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Shallow-water sloshing in vessels undergoing
prescribed rigid-body motion in three dimensions
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New shallow-water equations (SWEs), for sloshing in three dimensions (two horizontal
and one vertical) in a vessel which is undergoing rigid-body motion in 3-space, are
derived. The rigid-body motion of the vessel (roll–pitch–yaw and/or surge–sway–
heave) is modelled exactly and the only approximations are in the fluid motion.
The flow is assumed to be inviscid but vortical, with approximations on the vertical
velocity and acceleration at the surface. These equations improve previous shallow-
water models. The model also extends to three dimensions the essence of the Penney–
Price–Taylor theory for the highest standing wave. The surface SWEs are simulated
using a split-step alternating direction implicit finite-difference scheme. Numerical
experiments are reported, including comparisons with existing results in the literature,
and simulations with vessels undergoing full 3-D rotations.
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1. Introduction
Shallow-water equations (SWEs) for a 3-D inviscid but vortical fluid in a vessel

undergoing an arbitrary prescribed rigid-body motion in three dimensions are derived.
The rigid-body motion is represented exactly and only two assumptions are imposed
on the velocity and acceleration at the free surface to close the SWEs.

While there has been a vast amount of research into 2-D sloshing, the research
into 3-D sloshing is still very much in development. A review of much of the
research to date is presented in Ibrahim (2005) and Faltinsen & Timokha (2009). The
predominant theoretical approaches for studying 3-D sloshing are (a) asymptotics and
weakly nonlinear theories, (b) multi-modal expansions which reduce the governing
equations to a set of ordinary differential equations (ODEs); (c) reduction to model
partial differential equations (PDEs) such as the SWEs; and (d ) direct numerical
simulation of the full 3-D problem.

If 3-D numerical simulations were faster, the latter approach would be very
appealing. There has been much progress in the numerical simulation of 3-D sloshing
using Navier–Stokes based methods (MAC, SOLA-SURF, VOF, RANSE), boundary-
element methods and finite-element methods for 3-D potential flow (some examples
are Wu, Ma & Eatock Taylor 1998; Cariou & Casella 1999; Chen, Hwang & Ko 2000;
Gerrits 2001; Kim 2001; Buchner 2002; aus der Wiesche 2003; Kleefsman et al. 2005;
Lee et al. 2007; Liu & Lin 2008; Chen, Djidjeli & Price 2009). Rebouillat & Liksonov
(2010) review a range of numerical strategies for fully 3-D sloshing. While the results
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Shallow-water sloshing in three dimensions 475

of these simulations are impressive, the difficulty is that CPU times are measured in
hours rather than minutes or seconds. An example is the VOF simulations of Liu &
Lin (2008), where 3-D sloshing in a vessel with rectangular base is forced harmonically.
To simulate 50 s of real time (about 20 periods of harmonic forcing) took 265 h
of CPU time. It is very difficult to do parametric studies or long-time simulations
with this amount of CPU time. Hence, any reduction in dimension is appealing.

On the other hand, one can make some progress in the understanding of sloshing
in three dimensions using analytical methods, asymptotics (perturbation theory,
multi-scale expansions) and modal expansions. In 2-D shallow-water sloshing, the
predominant types of solution are the standing wave and travelling hydraulic jump.
But in 3-D shallow-water sloshing, the range of basic solutions is much larger.
One still has the 2-D solutions, but there can be mixed modes, swirling modes,
multi-mode cnoidal standing waves, diagonal modes and multi-dimensional hydraulic
jumps, and analytical methods are very effective for identifying parameter regimes
for these basic solutions (e.g. Bridges 1987; Faltinsen & Timokha 2003; Faltinsen,
Rognebakke & Timokha 2003, 2006a). Also, there is a vast literature on asymptotic
methods for the special case of parametrically forced sloshing in rectangular containers
(Faraday experiment) (e.g. Miles & Henderson 1990, and its citation trail). Multi-
modal expansions take analytic methods to higher order. When the fluid domain is
finite in extent, there is a countable basis of eigenfunctions for the basin shape, and
one approach that has been extensively used is to expand the nonlinear equations
in terms of these (or other) basis functions with time-dependent coefficients, leading
to a large system of ODEs. Examples of this approach are Faltinsen & Timokha
(2003), Faltinsen et al. (2003, 2006a), La Rocca, Mele & Armenio (1997), La Rocca,
Sciortino & Boniforti (2000) and Part II of Ibrahim (2005). The advantage of modal
approximation is that the problem is reduced to a system of ODEs which is much
quicker to simulate numerically.

In between direct 3-D simulations and analytical methods is a third approach:
to derive reduced PDE models. This approach is particularly useful for the study
of shallow-water sloshing. The study of 3-D shallow-water sloshing is motivated by
a number of applications such as sloshing on the deck of fishing vessels (Adee &
Caglayan 1982; Caglayan & Storch 1982) and offshore supply vessels (Falzarano,
Laranjinha & Guedes Soares 2002), sloshing in wing fuel tanks of aircraft (Disimile,
Pyles & Toy 2009), green-water effects (Dillingham & Falzarano 1986; Zhou, Kat &
Buchner 1999; Buchner 2002; Kleefsman et al. 2005), sloshing in a swimming pool
on deck (Ruponen et al. 2009), sloshing in fish tanks onboard fishing vessels (Lee,
Surendran & Lee 2005) and sloshing in automobile fuel tanks (aus der Wiesche 2003).

About the same time, Dillingham & Falzarano (1986) and Pantazopoulos (1987)
(see also Pantazopoulos & Adee 1987 and Pantazopoulos 1988) derived SWEs for
3-D sloshing with the vessel motion prescribed. It is this approach that is the starting
point for the current paper. These SWEs, hereafter called the DFP SWEs, will be
recorded and analysed in § 10. In follow-up work, Huang (1995) (see also Huang &
Hsiung 1996, 1997) gave an alternative derivation of rotating SWEs for sloshing,
resulting in slightly different equations from the DFP SWEs. The latter system will
be called the HH SWEs. A discussion of the HH SWEs is also given in § 10.

The DFP SWEs use a very simple form for the vessel motion, and have unnecessarily
restrictive assumptions in the derivation. The derivation of the HH SWEs is more
precise but still has some restrictive assumptions. These assumptions are outlined
in § 10 and, in more detail, in the technical reports of Alemi Ardakani & Bridges
(2009c, d).
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In this paper, a new derivation of SWEs is given in three dimensions. The starting
point for the new SWEs is the exact equation for the horizontal velocity field at the
free surface

Ut + UUx + V Uy +

(
a11 +

Dw

Dt

∣∣∣h)hx + a12hy = b1 + σ∂xdiv(κ),

Vt + UVx + V Vy +

(
a22 +

Dw

Dt

∣∣∣h)hy + a21hx = b2 + σ∂ydiv(κ).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1.1)

These equations are relative to a frame of reference moving with the vessel with
coordinates (x, y, z) and z normal to the vessel base. The terms a11, a12, a21, a22, b1, b2

encode the moving frame, κ is minus the horizontal projection of the unit normal of

the surface and is defined in § 2, σ is the coefficient of surface tension and Dw/Dt |h is
the Lagrangian vertical acceleration evaluated at the free surface. The fluid occupies
a rectangular region with a single-valued free surface,

0 � z � h(x, y, t), 0 � x � L1, 0 � y � L2. (1.2)

The free-surface horizontal velocity field is

U (x, y, t) = u(x, y, z, t)|h := u(x, y, h(x, y, t), t) and V (x, y, t) = v(x, y, z, t)|h.
(1.3)

Couple (1.1) with the exact mass conservation equation,

ht + (hU )x + (hV )x = W + hUx + hVy, (1.4)

which is derived from the kinematic free-surface boundary condition (see § 2). W = w|h
is the vertical velocity at the free surface.

By assuming that Dw/Dt |h ≈ 0 and W + hUx + hVy ≈ 0, (1.1)–(1.4) are a closed set
of SWEs which retain the vessel motion exactly. It is this closed set of SWEs that is
the starting point for the analysis and numerics in this paper.

One of the advantages of the SWEs is that vorticity is retained. This is in contrast
to almost all analytical research into 3-D sloshing which is based on the assumption
of irrotationality. Vorticity can be input through the initial conditions, but a new
mechanism comes into play in shallow-water sloshing: the creation of vorticity
though discontinuities in hydraulic jumps (e.g. Pratt 1983; Peregrine 1998, 1999). In
coastal hydraulics, Peregrine (1998) has shown how steady hydraulic jumps generate
vorticity – for a steady flow. In the case of shallow-water sloshing, there is a new
dynamic mechanism due to the time-dependent nature of the hydraulic jumps, and the
new equations give some direction towards generalizing the Pratt–Peregrine theory to
the unsteady case. The emergence of non-zero vertical vorticity is witnessed in some
of the numerical simulations reported herein.

The surface equations (1.1)–(1.4) have a form of potential vorticity (PV)
conservation, when (a) surface tension is neglected; (b) Lagrangian vertical
accelerations are neglected; and (c) the vertical velocity is approximated by
W ≈ − hUx − hVy . In this case, the PV is

PV =
Vx − Uy + 2Ω3 − 2Ω2hy − 2Ω1hx

h
. (1.5)

In the special case where Ω1 = Ω2 = 0 and Ω3 is constant, the expression for PV
reduces to the classical case in geophysical fluid dynamics (e.g. § 4.2 of Salmon 1998).
When Ω1 and Ω2 are non-zero, there is an interesting geometrical interpretation: the
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correction to the vertical vorticity is the projection of the angular velocity vector onto
the surface unit normal. See § 8 for details. In geophysical fluid dynamics, the rotation
vector (rotation of the earth) is treated as a constant and is always vertical. On the
other hand, Barnes et al. (1983) have shown that the earth does indeed wobble and
so the idea of a time-dependent rotation vector as here may have some interest in
geophysical fluid dynamics.

The vessel is modelled as a rigid body, and the position of a rigid body in 3-
space is completely determined by specifying (q(t), Q(t)), where q(t) is a vector in
�3, giving the horizontal and vertical translations of the body relative to some
fixed reference frame, and Q is a proper 3 × 3 rotation matrix. (Q is orthogonal and
det(Q) = 1.)

Specifying translations is straightforward, but specifying rotations requires a little
more care. Surprisingly, most previous work on forced sloshing uses pure translation,
or the rotations are simplified using a small-angle approximation or restricted to
planar rotations. The small-angle approximation is to take the angular velocity of
the form Ω = (φ̇, θ̇ , ψ̇), where φ, θ and ψ are roll, pitch and yaw angles, respectively
(precise definition given in § C.1). Examples of forcing used in the literature are
Chen et al. (2009) (harmonic surge and sway motion, and harmonic roll motion),
Wu et al. (1998) (harmonic surge, sway and heave forcing), Chen et al. (2000) and
Faltinsen et al. (2006a) (harmonic surge forcing), aus der Wiesche (2003) (impulse
excitation representative of automobile accelerations), Faltinsen, Rognebakke &
Timokha (2006b) (roll–pitch forcing with a small-angle approximation), Faltinsen et al.
(2003) (roll–pitch–surge–sway forcing with small-angle approximation for rotations),
Liu & Lin (2008) and Wu & Chen (2009) (forcing in all six degrees of freedom with
small-angle approximation for rotations).

In this paper, exact coordinate-independent 3-D representations of the rotations
are used. Special coordinate choices are Euler-angle representations and numerical
construction of the rotation matrix. The choice (body or space) representation of
the angular velocity is important and its implications are discussed. Also there are
subtleties in the construction of the angular velocity (Leubner 1981), and these are
also discussed herein and in the report of Alemi Ardakani & Bridges (2009e).

There has been very little experimental work with vessels undergoing full 3-D
rotations. Most experiments are with pure translations and/or planar rotations. A
facility for 3-D rotations of vessels with fluid would be technically demanding.
However, the paper of Disimile et al. (2009) mentions an experimental facility capable
of exciting a tank containing fluid in all six degrees of freedom. However, to date,
they have reported only on results of forced roll motion.

Our principal tool for analysing the SWEs is numerics. The numerical scheme
is based on the Abbott–Ionescu scheme which is widely used in computational
hydraulics. It is a finite-difference scheme, fully implicit, and the two-dimensionality
is treated using an alternating direction implicit scheme. A 1-D version of this scheme
was used in Alemi Ardakani & Bridges (2009a).

An overview of the paper is as follows. In §§ 3 and 4, the surface equations (1.1) for
sloshing in a vessel undergoing motion in 3-space are derived starting from the full
3-D Euler equations relative to a moving frame. Before assuming that the Lagrangian
vertical accelerations are small, we analyse the exact equations in § 5 and show that
they give an explanation for and a generalization to three dimensions of the Penney–
Price–Taylor theory for the highest standing wave. The assumptions necessary for the
reduction to a closed set of SWEs with the exact body motion are discussed in § 7,
leading to a closed set of SWEs. PV conservation is discussed in § 8.
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Figure 1. Schematic showing a configuration of the fixed coordinate system OXYZ relative to
the moving coordinate system, attached to the tank, Oxyz. The origin of the OXYZ coordinate
system can have an additional displacement q(t). In this figure, q(t) = 0.

Details of the specification of the vessel motion are given in § 9, including both an
Euler-angle representation and direct calculation of the rotation matrix numerically.
Further detail on the special case of yaw–pitch–roll Euler angles is given in the report
of Alemi Ardakani & Bridges (2009b).

The DFP SWEs and HH SWEs are reviewed in the reports of Alemi Ardakani &
Bridges (2009c) and Alemi Ardakani & Bridges (2009d ). A summary of the main
assumptions in their derivation and a comparison with the new surface SWEs is given
in § 10.

Numerical results are reported in §§ 12–15. These simulations include full 3-D
rotations: roll–pitch and roll–pitch–yaw in § 12. Results of pure yaw forcing are
reported in § 13. These simulations show the appearance of vorticity and agree with
previous simulations of Huang & Hsiung (1996). Motivated by the theory of Faltinsen
et al. (2003) and the simulations of Wu & Chen (2009), diagonal surge–sway forcing is
considered in § 14, capturing diagonal waves and swirling waves. In § 15, an example is
shown with very large displacements of the vessel. The model is based on the London
Eye, but its implications are much more general, as it illustrates how the model can
be effectively applied to motion of the vehicle along arbitrarily defined surfaces.

2. Governing equations
The configuration of the fluid in a rotating–translating vessel is schematically shown

in figure 1. The vessel is a rigid body, which is free to rotate and or translate in �3,
and this motion will be specified. The spatial frame, which is fixed in space, has
coordinates denoted by X = (X, Y, Z), and the body frame – a moving frame – is
attached to the vessel and has coordinates denoted by x =(x, y, z).

The whole system is translating in space with translation vector q(t). The position
of a particle in the body frame is therefore related to a point in the spatial frame by

X = Q(x + d) + q, (2.1)

where Q is a proper rotation in �3 (QT = Q−1 and det(Q) = 1). The axis of rotation can
be displaced by a distance d from the origin of the body frame and d = (d1, d2, d3) ∈ �3
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Shallow-water sloshing in three dimensions 479

is constant. The displacement Qd could be incorporated into q(t), but in cases where
the origin of the spatial frame is fixed, it will be useful to maintain the distinction.

This formulation is consistent with the theory of rigid-body motion, where an
arbitrary motion can be described by the pair (Q(t), q(t)), with Q(t) being a proper
rotation matrix and q(t) a vector in �3 (Murray, Lin & Sastry 1994; O’Reilly 2008).

The body angular velocity is a time-dependent vector,

Ω(t) = (Ω1(t), Ω2(t), Ω3(t)), (2.2)

with entries determined from Q by

QTQ̇ =

⎡⎢⎣ 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

⎤⎥⎦ := Ω̂. (2.3)

The convention for the entries of the skew-symmetric matrix Ω̂ is such that

Ω̂ r = Ω × r, for any r ∈ �3, Ω := (Ω1, Ω2, Ω3). (2.4)

The body angular velocity is to be contrasted with the spatial angular velocity – the
angular velocity viewed from the spatial frame – which is

Ω̂
spatial

:= Q̇QT. (2.5)

As vectors, the spatial and body angular velocities are related by Ω spatial = QΩ . Either
representation can be used for the angular velocity. For example, Pantazopoulos
(1988), Dillingham & Falzarano (1986), Falzarano et al. (2002) and Pantazopoulos &
Adee (1987) use the spatial representation, whereas Huang & Hsiung (1996, 1997)
use the body representation. We will show that the body representation is the sensible
choice leading to great simplification of the equations. Henceforth, the angular velocity
without a superannotation will represent the body angular velocity.

The velocity and acceleration in the spatial frame are

Ẋ = Q(ẋ + Ω × (x + d)) + q̇, (2.6)

and

Ẍ = Q[ẍ + 2Ω × ẋ + Ω̇ × (x + d) + Ω × Ω × (x + d) + QTq̈]. (2.7)

Newton’s law is expressed relative to the spatial frame, but substitution of (2.6)–(2.7)
into Newton’s law and multiplying by QT gives the governing equations relative to
the body frame,

Du
Dt

+
1

ρ
∇p + 2Ω × u + Ω̇ × (x + d) + Ω × (Ω × (x + d)) + QT g + QTq̈ = 0, (2.8)

where u = (u, v, w) is the velocity field,

D

Dt
:=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
and g := g

⎛⎜⎝0

0

1

⎞⎟⎠ , (2.9)

with g > 0 being the gravitational constant. A detailed derivation is given in
Appendix A of Alemi Ardakani & Bridges (2009a). The term QT g rotates the
usual gravity vector so that its direction is viewed properly in the body frame. The
same is true for the translational acceleration q̈. Further comments on the viewpoint
of the vessel velocity and acceleration are presented in § 9.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

44
77

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004477


480 H. Alemi Ardakani and T. J. Bridges

In the derivation of the SWEs, the components of (2.8) will be needed. We write
the momentum equation as

Du
Dt

+
1

ρ
∇p = F. (2.10)

Then

F = −2Ω × u − Ω̇ × (x + d) − Ω × (Ω × (x + d)) − QT g − QTq̈, (2.11)

and the components of F are

F1 = −2(Ω2w − Ω3v) − Ω̇2(z + d3) + Ω̇3(y + d2)

−Ω1 Ω · (x + d) + (x + d1)‖Ω‖2 − q̈ · Qe1 − ge3 · Qe1,

F2 = +2(Ω1w − Ω3u) + Ω̇1(z + d3) − Ω̇3(x + d1)

−Ω2 Ω · (x + d) + (y + d2)‖Ω‖2 − q̈ · Qe2 − ge3 · Qe2,

F3 = −2(Ω1v − Ω2u) − Ω̇1(y + d2) + Ω̇2(x + d1)

−Ω3 Ω · (x + d) + (z + d3)‖Ω‖2 − q̈ · Qe3 − ge3 · Qe3.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.12)

The use of the unit vectors e1, e2 and e3 is just to compactify notation. The terms
with unit vectors are interpreted as

Qe3 · e3 = Q33, (2.13)

where Qij is the (i, j )th entry of the matrix representation of Q and

Qe3 · q̈ = Q13q̈1 + Q23q̈2 + Q33q̈3, (2.14)

with similar expressions for the other such terms.
The fluid occupies the region

0 � x � L1, 0 � y � L2, 0 � z � h(x, y, t), (2.15)

where the lengths L1 and L2 are given positive constants, and z = h(x, y, t) is the
position of the free surface.

Conservation of mass relative to the body frame takes the usual form

ux + vy + wz = 0. (2.16)

The boundary conditions are

u = 0 at x = 0 and x = L1,

v = 0 at y = 0 and y = L2,

w = 0 at z = 0,

⎫⎪⎬⎪⎭ (2.17)

and, at the free surface, the boundary conditions are the kinematic condition

ht + uhx + vhy = w, at z = h(x, y, t), (2.18)

and the dynamic condition

p = −ρσ div(κ) at z = h(x, y, t), (2.19)

where σ > 0 is the coefficient of surface tension,

div(κ) =
∂κ1

∂x
+

∂κ2

∂y
, (2.20)
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and

κ1 =
hx√

1 + h2
x + h2

y

and κ2 =
hy√

1 + h2
x + h2

y

. (2.21)

The vector κ is minus the horizontal component of the unit normal at the free surface.
The unit normal vector n to the free surface, chosen to point out of the fluid, is

n =
1

	

⎛⎝−hx

−hy

1

⎞⎠ , 	 =
√

1 + h2
x + h2

y. (2.22)

2.1. Vorticity

The vorticity vector is defined by

V := ∇ × u. (2.23)

Differentiating this equation gives

DV

Dt
= V · ∇u + ∇ ×

(
Du
Dt

)
. (2.24)

Taking the curl of the momentum equations (2.8) gives

∇ ×
(

Du
Dt

)
= 2Ω · ∇u − 2Ω̇. (2.25)

Combining with (2.24) gives the vorticity equation

DV

Dt
= (2Ω + V) · ∇u − 2Ω̇. (2.26)

Two components of the vorticity equation will be important in the derivation of the
surface SWEs,

∂

∂y

(
Dw

Dt

)
=

∂

∂z

(
Dv

Dt

)
+ 2Ω1

∂u

∂x
+ 2Ω2

∂u

∂y
+ 2Ω3

∂u

∂z
− Ω̇1,

∂

∂x

(
Dw

Dt

)
=

∂

∂z

(
Du

Dt

)
− 2Ω1

∂v

∂x
− 2Ω2

∂v

∂y
− 2Ω3

∂v

∂z
+ 2Ω̇2.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.27)

3. Reduction of the pressure gradient
The key to the derivation of the surface equations in three dimensions (see (1.1)) is

the precise treatment of the pressure field. Let

β(x, y, t) = −Ω̇1(y+d2)+Ω̇2(x+d1)−Ω3Ω1(x+d1)−Ω3Ω2(y+d2)−Qe3 · q̈ −gQe3 · e3.

(3.1)

Then the vertical momentum equation can be expressed in the form

Dw

Dt
+

1

ρ

∂p

∂z
= −2(Ω1v − Ω2u) +

(
Ω2

1 + Ω2
2

)
(z + d3) + β(x, y, t). (3.2)

Integrate from z to h,∫ h

z

Dw

Dt
ds +

1

ρ
p

∣∣∣∣h
z

= −2Ω1

∫ h

z

v ds + 2Ω2

∫ h

z

u ds

+
(
Ω2

1 + Ω2
2

) (
1
2
h2 − 1

2
z2 + d3h − d3z

)
+ β(x, y, t)(h − z). (3.3)
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Applying the surface boundary condition on the pressure then gives the pressure at
any point z:

1

ρ
p(x, y, z, t) =

∫ h

z

Dw

Dt
ds + 2Ω1

∫ h

z

v ds − 2Ω2

∫ h

z

u ds − β(x, y, t)(h − z)

−
(
Ω2

1 + Ω2
2

) (
1
2
h2 − 1

2
z2 + d3h − d3z

)
− σdiv(κ). (3.4)

This equation for p(x, y, z, t) is exact. The strategy is to take derivatives with respect
to x and y and then substitute into the horizontal momentum equations. The details
are lengthy and are given in Appendix A. The expressions are

1

ρ

∂p

∂x
=

Du

Dt

∣∣∣∣h
z

+
Dw

Dt

∣∣∣∣h hx + 2Ω2W − 2Ω3V + 2Ω̇2(h − z) − 2Ω2w + 2Ω3v + 2Ω1V hx

− 2Ω2Uhx −
(
Ω2

1 + Ω2
2

)
(h + d3)hx − βx(h − z) − βhx − σ∂x div(κ), (3.5)

and

1

ρ

∂p

∂y
=

Dv

Dt

∣∣∣∣h
z

+
Dw

Dt

∣∣∣∣hhy − 2Ω1W + 2Ω3U − 2Ω̇1(h − z) + 2Ω1w − 2Ω3u + 2Ω1V hy

− 2Ω2Uhy −
(
Ω2

1 + Ω2
2

)
(h + d3)hy − βy(h − z) − βhy − σ∂y div(κ). (3.6)

The pressure is eliminated from the horizontal momentum equations using (3.5) and
(3.6). The details will be given for the x-momentum equation and then the result will
be stated for the y-momentum equation.

4. Reduction of the horizontal momentum equation
The x-component of the momentum equations (2.8) is

Du

Dt
+

1

ρ

∂p

∂x
= −2(Ω2w − Ω3v) − Ω̇2(z + d3) + Ω̇3(y + d2)

− Ω1 Ω · (x + d) + (x + d1)‖Ω‖2 − Qe1 · q̈ − gQe1 · e3. (4.1)

Replace the second term on the left-hand side by the expression for ρ−1px in (3.5),

Du

Dt
+

Du

Dt

∣∣∣∣h
z

+
Dw

Dt

∣∣∣∣hhx = −2Ω2W + 2Ω3V − 2Ω̇2(h − z) − 2Ω1V hx + 2Ω2Uhx

+ 2Ω2w − 2Ω3v +
(
Ω2

1 + Ω2
2

)
(h + d3)hx + βx(h − z) + βhx

+ σ∂xdiv(κ) − 2(Ω2w + Ω3v) − Ω̇2(z + d3) + Ω̇3(y + d2)

−Ω1 Ω · (x + d) + (x + d1)‖Ω‖2 − Qe1 · q̈ − gQe1 · e3. (4.2)

There are convenient cancellations: principally, Du/Dt , 2Ω̇2z and the interior Coriolis
terms cancel out. Cancelling and using βx = Ω̇2 − Ω1Ω3, and the kinematic condition
W = ht + Uhx + V hy gives

Du

Dt

∣∣∣∣h +
Dw

Dt

∣∣∣∣h hx + 2Ω2(ht + Uhx + V hy) − 2Ω3V + 2Ω1V hx − 2Ω2Uhx

−
(
Ω2

1 + Ω2
2

)
(h + d3)hx −

(
Ω2

2 + Ω2
3

)
(x + d1) + Ω1Ω2(y + d2) + Ω1Ω3(h + d3)

+ Ω̇2(h + d3) − Ω̇3(y + d2) + Qe1 · q̈ + gQe1 · e3 − βhx − σ∂xdiv(κ) = 0. (4.3)
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Now use the fact that Du/Dt |h can be expressed purely in terms of surface variables
since

Ut + UUx + V Uy =
Du

Dt

∣∣∣∣h. (4.4)

Substitution into (4.3) reduces the x-momentum equation to an equation purely in
terms of surface variables

Ut + UUx + V Uy +

(
a11 +

Dw

Dt

∣∣∣∣h
)

hx + a12 hy = b1 + σ∂xdiv(κ). (4.5)

The coefficients in this equation are

a11(x, y, t) = 2Ω1V −
(
Ω2

1 + Ω2
2

)
(h + d3) − β

= 2Ω1V + Qe3 · q̈ + gQe3 · e3 −
(
Ω2

1 + Ω2
2

)
(h + d3)

−(Ω̇2 − Ω1Ω3)(x + d1) + (Ω̇1 + Ω3Ω2)(y + d2), (4.6)

a12 = 2Ω2V, (4.7)

and

b1(x, y, t) = −2Ω2ht + 2Ω3V − Qe1 · q̈ − gQe1 · e3 +
(
Ω2

2 + Ω2
3

)
(x + d1)

+ (Ω̇3 − Ω1Ω2)(y + d2) − (Ω̇2 + Ω1Ω3)(h + d3). (4.8)

A similar argument leads to the surface y-momentum equation

Vt + UVx + V Vy + a21 hx +

(
a22 +

Dw

Dt

∣∣∣∣h
)

hy = b2 + σ∂ydiv(κ), (4.9)

with

a21 = −2Ω1U, (4.10)

and

a22 = −2Ω2U −
(
Ω2

1 + Ω2
2

)
(h + d3) + Qe3 · q̈ + gQe3 · e3

+ (Ω̇1 + Ω2Ω3)(y + d2) − (Ω̇2 − Ω1Ω3)(x + d1), (4.11)

and

b2 = 2Ω1ht − 2Ω3U − Qe2 · q̈ − gQe2 · e3 +
(
Ω2

1 + Ω2
3

)
(y + d2)

− (Ω̇3 + Ω1Ω2)(x + d1) + (Ω̇1 − Ω2Ω3)(h + d3). (4.12)

The terms a11 and a22 are related by

a11 − 2Ω1V = a22 + 2Ω2U. (4.13)

The surface equations (4.5) and (4.9) are exact. Moreover, the assumption of finite
depth has not been used yet and so they are also valid in infinite depth. In order
to reduce them to a closed system, the only term that requires modelling is the

Lagrangian vertical acceleration at the surface, Dw/Dt |h.
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5. Penney–Price–Taylor theory for the highest standing wave
Before proceeding to reduce the surface equations to a closed set of SWEs, a key

property of the exact equations is highlighted.
One of the simplest forms of sloshing waves is the pure standing wave. It is periodic

in both space and time. Penney & Price (1952) argue that the highest 2-D standing
wave should occur when the Lagrangian vertical acceleration at the crest is equal
to − g. They consider standing waves in infinite depth only, but it will be clear
from the discussion below that their argument is also valid in finite depth. Their
argument – in the absence of surface tension – is that the pressure just inside the
liquid near the surface must be positive or zero and consequently at the surface
∂p/∂z � 0, which is equivalent to

g +
Dw

Dt

∣∣∣∣h � 0. (5.1)

When this condition is violated, the standing wave should cease to exist. Taking into
account that Dw/Dt = ∂w/∂t at a crest, this is equivalent to (67) in Penney & Price
(1952). Using this theory, they deduced that the crest angle of the highest wave must
be 90◦, in contrast to the 120◦ angle of travelling waves. Taylor (1953) was surprised by
this argument and tested it by constructing an experiment. He was mainly interested
in the crest angle. His experiments convincingly confirmed the conjecture of Penney &
Price (1952).

A theoretical justification of this theory can be deduced from the surface momentum
equations. For the case of 2-D waves, this argument has been presented in § 6 of Alemi
Ardakani & Bridges (2009a). Remarkably, this argument carries over to 3-D waves.
Neglecting surface tension, and assuming the vessel to be stationary, the surface
momentum equations (4.5) and (4.9) reduce to

Ut + UUx + V Uy +

(
g +

Dw

Dt

∣∣∣∣h
)

hx = 0,

Vt + UVx + V Vy +

(
g +

Dw

Dt

∣∣∣∣h
)

hy = 0.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.2)

When g + Dw/Dt |h = 0, these equations further reduce to

Ut + UUx + V Uy = 0,

Vt + UVx + V Vy = 0.

}
(5.3)

These equations are closed and indeed it is shown by Pomeau et al. (2008a) that
they have an exact similarity solution. Moreover, this similarity solution gives a form
of wave breaking, which has, in turn, been confirmed by numerical experiments in
Pomeau et al. (2008b). The theoretical argument in Pomeau et al. (2008a) is by
analogy with the SWEs but it is shown to be precise in Bridges (2009). This theory
indicates that any 3-D standing waves will be susceptible to some form of breaking
when the condition (5.1) is violated. Indeed, photographs of the experiments of Taylor
(1953) show a form of crest instability near the highest standing wave – in the 2-D
case, and his experiments also show a tendency to 3-D near the highest wave. See also
figure 8(c) in Kobine (2008), which shows 3-D standing waves reaching a maximum.
Adding in surface tension and a rotating frame will add new features to the theory.
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Shallow-water sloshing in three dimensions 485

Surface tension will likely provide a smoothing effect, but rotation will likely lead to
a more complicated scenario for breaking.

In this paper, we are interested in shallow-water sloshing. In this case, it is natural
to assume that the Lagrangian vertical accelerations at the surface are small, and so
we will be working predominantly in the region where the condition (5.1) is strongly
satisfied.

6. Conservation of mass
The vertical average of the horizontal velocity (u(x, y, t), v(x, y, t)) is defined by

u :=
1

h

∫ h

0

u(x, y, z, t) dz and v :=
1

h

∫ h

0

v(x, y, z, t) dz. (6.1)

On differentiating, we get

ht + (hu)x + (hv)y = ht + hxu

∣∣∣∣h +

∫ h

0

ux dz + hyv

∣∣∣∣h +

∫ h

0

vy dz

= ht + Uhx + V hy +

∫ h

0

(ux + vy + wz) dz −
∫ h

0

wz dz

= ht + Uhx + V hy − W + w

∣∣∣∣
z=0

= 0, (6.2)

using ux + vy +wz = 0, the bottom boundary condition and the kinematic free-surface
boundary condition. Hence, if (u, v) are used for the horizontal velocity field, then
the h-equation in the SWEs in the form

ht + (hu)x + (hv)y = 0 (6.3)

is exact.
However, we are interested in an h-equation based on the surface horizontal velocity

field. The surface and average velocities are related by

U (x, y, t) − u(x, y, t) =
1

h

∫ h

0

zuz dz,

V (x, y, t) − v(x, y, t) =
1

h

∫ h

0

zvz dz.

⎫⎪⎪⎬⎪⎪⎭ (6.4)

Use these identities to formulate the mass equation in terms of the surface velocity
field. Differentiating (6.4) and using mass conservation, we get

∂

∂x
[h(U − u)] +

∂

∂y
[h(V − v)] = W + hUx + hVy. (6.5)

Replace W by the kinematic condition,

(h(U − u))x + (h(V − v))y = W + h(Ux + Vy) = ht + (hU )x + (hV )y. (6.6)

The error in using the surface velocity field in the h-equation can be characterized in
two ways:

W + h(Ux + Vy) ≈ 0 or (h(U − u))x + (h(V − v))y ≈ 0. (6.7)
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7. SWEs for 3-D sloshing in a rotating vessel
To summarize, the candidate pre-SWEs for (h, U, V ) are

ht + (hU )x + (hV )y = W + hUx + hVy,

Ut + UUx + V Uy +

(
a11 +

Dw

Dt

∣∣∣∣h
)

hx + a12 hy = b1 + σ∂xdiv(κ),

Vt + UVx + V Vy + a21 hx +

(
a22 +

Dw

Dt

∣∣∣∣h
)

hy = b2 + σ∂ydiv(κ).

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(7.1)

The equation for W can be added as follows:

Wt + UWx + V Wy =
Dw

Dt

∣∣∣∣h. (7.2)

The system (7.1) with or without (7.2) is not closed. If Dw/Dt |h is specified, then the
system of four equations (7.1)–(7.2) for (h, U, V, W ) is closed. This system of four
equations can be further reduced to a system of three equations with an additional
assumption on the surface vertical velocity.

Henceforth, it is assumed that the vertical velocity at the free surface satisfies

|W + hUx + hVy | � 1, (7.3)

and the Lagrangian vertical acceleration at the free surface satisfies∣∣∣∣Dw

Dt

∣∣∣∣h∣∣∣∣ � |a11| and

∣∣∣∣Dw

Dt

∣∣∣∣h∣∣∣∣ � |a22|. (7.4)

The assumption (7.3) has an alternative characterization, as shown in (6.7). For
small vessel motion, the second assumption (i.e. (7.4)) is equivalent to assuming
that the Lagrangian vertical accelerations are small compared with the gravitational
acceleration.

The coefficients of hx and hy can lead to instability and even loss of well-posedness.
Let

A =

(
a11 a12

a21 a22

)
, (7.5)

and define

sym(A) := 1
2
(A + AT), (7.6)

the symmetric part of A. Then the following assumption is imposed on the coefficients:

sym(A) is positive definite. (7.7)

This condition is deduced from the following linear constant-coefficient problem:

ht + h0(Ux + Vy) = 0,

Ut + a11hx + a12hy = 0,

Vt + a21hx + a22hy = 0.

⎫⎬⎭ (7.8)

Differentiating and combining gives the following wave equation for h(x, y, t):

htt = h0(a11hxx + (a12 + a21)hxy + a22hyy). (7.9)

The condition (7.7) is precisely the condition for this wave equation to be well-
posed. This condition eliminates anomalies such as vertical downward accelerations
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exceeding gravity, and rotating or spinning motion leading to overturning of the
vessel.

7.1. Restrictions on the rigid-body motion

The principal restrictions on the rigid-body motion are the induced restriction that
is implicit in the global condition (7.4), through a11 and a22, and the local condition
(7.7) through matrix A.

In individual cases, the restrictions on the rigid-body motion can be made precise.
For example, in pure yaw motion, considered in § 13, there is no restriction on the
vertical angular velocity (other than the restriction on the induced fluid motion).
Section 7.3 discusses limits on the rigid-body motion induced by a particular shallow-
water scaling.

Another case where one can be precise, and is illuminating, is to assume that the
vehicle is prescribed to move on the surface of a sphere. This motion can be produced
by taking Q= I and

q(t) = (q1(t), q2(t), q3(t)) = R(cos θ(t) cos φ(t), cos θ(t) sin φ(t), sin θ(t)), (7.10)

with R being the radius of the sphere, φ(t) an arbitrary function of time and

θ(t) = ωt with ω constant. (7.11)

In this case,

a11 = a22 = g − ω2R sin θ, a12 = a21 = 0. (7.12)

Hence, the assumption (7.7) requires that

ω <

√
g

R
. (7.13)

Mathematically, the SWEs become ill-posed when this condition is exceeded.
Physically, the centripetal acceleration is exceeding the gravitational acceleration.
A special case of the above vessel motion, where the vessel lies on a great circle on
the sphere, is considered in § 15.

7.2. Neglect of surface tension

Under the assumptions (7.3) and (7.4) and under the additional assumption that
σ = 0 (neglect of surface tension), the SWEs are hyperbolic. When σ �= 0, they are
dispersive, for in that case

div(κ) =
∂κ1

∂x
+

∂κ2

∂y
= hxx + hyy + · · · , (7.14)

where the dots correspond to nonlinear terms in h and its derivatives. Hence, the σ

terms on the right-hand side of (U, V ) equations in (7.1) have the form

∂xdiv(κ) = hxxx + hyyx + · · · ,

∂ydiv(κ) = hxxy + hyyy + · · · .

}
(7.15)

At the linear level, these terms add dispersion to the SWEs. They will also require
additional boundary conditions at the walls (cf. Billingham 2002; Kidambi & Shankar
2004), as a contact angle effect appears at the vessel walls. In this paper, we will
primarily be concerned with long waves and so will henceforth neglect surface
tension:

σ = 0. (7.16)
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7.3. (7.3) and (7.4) in the shallow-water limit

The conditions (7.3) and (7.4) are global. That is, there is no particular restriction
on parameter values. Indeed, they may be satisfied even in deep water. However, the
most natural regime where one would expect them to be satisfied is in the shallow-
water regime. In this section, a scaling argument and asymptotics are used to analyse
(7.3) and (7.4) in the shallow-water limit. The small parameter representing shallow
water is

ε =
h0

L
, (7.17)

where L is a representative horizontal length scale. Let U0 =
√

gh0 be the representative
horizontal velocity scale. Introduce the standard shallow-water scaling (e.g. p. 482 of
Dingemans 1997),

x̃ =
x

L
, ỹ =

y

L
, z̃ =

z

h0

=
z

εL
, t̃ =

tU0

L
,

ũ =
u

U0

, ṽ =
v

U0

, w̃ =
w

εU0

, h̃ =
h

h0

.

⎫⎪⎪⎬⎪⎪⎭ (7.18)

The scaled version of the surface velocities are denoted by Ũ , Ṽ and W̃ .
The typical strategy for deriving an asymptotic shallow-water model is to scale

the full Euler equations, and then use an asymptotic argument to reduce the vertical
pressure field and vertical velocities (e.g. § 5.1 of Dingemans 1997). Here, however, we
have an advantage as the full Euler equations have been reduced to the exact surface
equations (7.1). Hence, the strategy here is to start by scaling the exact equations (7.1)
and then apply an asymptotic argument.

To check (7.3), start by scaling the exact mass equation in (7.1):

h̃t̃ + (h̃Ũ )x̃ + (h̃Ṽ )ỹ = W̃ + h̃(Ũx̃ + Ṽỹ). (7.19)

At first glance, it appears that the left-hand side and the right-hand side are of the
same order, since ε does not appear. However, the sum on the right-hand side is of
higher order. The fact that the right-hand side is of higher order is intuitively clear,
since it can be expressed (see (6.6)) in terms of the velocity differences U −u and V −v

and, in the shallow-water approximation, the horizontal surface velocities (U, V ) and
average velocities (u, v) are asymptotically equivalent. However, to make this precise,
we need to bring in the vorticity field.

Go back to the unscaled mass equation and rewrite the right-hand side using (6.6)
and (6.4):

ht + (hU )x + (hV )y =
∂

∂x

(∫ h

0

zuz dz

)
+

∂

∂y

(∫ h

0

zvz dz

)
. (7.20)

Substitute for uz and vz using the vorticity field (2.23) as follows:

ht +(hU )x +(hV )y =
∂

∂x

(∫ h

0

z (V2 + wx) dz

)
+

∂

∂y

(∫ h

0

z
(
wy − V1

)
dz

)
. (7.21)

This equation is exact. The key to showing that the right-hand side is of higher order
is the scaling of the vorticity. The appropriate scaling is to assume that the vorticity
is asymptotically vertical :

(V1,V2,V3) =
U0

L
(εṼ1, εṼ2, Ṽ3). (7.22)
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This property of vorticity is implicit in the classical shallow-water theory, and here it
is made explicit.

Scaling (7.21) then gives

h̃t̃ + (h̃Ũ )x̃ + (h̃Ṽ )ỹ = ε2∆(x, y, t, ε), (7.23)

where

∆ =
∂

∂x̃

∫ h̃

0

z̃

(
Ṽ2 +

∂w̃

∂x̃

)
dz̃ +

∂

∂ỹ

∫ h̃

0

z̃

(
−Ṽ1 +

∂w̃

∂ỹ

)
dz̃. (7.24)

Taking the limit ε → 0 shows that (7.3) is satisfied. However, to be precise, it is
essential that

∆(x, y, t, ε) is bounded in the limit ε → 0. (7.25)

Assumption (7.4) requires that the vertical acceleration in the two terms,(
a11 +

Dw

Dt

∣∣∣∣h
)

and

(
a22 +

Dw

Dt

∣∣∣∣h
)

, (7.26)

in (7.1) be small, relative to magnitudes of a11 and a22. After scaling, the Lagrangian
vertical acceleration in the interior becomes

Dw

Dt
= ε

U 2
0

L

(
∂w̃

∂t̃
+ ũ

∂w̃

∂x̃
+ ṽ

∂w̃

∂ỹ
+ w̃

∂w̃

∂z̃

)
:= ε

U 2
0

L

Dw̃

Dt̃
. (7.27)

Hence,

Dw

Dt

∣∣∣∣h = ε
U 2

0

L

Dw̃

Dt̃

∣∣∣∣h̃ = gε2 Dw̃

Dt̃

∣∣∣∣h̃, (7.28)

using U 2
0 = gh0 = gLε. The scaled version of the first term in (7.26) is therefore(

a11 +
Dw

Dt

∣∣∣∣h
)

= g

(
a11

g
+ ε2 Dw̃

Dt̃

∣∣∣∣h̃
)

, (7.29)

with a similar expression for the a22 term.
In the shallow-water regime, the assumption (7.4) is satisfied if

a11

g
and

a22

g
are of order one and

∣∣∣∣Dw̃

Dt̃

∣∣∣∣h̃∣∣∣∣ is bounded as ε → 0. (7.30)

However, by introducing scaling and taking an asymptotic limit, other anomalies
can be introduced. We have to ensure that b1 and b2 are of the same order – or of
higher order – as the left-hand side of the second and third equations of (7.1). Look
at the second equation with surface tension neglected:

Ut + UUx + V Uy +

(
a11 +

Dw

Dt

∣∣∣∣h
)

hx + a12 hy = b1. (7.31)

The left-hand side scales like U 2
0 /L = gε. With the standard scaling for Ω ,

(Ω1, Ω2, Ω3) =
U0

L
(Ω̃1, Ω̃2, Ω̃3), (7.32)

all the terms in b1 in (4.8) are of order ε or higher except for the term gQe1 · e3, which
is of order unity. In scaled variables, it will be of order ε−1. Hence, this scaling puts
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a restriction on the angular velocity. A natural scaling that renders b1 consistent is to
take the angular velocity to be asymptotically vertical, like the vorticity:

(Ω1, Ω2, Ω3) =
U0

L
(εΩ̃1, εΩ̃2, Ω̃3). (7.33)

To verify that b1 is now consistent, it is necessary to show that

lim
ε→0

1

ε
Q(t̃ , ε)e1 · e3 is of order unity (or higher in ε). (7.34)

This property follows from the scaling (7.33). In scaled variables, Q(t̃ , ε) satisfies

d

dt̃
Q = Q

˜̂
Ω,

˜̂
Ω =

⎡⎢⎣ 0 − Ω̃3 εΩ̃2

Ω̃3 0 − εΩ̃1

−εΩ̃2 εΩ̃1 0

⎤⎥⎦ . (7.35)

(See (2.3) for the unscaled version.) Hence, in the limit as ε → 0,

lim
ε→0

Q(t̃ , ε) := Q(t̃ , 0) =

⎡⎢⎣cos ψ (̃t) − sinψ (̃t) 0

sinψ (̃t) cosψ (̃t) 0

0 0 1

⎤⎥⎦ , where
dψ

d̃t
= Ω̃3, (7.36)

and

Q(̃t, 0)e1 · e3 = 0, (7.37)

confirming that Q(̃t, ε)e1 · e3 =O(ε) as ε → 0. A similar argument shows that the term
Q(̃t, ε)e2 · e3 =O(ε) as ε → 0, which appears in b2.

The above scaling is only one of many, even in the shallow-water limit. A study
of the various asymptotic regimes is outside the scope of this paper. Our main guide
is the two meta-assumptions (i.e. (7.3) and (7.4)). They are required, in general, for
closure and will have to be satisfied by any choice of scaling.

On the other hand, the above shallow-water scaling does appear implicitly in the
numerical results. We have found that roll–pitch type forcing (i.e. Ω1 and Ω2 non-
zero) requires very small amplitude in order to avoid large fluid motions that would
violate (7.3) and/or (7.4), whereas the amplitude of yaw (Ω3 non-zero) can be much
larger (e.g. § 13) and similarly the amplitude of translation (q) can be of order unity
(e.g. § 15).

8. Potential vorticity for the SWEs with 3-D rotations
The classical SWEs conserve PV, which is the vertical vorticity divided by the

depth: h−1(Vx − Uy), and the classical rotating SWEs in geophysical fluid dynamics
conserve the perturbed quantity h−1(Vx − Uy + 2f ), where the angular velocity vector
is Ω = (0, 0, f ) (see § 4.2 of Salmon 1998).

The new surface SWEs conserve a form of PV which generalizes the classical
case in an illuminating way. We have discovered that the SWEs conserve the form
of PV introduced in (1.5). The second term in the numerator can be interpreted
geometrically. Using the normal vector n at the free surface defined in (2.22), the
expression for PV is

PV =
Vx − Uy + 2	n · Ω

h
. (8.1)
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z

yaw

pitch
y

sway

roll

x
surge

heave

Figure 2. Diagram showing conventions for roll, pitch, yaw, surge, sway and heave.

In this expression, Ω is the body representation of the angular velocity. If the spatial
representation of the angular velocity is used (e.g. viewed from a laboratory frame),
the form of PV is

PV =
Vx − Uy + 2	Qn · Ω spatial

h
. (8.2)

Note that PV is not changed between (8.1) and (8.2), but only the representation is
changed. In Appendix B, it is proved that

D

Dt
(PV) = 0. (8.3)

In the classical SWEs, preservation of PV has many important consequences (see
review of McIntyre 2003). The generalization of PV to SWEs with 3-D rotations
presented above provides a setting for studying the implications of vorticity for
shallow-water sloshing. In 2-D shallow water, the predominant wave is a travelling
hydraulic jump, when the vessel is forced harmonically near resonance. In 3-D
shallow water, with multi-component harmonic forcing, the potential for very complex
dynamics of curved hydraulic jumps can be expected. These hydraulic jumps will have
an impact on the vorticity budget.

For example, there is an interesting mechanism for the generation of vorticity due
to a hydraulic jump in two (horizontal) space dimensions discovered by Pratt (1983)
and Peregrine (1998, 1999). They give a formula for the amount of PV generated
in the classical SWEs due to a discontinuous bore. However, their work applies only
to steady bores. An extension of this theory to unsteady multi-dimensional hydraulic
jumps would provide some insight into the role of vorticity in shallow-water sloshing.

9. Prescribing the rigid-body motion of the vessel
The fluid vessel is a rigid body free to undergo any motion in 3-D space. Every

rigid-body motion in �3 is uniquely determined by (q(t), Q(t)), where q(t) is the three-
component translation vector and Q(t) is an orthogonal matrix with unit determinant
(cf. Chapter 7 of O’Reilly 2008). In terms of the body coordinates, the translations
are surge, sway and heave, and the rotations are labelled roll, pitch and yaw, as
illustrated in figure 2.
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Translations are straightforward to prescribe and need no special attention other
than to be careful about whether the spatial or body representation is used. In this
paper, q(t) is the translation of the body relative to the spatial frame. If the translation
is specified from onboard the vessel – that is, specifying the surge, sway and heave
directly – then the accelerations are related by⎛⎜⎝q̈

surge
1

q̈
sway
2

q̈ heave
3

⎞⎟⎠ =

⎡⎢⎣Q11 Q21 Q31

Q12 Q22 Q32

Q13 Q23 Q33

⎤⎥⎦
⎛⎜⎝q̈1

q̈2

q̈3

⎞⎟⎠ . (9.1)

Note that the matrix on the right is the transpose of the rotation matrix. The natural
approach in the context of experiments is to specify the absolute translations along
with the rotations. Although we are not aware of any experiments which combine
both. The paper of Disimile et al. (2009) indicates that their experimental facility for
sloshing has the capability to produce all six degrees of freedom in the forcing.

On the other hand, specification of the rotations requires some care. The set of
orthogonal matrices is highly nonlinear and in �3 the rotation matrices are no longer
commutative in general. The simplest way to specify a rotation is to use Euler angles.
The properties of Euler angles needed in this paper are recorded in Appendix C.
However, even here one must be careful because Euler-angle representations are
inherently singular, and there are subtleties in the deduction of the appropriate
angular velocity (Leubner 1981). It is also important to remember that Euler angles
provide only a very special class of rotations. If, for example, the angular velocity
vector of a vessel is specified arbitrarily, deducing the Euler-angle representation will
be intractable in general.

The construction of Q(t) can also be approached directly using numerical
integration. The rotation matrix satisfies

Q̇ = QΩ̂, Q(0) = I, (9.2)

where Ω̂ is the matrix representation of the body angular velocity (2.3). This approach
is most effective if the angular velocity is given. One setting where the body angular
velocity is available is in strapdown inertial navigation systems (e.g. Chapter 11 of
Titterton & Weston 2004). The navigation system outputs the body angular velocity
and then (9.2) is solved numerically for Q(t) (called the attitude matrix in navigation
literature).

Another efficient approach to constructing rotation matrices is the use of
quaternions. Quaternions are now widely used in computer graphics algorithms
(Hanson 2006) and in molecular dynamics (Evans 1977; Rapaport 1985). Evans
(1977) points out that ‘quaternion [computer] programmes seem to run ten times
faster than corresponding [computer] programmes employing Euler angles’. However,
in our case, the computing time for the rotations is very small compared to the
computing time for the fluid motion, so the simpler approach of computing Q
directly by integrating (9.2) is adapted.

The differential equation (9.2) can be integrated numerically very efficiently,
although the choice of numerical integrator is very important as it is essential to
maintain orthogonality to machine accuracy. An efficient second-order algorithm for
(9.2) is the implicit midpoint rule (Leimkuhler & Reich 2004) with discretization,

Qn+1 − Qn

�t
=

(
Qn+1 + Qn

2

)
Ω̂(tn+1/2), (9.3)
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where Ω̂(t) is treated as given; rearranging yields

Qn+1 = Qn + 1
2
�t(Qn+1 + Qn)Ω̂(tn+1/2). (9.4)

Setting

Sn+(1/2) = 1
2
�tΩ̂

(
tn+(1/2)

)
, (9.5)

one time step is represented by

Qn+1 = Qn
(
I + Sn+(1/2)

) (
I − Sn+(1/2)

)−1
. (9.6)

Since Sn is skew-symmetric, the term (I + Sn)(I − Sn)−1 is orthogonal. Hence,
orthogonality is preserved to machine accuracy at each time step.

When Ω(t) is specified, this integration scheme can be designed to exactly
synchronize with the time integration of the fluid equations.

The implicit midpoint rule is a special case of the Gauss–Legendre Runge–Kutta
(GLRK) methods which have been shown to preserve orthogonality to machine
accuracy, and they can be constructed to any order of accuracy (Leimkuhler & Reich
2004). There are other effective and efficient methods for integrating (9.2) and some
recent developments are reviewed in Romero (2008).

9.1. Linearizing rotations

When using Euler angles with very small-amplitude forcing, the angular velocity is
sometimes approximated by the derivative of the angles. For example, consider the
case of the 3–2–1 Euler angles introduced in Appendix C. The body representation
of the angular velocity is

Ω =

⎛⎜⎝ φ̇ − ψ̇ sin θ

ψ̇ cos θ sinφ + θ̇ cos φ

ψ̇ cos θ cosφ − θ̇ sinφ

⎞⎟⎠ . (9.7)

Neglecting terms that are quadratic in the angles reduces this expression to

Ω ≈

⎛⎜⎝φ̇

θ̇

ψ̇

⎞⎟⎠ . (9.8)

This approximation is appealing, since Ω = Θ̇ and Ω̇ = Θ̈ , with Θ = (φ, θ, ψ). This
linearization is also mathematically correct.

On the other hand, linearization of the associated rotation has to be done with
care. The temptation is to approximate the rotation by

Qapprox = I + Θ̂, Θ̂ =

⎛⎜⎝ 0 −ψ θ

ψ 0 −φ

−θ φ 0

⎞⎟⎠ , (9.9)

and this approximation is used in the literature. However, this approximation is no
longer a rotation since

(Qapprox)T �= (Qapprox)−1. (9.10)

It will still produce a motion of the vehicle, but not necessarily a physical motion,
since the approximate rotation (9.9) is not bounded in general, and so, over long
times, artificial displacements of the vehicle will arise.
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An approximation, to the same order of accuracy, can be obtained using the Cayley
transform

QCayley =
(
I + 1

2
Θ̂
)(

I − 1
2
Θ̂
)−1

. (9.11)

This matrix is orthogonal and has the same order of approximation as (9.9).
On the other hand, there is no reason to linearize the Euler angles in either analysis

or in numerics. In general, it is best to use the exact expressions for the Euler angles,
even for small angles. In this paper, only exact representations of the rotations are
used. Indeed, as far as we are aware, the simulations of sloshing reported here are
the first to use exact representations for 3-D rotations.

9.2. Harmonic forcing

Harmonic motion can be specified by expressing the Euler angles in terms of harmonic
motion, or by arbitrarily specifying the angular velocity and then integrating (9.2) to
obtain the rotation. For example, in the case of roll–pitch with the same phase, but
different amplitudes and frequencies,

φ(t) = εr cos ωrt and θ(t) = εp cos ωpt. (9.12)

In choosing the forcing frequency, it is not the value of the frequency that is important
but its value relative to the natural frequency. In the limit of shallow water, the natural
frequencies of the fluid are

ωmn = π
√

gh0

(
m2

L2
1

+
n2

L2
2

)1/2

, m, n = 0, 1, 2, . . . . (9.13)

10. Review of previous derivations of rotating SWEs for sloshing
Two derivations of the SWEs for fluid in a vessel that is undergoing a

general rigid-body motion in three dimensions first appeared in the literature
at about the same time, given independently by Dillingham & Falzarano (1986)
and Pantazopoulos (1987) (hereafter called the DFP SWEs). Both derivations
follow the same strategy. An extensive review of their derivations is in Alemi
Ardakani & Bridges (2009c). There are several key weaknesses in their derivation.
Firstly, they use the spatial representation of the angular velocity. This choice,
although not incorrect, leads to very complicated equations, which simplify
dramatically simply by changing to the body representation. Secondly, they
make a small-angle approximation and so the angular velocity reduces to the
form

Ω = (φ̇, θ̇ , 0), (10.1)

similar to a 2-D rotation, where φ is the roll angle and θ is the pitch angle. Hence, the
full structure of 3-D rotations is lost. They also restrict to roll–pitch motion. Thirdly,
they make strong assumptions which approximate equations with potentially much
larger error than the surface SWEs.

The velocity field (U, V ) is not the same as the velocity field in the DFP SWEs.
DFPs do not specify exactly which horizontal velocity they use but their h-equation
becomes exact if the average horizontal velocity is used. In any case, assume for
purposes of comparison that (U, V ) ≈ (u, v), and then the coefficients in the two
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systems can be compared,

a11 = a(z) + 2Ω2U −
(
Ω2

1 + Ω2
2

)
h − (Ω̇2 − Ω1Ω3)d1 + (Ω̇1 + Ω2Ω3)d2,

a12 = aDFP
12 + 2Ω2V, a21 = aDFP

21 − 2Ω1U,

a22 = a(z) − 2Ω1V −
(
Ω2

1 + Ω2
2

)
h − (Ω̇2 − Ω1Ω3)d1 + (Ω̇1 + Ω2Ω3)d2.

⎫⎪⎬⎪⎭ (10.2)

The right-hand-side coefficient comparison is

b1 = f1 − 2Ω2ht +
(
Ω2

2 + Ω2
3

)
d1 + (Ω̇3 − Ω1Ω2)d2 − (Ω̇2 + Ω1Ω3)h,

b2 = f2 + 2Ω1ht +
(
Ω2

1 + Ω2
3

)
d2 − (Ω̇3 + Ω1Ω2)d1 + (Ω̇1 − Ω2Ω3)h.

}
(10.3)

The d1 and d2 error terms are not so important since they could be included in
the DFP formulation; so they can be discounted. The discrepancy between the two
formulations is still quite significant when the rotation field is present. This discrepancy
is due to the fact that the DFP SWEs have more assumptions than the surface SWEs.
See the report of Alemi Ardakani & Bridges (2009c) for details.

Another strategy for deriving the SWEs for fluid in a vessel that is undergoing a
general rigid-body motion in three dimensions has been proposed by Huang (1995)
and Huang & Hsiung (1996, 1997). Their derivation is more precise, and starts
with the full 3-D equations. A detailed report on their derivation is given in Alemi
Ardakani & Bridges (2009d ). They explicitly take u(x, y, z, t) and v(x, y, z, t) to be
independent of z but implicitly they are using the average horizontal velocity field
(u, v). They neglect the vertical acceleration in general (not just at the free surface)
and integrate the vertical pressure gradient, differentiate and then substitute into the
horizontal momentum equations.

To compare these HH SWEs with new surface equations, assume that the (U, V )
velocity field in the surface equations is equivalent to the velocity field in the HH
SWEs, and compare coefficients

aHH
11 = a11 − 2Ω2U, aHH

22 = a22 + 2Ω1V,

aHH
12 = a12 − 2Ω2V, aHH

21 = a21 + 2Ω1U,

bHH
1 = b1 + 2Ω2ht + Ω̇2h, bHH

2 = b2 − 2Ω1ht − Ω̇1h.

⎫⎪⎬⎪⎭ (10.4)

The agreement between the HH SWEs and the surface SWEs is much better than
the case of the DFP SWEs but there are still important differences when Ω1 and Ω2

are important. One case where the surface equations and the HH SWEs agree exactly
(assuming equivalence of the velocity fields) is when the forcing is pure yaw motion,
and numerical experiments on this case are discussed in § 13.

Another source where 3-D SWEs in a rotating vessel appear is in Exercise 9.6.4
on p. 436 of Faltinsen & Timokha (2009). The exercise asks the reader to derive two
forms of the SWEs in three dimensions in a rotating frame. The first part of the
question leads to a derivation of the DFP equations (see part (b) on p. 436). It is
an improvement over DFP in that the body representation for the angular velocity
is used, but the angular velocity is linearized. In the second part of the question, the
reader is asked to derive a second form of the equations maintaining full nonlinear
rotations. However, these equations turn out to be exactly the same as the HH SWEs
(Huang & Hsiung 1996), and a detailed alternative derivation of the HH SWEs is
given in Alemi Ardakani & Bridges (2009d ).
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11. Numerical algorithm for shallow-water sloshing
The numerical method we propose for simulation of shallow-water sloshing in a

vehicle undergoing rigid-body motion is an extension of the numerical scheme in
Alemi Ardakani & Bridges (2009a). It is a finite-difference scheme, using centered
differencing in space. It is fully implicit and has a block-tridiagonal structure. The
basic formulation of the algorithm was first proposed by Leendertse (1967) and refined
by Abbott and Ionescu, and is widely used in computational hydraulics (cf. Abbott
1979). The only new features in the algorithm are extension to include a fully 3-D
rotation and translation field, and exact implementation of boundary conditions. The
fact that the scheme is implicit makes the introduction of rotations straightforward.
Some explicit schemes are unstable in the presence of rotation.

The 1-D version of the algorithm was used in Alemi Ardakani & Bridges
(2009a) and the 2-D version is just a concatenation of this scheme: the time step is
split into two steps and an alternating direction implicit algorithm is used: implicit
in the x-direction and explicit in the y-direction in the first half step and explicit in the
x-direction and implicit in the y-direction in the second half step. One of the nice
properties of the scheme is that the boundary conditions at the walls are implemented
exactly, even at the intermediate time steps.

The scheme has numerical dissipation, but the form of the dissipation is similar to
the action of viscosity. The truncation error is of the form of the heat equation, and
so is strongly wavenumber-dependent. Moreover, the numerical dissipation closely
follows the hydraulic structure of the equations. See the technical report of Alemi
Ardakani & Bridges (2009e) for an analysis of the form of the numerical dissipation.
The numerical dissipation is helpful for eliminating transients and spurious high-
wavenumber oscillation in the formation of travelling hydraulic jumps.

In contrast, Pantazopoulos (1987, 1988) use Glimm’s method, which is very effective
for treating a large number of travelling hydraulic jumps, but the solutions are
discontinuous, and the scheme has problems with mass conservation. Huang & Hsiung
(1996, 1997) use flux–vector splitting. This method involves computing eigenvalues of
the Jacobian matrices, and is effective for tracking multi-directional characteristics. It
appears to be very effective and accurate but is more complicated to implement than
the scheme proposed here.

Setting up the equations for the scheme proposed here is straightforward and
follows the 1-D construction in Alemi Ardakani & Bridges (2009a), but the details
are lengthy. Hence, we have given a detailed construction of the algorithm in an
internal report (Alemi Ardakani & Bridges 2009e) and, in Appendix D, just the main
features are highlighted.

12. Sloshing with roll–pitch and roll–pitch–yaw forcing of the vessel
In this section, the forcing is represented using Euler angles. The exact

representations for roll–pitch and roll–pitch–yaw used in the simulations are recorded
in Appendix C.

12.1. Sloshing due to roll–pitch forcing

Roll–pitch forcing is the simplest rotation which is fully 3-D and non-commutative.
With a harmonic representation of the angles, it is a simple model for the motion of
a rolling and pitching ship. There are results in the literature on roll–pitch forcing of
a vessel containing shallow-water fluid (e.g. Dillingham & Falzarano 1986; Falzarano
et al. 2002), but in all cases, the forcing is linearized so that the angular velocity is the
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derivative of an angle. As far as we are aware, the results presented here are the first
to use an exact 3-D representation of the roll–pitch motion in the simulations. Three
simulations are presented: near resonance, far from resonance, both with quiescent
initial conditions and then a roll–pitch simulation where vorticity has been injected
into the initial condition.

The angles are taken to be harmonic:

φ (t) = εr sin (ωrt) and θ (t) = εp sin(ωpt). (12.1)

The body representation of the angular velocity is

Ω(t) =

⎛⎜⎝εrωr cos (ωrt) cos(εp sinωpt)

ωpεp cosωpt

εrωr cos (ωrt) sin(εp sin ωpt)

⎞⎟⎠ , (12.2)

and the gravity vector is

g(t) := gQTe3 = g

⎛⎜⎝− cos φ(t) sin θ(t)

sinφ(t)

cosφ(t) cos θ(t)

⎞⎟⎠ . (12.3)

The vessel and fluid geometry parameters are set at

L1 = 1.0 m, L2 = 0.80 m, h0 = 0.12 m,

d1 = −0.50 m, d2 = −0.40 m, d3 = 0.0 m.

}
(12.4)

With this fluid geometry, the natural frequencies (9.13) are

ωmn ≈ 3.40

(
m2 +

n2

0.64

)1/2

rad s−1, (12.5)

with the first two: ω10 ≈ 3.41 rad s−1 and ω01 ≈ 4.26 rad s−1.
In shallow-water sloshing in one horizontal space dimension, a travelling hydraulic

jump forms when the vessel is forced harmonically near resonance. Here we see a
similar phenomenon, although the multi-component forcing generates a hydraulic
jump with a curved wavefront. Figure 3 shows the generation of the bore after only
2 s of real time. In the figures, the X–Y–Z coordinate system is the fixed inertial
frame, and the actual position of the tank relative to that frame is plotted. The
numerical parameters in this case are �x =0.02, �y =0.016 and �t =0.01, and the
initial conditions are quiescent: h(x, y, 0) =h0 and u(x, y, 0) = v(x, y, 0) = 0.

Now suppose that the forcing frequencies are far from resonance. The vessel and
fluid geometry parameters are set at

L1 = 1.0 m, L2 = 1
2
L1 = 0.5 m, h0 = 0.12 m,

d1 = −0.5 m, d2 = −0.25 m, d3 = 0.0 m.

}
(12.6)

The first two natural frequencies of the fluid are ω10 ≈ 3.4085 and ω01 ≈ 6.8171.
Figure 4 shows snapshots of the free surface at a sequence of times. Even with the
much larger forcing amplitude, the motion of the free surface is quite gentle for
long times. The initial conditions are quiescent and the numerical parameters are
�x = 0.02, �y =0.01 and �t = 0.01.
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Figure 3. Snapshots showing the emergence of a curved hydraulic jump when the forcing
parameters are εp = 2.0◦, εr = 1.0◦, ωp =4.2607 and ωr = 3.4085 rad s−1.

t = 6.6 s

t = 8.3 s t = 9.0 s

t = 7.5 s

X X

XX

Y Y

YY

Z Z

ZZ

(a) (b)

(c) (d)

Figure 4. Snapshots of free-surface profile for coupled roll–pitch forcing, far from
resonance, with εp =5.0◦, εr = 7.0◦, ωp = 1.0225 rad s−1 and ωr = 0.8521 rad s−1.

12.2. Roll–pitch forcing with vorticity injected into the initial condition

Vorticity can be injected into the initial condition. Consider the following form, and
take h(x, y, 0) =h0 but with a non-trivial velocity field:

U (x, y, 0) = A sin

(
mπx

L1

)
cos

(
nπy

L2

)
,

V (x, y, 0) = −m

n

L2

L1

A cos

(
mπx

L1

)
sin

(
nπy

L2

)
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (12.7)
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Figure 5. Configuration of the free-surface profile for large-amplitude roll–pitch forcing
with vorticity in the initial condition.

where A is an input amplitude, and m, n are arbitrary natural numbers. This velocity
field is divergence-free and has vertical vorticity field

(Vx − Uy)|t=0 =
πAL2

n

(
m2

L2
1

+
n2

L2
2

)
sin

(
mπx

L1

)
sin

(
nπy

L2

)
. (12.8)

For the simulation, the vessel and fluid geometry parameters are set at

L1 = 0.5 m, L2 = 0.25 m, h0 = 0.08 m,

d1 = −0.25 m, d2 = −0.125 m, d3 = 0.0 m.

}
(12.9)

The vorticity parameters are set at A= 0.08, and m = n= 3.
The first two natural frequencies of the fluid are ω10 ≈ 5.5662 and ω01 ≈ 11.1324.

Pitch and roll motions are taken to be harmonic and the same form as (12.1) with
parameters

εp = 10.87◦, εr = 7.1◦, ωp = 0.6679 rad s−1, ωr = 0.5010 rad s−1. (12.10)

Figure 5 shows the configuration of the free surface at a sequence of times. Although
the amplitude is quite large, the motion of the free surface remains quite gentle.
It appears that the vorticity enhances the mixing of the interior fluid, but does
not greatly affect the free surface. The numerical parameters in this simulation are
�x = 0.01, �y =0.005 and �t = 0.01.

12.3. Forcing using exact Euler-angle representation of pitch–roll–yaw

The only results in the literature where full roll–pitch–yaw forcing of sloshing is
reported is in Huang & Hsiung (1996). (See also Huang (1995) and Huang & Hsiung
(1997).). However, although their formulation includes this forcing, their results are
limited to planar rotations. Hence, the results reported here are the first sloshing
simulations with full roll–pitch–yaw forcing.

The 3–2–1 Euler angles are used and the properties needed are recorded in § C.1.
The expression for Q is given in (C 4) and the required body representation of the
angular velocity is given in (C 5). The yaw, pitch and roll angles are taken to be
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Figure 6. Snapshots of surface profile due to roll, pitch and yaw with forcing (12.11).

harmonic:

ψ (t) = εy sin
(
ωyt

)
, θ (t) = εp sin

(
ωpt

)
, φ (t) = εr sin (ωrt) . (12.11)

The gravity vector is

g(t) := gQTe3 = g

⎛⎜⎝ − sin θ(t)

sinφ(t) cos θ(t)

cos φ(t) cos θ(t)

⎞⎟⎠ . (12.12)

The fluid and vessel geometry parameters are set at

L1 = 0.50 m, L2 = 0.50 m, h0 = 0.12 m,

d1 = −0.25 m, d2 = −0.25 m, d3 = 0.0 m.

}
(12.13)

With this geometry, the natural frequencies are

ωmn ≈ 6.82
√

m2 + n2 rad s−1. (12.14)

We will present results for a typical run in this configuration. Take the forcing function
parameters to be

εy = 2.0◦, εp = 1.0◦, εr = 1.0◦, ωy = ωp = ωr = 5.2171 rad s−1, (12.15)

and set the numerical parameters at �x = �y = 0.01 and �t = 0.01. With this low
amplitude of forcing, the singularity of the Euler angles is safely avoided.

Snapshots of the surface profile at a sequence of times are depicted in figure 6.
Almost immediately a pair of interacting travelling waves, close to a bore, are
generated. They are very similar to the standing cnoidal waves that can be found
analytically (e.g. Bridges 1987). However, the waves here do not maintain form after
many interactions.
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12.4. Discussion

We have just scratched the surface of possibilities in the study of the implications
of 3-D rotations on sloshing. As expected, near-resonant forcing produces travelling
hydraulic jumps, and far from resonant forcing produces gentle sloshing.

However, the situation here is much more complicated than the case of one
horizontal space dimension, since there are two frequencies in roll–pitch and three
frequencies in roll–pitch–yaw. In one horizontal space dimension, the theory is very
clear: there is a region in frequency space about resonance, where the response is a
travelling hydraulic jump (e.g. Ockendon & Ockendon 1973; Kobine 2008). In two
horizontal space dimensions, there is more than one frequency, and more types of
hydraulic jump, and the hydraulic jumps have wavefront curvature, and can interact.

Another feature that arises here is the interaction between the multiple forcing
functions. For example, there are dynamical systems implications when the ratio of
ωp to ωr is irrational. In this case, the forcing is quasi-periodic rather than periodic.
In the dynamical systems literature, Wiggins (1987) shows that a Duffing oscillator
with quasi-periodic forcing can have a chaotic response. In the context of sloshing,
there is the additional potential for chaotic interaction between travelling hydraulic
jumps. Furthermore, there are implications for the generation of PV.

In the above simulations, the typical number of grid points in space is about 2500.
CPU time is about 5 s per time step without any special optimization: coded in
Matlab and run on a 32 bit 2.0 GHz processor. The simulations are run for 500–600
time steps. Typically, two to three iterations are required per time step, and when
hydraulic jumps are present, the number of iterations is increased to 5–7 per time
step.

13. Sloshing in vessels undergoing pure yaw motion
The case of pure yaw forcing is of interest for several reasons. Firstly, there is a

simplified form of PV conservation; secondly, the surface SWEs and the HH SWEs
agree in this case (assuming equal velocity fields) and so the results can be compared,
and thirdly, this case is the closest to the rotating SWEs in geophysical fluid dynamics.

In the case of pure yaw forcing, the coefficients in the surface SWEs reduce
considerably. With Ω1 = Ω2 = 0 and Ω3 = ψ̇ , where ψ(t) is the yaw angle,

a11 = a22 = g, a12 = a21 = 0,

b1 = 2Ω3V + Ω2
3 (x + d1) + Ω̇3(y + d2),

b2 = −2Ω3U + Ω2
3 (y + d2) − Ω̇3(x + d1).

⎫⎪⎬⎪⎭ (13.1)

The surface equations and the HH equations are identical (assuming equivalent
velocity fields) and the momentum equations reduce to the classical SWEs with
forcing

Ut + UUx + V Uy + ghx = 2ψ̇V + ψ̇2(x + d1) + ψ̈(y + d2),

Vt + UVx + V Vy + ghy = −2ψ̇U + ψ̇2(y + d2) − ψ̈(x + d1).

}
(13.2)

The general expression for PV in § 8 reduces in this case to

PV :=
Vx − Uy + 2ψ̇

h
. (13.3)

Consider the yaw motion to be harmonic:

ψ (t) = εy sin
(
ωyt

)
with εy = 10.0◦, and ωy = 4.1746 rad s−1. (13.4)
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Figure 7. Velocity fields associated with the pure yaw forcing (see (13.4)).

Set the vessel and fluid parameters at

L1 = 1.0 m, L2 = 1.0 m, h0 = 0.18 m,

d1 = −0.5 m, d2 = −0.5 m, d3 = −0.3 m.

}
(13.5)

The forcing frequency is near the lowest natural frequency. The natural frequencies
are

ωmn ≈ 4.1746
√

m2 + n2 rad s−1. (13.6)

The numerical parameters are set at �x = �y = 0.02 and �t = 0.01.
The field of velocity vectors is shown at different values of time in figure 7. There

is a very clear swirling motion set-up. The conservation of PV generates a vertical
vorticity field, and this is evident in the figures.

13.1. Comparison with results of Huang & Hsiung (1996)

Now change the parameters in order to compare with the results of Huang & Hsiung
(1996). Set the vessel and fluid parameters at

L1 = 1.0 m, L2 = 0.8 m, h0 = 0.1 m,

d1 = −0.5 m, d2 = −0.4 m, d3 = 0.0 m.

}
(13.7)

The numerical parameters are

�x = 0.02 m, �y = 0.016 m, �t = 0.01 s. (13.8)

The forcing is harmonic yaw motion as in (13.4) with parameters

εy = 4.0◦, ωy = 6.0 rad s−1. (13.9)

The snapshot of the surface profile at t = 1.5 s and the corresponding velocity field are
depicted in figure 8. This result agrees very well with figures 28 and 29 of Huang &
Hsiung (1996), including the vortex pattern. The initial conditions are vorticity-free.
Hence, the generation of vorticity is due to the imposed rotation, but it appears to
be enhanced by the numerical dissipation-like truncation error.
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Figure 8. Surface profile and velocity field due to yaw at t = 1.5 s: comparison of the
numerics based on the surface SWEs with figures 28 and 29 of Huang & Hsiung (1996).

14. Diagonal and swirling waves due to coupled surge–sway motion
Surge–sway forcing is the most studied of forcing functions for 3-D sloshing (e.g.

Wu et al. 1998; Faltinsen et al. 2003; Liu & Lin 2008; Chen et al. 2009; Wu & Chen
2009). It is simple to implement since there is only translation and no orientation
change. On the other hand, there are identifiable wave types and bifurcations that
occur that make it easier for experimental and theoretical comparison. The results
in this section are inspired by the theory and experiment of Faltinsen et al. (2003)
and the 3-D simulations of Wu & Chen (2009). The purpose is to show that the
shallow-water model captures the essential features of diagonal and swirling waves.

To capture diagonal modes, the prescribed surge and sway motions of the vessel
are taken to be harmonic and in phase:

q1 (t) = ε1 cos (ω1t) and q2 (t) = ε2 cos (ω2t) . (14.1)

Set the fluid and vessel geometry parameters at

L1 = 0.5 m, L2 = 0.5 m and h0 = 0.07 m, (14.2)

giving a fluid aspect ratio of h0/L1 = 0.14, and natural frequencies

ωmn ≈ 5.207
√

m2 + n2 rad s−1. (14.3)

The numerical parameters are taken to be �x = �y =0.025 m and �t = 0.01 s.
Following the strategy in the experiments of Faltinsen et al. (2003) and the

simulations of Wu & Chen (2009), points on the vessel walls are identified and
the time series at the fixed points are compared. We will restrict attention to two
points on the vessel walls which we identify as P6 and P7 (see figure 13b in Faltinsen
et al. 2003). Their locations are

P6 : (x, y) =
(
L1,

1
2
L2

)
, P7 : (x, y) =

(
1
2
L1, 0

)
. (14.4)

((P6, P7) here correspond to (P1, P6) in Faltinsen et al. (2003).)

14.1. Surge–sway motion with diagonal forcing

The forcing function parameters for diagonal forcing with forcing frequency well
above the lowest natural frequency are

ε1 = 0.002 m, ε2 = 0.002 m and ω1 = ω2 = 1.4 ω1,0 = 7.2893 rad s−1. (14.5)
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Figure 9. Time histories of the surface displacements at points P6 and P7, and a parametric
graph of the pair (P6,P7).

The time histories of the surface displacement at points P6 and P7 and the parametric
curve of the pair are shown in figure 9. The parametric graph in figure 9 has a non-
trivial slope. According to the theory of Faltinsen et al. (2003), this type of parametric
graph indicates square-like waves in the tank. A square-like wave corresponds to a
nearly diagonal standing wave. (See the last few sentences of p. 17 of Faltinsen et al.
(2003).) The structure of a square-like wave is also seen in figures 7(b), 8(b) and 9(b)
of Wu & Chen (2009).

14.2. Surge–sway forcing with a phase shift

By taking the surge and sway forcing functions to be out of phase, a clear example
of a swirling wave emerges. Consider the case of diagonal forcing with the surge and
sway 90◦ out of phase:

q1 (t) = ε1 cos (ω1t) and q2 (t) = ε2 sin (ω2t) . (14.6)

The parameters (14.2) and the numerical parameters remain the same, and the forcing
function parameters are taken to be

ε1 = 0.00012 m, ε2 = 0.00012 m and ω1 = ω2 = 0.99ω1,0 = 5.1546 rad s−1.

(14.7)

The time histories of the surface displacement at points P6 and P7, and their parametric
curve are shown in figures 10 and 11, respectively. Figure 12 shows surface plots at
a sequence of times which very clearly show the propagation of a counterclockwise
swirling wave. These surface plots agree qualitatively with the surface plots of a
swirling wave in figure 11 of Wu & Chen (2009).

Additional contour plots and simulations of surge–sway are given in the report of
Alemi Ardakani & Bridges (2009f ).

15. Sloshing on the London Eye
The London Eye is a large ferris wheel on the edge of the Thames River in

London. A schematic of the attached vessel on the London Eye is shown in figure 13.
Mathematically, the vessel, partially filled with fluid, is prescribed to travel along a
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Figure 10. Time histories of surface displacements at points P6 and P7 associated with the
out-of-phase forcing (14.7).
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Figure 11. Parametric graph of the pair (P6,P7) associated with the out-of-phase forcing
(see (14.7)).

circular path. Even when the speed along the path is constant, sloshing occurs due to
change in the direction. The base of the vessel remains horizontal along the path. In
addition, the vessel can also have a prescribed rotation.

The interest in this example is threefold. It is an example with very large
displacements of the vehicle and illustrates the generality of the prescribed vessel
motion. Secondly, it is a prototype for the transport of a vessel along a surface. In
this case, the surface is a great circle on the two-sphere. As the vehicle moves along
the surface, it can also rotate relative to the point of attachment. Other examples of
surfaces of interest are the full two-sphere or a bumpy sphere, which is a model for a
satellite containing fluid and orbiting the earth, and a surface modelling terrain. The
latter is a model for vehicles transporting liquid on roads through hilly terrain.

Thirdly, it is an excellent setting to test control strategies for sloshing. For example,
suppose the speed along a path in the surface is prescribed. Sloshing will result if the
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Figure 12. Surface plots of surface profile at different times associated with the out-of-phase
forcing (see (14.7)).
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Figure 13. Schematic showing an attached vessel which moves along a circular path,
modelling a pod on the London Eye.

path is curved due to induced acceleration. The local rotation of the body could act
as a control, and roll, pitch or yaw could be induced to counteract any sloshing due
to motion along the path.

In this section, the basic model is introduced, and a simulation of the vessel moving
along the circle at constant speed, with coupled roll–pitch motion, is presented. The
interest in this example is as a prototype for more general trajectories, since the actual
London Eye is designed to have extremely low centripetal acceleration. According to
the London Eye website, the radius, R, of the wheel is 65 m, and the travel time of a
pod is 30 min, giving a frequency of ωc = π/900. The relevant dimensionless parameter
is the ratio of centripetal acceleration to gravity:

Fr2 =
ω2

cR

g
. (15.1)

This parameter is like a Froude number (p. 111 of Vanyo 1993), since the ratio
is a velocity squared over gR, but it is a vessel-motion parameter and not a fluid

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

44
77

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004477


Shallow-water sloshing in three dimensions 507

Figure 14. Planar example, illustrating the fluid motion as the vessel moves along the circle.

parameter. The Froude number for the London Eye is

Fr ≈ 0.009. (15.2)

This Froude number is quite low (passengers can disembark from the London Eye
without it changing speed), and so we will increase it by an order of magnitude in
order to induce sloshing fluid motion.

The radius of the circle is denoted by R. The vector q(t) = (q1(t), q2(t), q3(t)) defines
the distance from the origin of the fixed coordinate system to the point of attachment
of the vessel on the circle,

q1(t) = 0, q2(t) = −R + R cos θc(t) and q3(t) = R sin θc(t), with θc(t) = ωct.

(15.3)

Here ωc is the angular speed along the path and it is taken to be a specified constant.
An example of purely plane motion, where the vehicle moves along the curve at

constant speed, and has an added harmonic pitch forcing about the suspension point,
is shown in figure 14. In this case, the axis of rotation is above the still-water level
and the vessel is suspended. In the planar case, we have made videos of the coupled
motion and these are very effective at illustrating the coupled slosh–vehicle dynamics,
and they are available at http://personal.maths.surrey.ac.uk/st/T.Bridges/SLOSH/.

For the 3-D case, the point of attachment of the vessel will be allowed to undergo
a prescribed 3-D rotation. For definiteness, take this rotation to be of the roll–pitch
form, as defined in Appendix C and § 12. The pitch and roll motions are taken to
be harmonic and of the same form as (12.1). The initial conditions are taken to be
quiescent.

The vessel and fluid geometry parameters are set at

L1 = 1.0 m, L2 = 0.80 m, h0 = 0.15 m,

d1 = −0.5 m, d2 = −0.4 m, d3 = 0.0 m.

}
(15.4)

The geometric parameters associated with the path are set at R = 1.2 m and
ωc = 0.4 rad s−1.

For this vessel motion, the assumption (7.7), in the form (7.13), arises, and it can be
formulated in terms of the Froude number (15.1). The condition (7.13) is equivalent
to assuming that Fr is small compared to unity. For the above parameter values,

Fr ≈ 0.14, (15.5)
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Figure 15. Snapshots of free-surface profile for roll–pitch forcing along the path modelling
the London Eye example: the angle θc goes from 55 to 80◦ in the sequence.

and so the condition (7.13) is well satisfied, but it is still an order of magnitude
larger than that of the London Eye. The numerical parameters are set at �x =0.02,
�y = 0.016 and �t = 0.01. The first two natural frequencies of the fluid are ω10 ≈ 3.81
and ω01 ≈ 4.76.

Figures 15 and 16 show snapshots of the free surface at a sequence of times when

εp = 1.0◦, εr = 1.0◦, ωp = 0.2ω01 ≈ 0.9527 rad s−1, ωr = 0.95ω10 ≈ 3.6204 rad s−1.

(15.6)

Two prominent features show up. Firstly, there is a bias towards one side of the tank
due to the induced accelerations from the path. Secondly, even though the second
frequency is near the resonant frequency, the response is relatively gentle, indicative
of the interaction between the q(t) path forcing and the roll–pitch forcing.

16. Concluding remarks
A new set of SWEs which model the 3-D rigid-body motion of a vessel containing

fluid has been derived. The only assumptions are on the vertical velocity and
acceleration at the surface. The equations give new insight into shallow-water sloshing,
and numerical simulations include the effect of viscosity and are much faster than
the full 3-D equations. It has been demonstrated that the equations capture many
of the features of 3-D sloshing for the case when the free surface is single-valued:
diagonal waves, swirling waves, curved hydraulic jumps and interacting waves. A
form of vorticity is captured by the equations and numerics, and the motion of the
vessel can be specified in complete generality.

In this paper, the vessel motion has been prescribed. The vessel motion can also
be determined by solving the rigid-body equations coupled to the fluid motion. Some
results, for the case of coupled motion for a rigid body with shallow-water fluid in
two dimensions, have been obtained recently (?Alemi Ardakani & Bridges 2010). The
extension to coupling between 3-D rigid-body motion and shallow-water sloshing is,
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Figure 16. Snapshots of free-surface profile for roll–pitch forcing along the path modelling
the London Eye example: the angle θc goes from 172 to 206◦ in the sequence.

however, a big step due to the nature of rotations in three dimensions. The equations
of 3-D rigid-body motion coupled to sloshing have been derived by Veldman et al.
(2007) for the case of sloshing in spacecraft. However, simulation in this case is very
time-consuming. The new surface SWEs introduced here represent the vehicle motion
exactly, and therefore, provide an opportunity for efficient simulation of the coupling
between the vehicle motion and 3-D shallow-water sloshing.

Appendix A. The horizontal pressure gradient
A.1. x-Derivative of pressure

Differentiate (3.4) with respect to x:

1

ρ

∂p

∂x
= hx

Dw

Dt

∣∣∣∣h +

∫ h

z

(
Dw

Dt

)
x

ds + 2Ω1V hx + 2Ω1

∫ h

z

vx ds − 2Ω2Uhx

− 2Ω2

∫ h

z

ux ds −
(
Ω2

1 + Ω2
2

)
(h + d3)hx − βx(h − z) − βhx − σ∂xdiv(κ). (A 1)

Use the vorticity equation to substitute for (Dw/Dt)x , we get

1

ρ

∂p

∂x
= hx

Dw

Dt

∣∣∣∣h +

∫ h

z

[(
Du

Dt

)
z

− 2Ω1

∂v

∂x
− 2Ω2

∂v

∂y
− 2Ω3

∂v

∂z
+ 2Ω̇2

]
ds

+ 2Ω1V hx + 2Ω1

∫ h

z

vx ds − 2Ω2Uhx − 2Ω2

∫ h

z

ux ds

−
(
Ω2

1 + Ω2
2

)
(h + d3)hx − βx(h − z) − βhx − σ∂xdiv(κ), (A 2)
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or

1

ρ

∂p

∂x
= hx

Dw

Dt

∣∣∣∣h+
Du

Dt

∣∣∣∣h
z

− 2Ω1

∫ h

z

vx ds − 2Ω2

∫ h

z

vy ds − 2Ω3

∫ h

z

vz ds + 2Ω̇2(h − z)

+ 2Ω1V hx + 2Ω1

∫ h

z

vx ds − 2Ω2Uhx − 2Ω2

∫ h

z

ux ds

−
(
Ω2

1 + Ω2
2

)
(h + d3)hx − βx(h − z) − βhx − σ∂xdiv(κ), (A 3)

or

Du

Dt
+

1

ρ

∂p

∂x
=

Du

Dt

∣∣∣∣h +
Dw

Dt

∣∣∣∣h hx + 2Ω2W − 2Ω3V + 2Ω̇2(h − z)

+ 2Ω1V hx − 2Ω2Uhx − 2Ω2w + 2Ω3v

−
(
Ω2

1 + Ω2
2

)
(h + d3)hx − βx(h − z) − βhx − σ∂xdiv(κ), (A 4)

which is (3.5) in § 3.

A.2. y-Derivative of pressure

Differentiate (3.4) with respect to y:

1

ρ

∂p

∂y
= hy

Dw

Dt

∣∣∣∣h +

∫ h

z

(
Dw

Dt

)
y

ds + 2Ω1V hy + 2Ω1

∫ h

z

vy ds − 2Ω2Uhy

− 2Ω2

∫ h

z

uy ds −
(
Ω2

1 + Ω2
2

)
(h + d3)hy − βy(h − z) − βhy − σ∂ydiv(κ).

(A 5)

Use the vorticity equation to substitute for (Dw/Dt)y:

1

ρ

∂p

∂y
= hy

Dw

Dt

∣∣∣∣h +

∫ h

z

[(
Dv

Dt

)
z

+ 2Ω1

∂u

∂x
+ 2Ω2

∂u

∂y
+ 2Ω3

∂u

∂z
− 2Ω̇1

]
ds

+ 2Ω1V hy + 2Ω1

∫ h

z

vy ds − 2Ω2Uhy − 2Ω2

∫ h

z

uy ds

−
(
Ω2

1 + Ω2
2

)
(h + d3)hy − βy(h − z) − βhy − σ∂ydiv(κ), (A 6)

or

1

ρ

∂p

∂y
= hy

Dw

Dt

∣∣∣∣h +

(
Dv

Dt

) ∣∣∣∣h
z

+ 2Ω1

∫ h

z

ux ds + 2Ω2

∫ h

z

uy ds + 2Ω3u

∣∣∣∣h
z

− 2Ω̇1(h − z)

+ 2Ω1V hy + 2Ω1

∫ h

z

vy ds − 2Ω2Uhy − 2Ω2

∫ h

z

uy ds

−
(
Ω2

1 + Ω2
2

)
(h + d3)hy − βy(h − z) − βhy − σ∂ydiv(κ), (A 7)

or

Dv

Dt
+

1

ρ

∂p

∂y
=

Dv

Dt

∣∣∣∣h +
Dw

Dt

∣∣∣∣hhy − 2Ω1W + 2Ω3U − 2Ω̇1(h − z)

+ 2Ω1V hy − 2Ω2Uhy + 2Ω1w − 2Ω3u

−
(
Ω2

1 + Ω2
2

)
(h + d3)hy − βy(h − z) − βhy − σ∂ydiv(κ), (A 8)

which is (3.6) in § 3.
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Appendix B. Verification of potential vorticity conservation
In this appendix, the conservation of the generalization of PV stated in (8.3) is

proved. It is clear that the projection of the angular velocity onto the normal vector
is important; so define

f (x, y, t) := Ω3 − Ω1hx − Ω2hy = 	 n · Ω, (B 1)

and re-write the surface SWEs emphasizing the role of f ,

Ut + UUx + V Uy + ahx − 2f V = b̂1,

Vt + UVx + V Vy + ahy + 2f U = b̂2,

}
(B 2)

where a = a11 − 2Ω1V , b̂1 = b1 − 2Ω3V , b̂2 = b2 + 2Ω3U and a11, b1 and b2 are given
in (4.6), (4.8) and (4.12), respectively. In the vorticity equation, only the derivatives of

a, b̂1 and b̂2 appear, and they are

ax = −
(
Ω2

1 + Ω2
2

)
hx − Ω̇2 + Ω1Ω3, ay = −

(
Ω2

1 + Ω2
2

)
hy + Ω̇1 + Ω2Ω3,

(b̂1)y = −2Ω2hyt + Ω̇3 − Ω1Ω2 − (Ω̇2 + Ω1Ω3)hy,

(b̂2)x = 2Ω1hxt − Ω̇3 − Ω1Ω2 + (Ω̇1 − Ω2Ω3)hx.

⎫⎪⎪⎬⎪⎪⎭
(B 3)

Differentiate the second equation of (B 2) with respect to x and the first with respect
to y:

D(Vx − Uy)

Dt
+ (Vx − Uy)(Ux + Vy) + axhy − ayhx + 2(f U )x + 2(f V )y =

∂b̂2

∂x
− ∂b̂1

∂y
.

(B 4)

Then substituting (B 3) gives

D

Dt
(Vx − Uy + 2f ) + (Vx − Uy + 2f )(Ux + Vy) = 0. (B 5)

Noting that Vx − Uy + 2f = h PV, and using the mass equation, (Dh/Dt) + h(Ux +
Vy) = 0, confirms that

D

Dt
(PV) = 0. (B 6)

Appendix C. Parameterizing rotations using Euler angles
Euler angles are the most widely used parameterization of rotations, and can be

found in almost every textbook on analytical dynamics, ship dynamics and spacecraft
dynamics. It is straightforward to write down an Euler-angle representation. The
key issue with Euler angles is getting the angular velocity right, and making the
correct distinction between the body representation and the space representation.
For the purposes of this paper, we have found the treatment in O’Reilly (2008) the
most complete. In this appendix, we record the representations of Q and the body
representation of the angular velocity used in the paper.

Roll–pitch motion is the simplest non-commutative rotation that is of interest in
ship dynamics. The roll–pitch excitation has been used by a number of authors for
forced sloshing (e.g. Pantazopoulos 1987, 1988; Huang 1995; Huang & Hsiung 1996,
1997; Faltinsen et al. 2006b).
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X, x

z
Z

y

Y

φ, roll

θ, pitch

Figure 17. Schematic of the roll–pitch motion in terms of Euler angles φ and θ .

First, the properties of the Euler-angle representation of roll–pitch are recorded.
The roll–pitch rotation consists of a counterclockwise roll rotation about the x-axis
with angle φ, followed by a counterclockwise pitch rotation about the current y-axis,
as schematically illustrated in figure 17. After converting both rotations to the same
basis, the rotation matrix takes the form

Q =

⎡⎣ cos θ 0 sin θ

sinφ sin θ cos φ − sinφ cos θ

− cosφ sin θ sinφ cosφ cos θ

⎤⎦ . (C 1)

From this expression, the body representation of the angular velocity is easily deduced

using QTQ̇= Ω̂ and so

Ω =

⎛⎝φ̇ cos θ

θ̇

φ̇ sin θ

⎞⎠ . (C 2)

The spatial angular velocity is obtained by multiplication of Ω by Q. A derivation
of the roll–pitch angular velocity from first principles is given in Alemi Ardakani &
Bridges (2009c).

If θ and φ are considered to be small, then the approximate body angular velocity
is

Ω ≈
(
φ̇, θ̇ , 0

)
, (C 3)

obtained by neglecting quadratic and higher order terms in (C 2). This simplified
version of the angular velocity has been used by Pantazopoulos (1987, 1988),
Falzarano et al. (2002) and Faltinsen et al. (2006b). However, this simplification
makes the body and spatial representations of the angular velocity equal and so it
destroys a key qualitative property of the rotation (cf. discussion in § 9.1).

C.1. Yaw–pitch–roll rotation and 3–2–1 Euler angles

The yaw–pitch–roll rotation is one of the most widely used Euler-angle sequences.
(See § 6.8.1 of O’Reilly (2008), where they are called the 3–2–1 Euler-angle sequence.)
It was first used in the context of sloshing by Huang (1995) and Huang & Hsiung
(1996, 1997).
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The 3–2–1 Euler-angle sequence starts with a yaw rotation about the z-axis with
angle ψ , followed by a pitch rotation about the new y-axis denoted by θ , followed by
a roll rotation about the new x-axis denoted by φ. The composite rotation is

Q =

⎡⎣cos θ cos ψ sinφ sin θ cos ψ − cos φ sinψ cos φ sin θ cos ψ + sin φ sinψ

cos θ sinψ sinφ sin θ sinψ + cos φ cos ψ cos φ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ

⎤⎦ .

(C 4)

The body angular velocity is computed to be

Ω =

⎛⎝ φ̇ − ψ̇ sin θ

ψ̇ cos θ sinφ + θ̇ cos φ

ψ̇ cos θ cosφ − θ̇ sinφ

⎞⎠ . (C 5)

Full details of the 3–2–1 Euler angles and the derivation of the angular velocity are
given in Alemi Ardakani & Bridges (2009b).

In matrix form, the angular velocity is related to the Euler angles by

Ω = B−1Θ̇, (C 6)

with

B =

⎡⎣1 sinφ tan θ cosφ tan θ

0 cos φ − sinφ

0 sinφ sec θ cos φ sec θ

⎤⎦ and Θ :=

⎛⎝φ

θ

ψ

⎞⎠ . (C 7)

This is the form of the angular velocity used in Huang (1995) and Huang & Hsiung
(1997). The singularity of this Euler-angle representation arises due to the non-
invertibility of B:

det(B) = sec θ, (C 8)

and so to avoid the singularity, the restriction −(1/2)π <θ < (1/2)π is required. For
some applications, e.g. sloshing in a moving ship, this restriction is not severe, but
for others, e.g. space applications, it is a restriction. If all three angles are small, then
B is approximately the identity and Ω ≈ (φ̇, θ̇ , ψ̇). The pitfalls of this approximation
are discussed in § 9.1.

Appendix D. Details of the discretization
In this appendix, a sketch of the numerical discretization is given. Complete details

can be found in Alemi Ardakani & Bridges (2009e).
Rewrite the governing equations (4.5)–(4.9), with the assumptions (7.3) and (7.4) in

a form suitable for the first half-step of the scheme,

ht + h�Ux + U�hx + hVy + V hy = 0,

Ut + U�Ux + V Uy + 2Ω2V hy + 2Ω2ht +
[
α(x, y, t) + 2Ω1V

�

−
(
Ω2

1 + Ω2
2

)
h�
]
hx = 2Ω3V − (Ω̇2 + Ω1Ω3)h + β̂(x, y, t),

Vt + U�Vx + V Vy − 2Ω1U
�hx − 2Ω1ht +

[
α(x, y, t) − 2Ω2U

−
(
Ω2

1 + Ω2
2

)
h
]
hy = −2Ω3U + (Ω̇1 − Ω2Ω3)h + β̃(x, y, t),

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(D 1)
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y

x

i = II, x = L1

J = 1

i = 1

j = JJ, y = L2

Figure 18. A schematic of the grid layout.

where α, β̂ and β̃ are the terms that are independent of h, U and V ,

α(x, y, t) = −
(
Ω2

1 + Ω2
2

)
d3 + (Ω̇1 + Ω2Ω3) (y + d2)

+
(
Ω1Ω3 − Ω̇2

)
(x + d1) + Qe3 · q̈ + gQe3 · e3,

β̂(x, y, t) = −
(
Ω̇2 + Ω1Ω3

)
d3 +

(
Ω̇3 − Ω1Ω2

)
(y + d2)

+
(
Ω2

2 + Ω2
3

)
(x + d1) − Qe1 · q̈ − gQe1 · e3,

β̃(x, y, t) =
(
Ω̇1 − Ω2Ω3

)
d3 −

(
Ω̇3 + Ω1Ω2

)
(x + d1)

+
(
Ω2

1 + Ω2
3

)
(y + d2) − Qe2 · q̈ − gQe2 · e3.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(D 2)

The terms with � superscript are nonlinear terms that are treated implicitly. In
this first half-step, only x-derivatives are implicit and y-derivatives are explicit. The
nonlinearity is addressed using iteration.

The x-interval 0 � x � L1 is split into II − 1 intervals of length �x =L1/(II − 1)
and so

xi := (i − 1)�x, i = 1, . . . , II , (D 3)

and the y-interval, 0 � y � L2, is split into JJ −1 intervals of length �y = L2/(JJ − 1)
and so

yj := (j − 1)�y, j = 1, . . . , JJ , (D 4)

and

hn
i,j := h(xi, yj , tn), Un

i,j := U (xi, yj , tn) and V n
i,j := V (xi, yj , tn), (D 5)

where tn = n�t , with �t being the fixed time step. A schematic of the grid is shown
in figure 18.

The discretization of the mass equation is

h
n+(1/2)
i,j − hn

i,j

(1/2)�t
+ h�

i,j

U
n+(1/2)
i+1,j − U

n+(1/2)
i−1,j

2�x
+ U�

i,j

h
n+(1/2)
i+1,j − h

n+(1/2)
i−1,j

2�x

+ hn
i,j

V n
i,j+1 − V n

i,j−1

2�y
+ V n

i,j

hn
i,j+1 − hn

i,j−1

2�y
= 0. (D 6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

44
77

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004477


Shallow-water sloshing in three dimensions 515

The discretizations of the equations for U, V are

U
n+(1/2)
i,j − Un

i,j

(1/2)�t
+ U�

i,j

U
n+(1/2)
i+1,j − U

n+(1/2)
i−1,j

2�x
+ V n

i,j

Un
i,j+1 − Un

i,j−1

2�y
+ 2Ω

n+(1/2)
2 V n

i,j

×
hn

i,j+1 − hn
i,j−1

2�y
+
[
α

n+(1/2)
i,j + 2Ω

n+(1/2)
1 V �

i,j −
((

Ω
n+(1/2)
1

)2
+
(
Ω

n+(1/2)
2

)2)
h�

i,j

]
×

h
n+(1/2)
i+1,j − h

n+(1/2)
i−1,j

2�x
= 2Ω

n+(1/2)
3 V

n+(1/2)
i,j −

(
Ω̇

n+(1/2)
2 + Ω

n+(1/2)
1 Ω

n+(1/2)
3

)
h

n+(1/2)
i,j

− 2Ω
n+(1/2)
2

h
n+(1/2)
i,j − hn

i,j

(1/2)�t
+ β̂

n+(1/2)
i,j ,

V
n+(1/2)
i,j − V n

i,j

(1/2)�t
+ U�

i,j

V
n+(1/2)
i+1,j − V

n+(1/2)
i−1,j

2�x
+ V n

i,j

V n
i,j+1 − V n

i,j−1

2�y
− 2Ω

n+(1/2)
1 U�

i,j

×
h

n+(1/2)
i+1,j − h

n+(1/2)
i−1,j

2�x
+
[
α

n+(1/2)
i,j − 2Ω

n+(1/2)
2 Un

i,j −
((

Ω
n+(1/2)
1

)2
+
(
Ω

n+(1/2)
2

)2)
hn

i,j

]
×

hn
i,j+1 − hn

i,j−1

2�y
= −2Ω

n+(1/2)
3 U

n+(1/2)
i,j +

(
Ω̇

n+(1/2)
1 − Ω

n+(1/2)
2 Ω

n+(1/2)
3

)
h

n+(1/2)
i,j

+ 2Ω
n+(1/2)
1

h
n+(1/2)
i,j − hn

i,j

(1/2)�t
+ β̃

n+(1/2)
i,j ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(D 7)

where

αn
i,j := α(xi, yj , tn), β̂n

i,j := β̂(xi, yj , tn) and β̃n
i,j := β̃(xi, yj , tn). (D 8)

By setting

zn
i,j =

⎡⎢⎣hn
i,j

Un
i,j

V n
i,j

⎤⎥⎦ ,

(D 6)–(D 7) can be written in block tridiagonal form as follows:

−�A
n+(1/2)
i,j zn+(1/2)

i−1,j + Bn+(1/2)zn+(1/2)
i,j + �A

n+(1/2)
i,j zn+(1/2)

i+1,j

= Cn+(1/2)
i,j zn

i,j−1 + Dn+(1/2)zn
i,j − Cn+(1/2)

i,j zn
i,j+1 + β

n+(1/2)
i,j .

(D 9)

The left subscript � is an indication that the matrix depends on h� and/or U�.
Expressions for the matrices are given in Alemi Ardakani & Bridges (2009e). For
fixed j =2, . . . , JJ − 1, (D 9) are applied for i = 2, . . . , II − 1. To complete the
tridiagonal system, equations are needed (for each fixed j ) at i = 1 and i = II .

D.1. The equations at i =1 and i = II for j = 2, . . . , JJ − 1

The purpose of this subsection is to show how the boundary conditions can be
implemented exactly, even at the half-step.

The equations at i = 1 and i = II are obtained from the boundary conditions at
x = 0 and x = L1. The only boundary condition at x = 0 is U (0, y, t) = 0. The discrete
version of this is

Un
1,j = 0 and

Un
0,j + Un

2,j

2
= 0, for each j, and for all n ∈ �. (D 10)
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To obtain a boundary condition for h, use the mass equation at x = 0

ht + h�Ux + hVy + V hy = 0, (D 11)

with discretization

h
n+(1/2)
1,j +

�t

2�x
h�

1,jU
n+(1/2)
2,j = hn

1,j − �t

4�y
hn

1,j

(
V n

1,j+1 − V n
1,j−1

)
− �t

4�y
V n

1,j

(
hn

1,j+1 − hn
1,j−1

)
. (D 12)

To obtain a boundary condition for V , use the y-momentum equation at x =0,

Vt +V Vy −2Ω1ht +
[
α(x, y, t) −

(
Ω2

1 + Ω2
2

)
h
]
hy = (Ω̇1 −Ω2Ω3)h+ β̃(x, y, t), (D 13)

with discretization

V
n+(1/2)
1,j −

[
2Ω

n+(1/2)
1 + (1/2)�t

(
Ω̇

n+(1/2)
1 − Ω

n+(1/2)
2 Ω

n+(1/2)
3

)]
h

n+(1/2)
1,j

= V n
1,j − �t

4�y
V n

1,j

(
V n

1,j+1 − V n
1,j−1

)
− �t

4�y

̂
α

n+(1/2)
1,j

(
hn

1,j+1 − hn
1,j−1

)
− 2Ω

n+(1/2)
1 hn

1,j + (1/2)�tβ̃
n+ 1

2

1,j ,

(D 14)

where

α̂n
i,j = αn

i,j −
((

Ωn
1

)2
+
(
Ωn

2

)2)
h

n−(1/2)
i,j . (D 15)

Combining (D 10), (D 12) and (D 14) gives the following equation for i = 1:

En+(1/2)zn+(1/2)
1,j + � F1,j zn+(1/2)

2,j = Gn+(1/2)
1,j zn

1,j−1 + Hn+(1/2)zn
1,j − Gn+(1/2)

1,j zn
1,j+1 +1 β

n+(1/2)
1,j .

(D 16)
Expressions for the matrices are given in Alemi Ardakani & Bridges (2009e). A
similar strategy is used to construct the discrete equations at x = L1.

D.2. Summary of the equations for j = 2, . . . , JJ − 1

This completes the construction of the block tridiagonal system at j -interior points.
For each fixed j =2, . . . , JJ − 1, and fixed h�, U� and V �, we solve the following
block tridiagonal system:

En+(1/2)zn+(1/2)
1,j + � F1,j zn+(1/2)

2,j = Gn+(1/2)
1,j zn

1,j−1 + Hn+(1/2)zn
1,j

− Gn+(1/2)
1,j zn

1,j+1 +1 β
n+(1/2)
1,j ,

−�A
n+(1/2)
2,j zn+(1/2)

1,j + Bn+(1/2)zn+(1/2)
2,j + �A

n+(1/2)
2,j zn+(1/2)

3,j = Cn+(1/2)
2,j zn

2,j−1 + Dn+(1/2)zn
2,j

− Cn+(1/2)
2,j zn

2,j+1 + β
n+(1/2)
2,j ,

−�A
n+(1/2)
3,j zn+(1/2)

2,j + Bn+(1/2)zn+(1/2)
3,j + �A

n+(1/2)
3,j zn+(1/2)

4,j = Cn+(1/2)
3,j zn

3,j−1 + Dn+(1/2)zn
3,j

− Cn+(1/2)
3,j zn

3,j+1 + β
n+(1/2)
3,j ,

...
...

−� FII ,j zn+(1/2)
II −1,j + En+(1/2)zn+(1/2)

II ,j = Gn+(1/2)
II ,j zn

II ,j−1 + Hn+(1/2)zn
II ,j

− Gn+(1/2)
II ,j zn

II ,j+1 +1 β
n+(1/2)
II ,j .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(D 17)
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Special boundary systems are constructed for the lines j = 1 and j = JJ . These systems
are constructed exactly using boundary conditions and the details are given in Alemi
Ardakani & Bridges (2009e).

This completes the algorithm details for the first half-step, n 
→ n + (1/2). For each
fixed h� and U�, it involves solving a sequence of linear block tridiagonal system
for each j = 1, . . . , JJ . Then the process is repeated with updates of h� and U� till
convergence, h� → hn+(1/2) and U� → Un+(1/2).

The second half-step is constructed similarly with x-derivatives explicit and y-
derivatives implicit, and the integration is along vertical grid lines. The details are
given in the report of Alemi Ardakani & Bridges (2009e).

Electronic versions of the technical reports, preprints and videos listed can be found
at http://personal.maths.surrey.ac.uk/st/T.Bridges/SLOSH/.
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