
J. Fluid Mech. (2016), vol. 799, pp. 579–602. c© Cambridge University Press 2016
doi:10.1017/jfm.2016.387

579

Linear stability of Hill’s vortex to
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We consider the linear stability of Hill’s vortex with respect to axisymmetric
perturbations. Given that Hill’s vortex is a solution of a free-boundary problem,
this stability analysis is performed by applying methods of shape differentiation to
the contour dynamics formulation of the problem in a three-dimensional axisymmetric
geometry. This approach allows us to systematically account for the effect of boundary
deformations on the linearized evolution of the vortex under the constraint of constant
circulation. The resulting singular integro-differential operator defined on the vortex
boundary is discretized with a highly accurate spectral approach. This operator has
two unstable and two stable eigenvalues complemented by a continuous spectrum
of neutrally stable eigenvalues. By considering a family of suitably regularized
(smoothed) eigenvalue problems solved with a range of numerical resolutions, we
demonstrate that the corresponding eigenfunctions are in fact singular objects in the
form of infinitely sharp peaks localized at the front and rear stagnation points. These
findings thus refine the results of the classical analysis by Moffatt & Moore (J. Fluid
Mech., vol. 87, 1978, pp. 749–760).
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1. Introduction
Hill’s vortex (Hill 1894) is one of the few known analytical solutions of Euler’s

equations in three-dimensional (3D) space Ω =R3. In the cylindrical polar coordinate
system (x, σ , φ), it represents a compact axisymmetric region of azimuthal vorticity
ω = [0, 0, ωφ] moving with a constant velocity along the coordinate direction x.
Hill’s vortex is a particular (limiting) case of the Norbury–Fraenkel family of
3D axisymmetric vortex rings (Fraenkel 1972; Norbury 1973). Given the Stokes
streamfunction ψ = ψ(x, σ ) and the operator L := ∇ · ((1/σ)∇), in which
∇ := [∂/∂x, ∂/∂σ ]T (where ‘:=’ means ‘equal to by definition’), these flows satisfy
the following system in the frame of reference moving with the translation velocity
W of the vortex:

Lψ =−σ f (ψ) in Ω, (1.1a)

ψ→− 1
2 Wσ 2 as |x| :=

√
x2 + σ 2→∞, (1.1b)
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where the vorticity function f (ψ) has the form

f (ψ)=
{

C , ψ > k,
0, ψ 6 k,

(1.2)

in which C 6= 0 and k > 0 are constants. System (1.1)–(1.2) therefore describes a
compact region D with azimuthal vorticity ω := ωφ varying proportionally to the
distance σ from the flow axis embedded in a potential flow. The boundary of this
region ∂D := {(x, σ , φ) : ψ(x, σ ) = k} is a priori unknown and must be found as
a part of the problem solution. System (1.1)–(1.2) thus represents a free-boundary
problem and, as will become evident below, this property makes the study of the
stability of solutions more complicated. For Hill’s vortex, the equilibrium shape of
the boundary ∂D has the form of a sphere with the flow described in the translating
frame of reference by the streamfunction

ψ(x, σ )=


C σ 2

10
(a2 − σ 2 − x2), if x2 + σ 2 6 a2,

C σ 2a2

15

[
a3

(x2 + σ 2)3/2
− 1
]
, if x2 + σ 2 > a2,

(1.3)

where a is the radius of the sphere. The components of the velocity field v =
[vx, vσ , vφ]T can then be obtained as vx = (1/σ)(∂ψ/∂σ), vσ = −(1/σ)(∂ψ/∂x) and
vφ = 0. Constant C in (1.2), the translation velocity W and the vortex radius a are
all linked through the relation (Wu, Ma & Zhou 2006)

W = 2
15C a2, (1.4)

from which it follows that, for a fixed radius a, Hill’s vortices represent a one-
parameter family of solutions. To fix attention, unless indicated otherwise, hereafter
we will set a= 1, C =−1, so that W =−2/15 (i.e. the vortex is moving to the left).

Owing to the presence of a sharp interface separating the vortical and potential
flow regions, inviscid vortices in two and three dimensions are described by equations
of the free-boundary type. In addition to making the process of finding (relative)
equilibrium configurations more difficult, this also complicates their stability analysis.
The main difficulty is that generic perturbations modify the domain on which
the governing partial differential equations (PDEs) are defined together with their
boundary conditions, an effect that must be taken into account in the derivation of
the linearized evolution equations.

Most earlier approaches to studying the stability of inviscid vortices have relied
on methods adapted to specific problems. The stability of the simplest configurations,
namely the Rankine and Kirchhoff vortices, was first investigated, respectively, by
Kelvin (1880) and Love (1893). Further insights about these problems were provided
by the studies of Moore & Saffman (1971), Baker (1990), Guo, Hallstrom & Spirn
(2004) and Mitchell & Rossi (2008). The linear stability of more complex vortex
configurations, such as polygonal arrays of co-rotating vortices and translating vortex
pairs, was investigated by Dritschel (1985, 1990, 1995); see also Dritschel & Legras
(1991). A noteworthy feature of their approach is that they also used a continuous
perturbation equation independent of a particular discretization employed to obtain
the equilibrium solution. The linear stability of the so-called V-states (Wu, Overman
& Zabusky 1984), co-rotating vortex patches and infinite periodic arrays of vortices
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Linear stability of Hill’s vortex 581

was investigated in detail by Kamm (1987); see as well Saffman (1992). This
approach was based on the representation of the solution in terms of the Schwarz
function, and required discretization and numerical differentiation in order to obtain
the perturbation equation. A discrete form of the perturbation equation was also used
by Elcrat, Fornberg & Miller (2005) in their investigation of the linear stability of
vortices in a symmetric equilibrium with a circular cylinder and a free stream at
infinity. Another family of approaches is based on variational energy arguments going
back to Kelvin. They were initially investigated by Saffman & Szeto (1980), Dritschel
(1985, 1988) and Fukumoto & Moffatt (2008), and were more recently pursued by
Luzzatto-Fegiz & Williamson (2010, 2012). They rely on global properties of the
excess energy versus velocity impulse diagrams and provide partial information about
the linear stability properties without the need to actually perform a full linear stability
analysis.

A systematic and general approach to the study of the stability of inviscid vortices
was recently developed by the present authors (Elcrat & Protas 2013). It is defined
entirely in the continuous setting and relies on the ‘shape-differential’ calculus
(Delfour & Zolésio 2001) for a rigorous treatment of boundary deformations and their
effect on the linearized evolution. A starting point of this approach is an equilibrium
configuration (a ‘fixed point’) of a contour-dynamics formulation of the flow evolution
(Pullin 1992). The boundary of the vortex region is then perturbed in the normal
direction and the contour-dynamics equations are linearized, via shape differentiation,
around the equilibrium configuration. As a result, a singular integro-differential
equation is obtained for the linearized evolution of the normal perturbation. It is
defined on the vortex boundary and the associated eigenvalue problem encodes
information about stability. In contrast to most of the earlier approaches mentioned
above, this formulation is general, in the sense that it is not tailored to a particular
vortex configuration and does not involve any simplifications (such as boundary
conditions satisfied only approximately or numerical differentiation). It also does not
restrict the imposed perturbations to be irrotational. Therefore, the obtained singular
integro-differential equation may be considered a vortex-dynamics analogue of the
Orr–Sommerfeld equation used to study the stability of viscous parallel shear flows
(Drazin & Reid 2004). It was shown by Elcrat & Protas (2013) that the classical
stability analyses of Kelvin (1880) and Love (1893) can be derived as special
cases from the proposed framework. In situations in which the eigenvalue problem
is not analytically tractable, the integro-differential equation can be approximated
numerically with spectral accuracy (Elcrat & Protas 2013).

As regards the stability of Hill’s vortex, which is the subject of the present study,
Moffatt & Moore (1978) made the following remark in their paper: ‘. . . it is rather
remarkable that its stability characteristics have not been investigated in detail’. In
the light of this comment made more than 35 years ago, it is perhaps even more
remarkable that important aspects of this problem in fact still remain open. More
precisely, only partial results are available corresponding to the linearized response of
Hill’s vortex to a perturbation applied to its boundary. Moffatt & Moore (1978) studied
the response to axisymmetric perturbations by analysing an approximate equation for
the evolution of the vortex boundary (a similar approach had been developed earlier
by Bliss (1973)). Their key finding was that the perturbations evolve towards the
shape of a sharp ‘spike’ localized at the rear stagnation point and directed into or out
of the vortex depending on the form of the initial perturbation. The authors also noted
the absence of any oscillatory components in the vortex response. These observations
were confirmed by the computations of Pozrikidis (1986), who studied the evolution
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582 B. Protas and A. Elcrat

of disturbances well into the nonlinear regime. He demonstrated that the spike-like
deformation of the vortex boundary arising from the linear instability leads to a
significant fluid detrainment or entrainment over longer times. The response of Hill’s
vortex to general, non-axisymmetric perturbations was studied using approximate
techniques based on expansions of the flow variables in spherical harmonics and
numerical integration by Fukuyu, Ruzi & Kanai (1994) and Rozi (1999). Their
main findings were consistent with those of Moffatt & Moore (1978), namely
that perturbations of the vortex boundary develop into sharp spikes whose number
depends on the azimuthal wavenumber of the perturbation. A number of investigations
(Lifschitz 1995; Rozi & Fukumoto 2000; Hattori & Hijiya 2010) studied the stability
of Hill’s vortex with respect to short-wavelength perturbations applied locally and
advected by the flow in the spirit of the Wentzel–Kramers–Brillouin (WKB) approach
(Lifschitz & Hameiri 1991). These analyses revealed the presence of a number of
instability mechanisms, although they are restricted to the short-wavelength regime.
In this context, we also mention the study by Llewellyn Smith & Ford (2001), who
considered the linear response of the compressible Hill’s vortex to acoustic waves.

Our present investigation attempts to complete the picture by performing, for
the first time, a global spectral stability analysis of Hill’s vortex with respect
to axisymmetric perturbations. We provide numerical evidence based on highly
accurate computations that this problem is not, in fact, well posed in the sense
that the eigenfunctions are ‘distributions’ (i.e. they are not continuous functions
of the arclength). By considering a sequence of suitably regularized problems and
using methods of harmonic analysis, it is demonstrated that the eigenfunctions
corresponding to, respectively, the unstable and stable modes have the form of
infinitely sharp spikes localized at the rear and front stagnation points. These findings
thus refine the conclusions from the earlier approximate computations (Moffatt &
Moore 1978; Fukuyu et al. 1994; Rozi 1999). We also show that the discrete spectrum
corresponding to the stable and unstable modes is complemented by a continuous
spectrum of equally non-smooth neutrally stable eigenmodes. The structure of the
paper is as follows. In § 2 we use methods of the shape calculus to derive the
stability equation. In § 3 we describe and validate the numerical approach, whereas
computational results are presented in § 4. The results are discussed in § 5 and final
comments are deferred to § 6.

2. Derivation of the stability equation
In this section we first provide details of the contour-dynamics formulation in the

3D axisymmetric geometry, which is the basis of our approach. Then, methods of
the shape calculus are used to derive an integro-differential equation characterizing
the stability of Hill’s vortex. Finally, we discuss some properties of this equation.
Hereafter A will denote the projection of the axisymmetric vortex region D onto the
meridional plane {x, σ }.

The formalism of contour dynamics is a convenient way to study the evolution of
inviscid flows with piecewise smooth vorticity distributions (Pullin 1992). Given a
time-dependent region A (t), where t is time, its evolution can be studied by tracking
the points y(t) on its boundary ∂A (t) via the equation

dy(t)
dt
= v(y(t))=C

∫
∂A (t)

K (y(t), y′) dsy′, ∀ y(t) ∈ ∂A (t), (2.1)

where K (y(t), y′) is a suitable Biot–Savart kernel, y and y′ are defined in the absolute
frame of reference and dsy′ is an arclength element of the vortex boundary in the
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Linear stability of Hill’s vortex 583

meridional plane. An equilibrium shape of the vortex boundary, denoted ∂A (without
the argument t), can be characterized by transforming the coordinates to the translating
frame of reference x(t) := y(t)−Wt ex and considering the normal component of (2.1),

nx ·
dx(t)

dt
=C nx ·

[∫
∂A

K (x(t), x′) dsx′ −W ex

]
= 0, (2.2)

where nx denotes the unit vector normal to the contour ∂A at the point x (hereafter
we will use the convention that a subscript on a geometric quantity will indicate where
this quantity is evaluated). Since we have x(0)= y(0), the arguments of the kernel K
in (2.2) can be changed to x and x′. Equation (2.2) expresses the vanishing of the
normal velocity component on the vortex boundary in relative equilibrium. Since the
equilibrium shape of the boundary ∂A is in general a priori unknown, relation (2.2)
reveals the free-boundary aspect of the problem. The Biot–Savart kernel was derived
by Wakelin & Riley (1996) with an alternative, but equivalent, formulation also given
by Pozrikidis (1986). Here we will use this kernel in the form rederived and tested
by Shariff, Leonard & Ferziger (2008),

K (x ex + σeσ , x′ex + σ ′eσ ) = [(x′ − x)G(x, x′, σ , σ ′) cos θ ′ − σH(x, x′, σ , σ ′) sin θ ′]ex

+ σ ′H(x, x′, σ , σ ′) cos θ ′eσ , (2.3)

where

G(x, x′, σ , σ ′) := σ ′

π
√

A+ B
K(r̃), (2.4)

H(x, x′, σ , σ ′) := 1
2πσ

[
A√

A+ B
K(r̃)− E(r̃)

√
A+ B

]
(2.5)

in which

A := (x− x′)2 + σ 2 + σ ′2, B := 2σσ ′, r̃ :=
√

2B
A+ B

, (2.6a−c)

whereas θ ′ denotes the polar angle of the point x′, i.e. cos θ ′ = x′/
√

x′2 + σ ′2 and
sin θ ′ = σ ′/√x′2 + σ ′2, and K(r̃) and E(r̃) are the complete elliptic integrals of the
first and second kind, respectively (Olver et al. 2010). We note that r̃→ 1 as x′→ x
and σ ′→ σ , and at r̃ = 1 function K(r̃) has a logarithmic singularity (more details
about the singularity structure of kernel (2.3) will be provided below).

In addition to the circulation, impulse and energy conserved by all classical
solutions of Euler’s equations, axisymmetric inviscid flows also conserve Casimirs∫ ∫

A (t) Φ(ω/σ) σ dA , where Φ : R → R is an arbitrary function with sufficient
regularity (Mohseni 2001). Since circulation is particularly important from the
physical point of view, we will focus on stability analysis with respect to perturbations
preserving this quantity, which is the same approach as was also taken by Moffatt &
Moore (1978). Circulation Γ of the flow in the meridional plane is defined as

Γ :=
∫∫

A (t)
ω dA (2.7)

and can also be viewed as the Casimir corresponding to Φ(ξ)= ξ . We add that, since
the flows considered here have the property ω= C σ , cf. (1.1)–(1.2), conservation of
circulation (2.7) implies the conservation of the volume of the vortical region.
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584 B. Protas and A. Elcrat

Following the ideas laid out by Elcrat & Protas (2013), we introduce a parametri-
zation of the contour x = x(t, s) ∈ ∂A (t) in terms of its arclength s. We will also
adopt the convention that the superscript ε, where 0 < ε � 1, will denote quantities
corresponding to the perturbed boundary, so that x = xε|ε=0 and nx = nxε |ε=0 are the
quantities corresponding to the (relative) equilibrium. Then, points on the perturbed
vortex boundary can be represented as

xε(t, s)= x(s)+ ε r(t, s)nx(s), (2.8)

where r(t, s) represents the ‘shape’ of the perturbation. We note that, without affecting
the final result, nx(s) in the last term in (2.8) could be replaced by its perturbed
counterpart, nxε (t, s). Using (2.1) we thus deduce

nxε ·
dxε(t)

dt
= nxε ·v

ε(xε(t))=C nxε ·

[∫
∂A ε (t)

K (xε(t), x′) dsx′ −W ex

]
, (2.9)

from which the equilibrium condition (2.2) is obtained by setting ε = 0. The
perturbation equation is obtained by linearizing relation (2.9) around the equilibrium
configuration characterized by (2.2), which is equivalent to expanding (2.9) in
powers of ε and retaining the first-order terms. Since (2.9) involves perturbed
quantities defined on the perturbed vortex boundary ∂A ε(t), the proper way to
obtain this linearization is using methods of the shape-differential calculus (Delfour
& Zolésio 2001). Below we state the main results only and refer the reader to our
earlier study (Elcrat & Protas 2013) for details of all intermediate transformations.
Shape-differentiating the left-hand side (LHS) of relation (2.9) and setting ε = 0 we
obtain

d
dε

[
nxε ·

dxε(t)
dt

] ∣∣∣∣
ε=0

= ∂r
∂t
. (2.10)

As regards the right-hand side (RHS) in (2.9), we obtain

d
dε

{
C nxε ·

[∫
∂A ε (t)

K (xε(t), x′) dsx′ −W ex

]} ∣∣∣∣
ε=0

=−∂r
∂s

v0 · tx +C r(s)nx ·

∫
∂A

∂K

∂nx
ds′ +C nx ·

∫
∂A

[
∂K

∂nx′
+ ~x′K

]
r(s′) ds′, (2.11)

where tx is the unit tangent vector and ~x the curvature of the contour ∂A (in the
present case, with the contour ∂A given by a half-circle of unit radius, ~ ≡ 1). The
orientation of the unit vectors tx and nx and the sign of the curvature ~x satisfy
Frenet’s convention. As explained by Elcrat & Protas (2013), the three terms on the
RHS of (2.11) represent the shape-sensitivity of the RHS of (2.9) to perturbations
(2.8) applied separately to the normal vector nx, the evaluation point x and the
contour ∂A over which the integral is defined. Since the flow evolution is subject
to constraint (2.7), this will restrict the admissible perturbations r. Indeed, noting
that ω = C σ , cf. (1.1)–(1.2), and shape-differentiating relation (2.7), we obtain the
following condition (Elcrat & Protas 2013):∫

∂A

σ r(s′) ds′ = 0, (2.12)
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Linear stability of Hill’s vortex 585

restricting the class of admissible perturbations to those which do not modify the
circulation (2.7), although the vorticity may change locally (analogous conditions can
be obtained when the perturbations are constructed to preserve other integral invariants
mentioned above). In the case of Hill’s vortex with the assumed parameter values, the
equilibrium shape of the vortex boundary is given by the sphere of unit radius, so that
∂A ={(x, σ ) : x2+σ 2=1}. In such a case, the arclength coordinate s can be identified
with the polar angle θ ∈ [0,π], so that x= cos θ and σ = sin θ . Therefore, below, we
will use θ as our independent variable.

Combining (2.10)–(2.12) and replacing the line integrals with the corresponding
definite ones, we finally obtain the perturbation equation

∂r
∂t
= − ∂r

∂θ
v0 · tθ +C r(θ)

∫ π

0
I2(θ, θ

′) dθ ′ +C

∫ π

0
I1(θ, θ

′)r(θ ′) dθ ′ (2.13a)

:= (L r) (θ)

subject to
∫ π

0
sin θ ′r(θ ′) dθ ′ = 0, (2.13b)

where L denotes the associated linear operator and

I1(θ, θ
′) := nθ ·

[
∂K (θ, θ ′)
∂nθ ′

+ ~θ ′K (θ, θ ′)
]
= [−3 cos θ + 5 cos θ ′

]
Q(θ, θ ′), (2.14a)

I2(θ, θ
′) := nθ ·

∂K (θ, θ ′)
∂nθ

= [cos θ + cos θ ′
]

Q(θ, θ ′) (2.14b)

in which

Q(θ, θ ′) :=
[
cos θ ′ sin(−θ + θ ′)+ sin θ − sin θ ′

]
K(R̃)+ sin θ ′

[
cos θ − cos θ ′

]2
E(R̃)

2π [cos(θ − θ ′)− 1]
√

2− 2 cos(θ − θ ′) ,

(2.15)

R̃ :=√[cos (−θ + θ ′)− cos (θ + θ ′)] / [1− cos (θ + θ ′)]. (2.16)

As regards the singularities of the kernels, one can verify by inspection that

∀ θ ∈ (0,π), lim
θ ′→θ

nθ · K (θ, θ ′)= 0, (2.17a)

lim
θ ′→θ

tθ · K (θ, θ ′)
ln |θ − θ ′| =−

1
2π

sin θ, (2.17b)

lim
θ ′→θ

I1(θ, θ
′)

ln |θ − θ ′| =−
1

2π
cos θ, (2.17c)

lim
θ ′→θ

I2(θ, θ
′)

ln |θ − θ ′| =
1

2π
cos θ. (2.17d)

The singularities of the kernels I1(θ, θ
′) and I2(θ, θ

′) vanish at θ = 0 and θ = π.
Properties (2.17a)–(2.17d) will be instrumental in achieving spectral accuracy in the
discretization of system (2.13).

Equation (2.13a) is a first-order integro-differential equation and as such would
in principle require only one boundary condition. However, since the kernel (2.3) is
obtained via averaging with respect to the azimuthal angle φ (due to the axisymmetry
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586 B. Protas and A. Elcrat

assumption (see Shariff et al. 2008)), the different terms and integrands in (2.13a)
exhibit the following reflection symmetries:

∀ θ ∈ [0,π], (v0 · t)θ =− (v0 · t)−θ , (2.18a)
I1(θ, θ

′)=−I1(−θ,−θ ′), (2.18b)
I2(θ, θ

′)=−I2(−θ,−θ ′), (2.18c)

indicating that (2.13a) is invariant with respect to the change of the independent
variable η = −θ ∈ [−π, 0]. This means that when (2.13a) is considered on an
extended periodic domain [−π, π] subject to even initial data r(0, θ) = r(0, −θ),
θ ∈ (0, π), its solution will also remain an even function of θ at all times, i.e.
r(t, θ)= r(t,−θ), t> 0. In particular, if they are smooth enough, these solutions will
satisfy the symmetry conditions

∂2k−1r
∂θ 2k−1

∣∣∣∣
θ=0

= ∂
2k−1r
∂θ 2k−1

∣∣∣∣
θ=π

= 0, k= 1, 2, . . . . (2.19)

Thus, system (2.13) with even initial data (which is consistent with the axisymmetry
assumption) and subject to boundary conditions (2.19) is not an over-determined
problem. These observations will be used in the next section to construct a spectral
discretization of (2.13a).

After introducing the ansatz

r(t, θ)= eiλt u(θ)+ c.c., (2.20)

where i :=√−1 and λ∈C, system (2.13) together with the boundary conditions (2.19)
takes the form of a constrained eigenvalue problem:

i λ u(θ)= (L u) (θ), θ ∈ (0,π), (2.21a)

subject to
∂2k−1u
∂θ 2k−1

∣∣∣∣
θ=0

= ∂
2k−1u
∂θ 2k−1

∣∣∣∣
θ=π

= 0, k= 1, 2, . . . , (2.21b)∫ π

0
sin θ ′u(θ ′) dθ ′ = 0, (2.21c)

where the operator L is defined in (2.13a). The eigenvalues λ and the eigenfunctions
u characterize the stability of Hill’s vortex to axisymmetric perturbations.

3. Numerical approach
In this section we describe the numerical approach with a focus on the discretization

of system (2.21) and the solution of the resulting algebraic eigenvalue problem. We
will also provide some details about how this approach has been validated. We are
interested in achieving the highest possible accuracy and, in principle, eigenvalue
problems for operators defined in the continuous setting on one-dimensional (1D)
domains can be solved with machine precision using chebfun (Driscoll, Hale &
Trefethen 2014). However, at present, chebfun does not have the capability to
deal with singular integral operators such as L . We have therefore implemented
an alternative hybrid approach relying on a representation of the operator L in a
trigonometric basis in which kernel singularities are treated analytically and chebfun
is used to evaluate the remaining definite integrals with high precision.
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The eigenfunctions u are approximated with the truncated series

u(θ)≈ uN(θ) :=
N−1∑
k=0

αk cos kθ, (3.1)

where α0, . . . , αN−1 ∈R are unknown coefficients, which satisfies exactly the boundary
conditions (2.19). The interval [0,π] is discretized with equispaced grid points,

θj = π

N − 1
j, j= 0, . . . ,N − 1 (3.2)

(both endpoints are included in the grid). After substitution of ansatz (3.1), equation
(2.21a) is collocated on grid (3.2), whereas constraint (2.21c) takes the form

N−1∑
k=0

αk

∫ π

0
sin θ ′ cos kθ ′ dθ ′ = 0, (3.3)

in which the integrals are evaluated as

∫ π

0
sin θ ′ cos kθ ′ dθ ′ =

0, k= 1, 3, 5, . . . ,

− 2
k2 − 1

, k= 0, 2, 4, . . .
(3.4)

(we note that these integrals vanish for all odd values of k). As a result, we obtain
the following discrete eigenvalue problem:

iλ
N−1∑
k=0

Ajkαk =
N−1∑
k=0

(Bjk + Cjk + Djk)αk, j= 0, . . . ,N − 1, (3.5a)

N−1∑
k=0

k even

αk

k2 − 1
= 0, (3.5b)

in which
Ajk := cos kθj, j, k= 0, . . . ,N − 1 (3.6)

is the (invertible) collocation matrix, whereas the matrices B, C and D correspond to
the three terms in operator L , cf. (2.13a). We remark that the terms corresponding to
all values k= 0, . . . ,N − 1 have to be included in expansion (3.1), even though their
sum might not satisfy constraint (2.13b), as otherwise the collocation problem is not
well posed (i.e. matrix (3.6) is singular). Constraint (2.12) is then imposed through
the generalized formulation (3.5).

The entries of matrix B, corresponding to the first term in operator L , are defined
as follows:

Bjk := (v0 · t)θj k sin kθj, j, k= 0, . . . ,N − 1. (3.7)

The entries of matrix C, corresponding to the second term in operator L , are defined
as follows:

Cjk :=
(

C

∫ π

0
I2(θj, θ

′) dθ ′
)

Ajk, j, k= 0, . . . ,N − 1, (3.8)
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where the coefficient is given by an improper integral evaluated using the property
(2.17d) to separate the singular part of the kernel (Hackbusch 1995)∫ π

0
I2(θ, θ

′) dθ ′ =:
∫ π

0

[
I2(θ, θ

′)− cos θ
2π

ln |θ − θ ′|
]

dθ ′︸ ︷︷ ︸
T (θ)

+ cos θ
2π

∫ π

0
ln |θ − θ ′| dθ ′︸ ︷︷ ︸
S (θ)

.

(3.9)
Here T (θ) has a bounded and continuous integrand expression and can therefore be
accurately evaluated using the function sum from chebfun (for θ ′ ≈ θ the integrand
is represented in terms of a generalized series expansion), whereas S (θ) can be
computed analytically as

S (θ)= cos θ
2π

[(π− θ) ln(π− θ)− θ ln θ −π] , θ ∈ [0,π]. (3.10)

The entries of matrix D, corresponding to the last term in operator L , are defined as
follows:

Djk :=C

∫ π

0
I1(θj, θ

′) cos kθ ′ dθ ′, j, k= 0, . . . ,N − 1, (3.11)

which represents the action of a weakly singular integral operator on trigonometric
functions. In the light of the property (2.17c), they are evaluated similarly to (3.9) by
separating the singular part of the kernel. We thus obtain∫ π

0
I1(θ, θ

′) cos(kθ ′) dθ ′ =:
∫ π

0
ln |θ − θ ′|

[
I1(θ, θ

′)
ln |θ − θ ′| +

cos θ
2π

]
cos kθ ′ dθ ′︸ ︷︷ ︸

Tk(θ)

− cos θ
2π

∫ π

0
ln |θ − θ ′| cos kθ ′ dθ ′︸ ︷︷ ︸

Sk(θ)

. (3.12)

Here Tk(θ) has a bounded and continuous integrand expression and can therefore be
accurately evaluated using the function sum from chebfun (for θ ′≈ θ the integrand is
represented in terms of a generalized series expansion). As regards Sk(θ), for k= 0,
it is already given in (3.10). For k> 0, we obtain∫ π

0
ln |θ − θ ′| cos(kθ ′) dθ ′ = i

2k
{eikθ [E1(ikθ)− E1(ik(θ −π))+πi]

− e−ikθ [E1(−ikθ)− E1(ik(π− θ))−πi]}, (3.13)

where E1(z), z∈C, is the exponential integral defined as the complex extension of the
function E1(x) :=

∫∞
x (e

−t/t) dt, x> 0 (Olver et al. 2010). We note that, while the LHS
of relation (3.13) is real-valued, it is evaluated in terms of a combination of complex-
valued expressions. Since the exponential integral is multi-valued in the complex plane,
care must be taken that its values used in (3.13) are taken from the same sheath.

The eigenvalue problem (3.5a) needs to be restricted to eigenfunctions satisfying
condition (3.5b) and this is done with a projection approach. Defining u =
[α0, . . . , αN−1]T and the matrix M := −i A−1(B + C + D), equation (3.5a) can be
expressed as

λu=M u. (3.14)
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Introducing operator b :RN −→R defined as

b=
[

2, 0, −2
3
, 0, − 2

15
, . . . , − 2

(N − 1)2 − 1
, 0
]
, (3.15)

the constraint (3.5b) can be expressed as bu = 0. The kernel space of this operator,
N (b), thus corresponds to the subspace of functions satisfying condition (3.5b). The
projection onto this subspace is realized by the operator PN (b) := I − b†b, where I is
the N × N identity matrix and b† := bT(bbT)−1 = bT/‖b‖2 is the Moore–Penrose
pseudo-inverse of the operator b (Laub 2005). Defining the restricted variable
z :=PN (b) u, problem (3.14) transforms to

λ z=PN (b) M P†
N (b) z=:Mb z, (3.16)

where P†
N (b) is the Moore–Penrose pseudo-inverse of the projector PN (b), which can

now be solved using standard techniques. We note that the dimension of this problem
is N − 1. An alternative approach to impose constraint (3.5b) is to frame (3.5) as a
generalized eigenvalue problem (Laub 2005).

We now offer some comments about the accuracy and validation of the computa-
tional approach described above. The accuracy of approximation of singular integrals
in (3.9) and (3.12) was tested by applying this approach to the integral operator
in (2.2), which has the same singularity structure as T (θ) in (3.9) and Tk(θ)
in (3.12), and for which an exact formula is available, cf. (1.3). In addition,
an analogous test was conducted for the tangential velocity component given by
C tθ · [

∫ π

0 K (θ, θ ′) dθ ′ −W ex]. Using maxLength= 106 (which controls the length of
the Chebyshev series in chebfun) resulted in L∞ errors of order O(10−12), which is
close to the machine precision. The rather complicated analytical expression (3.13)
used in Sk(θ), involving multi-valued functions with branch cuts in the complex
plane, was validated by comparing it against a numerical approximation of the
weakly singular integral defining Sk(θ). With the high precision of the numerical
quadratures thus verified, the shape differentiation results in (2.11) were validated by
comparing them against simple forward finite-difference approximations of the shape
derivatives. For example, the consistency of the first term on the RHS in (2.11) was
checked by comparing it (as a function of θ ) to

ε−1 C (nxε − nx) ·

[∫
∂A

K (x(t), x′) dsx′ −W ex

]
(3.17)

in the limit of vanishing ε. In the same spirit, the consistency of the second and third
terms on the RHS of (2.11) was verified by perturbing the evaluation point x and
the contour ∂A , respectively. We also checked computationally that the projection
formulation (3.16) of the constrained eigenvalue problem (2.21) gives essentially
the same results as its formulation in terms of a generalized eigenvalue problem
(the former approach was in fact found to be somewhat more sensitive to round-off
errors owing to the conditioning of the projection operator PN (b)). The algebraic
eigenvalue problem was solved in Matlab with the QR and Cholesky methods
producing essentially identical results.

Anticipating the results of § 4, we now introduce a regularized version of eigenvalue
problem (3.16) in which it is ensured that the coefficients αk decay with the
wavenumber k sufficiently rapidly, thus guaranteeing the required regularity of the
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FIGURE 1. (Colour online) Eigenvalue spectrum of problem (3.19) obtained with N=1024
and δ = 1/32.

eigenvectors u. We introduce the following diagonal operator acting as a low-pass
filter:

Fδ
jk :=


1

1+ (δ k)2p
, j= k,

0, j 6= k,
(3.18)

where δ > 0 is the cut-off length scale and p a positive integer, and define zδ :=
F δ z. This filter can be regarded as the discretization of the elliptic operator [Id −
(−1)p+1δ2p ∂2p/∂θ 2p]−1 in the trigonometric basis. We then obtain from (3.16)

λ zδ = F δ Mb (F
δ)−1 zδ =:Mδ

b zδ, (3.19)

from which the original problem is clearly recovered when δ→ 0. The regularized
eigenvectors uδ corresponding to zδ are therefore guaranteed to be smoother than
the original eigenvectors u (the actual improvement of smoothness depends on the
value of p). In the next section, among other results, we will study the behaviour
of solutions to eigenvalue problem (3.19) for a decreasing sequence of regularization
parameters δ.

4. Computational results
In this section we first summarize the numerical parameters used in the computations

and then present the results obtained by solving eigenvalue problem (3.19) for
different values of the regularization parameter δ. All computations were conducted
setting p = 4 in the regularization operator (3.18) and using the resolutions
N = 64, 128, 256, 512, 1024 in (3.1). We allowed the regularization parameter to
take a wide range of values δ = 1, 1/2, 1/4, . . . , 1/1024. We note that, with the
smallest values from this range, regularization barely affects the eigenvalue problem
(3.19) even when the highest resolutions are used. Therefore, these values may be
considered small enough to effectively correspond to the limit δ→ 0.

In our analysis below we will first demonstrate that, for a fixed parameter δ, the
solutions of the regularized problem (3.19) converge as the numerical resolution N is
refined. Then, we will study the behaviour of the eigenvalues and eigenfunctions as
the regularization parameter δ is reduced. A typical eigenvalue spectrum obtained by
solving problem (3.19) is shown in figure 1. The fact that the spectrum is symmetric
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FIGURE 2. (Colour online) Dependence of the four purely imaginary eigenvalues on the
resolution N with a fixed regularization parameter δ = 1/32. The eigenvalues shown in
(a) and (b) correspond to the two unstable eigenmodes, whereas those shown in (c) and
(d) correspond to the two stable eigenmodes.

with respect to the lines Re(λ)= 0 and Im(λ)= 0 reflects the Hamiltonian structure
of the problem. Given the ansatz for the perturbations introduced in § 2, eigenvalues
with negative imaginary parts correspond to linearly unstable eigenmodes, and we
see in figure 1 that there are two such eigenvalues in addition to two eigenvalues
associated with linearly stable eigenmodes. We will refer to the eigenvalues with the
larger and the smaller magnitudes as the first and the second, respectively. In addition
to these four purely imaginary eigenvalues, there is also a large number of purely real
eigenvalues covering a segment of the axis Im(λ) = 0, which can be interpreted as
the continuous spectrum. The spectrum shown in figure 1 was found to be essentially
independent of the regularization parameter δ, and its dependence on the numerical
resolution N is discussed below. In this analysis we will set δ = 1/32.

The dependence of the four purely imaginary eigenvalues on the resolution N is
shown in figure 2(a–d), where we see that the eigenvalues all converge to well-defined
limits. However, as will be discussed below, problem (3.5) does not admit smooth
solutions (eigenvectors) and therefore the convergence of eigenvalues λN with N is
only algebraic rather than spectral. Thus, the numerical approximation error for an
eigenvalue λ can be represented as |λN − λ| = cNβ for some c> 0 and β < 0. Using
the data from figure 2 to evaluate (λN − λ2N) as a function of the resolution N, one
can estimate the order of convergence using a least-squares fit as β ≈ −1.72 for
the first eigenvalue (both stable and unstable) and β ≈ −0.99 for the second (both
stable and unstable). This confirms that the first eigenvalues converge much faster
than the second. The dependence of the purely real eigenvalues on the resolution N
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FIGURE 3. (Colour online) Dependence of the purely real eigenvalues on the resolution
N with a fixed regularization parameter δ = 1/32 plotted (a) using the logarithmic scale
and (b) within the interval [0, 2] using the linear scale for the vertical axis. For clarity,
only the eigenvalues with positive real parts (Re(λN

i ) > 0) are shown.

is illustrated in figure 3(a,b). First of all, we notice that the purely real eigenvalues
do not appear to converge to any particular limit as N is increased and instead fill an
interval of the axis Im(λ)= 0 with increasing density (figure 3b). From figure 3(a) we
can infer that the lower and upper bounds of this interval approximately scale with
the resolution as

min
i

[|Re(λN
i )|
]∼N−0.22 and max

i

[|Re(λN
i )|
]∼N1.04, i= 1, . . . ,N, (4.1a,b)

where λN
i denotes the ith eigenvalue computed with the resolution N. All these

observations allow us to conclude that the continuous eigenvalue problem (2.21) has
four purely imaginary eigenvalues and a continuous spectrum coinciding with the
axis Im(λ)= 0.

We now move on to discuss the eigenvectors corresponding to the purely imaginary
eigenvalues. The linearly unstable and stable eigenvectors are shown as functions of
the polar angle θ for different resolutions N in figure 4(a–d). In this figure we
only show the real parts of the eigenvectors, since, given our ansatz (2.20) for the
perturbation, the imaginary parts do not play any role when the eigenvalues are purely
imaginary. Hence, below, the term ‘eigenvector’ will refer to Re(uN(θ)). We note
that, as the resolution N increases, the unstable and stable eigenvectors associated
with a given eigenvalue become reflections of each other with respect to the midpoint
θ = π/2, with the unstable eigenvectors exhibiting a localized peak near the rear
stagnation point (θ = 0) and the stable eigenvectors exhibiting such a peak near the
front stagnation point (θ = π). In figure 4(a–d) we also observe that, for a fixed
regularization parameter δ, the numerical approximations Re(uN(θ)) of eigenfunctions
converge uniformly in θ for increasing N, although this convergence is significantly
slower for points θ close to the endpoint opposite to where the eigenvector exhibits a
peak. We remark that the same behaviour of spectral approximations to eigenfunctions
was also observed by Rozi (1999). The two unstable eigenvectors Re(uN

1 ) and Re(uN
2 )

are strongly non-normal, with 〈Re(uN
1 ), Re(uN

2 ) 〉L2/(‖Re(uN
1 )‖L2‖Re(uN

2 )‖L2) ≈ 0.96,
where 〈·, ·〉L2 and ‖ · ‖L2 are, respectively, the inner product and the norm in the space
L2(0, π), when δ = 1/32 and N = 1024. Consequently, the two unstable eigenvectors
appear quite similar as functions of θ , especially near the peak (cf. figure 4a,b).
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FIGURE 4. (Colour online) Unstable eigenvectors corresponding to the first (a) and
second (b) eigenvalue, and stable eigenvectors corresponding to the first (c) and second
(d) eigenvalue for different resolutions: N = 64 (green solid line), N = 128 (magenta
dotted line), N = 256 (blue dash-dotted line), N = 512 (red dashed line) and N = 1024
(thick black solid line) with δ = 1/32. The eigenvectors are normalized such that
supθ∈[0,π] |Re(uN(θ))| = 1.

On the other hand, the Fourier spectra of their expansion coefficients shown in
figure 5(a,b) exhibit quite distinct properties. More specifically, we see that the
slope of the Fourier spectra for k > 1/δ is quite different in the two cases: it is
close to −7 and −5 for the eigenvectors associated with, respectively, the first and
second eigenvalue. We emphasize however that the specific slopes are determined by
the choice of the parameter p in the regularizing operator (3.18) and here we are
interested in the relative difference of the slopes in the two cases. Further distinctions
between the eigenvectors associated with the first and the second eigenvalue will
be elucidated below when discussing their behaviour in the limit of decreasing
regularization parameter δ.

Having established the convergence of the numerical approximations of the
eigenfunctions with the resolution N for a fixed regularization parameter δ, we now
go on to characterize their behaviour when δ is decreased. Unless indicated otherwise,
the results presented below were obtained with the resolution N = 1024. In figure
6(a,b) we show the behaviour of the two unstable eigenvectors near the rear and front
stagnation points for different values of the regularization parameter δ. We see that,
as this parameter is decreased, the peak near the rear stagnation point (figure 6a)
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FIGURE 5. (Colour online) Fourier coefficient spectra |Re(αk)|, k = 1, . . . , N, character-
izing the eigenvectors associated with the first (a) and the second (b) eigenvalue for
different resolutions: N = 64 (green solid line), N = 128 (magenta dotted line), N = 256
(blue dash-dotted line), N = 512 (red dashed line) and N = 1024 (thick black solid line).
The spectra of the stable and unstable eigenvectors corresponding to eigenvalues with the
same magnitude are identical. The straight blue solid lines show the slopes of −7 (a)
and −5 (b).

 0

 –0.2

0.2

 0.4

0.6

 0.8

1.0

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

 0.3

0.4(a) (b)

FIGURE 6. (Colour online) Dependence of the unstable eigenvectors associated with
the first (black solid line) and the second (red dashed line) eigenvalue on the polar
angle θ near the rear (a) and the front (b) stagnation point for different values of the
regularization parameter δ = 1/32, 1/64, 1/96, 1/128 with N = 1024 (smaller values of
δ correspond to more localized eigenvectors). The eigenvectors are normalized such that
supθ∈[0,π] |Re(uN(θ))| = 1.

becomes steeper and more localized, especially for the eigenvector associated with
the first eigenvalue. Likewise, the oscillation of the unstable eigenvectors near the
front stagnation point (figure 6b) also becomes more intense and localized as δ

decreases, although this effect is more pronounced in the case of the eigenvector
corresponding to the second eigenvalue. These properties are further characterized in
the plots of the Fourier spectra of the two eigenvectors shown in figure 7(a,b) for
different values of the regularization parameter δ. In these plots it is clear that, as
the regularization effect vanishes (corresponding to decreasing values of δ), the point

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

38
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.387


Linear stability of Hill’s vortex 595

101

100

10–1

10–2

10–3

101

100

10–1

10–2

10–3

100 103102101

k
100 103102101

k

(a) (b)

FIGURE 7. (Colour online) Fourier coefficient spectra |Re(αk)|, k = 1, . . . , N, of the
eigenvectors associated with the first (a) and second (b) eigenvalue for different values
of the regularization parameter δ= 1/32, 1/64, 1/96, 1/128 with N= 1024 (smaller values
of δ correspond to the plateau in |Re(αk)| extending to larger wavenumbers). The straight
blue solid lines represent the slopes of 0 (a) and −1/8 (b).

where the slope of the spectrum changes moves towards larger wavenumbers k. For
k< 1/δ the approximate slopes of the coefficient spectra are, respectively, 0 and −1/8
for the eigenvectors associated with the first and second eigenvalue (this difference of
slopes may explain the different behaviours in the physical space already observed in
figure 6(b)). Extrapolating from the trends evident in figure 7(a,b) it can be expected
that these slopes will remain unchanged in the limit δ→ 0. With this behaviour of
the Fourier coefficients, involving no decay at all for the first eigenvector and a slow
decay for the second, expansion (3.1) does not converge in the limit of N → ∞,
indicating that the stable and unstable eigenvectors do not have the form of smooth
functions, but rather are ‘distributions’. As regards the nature of their singularity,
the slopes observed in figure 7(a,b), i.e. 0 and −1/8, indicate that the eigenvector
associated with the first eigenvalue is consistent with the Dirac delta (whose spectral
slope is also 0), whereas the eigenvector associated with the second eigenvalue is
intermediate between the Dirac delta and the Heaviside step function (whose spectral
slope is −1).

Finally, we go on to discuss the eigenvectors associated with the purely real
eigenvalues forming the continuous part of the spectrum. Since, as demonstrated in
figure 3, for increasing resolutions N different eigenvalues are actually computed
in the continuous spectrum, there is no sense of convergence with N. We will
therefore analyse here the effect of decreasing the regularization parameter δ at
a fixed resolution N = 1024. As above, we will focus on the real parts of the
eigenvectors (with the imaginary parts having similar properties). To fix attention, we
consider the neutrally stable eigenvector associated with the eigenvalue λ≈ 1.0502. In
figure 8 we show the dependence of Re(uN(θ)) on the polar angle θ with N = 1024
and for different values of the regularization parameter δ. We observe that, as δ

decreases, the oscillations move away from the centre of the domain [0, π] towards
the endpoints. The number of oscillations, however, remains approximately constant.
The corresponding Fourier coefficient spectra are shown in figure 9(a–d). We see
in these plots that the Fourier coefficients increase with k as |Re(αk)| ∼ k3/4 when
k < 1/δ, which demonstrates that the neutrally stable eigenvectors are actually more
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FIGURE 8. Real part of the neutrally stable eigenvector corresponding to the eigenvalue
λ ≈ 1.0502 computed with the resolution N = 1024 and with different values of the
regularization parameter δ = 1/32, 1/64, 1/96, 1/128 (smaller values of δ correspond to
Re(uN(θ)) exhibiting oscillations closer to the endpoints of the domain). The eigenvectors
are normalized such that supθ∈[0,π] |Re(uN(θ))| = 1.

singular objects than the stable and unstable eigenvectors discussed above. We note
that, in the regularized regime (i.e. for k > 1/δ), the Fourier coefficient spectrum
of the neutrally stable eigenvectors vanishes with the slope of −7 (see figure 9d).
Extrapolating from the trends evident in figures 8 and 9 to the limit δ → 0, we
can anticipate that the neutrally stable eigenfunctions will have the form of a finite
number of oscillations localized in an infinitesimal neighbourhood of the stagnation
points θ = 0 and θ =π. The number of these oscillations appears to be an increasing
function of the eigenvalue magnitude |λ|.

5. Discussion
In this section we first provide a simple argument to justify the numerical

results obtained in § 4 and then make some comparisons with the results of earlier
studies. Some properties of the eigenvectors discussed in § 4 are consequences of
the ‘degeneracy’ of the stability operator (2.13a). More specifically, knowing the
streamfunction field (1.3) characterizing Hill’s vortex, the coefficient of the derivative
term on the RHS in (2.13a) can be expressed as v0 · tθ = (C a2/5) sin θ , which
vanishes at the endpoints θ = 0,π. To illustrate the effect of this degeneracy we will
consider a simplified model problem obtained from (2.21a) by dropping the integral
terms and rescaling the coefficients, so that we obtain

iλw(θ)= sin θ
dw(θ)

dθ
, θ ∈ [0,π], (5.1)

for some w(θ). We now perform a change of variables s = s(θ) defined through
ds= dθ/sin θ , so that

s(θ)=
∫ θ

π/2

dθ ′

sin θ ′
= ln(csc θ − cot θ), (5.2)

where the lower integration bound was chosen to make the transformation antisym-
metric with respect to the midpoint of the interval [0, π]. Transformation (5.2) has
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FIGURE 9. (Colour online) Fourier coefficient spectra |Re(αk)|, k = 1, . . . , N, of the
neutrally stable eigenvectors uN shown in figure 8 for the indicated values of the
regularization parameter δ. In (d) the blue solid lines represent the slopes of 3/4 and
−7, respectively, for k< 1/δ and for k> 1/δ.

the properties limθ→0 s(θ) = −∞ and limθ→π s(θ) = +∞, such that it represents a
one-to-one map from the interval [0, π] to the real line. Introducing this change of
variables in (5.1), we obtain

iλw(s)= sin θ
dw(s)

sin θ ds
= dw(s)

ds
, s ∈R. (5.3)

It then follows from (5.2) and (5.3) that (5.1) admits a continuous spectrum coinciding
with the entire complex plane λ ∈ C with the eigenfunctions given by w(θ) = eiλs(θ).
When the eigenvalues are restricted to the real line λ = λre ∈ R, the corresponding
eigenfunctions w(θ) exhibit oscillations with wavelengths decreasing as θ→ 0, π, as
was also observed in § 4 for the neutrally stable modes (cf. figure 8). On the other
hand, for purely imaginary eigenvalues λ = iλim, where λim ∈ R, the corresponding
eigenfunctions take the form w(θ) = (csc θ − cot θ)−λim , which for λim < 0 has the
properties limθ→0+ w(θ) = ∞ and limθ→π− w(θ) = 0 consistent with the singular
behaviour of the unstable eigenmodes observed in § 4 (cf. figures 4 and 6). Thus,
one can conclude that the singular structure of the eigenvectors is a consequence of
the degeneracy of the coefficient in front of the derivative term in (2.13a) and some
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qualitative insights about this issue can be deduced based on the simplified problem
(5.1). We add that similar problems are known to arise in hydrodynamic stability,
for example, in the context of the inviscid Rayleigh equation describing the stability
of plane parallel flows (Schmid & Hennigson 2001). In that problem, however, the
singularity appears inside the domain, giving rise to critical layers with locations
dependent on the eigenvalues.

We now return to a remark made in the introduction, namely, that Hill’s vortices
represent a one-parameter family of solutions parametrized by the constant C , or
equivalently by the translation velocity W, cf. (1.4). We remark that the stability
operator defined in (2.13a) is linear in C , which implies that eigenvalues λ (and
hence also the growth rates) will be proportional to C (or W). This is also consistent
with the observations made by Moffatt & Moore (1978).

Next we compare our findings with the results of Moffatt & Moore (1978),
which concerned essentially the same problem. We remark that these results were
verified computationally by Pozrikidis (1986). The exponential growth rate of the
unstable perturbations predicted by Moffatt & Moore (1978) was (using our present
notation) −3W/a= 6/15= 0.4, which is in excellent agreement with the first unstable
eigenvalue found here (cf. figure 2a). Similar agreement was found as regards the
structure of the most unstable perturbation – Moffatt & Moore (1978) also found it to
have the form of a localized spike at the rear stagnation point (the fact that this spike
had a finite width seems related to the truncation of the infinite system of ordinary
differential equations). It appears that the second unstable mode, cf. figure 4(b), was
undetected by the analysis of Moffatt & Moore (1978) due to its smaller growth rate,
cf. figure 2(b).

To close this section, we comment on the continuous part of the spectrum, which
was reported in § 4, cf. figures 1 and 3. Such continuous spectra often appear in the
study of infinite-dimensional Hamiltonian, or more generally non-self-adjoint systems,
where non-trivial effects may arise from its interaction with the discrete spectrum
(Weinstein 2006). In the present problem, however, the results of Moffatt & Moore
(1978) and Pozrikidis (1986) indicate that the observed instability has the form of
a purely modal growth, which can be completely explained in terms of the discrete
spectrum and the associated eigenfunctions. Moreover, this is confirmed by the very
good agreement between the growth rate of the instability determined by Moffatt &
Moore (1978) and the value of the first unstable eigenvalue obtained in our study.
These observations thus allow us to conclude that there is no evidence for any role
that the continuous spectrum might play in the observed instability mechanism.

6. Conclusions

In this study we have considered the linear stability of Hill’s vortex with respect to
axisymmetric circulation-preserving perturbations. This was done using the systematic
approach of Elcrat & Protas (2013) to obtain an eigenvalue problem characterizing the
linearized evolution of perturbations to the shape of the vortex boundary. Recognizing
that the Euler equation describing the evolution of discontinuous vorticity distributions
gives rise to a free-boundary problem, our approach was based on shape differentiation
of the contour-dynamics formulation in the 3D axisymmetric geometry (Shariff et al.
2008). As such, it did not involve the simplifications invoked in the earlier studies
of this problem by Moffatt & Moore (1978), Fukuyu et al. (1994) and Rozi (1999),
which were related to, for example, only approximate satisfaction of the kinematic
conditions on the vortex boundary. The resulting singular integro-differential operator
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was approximated with a spectral method in which the integral expressions were
evaluated analytically and using chebfun. We considered a sequence of regularized
eigenvalue problems (3.19) featuring smooth eigenfunctions for which the convergence
of the numerical approximation was established. Then, the original problem was
recovered in the limit of vanishing regularization parameter δ. Since in the limit δ→ 0
the eigenfunctions were found to be distributions, the convergence of this approach
with the resolution N was not very fast, but it did provide a precise characterization of
their regularity in terms of the rate of decay of the Fourier coefficients in expansion
(3.1). Following this procedure we showed that the stability operator has four purely
imaginary eigenvalues, associated with two unstable and two stable eigenmodes, in
addition to a continuous spectrum of purely real eigenvalues associated with neutrally
stable eigenmodes. The two unstable eigenmodes are distributions in the form of
infinitely sharp peaks localized at the rear stagnation point and differ by their degree
of singularity. The stable eigenmodes have the form of similar peaks localized at the
front stagnation point. On the other hand, the neutrally stable eigenvectors have the
form of ‘wiggles’ concentrated in a vanishing neighbourhood of the two stagnation
points, with the number of oscillations increasing with the eigenvalue magnitude |λ|.

Our results are consistent with the findings from the earlier studies of this problem
by Moffatt & Moore (1978), Fukuyu et al. (1994) and Rozi (1999). We emphasize
that these earlier studies did not, however, solve the complete linear stability problem,
and only considered the linearized evolution of some prescribed initial perturbation
(they can therefore be regarded as evaluating the action of an operator (matrix) on a
vector, rather than determining all of its eigenvalues and eigenvectors). These studies
did conclude that initial perturbations evolve towards a sharp peak concentrated near
the rear stagnation point. Thus, our present findings may be interpreted as sharpening
the results of these earlier studies. In particular, excellent agreement was found with
the growth rate of the unstable perturbations found by Moffatt & Moore (1978).

The findings of the present study lead to some intriguing questions concerning the
initial-value problem for the evolution of Hill’s vortex with a perturbed boundary.
It appears that, in the continuous setting without any regularization, this problem
may not be well posed, in the sense that, for generic initial perturbations, the
vortex boundary may exhibit the same poor regularity as observed for the unstable
eigenvectors in § 4 (i.e. be at least discontinuous). While it is possible that the
nonlinearity might exert some regularizing effect, this is an aspect of the problem
that should be taken into account in its numerical solution. A standard numerical
approach to the solution of such problems is the axisymmetric version of the ‘contour
dynamics’ method (Pozrikidis 1986; Wakelin & Riley 1996; Shariff et al. 2008) in
which the discretization of the contour boundary with straight segments or circular
arcs combined with an approximation of the singular integrals provides the required
regularizing effect. On the other hand, the singular structure of the solution can
be captured more readily with higher-order methods, such as the spectral approach
developed here.

There are a number of related problems that deserve attention and will be
considered in the near future. A natural extension of the questions addressed here
is to investigate the stability of Hill’s vortex with respect to non-axisymmetric
perturbations, as already explored by Fukuyu et al. (1994) and Rozi (1999). Another
interesting question is to consider the effect of swirl (Moffatt 1969; Hattori & Hijiya
2010). Hill’s vortex is a member of the Norbury–Fraenkel family of inviscid vortex
rings and their stability remains an open problem. It was argued by Moffatt & Moore
(1978) that the highly localized nature of the boundary response of Hill’s vortex
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to perturbations is a consequence of the presence of a stagnation point. Since the
Norbury–Fraenkel vortices other than Hill’s vortex do not feature stagnation points
on the vortex boundary, it may be conjectured that in those cases eigenfunctions of
the stability operator will be smooth functions of the arclength coordinate. Therefore,
in the context of the linear stability problem, the family of the Norbury–Fraenkel
vortex rings may be regarded as a ‘regularization’ of Hill’s vortex analogous and
alternative to our approach developed in § 3, cf. (3.18)–(3.19). The different problems
mentioned in this paragraph, except for the effect of swirl, can be investigated using
the approach developed by Elcrat & Protas (2013) and also employed in the present
study. As regards the stability of Hill’s vortex with swirl, the difficulty stems from
the fact that, to the best of our knowledge, there is currently no vortex-dynamics
formulation of the type (2.1) available for axisymmetric flows with swirl. Our
next step will be to analyse the stability of the Norbury–Fraenkel vortex rings to
axisymmetric perturbations. Finally, it will also be interesting to compare the present
findings with the results of the short-wavelength stability analysis of Hattori & Hijiya
(2010). In particular, one would like to know if there is any overlap between the two
stability analyses and, if so, whether they can produce comparable predictions of the
growth rates.
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