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The accuracy in an X-ray pulsar-based navigation system depends mainly on the accuracy of the
pulse phase estimation. In this paper, a novel method is proposed which combines an epoch fold-
ing process and a cross-correlation method with the idea of “averaging multiple measurements”.
In this method, pulse phase is estimated multiple times on the sampled subsets of arriving pho-
tons’ time tags, and a final estimation is obtained as the weighted average of these estimations.
Two explanations as to how the proposed method can improve accuracy are provided: a Signal to
Noise Ratio (SNR)-based explanation and an “error-difference trade-off” explanation. Numer-
ical simulations show that the accuracy in pulse phase estimation can be improved with the
proposed algorithm.
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1. INTRODUCTION. Today, Global Navigation Satellite Systems (GNSS), such as the
Global Positioning System (GPS) of the United States of America (USA) and the Beidou
System of China, are widely utilised in the navigation of near-Earth spacecraft. However,
due to the geometry of GNSS, these systems are not available for space explorations to the
Moon and beyond. With the growing number of deep-space missions, many autonomous
navigation technologies are being developed. For example, a celestial navigation method
using optical measurement was proposed in Synnott et al. (1986). This technique was suc-
cessfully employed in the Deep Space-1 mission (Riedel et al., 1997). Hill et al. (2005a;
2005b) designed a novel navigation system that consists of Earth-Moon libration point
satellites, known as “Liaison Navigation”. The coverage ability and orbit determination
performance of this system were analysed in Zhang and Xu (2014). In addition, X-ray
pulsar-based navigation system has also attracted the attention of many researchers. In this
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technique, remote neutron stars – pulsars – serve as lighthouses for spacecraft throughout
the solar system.

Recent years have witnessed significant developments in X-ray pulsar-based naviga-
tion technology. Pulsar databases and pulse-timing models as well as orbit determination
algorithms have been extensively studied. Some engineering verification experiments have
been carried out, such as the Station Explorer for X-ray Timing and Navigation Technology
(SEXTANT) on board the International Space Station (Winternitz et al., 2015; 2016) and
the experiments on board the TianGong-2 Spacelab (Zheng et al., 2017).

The accuracy in an X-ray pulsar-based navigation system depends mainly on the accu-
racy of pulse phase estimation. Many algorithms have been designed to estimate the phase
delay in a pulsar’s signal. In a report for the European Space Agency (Sala et al., 2004), a
maximum likelihood method was described to estimate phase delay, which provides unbi-
ased minimum variance estimation by maximising a log-likelihood function. In Emadzadeh
et al. (2009), as well as Emadzadeh and Speyer (2010), an epoch folding process was
established to recover the rate function from photons’ Times-Of-Arrival (TOAs). They
also proposed a nonlinear least-squares estimator to evaluate pulse phase. Emadzadeh and
Speyer (2011a) introduced a cross-correlation method for pulse phase estimation. This
cross-correlation algorithm estimates the pulse phase by computing the cross-correlation
function between a recovered rate function and a standard rate function. With the help of
fast Fourier transformation, the computational complexity of the cross-correlation approach
is less than the complexities of the maximum likelihood method and the least squares esti-
mator. In Rinauro et al. (2013), Lin and Xu (2015) as well as Xue et al. (2016), different
versions of Fourier Transform-based algorithms, with lower computational complexities,
were proposed. In addition, some researchers developed techniques that can estimate both
pulse phase and Doppler effect. In Zhang et al. (2011), Zhang and Xu (2011) and Zhang et
al. (2014), the authors employed Gaussian component decomposition to express the pulse
profile and derived a minimum entropy method to estimate the spacecraft’s position and
velocity. Liu et al. (2014) proposed a non-linear constraint least squares method. In this
method, the Doppler effect can be evaluated by the variation of TOAs and both position
and velocity can be estimated. Yu et al. (2015) gave an optimisation algorithm based on
the sparse representation of the pulse profile to evaluate the pulse phase and Doppler fre-
quency. Liu et al. (2017) suggested using the near-maximum likelihood and least squares
methods to estimate the position and velocity of spacecraft.

In reality, however, due to the intrinsic faintness of most pulsars, the Signal-to-Noise
Ratios (SNR) for most pulsars are quite low. As a consequence, compared with the accu-
racy available from navigation systems using Satellite-to-Satellite Tracking data, such as
GPS and “Liaison Navigation”, the accuracy of positioning using pulsars is relatively low.
For example, as estimated in Sheikh et al. (2006), with a detector of area 1 m2 and obser-
vation time of 100 s, pulsar B1937+21 can only provide a range measurement with an
accuracy of about 200 m. In comparison, the accuracy of the range measurement in “Liai-
son Navigation” can reach tens of metres (Zhang and Xu, 2015). Therefore, how to improve
the accuracy in X-ray pulsar-based navigation system requires further study.

This paper proposes a novel algorithm combining an epoch folding procedure and
cross-correlation method with the idea of “averaging multiple measurements”. In the
measurements with random error, the accuracy can be improved by taking multiple mea-
surements and calculating the average as the final result. By sampling the time tags of
accumulated photons, the pulse phase is estimated many times with the epoch folding
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process and cross-correlation algorithm, and then the results are gathered to give a final
estimation by weighted averaging, where the “cross-correlation value” serves as weight.
Two explanations as to how this method can improve accuracy are also provided: an SNR-
based explanation and an “error-difference trade-off” explanation. Numerical simulations
show that this method can achieve a higher accuracy of pulse phase estimation.

The remainder of the paper is organised as follows: Section 2 reviews the epoch fold-
ing process and the cross-correlation method in an X-ray pulsar-based navigation system.
In Section 3, a description of the proposed algorithm is presented. Section 4 gives two
explanations on this method’s mechanism. Two numerical simulations are introduced
in Section 5 to validate the performance of the proposed algorithm. Section 6 provides
concluding remarks.

2. A REVIEW OF EPOCH FOLDING AND CROSS-CORRELATION.
2.1. Pulse phase estimation in an X-ray pulsar-based navigation system. Pulse phase

is a key measurement in an X-ray pulsar-based navigation system as pulse phase delay pro-
vides information on the position of the spacecraft. However, due to the intrinsic faintness
of the signals from X-ray pulsars, pulse phase cannot be measured directly. In the observa-
tions of pulsars, the X-ray detector collects the photons and records the TOAs. Pulse phase
is estimated using these time tags of arriving photons.

In a pulsar timing model, in order to describe the rate of photon arrival, an overall rate
function λ(t) is defined by (Sala et al., 2004):

λ(t) = λb + λsh(ϕ(t)) (1)

where λb is called the background arrival rate, λs represents the source arrival rate, h(ϕ) is
the periodic pulsar profile and ϕ(t) is the phase of the pulsar signal.

The event of the arriving X-ray photons from a pulsar is a stochastic process and it is
usually modelled as a nonhomogeneous Poisson process. The number of received photons
from a source in a certain interval is a random variable with a Poisson distribution. The
probability of receiving k photons from a pulsar in a given interval (t1, t2) is described as
(Emadzadeh and Speyer, 2011b):

P(k; t1, t2) =
1
k!

(∫ t2

t1
λ(ξ )dξ

)k

exp
(

−
∫ t2

t1
λ(ξ )dξ

)
(2)

The X-ray detector outputs the time tags of photon arrival. Pulse phase estimation is the
process that estimates the phase ϕ(t) of given photon TOAs.

2.2. Epoch folding procedure. Epoch folding is usually the first step in evaluating the
pulse phase. In this subsection, a brief review of the epoch folding procedure is given.

Epoch folding is the process that recovers the X-ray pulsar rate function from the mea-
sured photons’ arrival time. This procedure is formulated mathematically in Emadzadeh
and Speyer (2009).

Assume that a pulsar is continually observed for Np pulsar periods, and a pulsar period
is equally divided into Nb bins. The length of each bin is Tb = P/Nb, where P represents
the period of the pulsar. Let c(ti) denote the number of photons in the i-th bin whose centre
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is ti, then the empirical rate function can be expressed as:

λ̂(ti) =
1

NPTb

NP∑
j =1

cj (ti) (3)

and it can be proven that for a long observation time Tobs:

λ̂(ti) = λ(ti) + w(ti) (4)

where w(ti) is an uncorrelated noise that satisfies:

E[w(ti)] = 0 (5)

var[w(ti)] =
Nb

Tobs
λ(ti) (6)

where E[] is the expectation operator, and var[] is the variance operator.
2.3. Cross-correlation estimator. In this subsection, the process of cross-correlation

is reviewed.
Cross-correlation, also known as sliding dot product, is a function of the displacement

between two signals. It is very useful for determining the time delay between two signals.
After calculating the cross-correlation between two signals, the maximum of the cross-
correlation function indicates the point in time where these signals are best aligned.

In a pulsar-based navigation system, the cross-correlation estimator maximises the
cross-correlation function of the standard rate function and the empirical rate function
(Emadzadeh, et al., 2011a), which can be formulated as:

C(ϕ) =
∫ ∞

−∞
λ∗(t; ϕ)λ̂(t)dt (7)

where the empirical rate function λ̂(t) is usually obtained in an epoch folding procedure.
The estimation of phase delay is computed by:

ϕ̂ = arg max C(ϕ) (8)

In practice, a Discrete Fourier Transform (DFT) is usually employed to compute
the cross-correlation function. The input and output of the DFT are both finite discrete
sequences. If the input sequence is one cycle of a periodic signal, the DFT yields the dis-
crete samples of one discrete-time Fourier transform cycle. The DFT sequence X (k) of a
signal in a time domain x(n) is defined as:

X (k) = DFT[x(n)] =
N−1∑
n=0

x(n)e−j ( 2π
N )nk (9)

where N is the length of the sequence x(n), and j 2 = −1.
The empirical rate function λ̂(t) is usually obtained in an epoch folding process, hence

it is a discrete sequence with a length of Nb. We use symbol λ̂(n) to express the discrete
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empirical rate sequence. The standard rate function λ(t) is also discretised as a sequence
with length Nb, which is expressed as λ(n). The cross-correlation can be computed by:

�1(k) = DFT[λ(n)], �2(k) = DFT[λ̂(n)]

C(n) = IDFT[�1(k) ∗ �∗
2(k)]

(10)

where DFT[·] and IDFT[·] denote the operation of the DFT and inverse DFT respectively.
They are usually computed with the aid of a fast Fourier transform (Proakis and Manolakis,
1996).

3. SAMPLING AND WEIGHTED AVERAGING-BASED METHOD. In this section
an algorithm based on sampling and weighted averaging is proposed. The method of
averaging multiple measurements is widely utilised for measurements with random error.

Assume the true value of pulse phase is ϕ and N independent measurements ϕi are taken,
where i = 1, 2 . . . N . Let ϕ̄ denote the average of these measurements. ϕ̄ is an unbiased
estimator of ϕ:

E[ϕ̄] = ϕ (11)

According to Hoeffding’s inequality (Hoeffding, 1963):

P(|ϕ̄ − ϕ| ≥ v) = P(|ϕ̄ − E[ϕ̄]| ≥ v) ≤ 2e−2Nv2
(12)

Equation (12) means that the probability of the event that the difference between ϕ̄ and
ϕ is larger than any positive number v declines exponentially as the number of measure-
ments N increases. In the case that the qualities vary in different measurements or we have
different confidence in different measurements, a weighted averaging method is commonly
used.

As stated in previous sections, pulse phase is estimated from the TOAs of arriving pho-
tons. With the constraints in observation time and the area of the detector, the number
of received photons cannot be easily increased. Nevertheless, we can generate multiple
measurements in pulse phase by simple random sampling in the set of TOAs.

Let SU represent the universal set of all arriving photons’ time tags. Several subsets
S1, S2, . . . , Sn are obtained by simple random sampling in SU, where the sampling rate is
determined in advance. For each subset Si of TOAs, the epoch folding process provides an
empirical rate function λ̂i and different estimations of pulse phase ϕ̂i can be obtained by the
cross-correlation method.

We define “cross-correlation value” VC as the maximum of the cross-correlation
function as:

VC = max C(ϕ) (13)

The cross-correlation value describes the similarity between two signals after being
aligned in the time axis. For example, the cross-correlation between x(n) = 10 sin(n) and
y(n) = x(n) + w(n) is computed where w(n) is a Gaussian noise with zero mean and standard
deviation σ . The difference between y(n) and x(n) increases as σ rises. Figure 1 displays
the cross-correlation value versus the standard deviation in noise.

Figure 1 shows that the cross-correlation value VC declines as the standard deviation σ

in noise grows. The cross-correlation value can be an indicator of the similarity between
two signals.
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Figure 1. Cross-correlation value versus standard deviation in noise.

In a pulsar-based navigation system, for each subset Si of time tags, a cross-correlation
between empirical rate function λ̂i and the standard rate function is performed. The com-
puted cross-correlation value VCi indicates the quality of corresponding estimation ϕ̂i and
serves as the weight in the weighted average. Lastly, the final estimation ϕ̂ of pulse phase
is calculated as the weighted average of the estimations:

ϕ̂ =
∑n

i=1 VCiϕ̂i∑n
i=1 VCi

(14)

The scheme of the proposed method is summarised as:

a) The X-ray detector collects photons and the universal set SU of TOAs is obtained.
b) With a prior defined sampling rate, the subsets S1, S2, . . . , Sn are obtained by simple

random sampling from SU based on the number of photons.
c) For each subset Si of TOAs, an empirical rate function λ̂i is obtained by the epoch

folding procedure.
d) The cross-correlation function between the standard rate function λ(t) and the

empirical rate function λ̂i is computed using Equation (10), the pulse phase ϕ̂i is
evaluated using Equation (8), and the cross-correlation value VCi is obtained from
Equation (13).

e) The final estimation ϕ̂ of pulse phase is obtained by performing weighted averaging
using Equation (14).

4. EXPLANATIONS OF THE MECHANISM OF THE PROPOSED METHOD. This
section provides two explanations as to why the proposed algorithm can improve the
accuracy of pulse phase estimation.
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4.1. SNR-based explanation. Sheikh et al. (2006) revealed that the relation between
pulse TOA accuracy and SNR can be expressed as:

σTOA =
W

2SNR
(15)

where σTOA denotes the standard deviation in pulse TOA estimation and W, called Half-
Width Half-Maximum, is defined as one-half the pulse width. The accuracy in range
measurement can be written as:

σrange = cσTOA (16)

where c denotes the speed of light.
Equations (15) and (16) mean that accuracy is improved as SNR rises.
SNR can be determined as:

SNR =
NSpulsed√

(NB + NSnonpulsed) + NSpulsed

=
λsAdpf tobs√

[λb + λs(1 − pf )]AdtobsWfs + λsAdpf tobs
(17)

where NSpulsed, NSnonpulsed and NB represent the number of photons that are emitted from a
pulsed pulsar, a non-pulsed pulsar and background radiation respectively, the pulse fraction
pf is defined as the percentage of the source flux that is pulsed, Ad represents the area of
X-ray detector and fs = 1/P is the frequency of the observed pulsar.

The flux in the band 2-10 keV of some X-ray pulsars are listed in Table 1 (Sheikh,
2005). In comparison, the flux in the 2–10 keV band of X-ray background noise is about
0·005 ph/cm2/s. It can be seen from Table 1 that except for pulsar B0531+21, the SNRs
for most pulsars are quite low, hampering any improvement in accuracy.

Due to the indistinguishability of photons, the X-ray detector cannot tell whether a
received X-ray photon is emitted by a pulsar or from background radiation. In order to
improve SNR, one way is to increase the number of arriving photons, that is, to increase
the area of the X-ray detector or to elongate observation time.

The proposed algorithm increases SNR in another way. As the time tags of received
photons are sampled randomly, the ratio of photons emitted from a pulsed pulsar may
increase or decrease after sampling, resulting in a relatively higher SNR or a lower SNR.
A subset of TOAs with a higher SNR is more likely to align better with the standard rate
function λ(t). As stated above, the cross-correlation value measures the similarity between
two signals. Therefore, a subset with a higher SNR is more likely to have a larger weight
in weighted averaging. As a result, although the sampling process reduces the number of
photons involved in each estimation of pulse phase, the overall SNR of the final estimation
can be improved by weighted averaging.

4.2. Error-difference trade-off. This subsection provides a statistical explanation of
the mechanism of the proposed algorithm. Let ϕ̂i(Si) represent the estimation of the pulse
phase on subset Si, and wi denotes the normalised weight for ϕ̂i(Si). The final estimation of
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Table 1. Flux of some X-ray pulsars.

Flux, 2–10 keV, Flux, 2–10 keV,
Pulsar name ph/cm2/s Pulsar name ph/cm2/s

B0531 + 21 1·54 J1420 − 6048 7·26 × 10−4

B0540 − 69 0·00515 B1951 + 32 3·15 × 10−4

B1823 − 13 0·00263 B1821 − 24 1·93 × 10−4

B0833 − 45 0·00159 B1937 + 21 4·99 × 10−5

pulse phase ϕ̂ is written as:

ϕ̂ =
n∑

i=1

wiϕ̂i(Si) (18)

Define the difference between i-th estimation and final estimation as:

Di = (ϕ̂i − ϕ̂)2 (19)

and the “overall difference” is defined as the weighted average of all differences:

D =
n∑

i=1

wi(ϕ̂i − ϕ̂)2 (20)

Express the true pulse phase as ϕ, then the squared error of each estimation ϕ̂i is calculated
by:

E(ϕ̂i) = (ϕ − ϕ̂i)2 (21)

Define the weighted average of E(ϕ̂i) as “overall error”:

E(ϕ̂i) =
n∑

i=1

wiE(ϕ̂i) (22)

The squared error of the final estimation is:

E(ϕ̂) = (ϕ − ϕ̂)2 (23)

It can be proven that:
E(ϕ̂) = E(ϕ̂i) − D (24)

Proof:

D =
n∑

i=1

wi(ϕ̂i − ϕ̂)2

=
n∑

i=1

wi(ϕ̂i − ϕ + ϕ − ϕ̂)2

=
n∑

i=1

wi(ϕ̂i − ϕ)2 +
n∑

i=1

wi(ϕ − ϕ̂)2 + 2
n∑

i=1

wi(ϕ̂i − ϕ)(ϕ − ϕ̂)
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=
n∑

i=1

wi(ϕ̂i − ϕ)2 + (ϕ − ϕ̂)2 + 2

(
n∑

i=1

wiϕ̂i − ϕ

)
(ϕ − ϕ̂)

=
n∑

i=1

wi(ϕ̂i − ϕ)2 + (ϕ − ϕ̂)2 + 2(ϕ̂ − ϕ)(ϕ − ϕ̂)

=
n∑

i=1

wi(ϕ̂i − ϕ)2 − (ϕ − ϕ̂)2

= E(ϕ̂i) − E(ϕ̂) (25)

Equation (24) means that the squared error in final estimation E(ϕ̂) equals the weighted
average of errors in each estimation substituting the weighted average of differences, that
is:

error in final estimation = overall error − overall difference (26)

In order to improve the accuracy in final pulse phase estimation, we can either decrease
the “overall error” or increase the “overall difference”. The first path means that we should
reduce the error in every estimation on subset Si, whereas the second path means that we
are supposed to increase the difference between different estimations. In order to decrease
the overall error, we should increase the number of photons in each subset so that the SNR
in each subset gets larger and the accuracy in each estimation improves. On the other hand,
to increase the difference between different subsets, the number of photons in each subset
should be reduced so that the sampled subsets are different from each other.

These two paths cannot be realised simultaneously. As the sampling rate increases, the
error in every estimation can be diminished because more TOAs of arriving photons are
considered. However, the difference between different subsets, thus the “overall difference”
will be reduced as sampled subsets tend to be the same. In contrast, if we reduce the
sampling rate, the difference in estimations would increase but the accuracy in these estima-
tions would decline. Therefore, the choice of sampling rate is a trade-off between “overall
error” and “overall difference”. With a properly chosen sampling rate, the accuracy in final
estimation can be improved.

5. NUMERICAL SIMULATION. In this section, two numerical simulations are pre-
sented to validate the performance of the proposed algorithm.

In the simulations, pulsars B0531+21 and J1420-6048 were chosen to be observed.
Table 2 lists the parameters of these pulsars. The parameters of these pulsars were obtained
from the Australia Telescope National Facility (ATNF) pulsar database (Manchester et al.,
2005; D’Amico et al., 2001; Sheikh, 2005).

In the first simulation, pulsar B0531+21 was observed. The area of the X-ray detector
is set to 100 cm2 and the observation time was 212 s. A Monte-Carlo simulation repeated
200 times was performed. Pulse phase was estimated with different sampling rates and
different sampling times. The averaged errors in pulse TOA estimations are presented in
Table 3. As a comparison, the averaged error with only epoch folding and cross-correlation
(non-sampling) is 2·53 × 10−6 s.
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Table 2. Parameters of the observed pulsars.

Pulsar Period (s) RA (◦) DEC (◦) Flux (ph/(cm2 s))

B0531 + 21 0·033084716 83·63322 22·01446 1·54
J1420 − 6048 0·068179877 215·03432 −60·80456 7·26 × 10−4

Table 3. Averaged errors (seconds) in pulse TOA estimations (B0531 + 21).

Sampling rate
Sampling times 10 30 50 70 90

0·3 2·72 × 10−6 2·63 × 10−6 2·69 × 10−6 2·60 × 1010 2·79 × 10−6

0·5 2·63 × 10−6 2·54 × 10−6 2·59 × 10−6 2·59 × 1010 2·56 × 10−6

0·7 2·50 × 10−6 2·47 × 10−6 2·49 × 10−6 2·47 × 1010 2·49 × 10−6

0·9 2·39 × 10−6 2·40 × 10−6 2·41 × 10−6 2·40 × 1010 2·39 × 10−6

Figure 2. Results with sampling rate 0·9.

Table 3 indicates that the accuracy of pulse phase estimations with a sampling rate of 0·7
and 0·9 is better than a non-sampling result. The best result, which is about 5·5% improved
from the non-sampling result, is obtained by sampling 90 times with a sampling rate of 0·9.

Figure 2 is an error bar plot displaying the average and standard deviation in the results
with sampling rate 0·9. The line in the figure exhibits the averaged error, whereas the bars
show the standard deviation of errors. As a comparison, the non-sampling result is plotted
as sampling times = 0. It is obvious in Figure 2 that the standard deviation of errors reduces
as sampling times grow, and all results with sampling are better than non-sampling results.

Figure 3 demonstrates the average and standard deviation in the results with sampling
times 90. The non-sampling result is plotted as sampling rate = 1 for comparison. It can
be seen that both the average and standard deviation of errors decline as the sampling rate
increases.
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Figure 3. Results with sampling time 90.

Table 4. Averaged errors (seconds) in pulse TOA estimations (J1420-6048).

Sampling times
Sampling rate 10 30 50 70 90

0·3 2·21 × 10−5 2·27 × 10−5 2·16 × 10−5 2·21 × 10−5 3·05 × 10−5

0·5 3·31 × 10−5 1·06 × 10−5 3·11 × 10−5 3·25 × 10−5 3·26 × 10−5

0·7 1·22 × 10−5 3·67 × 10−5 3·74 × 10−5 3·68 × 10−5 3·67 × 10−5

0·9 3·89 × 10−5 3·87 × 10−5 3·86 × 10−5 3·85 × 10−5 3·87 × 10−5

In the second simulation, pulsar J1420-6048 is observed with an X-ray detector of area
1 m2 and observation time 600 s. Again, we ran a Monte-Carlo simulation with 200 repe-
titions. Pulse phase is estimated with different sampling rate and different sampling times.
Table 4 lists the averaged errors in pulse TOA estimation. As a comparison, the averaged
error with only epoch folding and cross-correlation (non-sampling) is 4·02 × 10−5 s.

It can be seen from Table 4 that most results with sampling are more accurate than the
results with no sampling. The average error with sampling rate 0·3 and sampling times 50
is 2·16 × 10−5 s, about 46·3% less than the non-sampling results.

Figure 4 demonstrates the average and standard deviation in the results with sampling
rate 0·9. Again, the line in the figure expresses the averaged error, whereas the bars show
the standard deviation of errors. For comparison, the non-sampling result is plotted as sam-
pling times = 0. The standard deviation of errors declines when sampling times rise, and
all results with sampling are better than non-sampling results.

Figure 5 exhibits the average and standard deviation in the results with sampling 90
times. The non-sampling result is plotted as sampling rate = 1 as a comparison. It can also
be seen that the standard deviation of errors decreases as sampling rate increases, and all
results with sampling are better than non-sampling results. However, in contrast to the
tendency shown in Figure 3, here the average error grows with sampling rate.
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Figure 4. Results with sampling rate 0·9.

Figure 5. Results with sampling times 90.

The performances in these simulations seem different as the best sampling rate is 0·9
for pulsar B0531+21 and 0·3 for pulsar J1420-6048. It is assumed that for pulsars with a
relatively high SNR (such as B0531+21), a low sampling rate will largely decrease SNR
in each subset and increase the error in each estimation, while the difference between esti-
mations does not increase that much. For pulsars such as J1420-6048, since their SNRs are
relatively low, the decrease in SNR is not severe with a low sampling rate and the accu-
racy is improved with the increase in difference. As yet, the authors have not worked out
a quantitative explanation on this phenomenon because it is hard to model the relationship
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between overall difference and sampling rate. Nevertheless, in numerical experiments it
has been found that the best sampling rate is fixed for certain pulsars, so the sampling rate
can be determined by grid-search experiments in advance.

6. CONCLUSION. This paper focuses on improving the accuracy in pulse phase esti-
mation in X-ray pulsar-based navigation. Based on traditional epoch folding processes,
a cross-correlation method and the idea of “averaging multiple measurements”, a new
algorithm is proposed that can improve the accuracy of pulse phase estimation. In the
method proposed, multiple estimations of pulse phase are generated by sampling the uni-
versal set of TOAs and these estimations are gathered to give a final estimation by weighted
averaging. Cross-correlation values are employed as weights to achieve a higher over-
all SNR. Two explanations, an SNR-based explanation and an error-difference trade-off
explanation, are provided. Numerical simulations validate that the accuracy in pulse phase
estimation can be improved with the proposed algorithm.

The selection of sampling rate remains a problem. Since it is a “trade-off between error
and difference”, it cannot be simply stated “the larger the better” or “the smaller the better”.
Numerical simulations show that the best sampling rate is fixed for certain pulsars, so it is
recommended to determine a sampling rate by grid-search experiments in advance. As yet
it has not been possible to provide any systematic approach on the choice of sampling rate
because it is hard to model the relationship between the overall difference and the sampling
rate. This question is worthy of further research.
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