0.4 1.0 0.9 0.8 0.1 1.0 0.8 0.7 0.6 0.4 0.9 0.8 0.8 0.2 0.2 0.5

SoilClim-Barley 0.4 0.6 0.8 0.7 0.2 0.6 0.5 0.7 0.1 0.5 0.6 0.7 0.4 0.1 0.7 0.2 0.7 0.5 0.5 0.7 0.6 0.4 0.8 0.7 0.5 0.9 0.9 0.5 0.9 0.9 0.4 0.9 0.5 0.8 0.9 0.2 0.3 0.9

CERES-Maize 0.5 0.9 0.9 0.5 0.9 0.9 0.6 0.7 0.9 0.5 0.2 0.9 0.4 0.8 0.8 0.8 0.4 0.2 0.7 0.5 0.9 0.9 0.6 0.9 0.9 0.5 0.3 0.6 0.2 0.1 0.6

SoilClim-Maize 0.3 0.7 0.7 0.2 0.5 0.4 0.6 0.3 0.5 0.7 0.4 0.1 0.6 0.2 0.4 0.4 0.7 0.6 0.3 0.6 0.3 0.7 0.9 0.5 0.8 0.8 0.6 0.9 0.9 0.5 0.4 0.9

SoilClim-Grass 0.7 1.0 0.9 0.7 0.2 0.6 0.5 0.8 0.8 0.7 0.8 0.6 0.6 0.4 0.1 0.7 0.3 1.0 0.6 0.5 0.7 0.8 0.5 0.8 0.5 0.9 0.9 0.7 0.9 0.6 1.0 0.9 0.7 0.7 0.5 0.8 0.9 0.3 0.2 0.8

ASCAT SWI T2 0.6 0.8 0.7 0.7 0.1 0.5 0.5 0.7 0.6 0.7 0.9 0.3 0.7 0.7 0.2 0.9 0.2 0.8 0.7 0.7 0.7 0.7 0.3 0.9 0.4 0.7 0.3 0.5 1.0 0.7 0.8 0.9 0.2 0.7 0.2 0.3 0.4 0.2 0.2 0.6
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Table 4. Dyjákovice: differences of simulated and observed soil moisture, RMSE (% ASM), PBias (%) and Index of Agreement for month and growing season (gs) 2007–2011

Dyjákovice

Year 2007 2008 2009 2010 2011

Month 3 4 5 6 7 8 9 gs 3 4 5 6 7 8 9 gs 3 4 5 6 7 8 9 gs 3 4 5 6 7 8 9 gs 3 4 5 6 7 8 9 gs

% ASM (mean)

Measured 69 35 16 18 13 13 50 31 74 55 42 35 37 51 73 54 77 53 28 46 74 45 44 52 72 71 70 76 55 74 71 70 75 66 54 77 69 50 31 60

Simulated-observed values (%ASM)

CERES-Barley 9 −2 −7 1 −8 −25 −28 −26 −28 −21 −2 6 −16 −13 13 −11 −9 1 4 −1 −26 0 12 1 −26 −65 −65 −19

SoilClim-Barley 12 13 17 13 2 6 4 −13 −9 −3 −5 −7 −12 −33 −10 3 17 8 8 7 2 −1 5 −5 5 −9 −31 −29 −8 −29 −16 14 −6 −16 −50 −43 −10 −3 −20

CERES-Maize −8 −2 −4 −8 −21 −9 10 −1 −31 −38 −25 −21 6 4 8 −9 −33 −3 3 7 −20 −3 −21 −7 −12 −4 −33 −49 −30 −31 −27

SoilClim-Maize 1 18 10 2 12 0 1 11 −1 −10 −9 −25 −12 −16 13 12 1 0 5 0 5 −17 −30 −7 −20 −14 −10 1 −41 −45 −11 4 −23

SoilClim-Grass −6 −7 −1 16 14 0 7 3 −24 −24 −10 −4 −6 −17 −34 −15 9 1 −2 9 9 −7 −3 2 −9 −21 −29 −24 −27 −16 −36 −23 −30 −40 −32 −47 −42 −17 −7 −31

ASCAT SWI T2 −5 −26 −2 6.6 6.7 −3 10 −2 −7 −15 −7 −16 12 −11 −35 −13 11 −19 −7 −7 −18 −3 −17 −9 −27 −20 −7 −43 −33 −16 −22 −24 −37 −12 −19 −58 −27 1.9 −5 −22

RMSE (% ASM)

CERES-Barley 14 12 10 12 25 28 28 28 25 8 10 18 21 16 9 7 7 11 22 10 7 6 29 65 40

SoilClim-Barley 15 14 18 15 3 9 13 13 10 5 8 10 15 35 15 6 17 8 10 10 5 3 10 4 6 15 33 30 15 29 23 8 10 19 50 44 12 4 28

CERES-Maize 12 8 7 8 9 6 13 18 32 37 25 4 10 11 11 13 11 7 11 22 13 21 16 7 35 50 31 28 34

SoilClim-Maize 13 22 14 2 13 14 9 12 7 11 12 28 15 3 14 12 9 4 5 9 5 22 30 15 21 20 8 42 46 16 12 29

SoilClim-Grass 8 7 5 18 17 2 10 11 24 24 11 8 7 19 36 20 11 8 7 10 11 7 4 9 15 22 30 27 28 21 36 26 31 40 32 48 42 18 8 34

ASCAT SWI T2 14 27 11 10 14 6 13 15 11 17 12 18 16 23 37 21 15 22 9 12 19 10 20 16 30 23 13 45 35 18 25 29 40 16 24 59 28 10 10 31

PBias (%)

CERES-Barley 25 −16 −41 −2 −34 −51 −63 −81 −41 −1 11 −60 −29 −14 −11 1 5 −1 −43 −2 7 2 −49 −85 −39

SoilClim-Barley 34 78 95 100 19 13 44 −17 −16 −8 −13 −19 −23 −44 −20 5 32 28 17 9 4 −3 12 −5 8 −12 −41 −54 −11 −41 −23 9 −9 −30 −65 −63 −20 −10 −33

CERES-Maize −56 −14 −29 −57 −35 −8 23 −4 −85 −74 −30 −5 23 9 11 −21 5 3 9 −37 −4 −27 −9 −7 −43 −71 −59 −99 −46

SoilClim-Maize 64 120 84 12 24 51 14 27 −3 −27 −17 −34 −11 9 47 25 2 1 11 13 6 −22 −55 −9 −28 −20 1 −54 −65 −23 12 −33

SoilClim-Grass −9 −19 −5 89 104 3 15 11 −32 −43 −23 −12 −16 −33 −46 −29 12 1 −7 19 13 −15 −7 4 −13 −30 −41 −32 −50 −22 −50 −33 −39 −60 −59 −62 −60 −34 −24 −51

ASCAT SWI T2 −7 −74 −15 37 51 −24 20 −6 −10 −27 −16 −45 34 −22 −48 −21 15 −37 −26 −16 −24 −6 −38 −16 −38 −29 −11 −57 −61 −21 −31 −35 −49 −18 −35 −76 −39 4 −15 −37

Index of agreement

CERES-Barley 0.7 0.3 0.5 0.8 0.2 0.4 0.5 0.2 0.7 0.7 0.9 0.3 0.9 0.9 0.5 0.9 1.0 0.8 0.3 0.9 0.7 0.9 0.4 0.1 0.4

SoilClim-Barley 0.7 0.5 0.4 0.2 1.0 0.9 0.9 0.4 0.6 1.0 0.5 0.5 0.8 0.2 0.8 0.7 0.8 0.6 1.0 0.6 1.0 0.9 0.9 0.8 0.9 0.7 0.4 0.6 0.6 0.4 0.6 0.6 0.8 0.5 0.2 0.3 0.7 0.9 0.6

CERES-Maize 0.4 0.6 0.4 0.6 0.6 0.6 0.8 0.3 0.2 0.5 0.5 0.3 0.4 1.0 0.5 0.8 0.9 0.9 0.8 0.6 0.6 0.4 0.8 0.9 0.2 0.3 0.5 0.2 0.5

SoilClim-Maize 0.5 0.4 0.3 1.0 0.9 0.9 0.5 0.8 0.6 0.4 0.9 0.2 0.7 0.7 0.4 0.9 0.7 0.9 0.8 0.9 1 0.6 0.5 0.6 0.6 0.7 0.7 0.2 0.3 0.5 0.9 0.4

SoilClim-Grass 0.7 1.0 0.8 0.4 0.2 1.0 0.9 0.9 0.2 0.4 0.8 0.6 0.6 0.7 0.2 0.7 0.5 1.0 0.7 1.0 0.6 0.9 0.9 1 0.4 0.5 0.6 0.5 0.6 0.5 0.3 0.6 0.3 0.3 0.4 0.2 0.3 0.6 0.8 0.5

ASCAT SWI T2 0.4 0.6 0.5 0.4 0.3 0.9 0.9 0.9 0.5 0.5 0.6 0.3 0.3 0.4 0.2 0.7 0.4 0.8 0.5 0.9 0.3 0.7 0.4 0.9 0.4 0.4 0.7 0.3 0.5 0.4 0.4 0.5 0.3 0.4 0.4 0.1 0.4 0.7 0.7 0.5
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Table 5. Kroměřiž: differences of simulated and observed soil moisture, RMSE (% ASM), PBias (%) and Index of Agreement for month and growing season (gs) 2007–2011

Kroměřiž

Year 2007 2008 2009 2010 2011

Month 3 4 5 6 7 8 9 gs 3 4 5 6 7 8 9 gs 3 4 5 6 7 8 9 gs 3 4 5 6 7 8 9 gs 3 4 5 6 7 8 9 gs

% ASM (mean)

Measured 54 56 54 27 15 10 25 34 50 38 34 33 27 30 45 37 80 70 40 22 25 11 4 36 68 55 63 70 64 80 71 75 67 74 82 59 72

Simulated-observed values (%ASM)

CERES-Barley −15 −36 −10 11 −9 −4 −5 −14 −29 −11 3 −5 −19 17 27 12 7 −18 4 0 −1 −19 −41 −31 −17

SoilClim-Barley −9 −12 21 26 29 52 15 11 20 13 0 11 10 4 9 4 1 1 41 42 31 31 20 −3 −18 −2 −3 1 4 3 −12 −21 −12 −11 −23 −11

CERES-Maize −4 23 13 7 −7 0 −1 15 5 −15 −22 −45 −11 −23 7 45 41 11 6 13 20 4 8 11 14 4 4 5 −7 −15 −35 −6

SoilClim-Maize 4 28 25 27 55 19 5 15 3 8 10 10 6 −15 13 47 40 28 36 17 2 −18 −5 1 1 9 5 −11 −13 −14 −17 −11

SoilClim-Grass 17 −16 −25 18 30 25 53 14 10 7 6 −1 12 5 2 7 13 −12 −11 41 45 26 27 19 4 −16 −7 −7 2 −23 −23 −26 −20 −10 −17 −27 −21

ASCAT SWI T2 11 −44 −46 −11 13 5 21 −7 24 5 −28 −29 8 −6 −24 −7 −1 −50 −38 −4 14 21 11 −7 −42 −21 −11 −23 −19 −50 −33 −59 −64 −48 −47 −49 −50

RMSE (% ASM)

CERES-Barley 17 37 19 7 25 5 6 16 29 16 5 9 22 22 18 10 20 14 4 5 22 41 26

SoilClim-Barley 10 13 25 28 32 53 30 12 20 15 3 13 11 5 12 5 6 13 42 43 32 31 30 16 20 3 7 13 7 5 14 21 15 15 23 16

CERES-Maize 8 25 21 15 19 4 16 12 16 24 18 10 17 46 42 12 0 32 19 9 10 13 13 8 9 12 20 41 17

SoilClim-Maize 7 30 27 32 56 35 7 15 5 10 11 11 11 3 19 47 40 29 37 35 12 20 7 5 12 6 13 15 16 17 14

SoilClim-Grass 18 21 26 24 33 29 54 31 11 8 7 4 14 6 4 10 14 16 21 42 46 26 28 30 13 19 8 9 13 24 23 26 20 13 21 27 22

ASCAT SWI T2 29 44 47 17 20 16 24 31 26 11 31 30 13 15 25 23 18 52 40 9 16 23 15 29 45 24 12 25 27 54 34 60 64 49 48 49 52

PBias (%)

CERES-Barley −27 −67 −36 26 −42 −8 −13 −41 −87 −32 2 −7 −48 77 −2 1 −34 −10 −1 −1 −25 −61 −24

SoilClim-Barley −15 −21 79 178 287 204 57 22 53 39 −1 40 34 8 26 4 1 3 186 172 291 715 69 −19 −32 −3 −5 −14 4 5 −16 −32 −17 −14 −39 −15

CERES-Maize −8 86 90 66 43 0 44 16 −55 −73 −15 −18 17 206 167 98 3 96 26 7 14 15 15 5 7 −10 −19 −64 −9

SoilClim-Maize 7 107 166 269 220 118 15 43 9 31 33 22 27 −4 32 213 162 263 835 149 −9 −33 −8 2 −11 7 −16 −18 −18 −29 −13

SoilClim-Grass 31 −29 −46 68 200 254 210 42 20 20 18 −3 46 16 5 19 16 −17 −27 185 183 242 629 52 −6 −28 −12 −11 −14 −29 −33 −35 −29 −13 −21 −46 −29

ASCAT SWI T2 20 −77 −85 −42 86 55 81 −21 49 12 −83 −86 31 −19 −52 −19 −1 −72 −96 −19 57 191 252 −19 −65 −37 −17 −33 −36 −62 −47 −79 −96 −64 −58 −83 −69

Index of Agreement

CERES-Barley 0.2 0.1 0.4 0.4 0.5 0.6 0.7 0.8 0.2 0.7 0.7 0.9 0.5 0.5 0.9 0.6 0.2 0.7 0.9 0.8 0.4 0.2 0.4

SoilClim-Barley 0.3 0.3 0.3 0.3 0.2 0.2 0.4 0.3 0.3 0.8 0.9 0.3 0.7 1.0 0.8 0.6 0.9 0.2 0.3 0.2 0.3 0.1 0.7 0.4 0.5 1.0 0.8 0.7 0.8 0.8 0.6 0.4 0.8 0.5 0.3 0.7

CERES-Maize 0.4 0.3 0.4 0.5 0.8 0.8 0.8 0.6 0.3 0.4 0.7 0.1 0.2 0.3 0.2 0.6 0.9 0.4 0.4 0.8 0.6 0.6 0.7 0.7 0.7 0.8 0.4 0.2 0.6

SoilClim-Maize 0.4 0.3 0.3 0.2 0.2 0.4 0.6 0.8 0.8 0.3 0.8 0.9 0.8 0.4 0.4 0.3 0.2 0.3 0.1 0.4 0.5 0.5 0.7 0.9 0.8 0.8 0.6 0.8 0.5 0.4 0.8

SoilClim-Grass 0.5 0.1 0.2 0.3 0.2 0.3 0.2 0.4 0.4 0.6 1.0 0.9 0.3 0.9 1.0 0.9 0.3 0.8 0.2 0.3 0.1 0.3 0.1 0.7 0.5 0.5 0.8 0.7 0.7 0.2 0.3 0.3 0.4 0.8 0.4 0.3 0.6

ASCAT SWI T2 0.0 0.1 0.1 0.4 0.4 0.4 0.3 0.5 0.2 0.6 0.5 0.2 0.2 0.4 0.7 0.6 0.2 0.3 0.3 0.8 0.2 0.3 0.3 0.7 0.2 0.3 0.5 0.3 0.4 0.1 0.2 0.2 0.1 0.3 0.1 0.2 0.3
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Table 6. Groß-Enzersdorf: differences of simulated and observed soil moisture, RMSE (% ASM), PBias (%) and Index of Agreement for month and growing season (gs) 2007–2010

Groß-Enzersdorf

Year 2007 2008 2009 2010

Month 3 4 5 6 7 8 9 gs 3 4 5 6 7 8 9 gs 3 4 5 6 7 8 9 gs 3 4 5 6 7 8 9 gs

% ASM (mean)

Measured 42 21 8 8 18 47 62 29 37 39 31 33 24 33 25 28 46 65 26 20 37 58 71 80 75 54 78 77 70

Simulated-observed values (%ASM)

CERES-Barley 0 2 −2 −3 −9 −9 −1 10 −19 1 41 −16 −24 10 −13 −12 −15 −5 −31 −9

SoilClim-Barley 24 33 21 22 8 9 16 19 3 21 31 26 22 18 35 −2 0 0 12 11 10 −5 −2 −5 −6 −20 −6 −5 −6

CERES-Maize −3 10 2 −14 −45 −18 22 46 29 −2 21 −8 −11 −7 1 0 −20 0 −8 −2 11 −28 −29 −10

SoilClim-Maize 2 21 22 5 16 21 13 26 35 23 19 21 −2 −5 1 −5 15 19 4 −2 6 −3 −23 −4 6 −1

SoilClim-Grass 24 18 19 24 5 7 18 16 −3 11 30 27 16 14 20 −10 −1 3 6 10 7 −1 −16 −19 −5 −19 −10 −6 −11

ASCAT SWI T2 21 −8 26 18 −13 −32 −19 −1 8 0 −6 6 −11 3 −5 −20 −10 −16 12 −11 −1 −17 −34 −28 −41 −34 −27 −50 −33

RMSE (% ASM)

CERES-Barley 11 8 6 7 8 10 20 20 13 17 14 18 26 21 11 14 17 8 14

SoilClim-Barley 26 34 22 23 14 12 18 22 6 27 33 26 25 25 15 6 14 11 23 17 15 3 8 6 8 21 14 7 12

CERES-Maize 5 12 7 18 24 13 31 47 30 12 33 8 12 20 14 19 16 7 12 32 37 25

SoilClim-Maize 8 22 22 11 18 22 19 34 38 23 20 30 3 5 14 14 26 22 17 7 7 24 17 6 14

SoilClim-Grass 25 19 20 25 14 11 19 20 7 25 32 27 18 24 3 10 15 15 21 15 15 7 17 20 8 20 17 7 15

ASCAT SWI T2 29 12 27 20 19 34 21 24 11 7 11 15 11 11 25 22 14 17 24 18 20 25 36 29 43 37 29 52 37

PBias(%)

CERES-Barley −1 10 −29 −48 −4 −25 −4 30 −39 −2 53 −55 −48 −43 −18 −18 −19 −6 −16

SoilClim-Barley 58 160 258 289 43 18 26 64 10 54 99 77 99 64 61 −6 −1 −1 48 54 13 −5 −3 −6 −7 −37 −8 −7 −10

CERES-Maize 16 129 27 −77 −93 −11 54 146 86 9 80 −33 −38 −15 2 −28 −15 −2 14 −51 −40 −16

SoilClim-Maize 49 254 284 25 33 34 57 65 112 68 82 82 −11 −17 2 −8 58 92 12 7 −4 −43 −5 7 −5

SoilClim-Grass 58 87 234 312 26 15 28 55 −12 29 94 81 72 50 −9 −36 −3 5 24 48 3 −2 −23 −24 −7 −35 −12 −7 −15

ASCAT SWI T2 51 −41 319 236 −68 −68 −30 −3 21 1 −20 17 −32 0 −99 −70 −22 −24 48 −53 −26 −30 −48 −35 −55 −64 −34 −65 −47

Index of agreement

CERES-Barley 0.8 0.9 0.5 0.3 1.0 0.3 0.6 0.7 0.6 0.6 0.1 0.3 0.8 0.7 0.2 0.8 0.7 0.9 0.8

SoilClim-Barley 0.5 0.5 0.1 0.1 0.4 0.9 0.8 0.8 0.6 0.5 0.5 0.6 0.4 0.5 0.0 0.6 0.9 0.8 0.7 0.4 0.9 0.5 0.9 0.9 0.9 0.5 0.7 0.9 0.9

CERES-Maize 0.6 0.2 0.3 0.4 0.1 0.3 0.4 0.3 0.5 0.5 0.5 0.1 0.5 0.9 0.7 0.8 0.9 0.9 0.8 0.3 0.4 0.7

SoilClim-Maize 0.6 0.1 0.1 0.4 0.8 0.7 0.9 0.4 0.4 0.6 0.4 0.5 0.2 0.8 0.9 0.7 0.6 0.4 0.8 0.9 1.0 0.5 0.6 0.9 0.9

SoilClim-Grass 0.5 0.7 0.1 0.1 0.3 0.9 0.7 0.8 0.2 0.5 0.5 0.6 0.4 0.5 0.3 0.6 0.9 0.7 0.6 0.4 0.9 0.7 0.7 0.6 0.9 0.5 0.7 0.9 0.8

ASCAT SWI T2 0.2 0.6 0.1 0.2 0.2 0.5 0.7 0.6 0.4 0.8 0.8 0.7 0.7 0.8 0.0 0.3 0.9 0.5 0.7 0.5 0.8 0.4 0.5 0.5 0.4 0.4 0.5 0.3 0.5
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Model ranking

In the next step, potential seasonal changes of model performance
in the estimation of ASM was investigated. For each month during
the period 2007–2011 the first three best models, which fit to the
measured soil moisture, were identified. The result was based on
the difference of measured and simulated values and filtered out
(Table 7).

As already indicated previously, the CERES simulations in
arable regions performed better in the first 5 months, under con-
ditions of canopy establishment (March–April: CERES-Barley
and May–June: CERES-Maize). SoilClim performed at its best
in August and September. It seemed that this model performs bet-
ter under grass and bare soil conditions, which could be caused by
the better representation of the real canopy cover and related sea-
sonal root water uptake of measurement sites. ASCAT SWI T2
came in second and third place, respectively, in the three summer
months.

Discussion

Due to climate change, water scarcity, drought frequency and
severity are increasing globally, especially affecting agriculture
and food production. Even locally, changes in the modelled and
observed soil water content have been reported, especially in
May and June (Trnka et al. 2015a) and explained by a significant
increase of temperatures and global radiation and decrease in pre-
cipitation (Trnka et al. 2015b), together with significant shifts in
weather circulation patterns (Trnka et al. 2009). These changes
have been recently attributed to increased carbon dioxide (CO2)
concentrations (Brázdil et al. 2015); moreover, the frequency of
drought in recent decades is among the highest ever recorded
in the past 500 years (Brázdil et al. 2013). Therefore, decision-
makers in the agriculture and hydrology sectors need to improve
water use efficiency, especially in crop production, which was
shown to be particularly affected (Hlavinka et al. 2009; Thaler
et al. 2012; Eitzinger et al. 2013b). At the same time, soil moisture

Fig. 5. Triple Collocation analysis and r2 for Doksany, Dyjákovice, Kroměřiž and Groß-Enzersdorf. Measured = point scale, third reference = local scale (different
models) and large scale = ASCAT.
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availability has been shown to be important for grassland produc-
tion (Trnka et al. 2006) and also for various tree species including
fir (Büntgen et al. 2011), oak (Rybníček et al. 2015) and beech
(Kolář et al. 2016). The status and development of soil wetness
are therefore crucial, becoming a key aspect for well-informed
decision making, and relevant tools and methods should deliver
representative and reliable spatial information to farmers at the
field scale. Remote sensing products such as ASCAT can provide
valuable data on spatial soil wetness conditions. Nevertheless,
their intrinsic weaknesses lie in representing only surface layers,
as well as not always having the fine spatial resolution needed.
By combining tools such as site-based crop water balance models
with remote sensing methods, a potential for better-performing
spatial estimates can be obtained. In the current study, two differ-
ent crop model (incl. soil-crop water balance) approaches and

ASCAT SWI T2 estimates were compared with measured soil
water content at four sites under short grass, representing
Central European soil and climatic conditions. The comparison
included different time scales from daily to yearly for three differ-
ent main crops and several soil types, and offers insight into sea-
sonal influences of model performance related to crop and
weather conditions. The study period was 2007–2011 and
included the main growing season months March until Septem-
ber. Here the uppermost soil layer (0–40 cm) was analysed.

The initial hypothesis stated that models driven by local pre-
cipitation measurements and site-representative soil characteris-
tics would provide estimates of soil moisture with higher
accuracy on the site level in comparison with ASCAT SWI T2.
In addition, it was expected that the process-based crop models
of DSSAT would provide better results compared with the simple

Fig. 6. Mean monthly measured values and RMSE for the four study sites Doksany, Kroměřiž, Dyjákovice and Groß-Enzersdorf.
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water balance model SoilClim, due to better-simulated dynamics
of soil layer specific root water uptake. In case of daily simulations
for all the four stations together, the model CERES-Barley pre-
sented the lowest variation and overall tended to underestimate
soil moisture (average BPias = −14.2%). A negative bias was also
reported by Eitzinger et al. (2004) in their study based on lysim-
eter data on similar soil, due to deviations in root water uptake in
the deeper soil layers. Advanced SCATterometer SWI T2 daily
estimations are, as expected due to spatial averaging, the weakest
and their variation is high. The standard deviation of the model
prediction error is around 20% ASM for SoilClim-Barley and
SoilClim-Grass and not essentially higher as in DSSAT (19%
ASM). On the other hand, SoilClim generally overestimates soil
moisture.

Although comparisons of in situ soil water measurements can
be affected by the high spatial variability of soil water balance
determining factors on the small scale, seasonal changes can be
represented well. Moreover, the measurement sites are character-
ized by homogenous permanent grass canopies (and root distri-
bution) reducing spatial inhomogeneity of soil water content.

Regarding the specific model performances during dry peri-
ods, it can be observed at all four study sites that DSSAT better
simulates the first soil moisture layer (up to 50% ASM measured
soil moisture), whereas SoilClim simulations fit quite well during
humid months. Therefore, as it was assumed that the process-
based crop model DSSAT provides more realistic results in com-
parison with the simple water balance model SoilClim under fre-
quent water stress conditions, which can be explained by specific
processes simulated in more detail and dynamics such as the root
and crop growth. On the other hand, DSSAT reacts sensitively to
humidity and shows the highest deviations during moist periods.
A possible explanation could be that the interception losses are
not captured well in the model.

Advanced SCATterometer SWI T2 shows poor results on daily
statistical parameters. However, if a longer period, such as a
month or a growing season, is taken into account, ASCAT SWI
T2 results are more reliable and can deliver a good soil moisture
estimate. The model predicts values reasonably well, particularly
during conditions of low surface biomass (early vegetation sea-
son) of the areas under evaluation. This can be related to the
fact that the scatterometer returned better estimates of the water
content in the soil layer when the lack of vegetation allowed the
signal more ground penetration.

Hence, ASCAT provides good estimates of annual changes in
water availability and was able to distinguish extreme (drought/
wet) seasons. The performances of Metop ASCAT soil moisture
was positively validated and could represent a complementary
source for the estimation of crop-soil water balance in Central
Europe, e.g. in regional drought monitoring. Furthermore, the

in-situ values should be critically judged, because their data qual-
ity can be influenced by different measurement errors, for
example sensor changes, replacement or calibration, power failure.
Due to such limitations of in situ measurements, ASCAT SWI T2
shows more reliability in long-term observations since it is more
stable and better at tracking changes from year to year. For in situ
measurements, the potential spatial variability at a small scale has
to be considered for comparisons at differing scales.

During early and late crop stages, the crop models and ASCAT
SWI T2 estimations present a low deviation compared to the mea-
sured grass-soil water content. It is an effect of reduced water take
up by crops/plants from deeper soil layers during these periods
and less expressed vertical soil water differences.

Knowing the time-dependent changing performances of the
different methods, depending on changing soil wetness and
crop conditions, ranges of varying uncertainty regarding model
application and recommended model choices could be given.
Advanced SCATterometer SWI T2 performance at its best
under medium soil wetness conditions and related to the low vari-
ation of precipitation frequency and the amount is obvious. Soil
crop water balance models require, in case of more extremes
towards drought and wetness, reliable predictions. A significant
improvement of spatial estimates of ASM could, therefore, be
reached by considering annual actual acreage of crop types,
even without high spatial (field-based) crop simulation efforts,
especially in regions with similar agroecological (soil, climate,
land use) conditions.
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