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Local dynamics during thinning and rupture of
liquid sheets of power-law fluids
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Rupture of liquid sheets of power-law fluids surrounded by a gas is analysed under
the competing influences of pressure due to van der Waals attraction, inertia, viscous
stress and capillary pressure due to surface tension. Results of a combined theoretical
and computational study are presented over the entire range of parameters governing
the thinning of a power-law fluid of power-law exponent 0 < n ≤ 1 (n = 1: Newtonian
fluid) and Ohnesorge number 0 ≤ Oh < ∞, where Oh ≡ μ0/

√
ρh0σ , and μ0, ρ, h0 and

σ stand for the zero-deformation-rate viscosity, density, the initial sheet half-thickness and
surface tension, respectively. The dynamics in the vicinity of the space–time singularity
where the sheet ruptures is asymptotically self-similar, and thus the variation with time
remaining until rupture τ ≡ tR − t, where tR is the time instant t at which the sheet
ruptures, of sheet half-thickness, lateral length scale and lateral velocity is determined
analytically and confirmed by simulations. For sheets for which inertia is negligible
(Oh−1 = 0), two distinct viscous scaling regimes are found, one for 0.58 < n ≤ 1 and
the other for n ≤ 0.58. The thinning dynamics of inviscid sheets (Oh = 0) is identical to
that of Newtonian ones. For real fluids for which neither viscosity nor inertia is negligible,
it is shown that the aforementioned creeping and inertial flow regimes are transitory and
the thinning of power-law sheets exhibits a remarkably richer set of scaling transitions
compared with Newtonian sheets.

Key words: thin films

1. Introduction

Thin liquid films are integral to our daily lives and innumerable industrial applications. The
physics of thinning and rupture of liquid films with two free surfaces, which are referred to
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as liquid sheets or free liquid films, plays a critical role in foam evolution (Cohen-Addad,
Höhler & Pitois 2013), drop coalescence and emulsion stability (Loewenberg & Hinch
1996; Yoon et al. 2007; Sambath et al. 2019; Anthony, Harris & Basaran 2020), as well as
in applications involving bubbles bursting at interfaces (Stewart et al. 2015). Similarly,
the thinning dynamics of films supported by a solid substrate, with one free surface,
is crucial in applications as diverse as coating flows (Christodoulou & Scriven 1989;
Weinstein & Ruschak 2004), tear film substitutes (Braun 2012), heat transfer (Lohse &
Villermaux 2020) and pattern formation (Mukherjee & Sharma 2015). Moreover, a number
of technologically important free surface flows, for example, curtain coating which arises
in coating flow applications, involve both free and supported films where the integrity of
both types of films is crucial for the successful practice of the operation (Kistler & Scriven
1983; Bazzi & Carvalho 2019).

If the thickness of such films is of or less than the order of a micrometre, long-range
intermolecular forces become significant and influence the thinning dynamics (De Gennes
1985; Kheshgi & Scriven 1991). For thin sheets, van der Waals attraction between the two
free surfaces can cause spontaneous thinning and eventual rupture of the film despite the
presence of stabilizing capillary pressure. A striking example of sheet rupture can be found
in the paper by Debrégeas, De Gennes & Brochard-Wyart (1998) who observed it while
studying experimentally the bursting of bubbles at air–liquid interfaces. These authors
reported that the sheet that forms between the bubble and the interface spontaneously
ruptures below a thickness of 70 nm due to van der Waals attraction. Similarly, for thin
films on a substrate, van der Waals attraction between the liquid–gas interface and the solid
substrate can lead to spontaneous thinning of the film and the subsequent formation of dry
spots (Reiter 1992; Stange, Evans & Hendrickson 1997; Becker et al. 2003). When these
intermolecular forces are significant, they are accounted for in the analysis of dynamics
of film thinning and rupture by the addition of a disjoining pressure term to the set
of governing equations (Teletzke, Davis & Scriven 1987). The goal of this work is to
advance the understanding of the thinning and rupture of liquid sheets or free films that are
surrounded by a dynamically inactive ambient fluid when the film liquid is non-Newtonian
and its response can be characterized by power-law rheology.

Consider a liquid sheet of uniform thickness 2h0 that is surrounded by a passive gas
such as air (figure 1). In what follows, it is taken that the midplane of the sheet lies in
the x̃–z̃-plane of a rectangular coordinate system and the ỹ-axis is perpendicular to the
midplane. Here, pressure variations due to gravity are negligible due to the thinness of the
sheet. Next, consider that the two surfaces of the sheet are perturbed symmetrically about
its midplane by shape perturbations that are invariant or translationally symmetric in the
x̃-direction such that the shape and/or location of the free surface ỹ = h̃(z̃) that lies above
the x̃–z̃-plane is given by

h̃(z̃) = h0

[
1 − ε cos

(
πz̃

λ̃

)]
, (1.1)

while the shape of the free surface below is given by the negative of (1.1). Here, ε � 1
is the amplitude and λ̃ is the wavelength of the perturbation. As is well known (Thete
et al. 2016; Zheng et al. 2018), capillary pressure due to surface tension σ , which is given
by σ(∂2h̃/∂ z̃2), is stabilizing and tries to return the sheet to its original flat or planar
profile. As is also well known, disjoining pressure due to van der Waals attraction, which
is given by AH/[6π(2h̃)3] (AH , Hamaker constant), is destabilizing and acts to grow the
perturbation. A simple scaling argument reveals that for the two forces to balance, z̃ ∼
h̃2/d, where d ≡ (AH/2πσ)1/2 is the molecular length scale for the particular liquid–gas
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Figure 1. A liquid sheet or a free film undergoing line rupture: definition sketch. (a) Perspective view of a
liquid sheet that is surrounded by a dynamically passive fluid like air. The sheet is shown over a distance in the
lateral (z̃) direction corresponding to one wavelength λ̃ of the shape perturbation imposed at the interface(s).
(b) A cross-sectional view of the film. Highlighted here is the so-called ‘rupture zone’ in the vicinity of the
location where the sheet will break and the dynamics is expected to be self-similar as the space–time singularity
is approached. (c) Because of the underlying symmetries, the computational domain is simply the region that
is shaded in grey in the figure.

system, and, therefore, long-wavelength disturbances are destabilizing. Ruckenstein & Jain
(1974) performed a more exact linear stability analysis and determined that liquid sheets
that are subjected to perturbations of wavelengths exceeding a critical value λ̃c are always
unstable, where the value of the critical wavelength is given by

λ̃c = 8π3/2σ 1/2h0
2

A1/2
H

= 4
√

2π
h0

d
h0. (1.2)

Typically, h0 � d as h0 is of the order of micrometres whereas d is a few nanometres,
which implies that the critical wavelength for spontaneous rupture is much larger than the
initial film thickness (λ̃c � h0), a result that accords with the simple scaling argument
carried out above. Thus, thin free films or sheets are unstable to long-wavelength
perturbations.

Erneux & Davis (1993) made use of the long-wavelength nature of the problem and
solved a set of one-dimensional (1-D) partial differential equations (PDEs) for the film
thickness and lateral velocity as a function of the lateral spatial coordinate z̃ and time t̃
for Newtonian sheet rupture. They determined that nonlinear effects led to acceleration of
thinning and resulted in rupture times well below those predicted by linear theory. Given
the separation of scales between the dynamics of the macroscopic film and that occurring
in the vicinity of the location where the film breaks (which is sometimes referred to as the
rupture zone or the hot zone), the dynamics of film thinning is self-similar in the vicinity
of the space–time singularity (z̃ = z̃R, t̃ = t̃R), where z̃R and t̃R are the lateral location
and time at which the film thickness vanishes (h̃ = 0) and the sheet ruptures (Barenblatt
1996). Moreover, the separation of scales also leads to the expectation that the dynamics
of sheet rupture is universal such that it is independent of initial and boundary conditions
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imposed on the macroscopic film (Barenblatt 1996). In pioneering work, Ida & Miksis
(1996) explored the self-similar dynamics of thinning of a viscous Newtonian sheet, and
determined that the dominant force balance is between viscous and van der Waals forces,
while inertial and capillary forces are subdominant. Subsequently, in a paper of central
importance in the field, Vaynblat, Lister & Witelski (2001) carried out an analytical
and numerical study of Newtonian liquid sheets undergoing both line – translationally
symmetric or two-dimensional – and point – axisymmetric – rupture. These authors solved
both the set of spatially 1-D, transient PDEs or evolution equations for sheet thickness h̃
and lateral velocity ṽ in physical space as well as a set of ordinary differential equations
(ODEs) for these variables in similarity space. These authors thereby demonstrated that the
eventual asymptotic dynamical balance of forces for both point and line rupture is between
van der Waals force, viscous force and inertia, with surface tension force being negligible.
They also demonstrated excellent agreement between self-similar solutions determined
from solving the PDEs and analytical solutions of the aforementioned ODEs. In this
inertial–viscous (IV) regime, these authors showed that the film half-thickness h̃, lateral
length scale z̃′ and lateral velocity ṽ vary with time remaining until rupture τ̃ ≡ t̃R − t̃ as

h̃ ∼ τ̃ 1/3, z̃′ ∼ τ̃ 1/2, ṽ ∼ τ̃−1/2, (1.3a–c)

where 1/3, 1/2 and −1/2 are referred to as the scaling exponents. More recently, our
group (Thete et al. 2016) studied the dynamics of thinning of Newtonian sheets when the
Ohnesorge number Oh ≡ μ0/

√
ρh0σ is varied, where ρ is the density of the film fluid and

μ0 is its viscosity (Oh is a dimensionless group that denotes the ratio of viscous force to
the square root of the product of inertial and capillary forces) and, in particular, in the limit
when inertia is negligible (Oh−1 = 0) and that when viscosity is negligible (Oh = 0). We
demonstrated that in the limit of Oh−1 = 0 or when the sheet is undergoing Stokes flow,
the dynamics lies in the aforementioned viscous (V) regime discovered by Ida & Miksis
(1996) where the dominant force balance is between viscous and van der Waals forces, and
capillary force is always negligible. The resulting dynamics gives rise to self-similarity of
the second kind (Barenblatt 1996) and where the scaling exponents are given by

h̃ ∼ τ̃ 1/3, z̃′ ∼ τ̃ 0.26, ṽ ∼ τ̃−0.74. (1.4a–c)

In a previous work (Thete et al. 2016), we obtained the scaling exponent for the lateral
length scale of β = 0.26 independently through numerical simulations of the 1-D PDEs
and analytical solutions of the 1-D ODEs in similarity space. For inviscid sheets or when
Oh = 0, we showed that the dominant force balance is between inertial, van der Waals and
capillary forces, and the scaling exponents in this inertial–capillary (IC) regime are given
by

h̃ ∼ τ̃ 2/7, z̃′ ∼ τ̃ 4/7, ṽ ∼ τ̃−3/7. (1.5a–c)

Equally importantly, we showed in Thete et al. (2016) that for real fluids for which Oh is
finite, the V and IC regimes are transitory and the dynamics will always asymptotically
transition to the late-stage IV regime discovered by Vaynblat et al. (2001). In this previous
paper (Thete et al. 2016), we also determined analytically the film thickness at which these
transitions occur and demonstrated excellent agreement between theory and numerical
simulations for the values of film thickness at which transitions between different scaling
regimes take place.

While the studies discussed above have focused on sheets of Newtonian fluids, many
fluids encountered in industrial applications and daily life exhibit more complex rheology.

942 A15-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

37
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.372


Thinning of liquid sheets of power-law fluids

An important type of such non-Newtonian fluids is the so-called power-law fluid, which
derives its name from the power-law dependence (Deen 1998) of the viscosity μ̃ on the
deformation rate ˜̇γ given by

μ̃( ˜̇γ ) = μ0

∣∣∣2m̃ ˜̇γ
∣∣∣n−1

. (1.6)

Here, μ0 is the zero-deformation-rate viscosity, m̃−1 the characteristic deformation rate,
0 < n ≤ 1 the power-law exponent or index (n = 1 corresponds to a Newtonian fluid) of
the given fluid and ˜̇γ is the second invariant of the rate-of-deformation tensor D̃, which is
referred to as the deformation rate

˜̇γ =
[

1
2
(D̃ : D̃)

]1/2

, (1.7)

D̃ = 1
2

[(∇̃ṽ) + (∇̃ṽ)T], (1.8)

where ṽ is the fluid velocity. Experimental studies have shown that many common
fluids exhibit power-law rheology (Hasan, Ghannam & Esmail 2010; Savage et al. 2010;
Huisman, Friedman & Taborek 2012; Bonn et al. 2017).

The self-similar dynamics and finite-time singularities that arise when the working
liquids are power-law fluids have been studied extensively in situations involving the
pinch-off of liquid threads (jets) and such studies are of particular relevance to the present
paper. Scaling exponents and similarity solutions derived analytically in pinch-off of
power-law threads (Renardy 2002; Doshi et al. 2003; Doshi & Basaran 2004) have been
verified against numerical simulations of the 1-D slender jet equations (Doshi et al. 2003;
Doshi & Basaran 2004) and, in some cases, the full three-dimensional axisymmetric
equations (Suryo & Basaran 2006) and even experiments (Savage et al. 2010; Huisman
et al. 2012). Until recently, studies of thin-film flows of power-law fluids had focused
on the dynamics of films on cylinders (Gorla 2001), films on rotating discs (Arora &
Doshi 2016), tear films in our eyes (Zhang, Matar & Craster 2003) and flow of films down
inclined planes (Miladinova, Lebon & Toshev 2004) without delving into the self-similar
dynamics of van der Waals-driven rupture. In our previous work (Thete et al. 2015), we
examined the rupture of sheets of power-law fluids of Oh = O(1) and demonstrated that
for fluids with 6/7 < n ≤ 1, the dynamics followed the power-law inertial–viscous (PLIV)
scaling theory, for which the power-law scalings are given by

h̃ ∼ τ̃ n/3, z̃′ ∼ τ̃ 1−n/2, ṽ ∼ τ̃−n/2. (1.9a–c)

It is noteworthy that the scaling exponents in this PLIV regime depend on the rheology of
the fluid, viz. they are functions of the power-law index n. However, when 0 < n ≤ 6/7, it
was demonstrated by Thete et al. (2015) that viscous forces drop out of the dominant force
balance: the balance in this range of n is between inertial, van der Waals and capillary
forces, which leads to the IC regime from (1.5a–c). In other words, for 0 < n ≤ 6/7,
the sheet for all practical purposes behaves as if it were inviscid because the fluid’s
local viscosity in the vicinity of the rupture singularity falls rapidly as the singularity
is approached and the thinning dynamics becomes rheology independent. However, while
our earlier work (Thete et al. 2015) deciphered the local dynamics of thinning for sheets of
power-law fluids of Oh = O(1), the response of highly viscous or slightly viscous sheets
has remained heretofore unexplored. More recently, we demonstrated in Garg et al. (2017)
that a similar transition from a capillary–viscous to an inertial–capillary regime occurs
for thin films of power-law fluids on a substrate, and determined the critical values of the
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governing parameters at which this transition should be observed. In our recent paper on
rupture of Newtonian sheets (Thete et al. 2016), it is specifically stated that there is a need
for a comprehensive study of the thinning of sheets of power-law fluids. Such a study,
which would parallel the already existing studies of pinch-off of threads of power-law
fluids (Suryo & Basaran 2006), would (i) provide a thorough understanding of the rupture
dynamics of liquid sheets, which is at present incomplete, and (ii) determine all transitions
that occur between different scaling regimes in the parameter space comprised of both the
Ohnesorge number Oh and power-law exponent n. Accomplishing these aforementioned
goals is the main objective of this paper.

The paper is organized as follows. Section 2 describes the problem under investigation,
and presents the equations and boundary conditions governing the thinning of liquid
sheets. Furthermore, in this section, a succinct description is provided of the numerical
methods used to solve the set of two-dimensional (2-D) PDEs and the set of 1-D PDEs
that is employed for analytically investigating the self-similar dynamics of sheet rupture.
Section 3 analyses theoretically and computationally the thinning and rupture of sheets of
power-law fluids when inertia is negligible, i.e. when the film is undergoing Stokes flow or
Oh−1 = 0. Section 4 briefly explains why thinning dynamics in the inviscid limit, or when
Oh = 0, is identical for Newtonian and power-law sheets. Section 5 analyses thinning
and rupture of sheets of real fluids where Oh is finite for the entire range of power-law
exponent values of 0 < n ≤ 1. In contrast to Newtonian films (Thete et al. 2016), it is
demonstrated that a remarkably richer array of transitions is observed for power-law fluids.
Additionally, a detailed exploration is carried out to uncover transitions between scaling
regimes for highly viscous and slightly viscous sheets. Section 6 provides a summary of
the key findings and outlines fruitful avenues of future research. In Appendix A, results
are also presented for situations in which liquid sheets of power-law fluids are subjected to
initial perturbations of finite-amplitude and highlights that short wavelength perturbations
can be detrimental to the integrity of thin free films when their amplitudes are sufficiently
large.

2. Mathematical formulation

The system is an isothermal free film or sheet of uniform thickness 2h0 of an
incompressible power-law liquid of constant density ρ and zero-deformation-rate viscosity
μ0. The film is surrounded by a dynamically passive gas such as air that exerts a constant
pressure, set equal to zero without loss of generality, and negligible viscous drag on
the film. The Hamaker constant AH for the liquid–gas system and the surface tension
of the interface σ are constant and spatially uniform. It proves convenient here to use a
rectangular coordinate system (x̃, ỹ, z̃): the origin of the coordinate system is located in the
midplane that lies half-way between and is parallel to the two undisturbed surfaces of the
sheet, and the three coordinates are such that the (x̃, z̃)-plane coincides with the midplane
and ỹ is the coordinate that runs in the direction perpendicular to that plane (see figure 1a).
Below, the z̃-direction is also referred to as the lateral direction and the ỹ-direction as
also the vertical direction. The fluid within the film of uniform thickness 2h0 is initially
quiescent, but at time t̃ = 0, its two surfaces are subjected to a sinusoidal perturbation such
that the half-thickness of the film and/or the shape of its top surface, ỹ = h̃(z̃, t̃), at t̃ = 0,
is given by (1.1). As this perturbation is spatially periodic in the lateral (z̃) direction and
translationally symmetric or invariant in the x̃-direction, we hereafter restrict our analysis
to the evolution of the sheet profile and the flow within it to the 2-D domain whose lateral
extent equals half of a wavelength of the imposed perturbation (0 ≤ z̃ ≤ λ̃/2). Thus, the
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problem domain is the region bounded above by the free surface S̃(t̃) which is unknown
a priori, bounded below by the midplane of the film located at (ỹ = 0, 0 ≤ z̃ ≤ λ̃/2), and
bounded on the sides by the symmetry planes located at z̃ = 0 and z̃ = λ̃/2, as shown
in figure 1(c). The effect of gravity is assumed to be negligible on account of the film’s
thinness. In what follows, we first describe the spatially 2-D, transient Cauchy momentum
and continuity equations that govern the thinning and rupture of films of power-law fluids
and the numerical methods used to solve these equations. We then describe the set of
spatially 1-D transient PDEs that are employed to analyse the self-similar behaviour of
sheet rupture theoretically by making use of the long wavelength nature of the problem.

2.1. Governing equations and 2-D formulation
In formulating the dimensionless equations governing film thinning and rupture and the
2-D algorithm used to solve them, the problem variables are non-dimensionalized by using
the undisturbed film half-thickness as the characteristic length, lc ≡ h0, the visco-capillary
time as the characteristic time, tc ≡ μ0h0/σ , the ratio of these two scales as the
characteristic velocity, vc ≡ lc/tc, the zero-deformation-rate viscosity as the characteristic
viscosity μc ≡ μ0 and the capillary pressure as the characteristic pressure pc ≡ σ/h0.
As a result of choosing these characteristic scales, the dynamics is governed by four
dimensionless groups (see below): the Ohnesorge number, Oh ≡ μ0/(ρσh0)

1/2, which
represents the ratio of the viscous force to the square root of the product of the inertial
and capillary forces; the van der Waals number, A ≡ AH/48πσh0

2, which represents the
relative importance of intermolecular forces to capillary forces; the power-law exponent or
index n; and the characteristic deformation rate, m−1 = tcm̃−1. For the remainder of this
paper, variables without tildes (∼) over them represent the dimensionless counterparts of
the corresponding dimensional variables with tildes over them, e.g. z̃ is the dimensional
lateral coordinate whereas z ≡ z̃/lc is its dimensionless counterpart.

The dynamics of the liquid sheet is governed by the continuity and Cauchy momentum
equations which are given in dimensionless form by

∇ · v = 0, (2.1)

1
Oh2

(
∂v

∂t
+ v · ∇v

)
= ∇ · T . (2.2)

Here, ∇ ≡ h0∇̃ is the dimensionless gradient operator, v ≡ ṽ/vc = vyey + vzez is the
dimensionless liquid velocity, where vy and vz are the y- and z-components of v and ey
and ez are the unit vectors in those directions, t ≡ t̃/tc is the dimensionless time, and
T = −pI + μ[∇v + (∇v)T] is the dimensionless stress tensor, where p ≡ p̃/pc is the
dimensionless pressure and μ = |2mγ̇ |n−1 is the dimensionless viscosity with γ̇ ≡ ˜̇γ tc
denoting the dimensionless deformation rate.

The kinematic and traction boundary conditions are applied at the liquid–gas interface
S(t) to enforce mass conservation and to account for the discontinuity or jump in stress
due to surface tension and van der Waals forces:

n · (v − vs) = 0, (2.3)

n · T = 2Hn − A
h3 n, (2.4)

where vs is the velocity of points on the interface S(t), n is the unit normal vector to S(t)
and 2H is twice the mean curvature of S(t). Symmetry boundary conditions are enforced at
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the two symmetry planes located at z = 0 and z = λ/2 by requiring that the lateral velocity
and tangential stress equal zero. Finally, along the midplane located at y = 0, the vertical
velocity and tangential stress both vanish on account of symmetry.

The film is initially quiescent, and the wavelength of the perturbations λ imposed on its
two free surfaces are taken to be larger than the dimensionless critical wavelength obtained
from linear stability analysis and given by λc = 4

√
2π3/2h0/d. Thus, the film in its initial

configuration is unstable and thereafter thins continuously until it ruptures. Because the
dynamics in the rupture zone is insensitive to the values of the amplitude ε and wavelength
λ of the interface perturbation when λ > λc and ε � 1, these two parameters are not
included in the list of dimensionless groups governing the dynamics in the body of the
paper. However, we address briefly the effects of perturbation amplitude and wavelength on
the dynamics in Appendix A. Following earlier studies of pinch-off singularities discussed
in the introduction, we adopt in the next few sections the universally practiced usage
of reporting results as a function of dimensionless time τ ≡ (t̃R − t̃)/tc remaining until
rupture (but also see below).

2.2. Numerical methods for solving the 2-D equations
The 2-D free surface flow governed by the PDEs (2.1)–(2.2) subject to the aforementioned
boundary and initial conditions is solved using a fully implicit, method of lines (MOL),
arbitrary Langrangian–Eulerian (ALE) algorithm. Here, the Galerkin/finite element
method (G/FEM) is used for spatial discretization (Feng & Basaran 1994) and a
predictor–corrector method with an adaptive, implicit finite difference scheme is employed
for time integration (Wilkes, Phillips & Basaran 1999).

Two features of the flow make the spatial discretization challenging. First, the film’s
free surfaces undergo large deformations as the sheet approaches rupture. Second, because
h0 � d, the lateral extent of the domain is three to five orders of magnitude larger than
its vertical extent. Therefore, to capture the large deformations that the film’s surface
S(t) undergoes and to accurately capture the dynamics that occurs over highly disparate
length scales in the lateral and vertical directions, the elliptic mesh generation method
(Christodoulou & Scriven 1992; Notz & Basaran 2004) is used to discretize the domain
and determine the vertical and lateral coordinates of each grid point in the moving,
adaptive mesh simultaneously with the velocity and pressure unknowns within the liquid
sheet. Here, the velocity and pressure unknowns are solved in a mixed interpolation
scheme where the nodal values of the velocity are represented in terms of biquadratic
basis functions while the pressure unknowns are represented by means of bilinear basis
functions. The unknown coordinates of the grid or mesh points are also represented by
biquadratic basis functions.

The PDEs are converted to ODEs by the G/FEM formulation while time integration
reduces the system of ODEs to a system of nonlinear algebraic equations. These are solved
using Newton’s method with an analytically computed Jacobian. The linearized system of
equations at each iteration is solved using a multi-frontal algorithm (Anthony et al. 2019).
Variants of this algorithm have been employed by our research group to successfully
study hydrodynamic singularities that arise in thread pinchoff of both Newtonian and
non-Newtonian fluids (Yildirim & Basaran 2001; Notz & Basaran 2004; Suryo & Basaran
2006; Bhat et al. 2010; Castrejón-Pita et al. 2015; Kamat et al. 2018), drop and bubble
coalescence (Paulsen et al. 2012; Munro et al. 2015; Anthony et al. 2017), and rupture of
supported thin films (Garg et al. 2017). The reader is thus referred to these works for a
more complete description of the solution method and numerical implementation.
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Thinning of liquid sheets of power-law fluids

2.3. 1-D equations for asymptotic analysis
To study sheet dynamics analytically, the long-wavelength approximation (Deen 1998;
Leal 2007) can be invoked to reduce the system of 2-D PDEs (2.1)–(2.2) to a set of 1-D
PDEs for the film thickness and lateral velocity. These 1-D PDEs governing thinning and
rupture of power-law films have already been derived by Thete et al. (2015). In this paper,
we are interested in studying the dynamics of sheets in both the Stokes and the inviscid
limits in which the governing equations can be obtained by formally setting the density
ρ = 0 (or equivalently the reciprocal of the Ohnesorge number 1/Oh = 0) in the former
case and the viscosity μ0 = 0 (or equivalently Oh = 0) in the latter case. Thus, it turns
out to be necessary to non-dimensionalize the 1-D evolution equations in two different
ways such that (a) one formulation is suitable for studying the dynamics when Oh � 1
and, in particular, in the limit of 1/Oh = 0 and (b) the other formulation is appropriate for
studying the dynamics when Oh � 1 and, in particular, in the limit of Oh = 0.

2.3.1. 1-D evolution equations: highly viscous sheets
For highly viscous sheets, the 1-D PDEs governing the dynamics are non-dimensionalized
by using lc ≡ h0 as the characteristic length in the vertical direction and lz ≡
(48πh0

4σ/AH)1/2 as the characteristic length in the lateral direction, which incorporates
the disparity of the vertical and the lateral length scales into the formulation from the
outset. Also in this limit, we use tV ≡ 48πh0

3μ0/AH as the characteristic time and
vV ≡ lz/tV as the characteristic velocity. The characteristic time used here is related to
the one used earlier in the 2-D formulation as tV ≡ tc/A. The dimensionless 1-D evolution
equations are then given by

∂h
∂t

+ ∂ (hv)

∂z
= 0, (2.5)

1
Oh2

(
∂v

∂t
+ v

∂v

∂z

)
︸ ︷︷ ︸

Inertial (I)

= ∂3h
∂z3︸︷︷︸

Capillary (C)

+ ∂
(
h−3)
∂z︸ ︷︷ ︸

van der Waals (vdW)

+ 4
h

∂

∂z

(
μVh

∂v

∂z

)
︸ ︷︷ ︸

Viscous (V)

. (2.6)

Here, z ≡ z̃/lz is the dimensionless lateral length, t ≡ t̃/tV is the dimensionless time,
h(z, t) denotes the dimensionless film half-thickness, v(z, t) denotes the dimensionless
fluid velocity in the lateral or z direction and μV = |2m1∂v/∂z|n−1, where m1 is related
to m in the 2-D formulation as m1 = mA. The different forces that influence van der
Waals-driven rupture of sheets, namely inertial (I), capillary (C), van der Waals (vdW)
and viscous (V) forces, are identified by labels placed under each of the corresponding
terms in (2.6).

2.3.2. 1-D evolution equations: slightly viscous sheets
For slightly viscous sheets, the 1-D PDEs governing the dynamics are non-dimensionalized
by using lc ≡ h0 as the characteristic length in the vertical direction and lz ≡
(48πh0

4σ/AH)1/2 as the characteristic length in the lateral direction which, once again,
recognizes the disparity of length scales in the two directions from the beginning. The
characteristic length scales in the two directions used in this limit are thus the same as
those used for highly viscous sheets. In this limit, however, since viscosity should not be
involved in defining characteristic scales, we use tI ≡ (ρl4z /σh0)

1/2 as the characteristic
time and vI ≡ lz/tI as the characteristic velocity. The characteristic time used here is
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related to the one used in the 2-D formulation as tI = tc/(Oh A). The dimensionless 1-D
evolution equations are then given by

∂h
∂t

+ ∂ (hv)

∂z
= 0, (2.7)(

∂v

∂t
+ v

∂v

∂z

)
︸ ︷︷ ︸

Inertial (I)

= ∂3h
∂z3︸︷︷︸

Capillary (C)

+ ∂
(
h−3)
∂z︸ ︷︷ ︸

van der Waals (vdW)

+ 4Oh
h

∂

∂z

(
μIh

∂v

∂z

)
︸ ︷︷ ︸

Viscous (V)

. (2.8)

Here, z ≡ z̃/lz is the dimensionless lateral length, t ≡ t̃/tI is the dimensionless time,
h(z, t) denotes the dimensionless film half-thickness, v(z, t) denotes the dimensionless
fluid velocity in the lateral or z direction and μI = |2m2∂v/∂z|n−1, where m2 is related
to m in the 2-D formulation as m2 = m Oh A. The different forces that influence van der
Waals-driven rupture of sheets have once again been identified by labels placed under each
of the corresponding terms in (2.8).

2.3.3. Local analyses and similarity variables
The film thickness and velocity profiles are expected to be self-similar in the vicinity of the
location where the film thickness is minimum as the space–time singularity is approached.
In § 3, we explore the dynamical behaviour of the film thickness and lateral velocity in this
so-called ‘rupture zone’, which is shown in figure 1(b), by numerical solution of the 2-D
system of (2.1)–(2.2) and theoretical analysis of the 1-D system of equations that have just
been presented (see §§ 2.3.1 and 2.3.2).

In the 1-D analysis, we presume that the film half-thickness h(z, t) and the lateral
velocity v(z, t) can be represented by adopting the similarity ansatz

h ≡ τα
∗ H(ξ), v ≡ τ

γ
∗ V(ξ), ξ ≡ ζ/τ

β
∗ , (2.9a–c)

where τ∗ ≡ (t̃R − t̃)/t∗ is the dimensionless time remaining until rupture and t∗ is a
characteristic time, with both τ∗ and t∗ being defined differently depending on whether
the sheet is highly or slightly viscous (see below). Here, ξ is the similarity variable,
ζ ≡ (z̃ − z̃R)/lz is the dimensionless lateral coordinate relative to the rupture point,
α, β and γ are the scaling exponents, and H(ξ) and V(ξ) are the scaling functions
for the film thickness profile and lateral velocity in similarity space. When using the
non-dimensionalization adopted with the 1-D analysis for highly viscous sheets and, in
particular, when analysing the Stokes limit (1/Oh2 = 0 in (2.6)), we denote τ∗ by τV and
note that t∗ ≡ tV , viz. τv ≡ (t̃R − t̃)/tV (the use of subscripts ‘V’ is intended to highlight
that we are in a highly viscous regime). Similarly, when using the non-dimensionalization
adopted with the 1-D analysis for slightly viscous sheets and, in particular, when analysing
the inviscid limit (Oh = 0 in (2.8)), we denote τ∗ by τI and note that t∗ ≡ tI (the use of
subscripts ‘I’ is intended to highlight that we are in a slightly viscous or nearly inviscid
regime). We note the three dimensionless times remaining until rupture are related as
τV = Aτ and τI = Oh Aτ .

3. Thinning dynamics in the Stokes limit

In this section, rupture of liquid sheets of power-law fluids is analysed in the limit
Oh−1 = 0 such that inertia is negligible and the sheet is undergoing purely viscous or
Stokes flow. The governing 2-D equations in this limit are obtained by setting 1/Oh2 = 0
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Thinning of liquid sheets of power-law fluids

in (2.2) in the mathematical formulation presented in § 2.1 and the corresponding 1-D
equations are obtained by setting 1/Oh2 = 0 in (2.6) in § 2.3.1.

Since Thete et al. (2016) have shown for Newtonian sheets in the creeping flow limit that
the dominant balance of forces is between van der Waals and viscous forces while capillary
force is negligible, we begin with the hypothesis that the same dynamical balance holds
for power-law sheets (but see below). Thus, substitution of (2.9a–c) into (2.5) and (2.6)
reveals that the scaling exponents are given by

α = n/3, γ = β − 1, (3.1a,b)

where the relationship between γ and β follows from the kinematic balance and the
value of α follows from the dynamical balance that presupposes that capillary force
is subdominant. According to (3.1a,b), as in the Newtonian limit (n = 1), the thinning
dynamics exhibited by power-law sheets leads to self-similarity of the second kind
(Barenblatt 1996) where the value of β, as shown below, must be determined as part of the
solution.

If the dominant force balance is solely between van der Waals force that drives thinning
and viscous force that resists it, it follows from (2.6) upon making use of the scaling
exponents given in (3.1a,b) that the three forces, namely viscous (V), van der Waals (vdW)
and capillary (C), vary with time remaining until rupture τv as

V ∼ vdW ∼ τ−β−n
v , C ∼ τ n/3−3β

v . (3.2a,b)

It is clear from (3.2a,b) that in this regime, not only do viscous and van der Waals forces
blow up as τv → 0 as indicated, but that capillary force is negligible in comparison and
hence is subdominant to the other two forces so long as the yet to be determined scaling
exponent β < 2n/3. For Newtonian sheets (n = 1), Thete et al. (2016) have shown that
β

.= 0.26 and this regime of sheet thinning is referred to as the viscous (V) regime.
Thus, for Newtonian fluids, the inequality β = 0.26 < 2n/3 = 2/3 is satisfied, thereby
justifying the neglect of capillary force in the dominant balance argument. We shall now
investigate whether β < 2n/3 and the asymptotic behaviour of forces given in (3.2a,b)
holds for all power-law sheets. In what follows, this regime of sheet thinning is referred
to as the power-law viscous (PLV) regime. To accomplish this goal, we first numerically
solve (2.1)–(2.2) subject to the boundary conditions and initial conditions as outlined in
§ 2 by subjecting the film to a perturbation of wavelength λ = 2λc. It was determined by
carrying out a number of simulations that subjecting the sheet to initial shape perturbations
of wavelengths larger than this value had no effect whatsoever on the computed values
of the scaling exponents or the behaviour of the solutions in the vicinity of the rupture
location.

Figure 2 shows the variation with time remaining until rupture τ of several variables of
interest for a sheet of a power-law fluid of n = 0.9 undergoing Stokes flow (the values of
the other parameters are provided in the figure caption). The computational results shown
in this figure and all the other figures in the remainder of this paper have been determined
from 2-D simulations. These simulations and all others that have been carried out in this
paper show that the value of the lateral coordinate of the liquid–gas interface S(t) for
which the film half-thickness is a minimum, hmin, is always located at z = 0. Moreover,
in this case and in all others to be reported in this paper, the film ruptures at z = zR = 0
so that ζ = z and asymptotically the interface profile is symmetric about this point as the
sheet tends towards rupture. Figure 2(a) shows that according to the 2-D simulations, hmin

decreases with τ as hmin = 0.0076τ 0.3. The value of the scaling exponent of 0.3 for the
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Figure 2. Scaling behaviour of variables in the rupture zone during thinning of a sheet undergoing Stokes
flow. Here, n = 0.9, A = 9.21 × 10−8 and m = 1/A. The variation with time remaining until rupture τ of (a)
the minimum film half-thickness hmin, (b) lateral length scale z′, evaluated at the lateral location where the film
half-thickness is given by h = 1.05hmin, and (c) lateral velocity v′ evaluated at the same lateral location as z′.
The coloured data points correspond to results obtained from 2-D simulations while the black straight lines
represent best fits to the data.

film thickness determined from the 2-D simulations agrees with the value of the scaling
exponent predicted from theory, viz. n/3 = 0.9/3 (see 3.1a,b).

The 2-D simulations are also used to determine the value of the scaling exponent β

for the lateral length scale or the lateral extent of the rupture zone z′. Here, the scaling
of z′ is determined by tracking the lateral location of the film surface S(t) where the
film half-thickness h equals some multiple of the minimum film half-thickness (Wagoner,
Thete & Basaran 2018). Although the value of the scaling exponent is independent of the
actual value of the multiple that is used (Suryo & Basaran 2006), for definiteness sake,
the value of 1.05hmin is used here. The reason for determining the lateral length scale
in this manner, as opposed to inferring it from the scaling of the curvature of the film
profile which involves the second derivative of the interface shape function with respect
to the lateral coordinate, has to do with the fact that we use the Galerkin finite element
method in our simulations. In Galerkin and/or variational methods, one always carries
out an integration by parts so that the highest order derivative in the resulting so-called
weak form of the governing equations is first order. Therefore, second derivatives are
never calculated nor used when employing weak formulations. Figure 2(b) shows that
the 2-D simulation results predict that the lateral length scale varies with time to rupture
as z′ ∼ τ 0.28, thus providing numerically that the value of the lateral scaling exponent,
which was left undetermined from theory, is given by β = 0.28 when the power-law index
n = 0.9. Moreover, it was directly demonstrated that changing the value of the lateral
location at which this determination is made, e.g. from 1.05hmin to 1.1hmin, had no effect
whatsoever on the value of β that is predicted from the 2-D simulation results.

Figure 2(c) shows the variation with time remaining until rupture of the lateral velocity
scale, which is hereafter referred to as v′, that is predicted from 2-D simulations. Here,
v′ is also evaluated at the lateral location where h = 1.05hmin. As shown in figure 2(c),
the lateral velocity can be seen to diverge as τ → 0 as v′ ∼ τ−0.72, which is in excellent
agreement with the scaling behaviour of v′ that is expected from theory, viz. v′ ∼ τβ−1 ∼
τ 0.28−1. The equality of the value of β, which is obtained directly from the computed
variation of the lateral length scale z′ with τ , and that which is obtained independently
and indirectly from the computed scaling of v′ with τ , after making use of the relationship
β = 1 − γ , provides further credence to the accuracy of the numerically obtained value
of β = 0.28 when the sheet is a power-law fluid of n = 0.9. Henceforward, the lateral
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length scale and lateral velocity scale are always computed at the lateral location where
h = 1.05hmin.

To gain further insights into the local dynamics of sheet rupture, we next derive and
solve the ODEs in similarity space that govern the scaling functions H(ξ) and V(ξ). We
solve these ODEs in similarity space to determine independently the value of the lateral
scaling exponent β for a fluid of given n, to compute the value of the pre-factor in the
expression that provides how hmin varies with time remaining until rupture, and also to
compare similarity solutions obtained from solving the 2-D PDEs in physical space with
those obtained by solving these ODEs over the range −∞ < ξ < ∞. The ODEs and the
boundary conditions to which they are subjected to along with the solution algorithm
that is used to solve them, which is similar to that employed by Thete et al. (2016) for
Newtonian films, are described in detail in Appendix B.

As discussed in Appendix B, the determination of the lateral scaling exponent β from
the analysis in similarity space entails the minimization of an error εv in a certain velocity
integral. Figure 3(a) shows the variation of this error εv with β for a power-law sheet
of n = 0.9. This figure makes plain that the error is minimized when β = 0.28, a result
that is in excellent agreement with the value of β obtained from 2-D simulations that are
reported in figure 2(b). Furthermore, the value of H0 ≡ H(0) obtained from the solution of
the ODEs when β = 0.28 is H0 = 0.986. Since the film thickness is always a minimum at
ξ = ξ0 = 0, it can be seen from (2.9a–c) that hmin = H0τ

n/3
v = H0An/3τ n/3. Thus, given

the value of H0 that has just been determined from the solution of the ODEs, the pre-factor
in the expression relating hmin to τ is H0An/3 ≡ 0.0076, which is in excellent agreement
with the value obtained from the 2-D numerical solution as shown in figure 2(a). To
compare the similarity solution for the interface shape obtained from the 1-D ODEs by
the aforementioned shooting method and that from the numerical solution of the 2-D
PDEs, the scaling function H(ξ) is plotted along with the corresponding rescaled transient
interface profile that has been obtained from the 2-D numerical simulations. In carrying
out the comparison, the solution obtained from the ODEs is normalized as

h
hmin

= H(ξ)

H0
(3.3)

and plotted as a function of ξ . Values of the local transient film half-thickness h(z, t)
obtained from 2-D numerical simulations, which of course correspond to the local values
of the vertical ( y) coordinate of the liquid–gas interface S(t), are similarly normalized as

h
hmin

= y(S(t))
y(S(t)|z=0)

(3.4)

and plotted as a function of the similarity variable

ξ = zh0

lz
[
hmin/H0

]3β/n , (3.5)

where the factor of h0/lz arises on account of the different length scales that are used in the
non-dimensionalization of the lateral coordinate in the 2-D and 1-D analyses. Figure 3(b)
makes plain that as τ and/or hmin → 0, the rescaled transient interface profiles h/hmin
determined from 2-D simulations tend towards and collapse onto the rescaled similarity
solution for the interface profile obtained from the solution of the ODEs in similarity space
in the vicinity of the space–time singularity.

Figure 4 shows the variation of the lateral scaling exponent β with the power-law index n
determined from the solution of the ODEs (see (B1a) and (B1b)) in similarity space using
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Figure 3. Determination of the scaling exponent β of the lateral length scale and the self-similar profile of
the film’s top surface for a sheet of a power-law fluid undergoing Stokes flow. Here, n = 0.9, A = 9.21 × 10−8

and m = 1/A. (a) Variation of the error εv in the velocity integral with β. The results show that the error is
minimized when β = 0.28 thereby revealing that the lateral scaling exponent equals 0.28 when the power-law
index n = 0.9. (b) Rescaled transient profiles of the liquid–gas interface obtained from the numerical solution
of the 2-D PDEs (shown by different coloured curves and further discussed below) and the normalized scaling
function H(ξ)/H0 obtained from the solution of the ODEs in similarity space (represented by symbols). The
transient profiles are shown at instants in time when the minimum film half-thickness hmin lies between hmin =
2 × 10−4 and hmin = 7 × 10−3 such that each profile corresponds to an instant when the value of hmin is roughly
half the value for the previous profile. The rescaled transient interface shapes are shown to tend to and overlap
with the normalized similarity solution for the film profile in the vicinity of ξ = 0 and/or z = 0 as rupture is
approached.

the shooting method for sheets undergoing Stokes flow for 0.4 ≤ n ≤ 1 when it is assumed
a priori that the dominant balance of forces is between van der Waals and viscous forces. In
the same figure, values of β obtained from simulations in which the 2-D PDEs have been
solved for power-law sheets undergoing Stokes flow are also shown. Values of β predicted
from the two approaches are seen to be in excellent agreement with one another for 0.58 <

n ≤ 1. However, when n = 0.58, the value of the lateral scaling exponent obtained from
the solution of the ODEs is β = 0.387 ≡ 2n/3. Therefore, it follows from (3.2a,b) that
when n = 0.58, the capillary force is blowing up at the same rate as the viscous and van
der Waals forces and the key assumption inherent to the PLV regime, i.e. the negligibility
of capillary force, breaks down. Furthermore, figure 4 makes plain that for n ≤ 0.58, the
values of β obtained from 2-D simulations no longer match those obtained from solving
the 1-D ODEs for the PLV regime but instead the 2-D predictions lie on the line β = 2n/3.

Armed with the insights that have just been gained, we next substitute the similarity
solutions given in (2.9a–c) into the 1-D PDEs (2.5) and (2.6) but now require that all
three forces, namely capillary, viscous and van der Waals, are asymptotically important as
the sheet thins and tends towards rupture. Carrying out a kinematic and dynamic balance
argument similar to that performed earlier, the scaling exponents are found to be

α = n/3, β = 2n/3, γ = 2n/3 − 1. (3.6a–c)

We note that in contrast to the earlier analysis of the PLV regime, the value of the lateral
scaling exponent β can be determined by dimensional analysis alone as the thinning of
the sheet in this case entails self-similarity of the first kind (Brenner, Lister & Stone
1996). Thus for sheets of fluids undergoing Stokes flow when n ≤ 0.58 or for highly
deformation-rate thinning fluids, the local viscosity μv in the vicinity of the rupture zone
decreases so rapidly as hmin → 0 that capillary force is able to keep up with viscous
and van der Waals forces as the space–time singularity is approached. The dynamical
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n

β

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.30

0.35

0.40

0.45
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Simulations

β = 2n/3

Figure 4. Variation of the scaling exponent β of the lateral length scale with the power-law exponent n.
The black line (ODE solutions) represents values of β obtained from the solution of the 1-D ODEs in
similarity space by the shooting method described in the body of the paper in the PLV regime. The red
triangles (simulations) represent corresponding values of β obtained from the numerical solution of the 2-D
PDEs. Values of β from the simulations do not match those obtained from solving the ODEs when n ≤ 0.58,
signifying that the PLV regime is not valid when the power-law index falls below 0.58. When n < 0.58, the
2-D results fall on the line β = 2n/3 (dashed blue line), which corresponds to the value of the lateral scaling
exponent in the PLCV regime. Here, A = 9.21 × 10−8 and m = 1/A.

behaviour that has just been described represents a heretofore unknown scaling regime
and is hereafter referred to as the power-law capillary viscous (PLCV) regime. In this new
PLCV regime where capillary, viscous and van der Waals forces are in balance, the three
forces blow up as τv and/or hmin → 0 as

C ∼ V ∼ vdW ∼ τ−5n/3
v . (3.7)

Figure 5 shows the computed variation determined from 2-D simulations of several
quantities of interest with time remaining until rupture τ for a power-law sheet of n = 0.5
undergoing Stokes flow. Figure 5(a) shows that the computed value of hmin decreases with
τ as hmin ∼ τ 0.5/3. It should be noted that this result is necessary but not sufficient to
confirm that the dynamics lies in the PLCV regime as h ∼ τ n/3 in both the PLV and
PLCV regimes. However, figures 5(b) and 5(c) show that the computed values of the lateral
length scale and lateral velocity vary with time to rupture as z′ ∼ τ 1/3 ∼ τ 2(0.5)/3 and
v′ ∼ τ−2/3 ∼ τ 2(0.5)/3−1, such that the values of the scaling exponents determined from
the 2-D simulations are in excellent agreement with the values of β = 2n/3 and γ =
2n/3 − 1 expected from theory (see (3.6a–c)). Hence, the results of sheet thinning which
are depicted in figure 5 make plain that the dynamics when n = 0.5 lies in the PLCV
regime. Moreover, from values of β obtained through numerical solution of the 2-D PDEs
for films of power-law exponents in the range 0.4 ≤ n ≤ 0.58 that are shown in figure 4,
it is clear that all computed values of β lie on the line β = 2n/3 when n ≤ 0.58, thereby
providing further evidence that the dynamics of sheets of power-law fluids of sufficiently
small values of the power-law index lie in the PLCV regime.

In conclusion, thinning of power-law sheets undergoing Stokes flow occurs in the
power-law viscous (PLV) regime for fluids with power-law exponents in the range 0.58 <

n ≤ 1 and where the dominant force balance is solely between viscous and van der Waals
forces while capillary force is negligible. In the PLV regime, film thickness, lateral length
and lateral velocity scale as

h ∼ τ n/3, z′ ∼ τβ, v ∼ τβ−1, (3.8a–c)
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Figure 5. Computed scaling behaviour of key variables in the rupture zone during thinning of a liquid sheet
undergoing Stokes flow. Here, n = 0.5, A = 9.21 × 10−8 and m = 1/A. The variation with time remaining
until rupture τ of (a) the minimum film half-thickness hmin, (b) lateral length scale z′ and (c) lateral velocity v′
evaluated at the same lateral location as z′. Results of 2-D simulations are shown by the data points while the
straight lines represent best fits to the data.

where the value of β increases as n decreases, as shown in figure 4. However, if the
fluid is highly deformation-rate thinning such that 0 < n ≤ 0.58, capillary forces enter
the dominant balance of forces and the resulting dynamics gives rise to the power-law
capillary viscous (PLCV) regime. In the PLCV regime, the dynamic force balance is
between the capillary, van der Waals and viscous forces, and the film thickness, lateral
length and lateral velocity scale as

h ∼ τ n/3, z′ ∼ τ 2n/3, v ∼ τ 2n/3−1. (3.9a–c)

4. Thinning dynamics in the inviscid limit

Thinning and rupture of sheets of power-law fluids in the inviscid limit can be studied
computationally by setting Oh = 0 in (2.2), and analysed theoretically by setting Oh = 0
in (2.8). However, as the liquid is inviscid, the resulting dynamics would be identical to that
of sheets of Newtonian liquids in the inviscid limit. Thete et al. (2016) have demonstrated
that for Newtonian sheets, the dynamics lies in the IC regime given by (1.5a–c). In this
regime, the dominant balance of forces is between inertial (I), capillary (C) and van der
Waals (vdW) forces where these forces vary with time remaining until rupture τ as

I ∼ C ∼ vdW ∼ τ−10/7. (4.1)

These authors also obtained self-similar solutions of the 1-D ODEs that govern the
dynamics of inviscid sheets in similarity space. Thus, the reader is referred to their paper
for a complete understanding of thinning dynamics in the inviscid limit.

5. Thinning dynamics of real fluids

For real fluids, the Ohnesorge number Oh cannot be identically zero or infinite. Therefore,
in this section, we explore the thinning dynamics of sheets of real fluids or when Oh
is finite. Hence, scaling regimes such as those observed in the Stokes limit, which were
discussed in § 3, and the IC regime for inviscid sheets, which was described in § 4, are
expected to be transitory and should only be observed during the initial stages of thinning.
The same type of behaviour has already been reported during pinch-off of liquid threads
or filaments (Doshi et al. 2003; Doshi & Basaran 2004; Suryo & Basaran 2006) and the
rupture of Newtonian sheets (Thete et al. 2016). In what follows, thinning of sheets is
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analysed first for highly viscous sheets of power-law fluids of Oh � 1 and this discussion
is then followed by an analysis of the dynamics of slightly viscous sheets of power-law
fluids of Oh � 1.

5.1. Thinning of sheets of power-law fluids when Oh � 1
For sheets of Oh � 1, depending on the value of the power-law index n, the initial
dynamics is expected to lie in one of the two scaling regimes that arise in Stokes flow,
as described in § 3. To determine when a transition from these creeping flow regimes
may occur as the sheet continues to thin, it proves indispensable to examine how the
inertial terms vary as time advances or the time remaining to rupture τv tends to zero.
For a power-law fluid of 0.58 < n ≤ 1, we expect from the results of § 3 that the initial
dynamics will lie in the PLV regime. Thus, the variation with τv of the inertial terms (I) in
the momentum equation (2.2) is given by

I ∼ v

t
∼ τ

β−1
v

τv

∼ τβ−2
v , (5.1)

where τv is defined in § 3. Given the functional dependence of β on n for 0.58 < n ≤ 1
shown in figure 4 and the variation of the dominant viscous (V) and van der Waals (vdW)
forces with τv in the PLV regime (cf. (3.2a,b)), it is clear that the inertial terms are blowing
up at a faster rate than the two dominant forces in this regime. Thus, while the inertial (I)
terms initially might be negligible on account of the large value of Oh, they can catch
up to the V and vdW forces as time advances because of the larger rate of growth of
the I terms compared to the V and vdW forces. Hence, while the initial dynamics lies in
the PLV regime, a transition to a new regime is expected where inertial force features in
the dominant balance of forces for real fluids of Oh � 1. To predict when this transition
occurs, it proves useful to calculate the instantaneous or local Reynolds number Re ≡
Re(τv) in the rupture zone (this local Reynolds number can also be thought of as being
equivalent to the reciprocal of the square of the local Ohnesorge number):

Re = ρ z̃ṽ
μ̃

= ρlzvV

μ0
τ 2β+n−2
v = τ

2β+n−2
v

Oh2 , (5.2)

where lz and vV are defined in § 2.3. Figure 4 shows that β < 0.39 and since n ≤ 1,
the exponent 2β + n − 2 < 0 in the PLV regime in which the power-law index ranges
as 0.58 < n ≤ 1. Therefore, when Oh � 1, while the Reynolds number Re � 1 initially,
because the exponent of τv < 0 in (5.2), Re grows without bound as τv → 0. Indeed, the
inertial terms would become comparable to the viscous and van der Waals ones when
Re ≈ 1. From (5.2), this occurs when

τv ∼ Oh2/(2β+n−2). (5.3)

When the local Reynolds number Re = O(1), the dynamics in the rupture zone is expected
to follow the power-law inertial–viscous (PLIV) scaling behaviour described by Thete
et al. (2015) for sheets of power-law fluids of Oh = O(1) when the power-law index n is
restricted to lie in the range 6/7 < n ≤ 1. Thus, in the present situation, a transition from
the PLV regime to the PLIV regime occurs at the time remaining until rupture given by
(5.3). This estimate of the time can then be substituted in (3.8a–c) to obtain estimates of
the values of the minimum film half-thickness, hmin,t, and lateral length scale, z′

t, when the
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Figure 6. Computed scaling behaviour of key variables in the rupture zone during thinning of a moderately
viscous sheet of a power-law fluid. Here, Oh = 50, n = 0.9, A = 9.21 × 10−8 and m = 1/A. The variation
with time remaining to rupture τ of (a) the minimum film half-thickness hmin, (b) lateral length scale z′ and
(c) lateral velocity v′ evaluated at the same lateral location as z′. Results of 2-D simulations are shown by the
data points while the straight lines represent best fits to the data. For this set of parameters, a transition from
the PLV regime to the PLIV regime is observed.

transition should occur:

hmin,t ∼ Oh2n/3(2β+n−2), z′
t ∼ lz

h0
Oh2β/(2β+n−2). (5.4a,b)

Figure 6 shows the variation with τ of several quantities of interest for a sheet of a
power-law fluid of Oh = 50 and n = 0.9 undergoing rupture. First, figure 6(a) shows that
hmin decreases with τ as hmin ∼ τ 0.9/3 ∼ τ 0.3 all the way until rupture. However, since the
scaling exponent of h is the same in both the PLV and PLIV regimes, the latter result
is necessary but insufficient to demonstrate the occurrence of the expected transition
between the two scaling regimes. Nevertheless, the pre-factor of the best-fit line to the
data undergoes a change in value when hmin ≈ 10−2, which is in excellent agreement with
the expected value of hmin,t ∼ 1.2 × 10−2 calculated from (5.4a,b). Figure 6(b) shows
the variation with τ of the lateral length scale z′. As the figure makes clear, the lateral
length initially varies with time to rupture as z′ ∼ τ 0.28: thus, the dynamics initially is in
the PLV regime as the scaling exponent of the lateral length β = 0.28 when n = 0.9,
as shown earlier in § 3. However, the dynamics is clearly seen to transition to a final
asymptotic PLIV regime in the later stages of thinning as the simulations show that
z′ ∼ τ 0.55 ∼ τ 1−n/2 as τ → 0. From the simulation results, this transition is seen to occur
at a value of z′ ≈ 1 × 101, which is in good agreement with the expected value of z′

t ∼
(lz/h0)Oh2β/(2β+n−2) ∼ 5.7 × 101 from (5.4a,b). This transition can also be seen clearly
in figure 6(c), where the lateral velocity initially varies with τ as v′ ∼ τ−0.72 ∼ τβ−1 but
at larger times (or smaller τ ) varies as v′ ∼ τ−0.45 ∼ τ−n/2. Thus, for sheets of power-law
fluids of Oh � 1 and 6/7 < n ≤ 1, the thinning dynamics initially lie in the PLV regime
but eventually transition into the PLIV regime as rupture is approached.

For sheets with smaller values of the power-law index in the range 0.58 < n ≤ 6/7, the
initial dynamics is still expected to lie in the PLV regime as made plain by the analysis
in § 3. However, when the local Reynolds number becomes O(1), a different transition
is expected to occur than the one that is described in the previous paragraph based on
the results of Thete et al. (2015). These authors have shown that when Oh = O(1) and
0 < n ≤ 6/7, the local dynamics lies in the IC regime and the scaling exponents are
given by (1.5a–c). Thus, in the present case where Oh � 1, once the local Re = O(1),
the dynamics of sheets of 0.58 < n ≤ 6/7 is expected to transition from the initial PLV
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Figure 7. Computed scaling behaviour of key variables in the rupture zone during thinning of a highly viscous
sheet of a moderately deformation-rate-thinning power-law fluid. Here, Oh = 1000, n = 0.6, A = 9.21 × 10−8

and m = 1/A. The variation with time remaining to rupture τ of (a) the minimum film half-thickness hmin,
(b) lateral length scale z′ and (c) lateral velocity v′ evaluated at the same lateral location as z′. Results of 2-D
simulations are shown by the data points while the straight lines represent best fits to the data. For this set of
parameters, a transition from the PLV regime to the IC regime is observed.

regime to a late-stage IC regime. The values of the minimum film half-thickness and
lateral length scale at which this transition occurs can once again be estimated from
(5.4a,b) as the initial regimes in both cases, viz. when 6/7 < n ≤ 1 and 0.58 < n ≤ 6/7,
are identical. Figure 7 shows the variation with τ of several quantities of interest for a
sheet of a power-law fluid of Oh = 1000 and n = 0.6 undergoing rupture. In this situation,
the minimum film half-thickness hmin is seen to initially vary with τ (figure 7a) as
hmin ∼ τ 0.2 ∼ τ 0.6/3 but is later observed to vary as hmin ∼ τ 2/7, thereby signifying a
transition to the IC regime. Corresponding transitions are also observed for both the lateral
length scale z′ and lateral velocity v′ in figures 7(b) and 7(c). Moreover, the transition for
hmin obtained from simulations is observed to occur at hmin ≈ 7 × 10−3, which is in good
agreement with hmin,t ∼ 1.33 × 10−2 determined from (5.4a,b). Similarly, the transition
for z′ is observed to occur at z′ ≈ 6 × 10−1, which is again in good agreement with
z′

t ∼ 1.14 × 100 determined from (5.4a,b). Thus, for sheets of power-law fluids of Oh � 1
and 0.58 < n ≤ 6/7, the thinning dynamics transitions from an initial PLV regime to a
final IC regime where the film essentially behaves like an inviscid fluid in the rupture
zone.

For sheets of power-law fluids with power-law exponents in the range 0 < n ≤ 0.58, it is
shown in § 3 that the dynamics lies in the PLCV regime in which the sheets are undergoing
Stokes flow. Thus, for a sheet of Oh � 1 and n values in this range, we expect the local
dynamics to initially lie in the PLCV regime. In this regime, the variation of inertial terms
(I) with time remaining to rupture is given by

I ∼ v

t
∼ τ

2n/3−1
v

τv

∼ τ 2n/3−2
v . (5.5)

Since n ≤ 0.58, it is clear from (3.7) and (5.5) that the inertial terms blow up faster than the
capillary, van der Waals and viscous forces that are in balance in this regime. Once again,
it proves advantageous to compute the instantaneous Reynolds number in the rupture zone
which varies with τv as

Re = ρ z̃ṽ
μ̃

= ρlzvV

μ0
τ 7n/3−2 = τ

(7n−6)/3
v

Oh2 . (5.6)
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Figure 8. Computed scaling behaviour of key variables in the rupture zone during thinning of a highly viscous
sheet of a highly deformation-rate-thinning power-law fluid. Here, Oh = 1000, n = 0.5, A = 9.21 × 10−8 and
m = 1/A. The variation with time remaining to rupture τ of (a) the minimum film half-thickness hmin, (b)
lateral length scale z′ and (c) lateral velocity v′ evaluated at the same lateral location as z′. Results of 2-D
simulations are shown by the data points while the straight lines represent best fits to the data. For this set of
parameters, a transition from the PLCV to the IC regime is observed.

As n ≤ 0.58, no matter how large the Ohnesorge number is, the local Reynolds increases
without bound as τv decreases. Thus, neglect of inertia is inconsistent asymptotically as
τv → 0. Therefore, when the local Re in the rupture zone becomes O(1), a transition is
expected to occur from the initial PLCV regime to a final stage IC regime, as has already
been demonstrated by Thete et al. (2015) for films of Oh = O(1). Once again, we can
determine the value of τv at which Re = O(1) and make use of the scaling relations and
exponents in the PLCV regime in (3.9a–c) to estimate the minimum film half-thickness
and lateral length scale for which this transition occurs:

hmin,t ∼ Oh2n/(7n−6), z′
t ∼ lz

h0
Oh4n/(7n−6). (5.7a,b)

Figure 8 shows the variation with τ of several quantities of interest for a sheet
undergoing rupture for a fluid of Oh = 1000 and n = 0.5. The minimum film
half-thickness hmin is seen to initially vary with τ (figure 8a) as hmin ∼ τ 0.5/3 but later
transitions and thereafter varies as hmin ∼ τ 2/7, signifying a transition from the initial
PLVC regime to the final IC regime. Similarly, the variation of the lateral length scale
with τ (figure 8b) is seen to transition from z′ ∼ τ 1/3 ∼ τ 2n/3 at early times where the
dynamics lies in the PLCV regime to z′ ∼ τ 4/7 at later times, once again signifying
that the dynamics has transitioned to the IC regime. A corresponding transition is also
observed for the lateral velocity in figure 8(c). Moreover, the computed transition between
the two regimes is observed to occur at hmin ≈ 4 × 10−2, which is in good agreement
with the scaling estimate hmin,t ∼ 6.3 × 10−2 determined from (5.7a,b). Similarly, the
computed value of the lateral length scale at which the transition takes place is observed
to occur at z′ ≈ 7 × 100, which is also in good agreement with the scaling estimate
z′

t ∼ 1.3 × 101 determined from (5.7a,b). Thus, for sheets of power-law fluids of Oh � 1
and 0 < n ≤ 0.58, the thinning dynamics transitions from an initial PLCV regime to a
final IC regime. Hence, in the rupture zone, the film for all practical purposes behaves like
an inviscid fluid asymptotically as τ → 0.

5.2. Thinning of sheets of power-law fluids when Oh � 1
For sheets of power-law fluids of Oh � 1, the initial dynamics is expected to lie in the IC
regime discussed in § 4 as viscous force is negligible on account of the small value of Oh.

942 A15-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

37
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.372


Thinning of liquid sheets of power-law fluids

However, as the film thins and fluid velocity in the rupture zone increases, it is possible for
viscous force to become significant. To test this possibility, it proves useful to determine
how the viscous term (V) in the momentum (2.2) varies with time to rupture τI in the
inertial regime:

V ∼ μ
v

z2 ∼ τ
4/7−n
I

τ
8/7
I

∼ τ
−n−4/7
I . (5.8)

Here, τI is the dimensionless time to rupture where time is nondimensionalized using tI
as the characteristic time scale. From (4.1) and (5.8), it is clear that viscous force blows
up faster than inertial, capillary and van der Waals forces that are in balance when 6/7 <

n ≤ 1 as τI → 0. Thus, while viscous force might be initially negligible, it is expected to
become significant and catch up to the other three forces as the sheet continues to thin. To
quantify the importance of viscous force relative to others and to determine whether it can
catch up to the other three forces, it proves useful once more to calculate the instantaneous
Reynolds number which is given by

Re = ρ z̃ṽ
μ̃

= ρlzvI

μ0
τ n−6/7 = τ

(7n−6)/7
I

Oh
. (5.9)

Plainly, when 6/7 < n ≤ 1, the local Reynolds number cannot remain large as τ → 0 no
matter how small the Ohnesorge number. Therefore, it is asymptotically inconsistent to
neglect viscous force as τ → 0. Viscous force is expected to become significant when
Re = O(1), which, from (5.9), can be estimate to occur when

τI ∼ Oh7/(7n−6). (5.10)

At this time, since inertial and viscous forces are now comparable in the rupture zone, a
transition is expected to occur from the initial IC regime to the PLIV regime. The transition
between these two regimes can be estimated to occur for values of the minimum film
half-thickness hmin and lateral length scale z′ given by

hmin,t ∼ Oh2/(7n−6), z′
t ∼ lz

h0
Oh4/(7n−6). (5.11a,b)

Figure 9 shows the variation with τ of several quantities of interest for a sheet of
a power-law fluid of Oh = 0.08 and n = 0.97 undergoing rupture. The results of the
2-D simulations shown in figure 9(a) make plain that the minimum film half-thickness
hmin initially varies with τ as hmin ∼ τ 2/7, in excellent agreement with the theoretically
predicted scaling law in the IC regime, but also that the dynamics transitions in the
later stages of thinning so that hmin ∼ τ 0.97/3 ∼ τ n/3, in agreement with the theoretically
predicted scaling in the PLIV regime. Furthermore, the lateral length scale z′ is seen to
vary with τ in figure 9(b) as z′ ∼ τ 4/7 at early times, which is again in excellent agreement
with theory in the IC regime, but transitions later to z′ ∼ τ 0.515 ∼ τ 1−n/2, which is also in
excellent agreement with the expected scaling in the PLIV regime. Finally, figure 9(c)
shows the corresponding transition between the IC and PLIV regimes for the lateral
velocity v′. Moreover, the transition in hmin is observed to occur at hmin ≈ 4 × 10−3,
which is in good agreement with the scaling estimate hmin,t ∼ 1.67 × 10−3 determined
from (5.11a). Similarly, the transition in z′ is observed to occur at z′ ≈ 2 × 10−2, which
is again in good agreement with z′

t ∼ 9.21 × 10−3 determined from the scaling estimate
given in (5.11b). Thus, for sheets of power-law fluids of Oh � 1 and 6/7 < n ≤ 1, the
thinning dynamics transitions from the IC regime to the PLIV regime as τ → 0 and as
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Figure 9. Computed scaling behaviour of key variables in the rupture zone during thinning of a slightly
viscous sheet of a power-law fluid. Here, Oh = 0.08, n = 0.97, A = 9.21 × 10−8 and m = 1/A. The variation
with time remaining to rupture τ of (a) the minimum film half-thickness hmin, (b) lateral length scale z′ and (c)
lateral velocity v′ evaluated at the same lateral location as z′. Results of 2-D simulations are shown by the data
points while the straight lines represent best fits to the data. For this set of parameters, a transition from the IC
to the PLIV regime is observed.
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Figure 10. Computed scaling behaviour of key variables in the rupture zone during thinning of a slightly
viscous sheet of a highly deformation-rate-thinning power-law fluid. Here, Oh = 0.08, n = 0.6, A = 9.21 ×
10−8 and m = 1/A. The variation with time remaining to rupture τ of (a) the minimum film half-thickness
hmin, (b) lateral length scale z′ and (c) lateral velocity v′ evaluated at the same lateral location as z′. Results of
2-D simulations are shown by the data points while the straight lines represent best fits to the data. For this set
of parameters, the dynamics is observed to lie in the IC regime throughout the duration of thinning.

viscous forces become significant on account of the inexorable increase in the fluid velocity
in the rupture zone as the sheet tends toward breakup.

For sheets of power-law fluids of Oh � 1 and 0 < n ≤ 6/7, the dynamics is expected to
remain in the IC regime throughout the entire duration of thinning until the film ruptures.
This expectation is clear from (4.1) and (5.8): viscous force blows up at a slower rate than
and hence is subdominant to the inertial, capillary and van der Waals forces that remain
in balance as the sheet thins. The correctness of this expectation is also confirmed from
2-D numerical simulations in figure 10 which shows computed predictions for the thinning
of a sheet of a power-law fluid of Oh = 0.08 and n = 0.6. The computed variation with
τ of hmin, z′ and v′ is identical to that expected to occur from theory in the IC regime
throughout the duration of thinning.

6. Conclusions and future outlook

In this paper, a comprehensive analysis has been carried out to develop a complete
understanding of the local dynamics in the vicinity of the rupture singularity when liquid
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Thinning of liquid sheets of power-law fluids

sheets or free films of power-law fluids thin under the destabilizing influence of van der
Waals force. From this analysis, a plethora of scaling regimes and scaling transitions have
been uncovered for sheets of power-law fluids over the entire parameter space spanned by
the Ohnesorge number 0 ≤ Oh ≤ ∞ and power-law exponent 0 < n ≤ 1. These results
are conveniently and succinctly summarized by the phase diagram shown in figure 11.
According to the foregoing results, for sheets undergoing Stokes flow (1/Oh = 0) and
when the power-law exponent 0.58 < n ≤ 1, the self-similarity is of the second kind and
the value of the scaling exponent β for the lateral length scale z′ is determined as part of
the solution of the system of equations governing the dynamics. In this paper, the value
of β obtained from the solution of the 2-D PDEs governing the dynamics is shown to be
in excellent agreement with the value determined from the solution of a set of 1-D ODEs
in similarity space for all values of 0.58 < n ≤ 1. Furthermore, the physics of thinning
of sheets of power-law fluids of 0 < n ≤ 0.58 undergoing Stokes flow has been found
to drastically differ from that observed with sheets of Newtonian fluids. Whereas the
thinning of power-law sheets occurs in a so-called PLCV (power-law capillary viscous)
regime where capillary, van der Waals and viscous forces are in balance, sheet thinning
for Newtonian fluids occurs while capillary force is negligible compared to the other two
forces. This dynamic force balance exhibiting the participation of all three forces (C, vdW
and V) has previously been observed only during the thinning and rupture of films that
are supported by a substrate (Zhang & Lister 1999; Garg et al. 2017). Moreover, for real
fluids, the purely viscous regimes discussed in § 3 or the purely inertial regime discussed
in § 4 are (is) shown to be transitory, with the dynamics eventually transitioning from an
initial regime to one of the final asymptotic regimes described by Thete et al. (2015) for
sheets of power-law fluids of Oh = O(1). Similar to the closely related subject of thread
pinch-off (see, e.g. Eggers 1997; Basaran 2002), the results depicted in figure 11 and by
Thete et al. (2016) for Newtonian free films and similar results that have been obtained by
Garg et al. (2017) and Moreno-Boza, Martínez-Calvo & Sevilla (2020a,b) for supported
films are a testament to the richness of the physics of film rupture that has allowed the field
to continue to blossom two decades after the pioneering works by Ida & Miksis (1996),
Zhang & Lister (1999) and Vaynblat et al. (2001).

The long-wavelength nature of the spontaneous van der Waals force-driven sheet rupture
ensures that when the wavelength of the perturbation imposed on the surface of an
initially planar free film is larger than the critical wavelength λ̃c given by (1.2). The
slenderness approximation only breaks down after the minimum film thickness falls
below the molecular length scale d or after the continuum approximation breaks down.
Thus, the long-wavelength approximation is valid during the entire period of thinning for
spontaneous sheet rupture. Therefore, computational results obtained from the solution
of the 1-D system of equations based on the slender-sheet approximation by means of a
1-D Galerkin/finite element based algorithm were found to be identical to computational
results obtained from solution of the 2-D PDEs using the algorithm described in § 2.1.
However, sheets that are subjected to disturbances of wavelengths much smaller than λ̃c
are prone to succumb to finite-amplitude perturbations (Burton & Taborek 2007). Indeed,
it is shown in Appendix A that sheets that are subjected to finite-amplitude disturbances of
wavelengths equal to λ̃c/25 rupture when the amplitude of the perturbations is sufficiently
large but yet display the self-similar dynamics that would be expected of a sheet that is
characterized by the same set of dimensionless parameters, viz. Oh, n, A and m, but is
subjected to a small-amplitude, long-wavelength perturbation. For sheets that are subjected
to finite-amplitude, short-wavelength perturbations, the slenderness approximation breaks
down before molecular length scales are reached, and the 2-D algorithm described
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n = 1

Oh–1 = 0

PLV

PLCV

Oh > 1 Oh ~ O(1)

h ~ τn/3

z′ ~ τβ

v′ ~ τβ–1

h ~ τn/3

z′ ~ τ2n/3

v′ ~ τ2n/3–1

hmin ~ τ2n/3(2β+n–2)

hmin ~ τ2/(7n–6)

PLIV IC

ICIC

Transition from

PLV to PLIV

when

Transition from

IC to PLIV when

hmin ~ τ2n/3(2β+n–2)

hmin ~ τ2n/(7n–6)

Transition from

PLV to IC when

Transition from

PLCV to IC

when

h ~ τn/3

z′ ~ τ1–n/2

v′ ~ τ–n/2

h ~ τ2/7

z ′ ~ τ4/7

v′ ~ τ–3/7

Oh < 1 Oh = 0

n = 6/7

n = 0.58

n = 0

Figure 11. Phase diagram summarizing scaling laws for self-similar dynamics of thinning and rupture of sheets
of power-law fluids as a function of Ohnesorge number Oh and power-law exponent n. The phase diagrams
delineates regions of the parameter space where the dynamics lies in the power-law viscous (PLV), power-law
capillary viscous (PLCV), power-law inertial viscous (PLIV) and inertial-capillary (IC) regimes, and also when
transitions between regimes are expected to occur. Here h is the film half-thickness, z′ is the lateral length scale
or lateral extent of the rupture zone, v′ denotes the velocity in the lateral direction and τ is time remaining to
rupture. For the PLV regime, the scaling exponent β for the lateral length scale increases as n decreases: β rises
from 0.26 to 0.387 as n falls from 1.0 to 0.58.

in § 2.1 is essential to accurately capture the dynamics of their thinning and eventual
rupture.

The scaling regimes discovered in this paper could be used to independently determine
the rheology of complex fluids such as oxidized tin or EGaIn (Elton et al. 2020)
by experimentally measuring the time evolution of the minimum film thickness. Such
experiments have been reported for supported ultrathin films where thinning occurs solely
due to spinodal dewetting (Becker et al. 2003). This could be a way where scaling regimes
could be used in the spirit of the study by Huisman et al. (2012) who used such an approach
to back out values of the power-law index n in thread pinch-off. However, the details
associated with conducting such an experiment are outside the scope of our paper.

In this paper, sheet thinning and rupture have been considered for two-dimensional
perturbations as opposed to axisymmetric perturbations where the film ruptures at a point.
In the literature on the thinning and rupture of free and supported films of Newtonian
fluids, researchers have studied both types of rupture. Vaynblat et al. (2001) state that sheet
rupture is unstable to perturbations in the transverse direction, as capillary force would be
too weak to stabilize the film against them. Furthermore, Witelski & Bernoff (1999) have
shown for the analogous problem of rupture of supported films that axisymmetric rupture
is stable to non-axisymmetric perturbations and asymptotes to axisymmetric rupture at
large times. In other words, films are likely to rupture at a point. We have solved the
analogous problem of axisymmetric or point rupture of a sheet numerically by means of
the 2-D algorithm described in § 2.1. The results of these simulations along with certain
other ones will be reported in a future publication.
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Thin polymer films are ubiquitous in industrial applications (Mukherjee & Sharma
2015), and experiments have shown that viscoelastic stresses that build up as a film thins
can slow down or arrest their rupture (Rauscher et al. 2005). The 2-D algorithm described
in this paper can be readily extended to account for the elasticity of the film fluid, a
feat that has already been accomplished for studying the closely related problem of the
thinning and pinch-off of viscoelastic jets (Bhat, Basaran & Pasquali 2008). A goal of
future research is to use such an algorithm to elucidate the dynamics of thin polymer films,
and the mechanism of the slowdown of the thinning rate due to the action of viscoelastic
stresses.

Acknowledgements. The authors thank the Purdue Process Safety and Assurance Center (P2SAC) and the
Gedge Professorship to OAB for financial support.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Vishrut Garg https://orcid.org/0000-0002-0492-4046;
Osman A. Basaran https://orcid.org/0000-0002-9750-789X.

Appendix A. Sheet rupture due to finite amplitude perturbations

Spontaneous rupture of liquid sheets due to van der Waals forces is a long-wavelength
phenomenon as the wavelength of the sinusoidal perturbation required to cause
spontaneous thinning and rupture is much larger than the film’s initial thickness. For a
sheet of initial thickness 2h0, if a perturbation of lateral wavelength λ and amplitude χ is
applied to the surface of the film, the profile (of the top surface) of the film is given by

h̃(z̃, 0) = h0

[
1 − χ cos

(
2πz̃
λ

)]
. (A1)

Spontaneous rupture occurs if λ is greater than λc = 8h2
0

√
π3σ/AH for a film with

constant surface tension σ and Hamaker constant AH . As the sheet’s initial aspect ratio
ε ≡ h0/L � 1, the long-wavelength approximation can be applied to the initial stages of
thinning. If h̃(t̃) and l̃(t̃) denote film half-thickness and lateral length scale at time t̃, the
film’s aspect ratio at any instant is given by ε(t̃) = h̃(t̃)/l̃(t̃). Therefore,

ε(t̃) = h0

lc
τα−β = h0

lc

[
h̃min(t̃)

h0

]1−β/α

, (A2)

where lc ≡ (48πh4
0σ/AH)1/2 ≡ √

2πλc is the characteristic length in the lateral direction,
and α and β are the scaling exponents for the film thickness and lateral length scale. For all
of the scaling regimes explored in this paper, β > α, and hence the aspect ratio increases
as the film thins or τ → 0. Equation (A2) can be rewritten as

ε(t̃) = d√
24h0

[
h̃min(t̃)

h0

]1−β/α

, (A3)

where d ≡ (AH/2πσ)1/2 is the molecular length scale. Therefore, the aspect ratio becomes
O(1) when

h̃min/d = (1/
√

24)1/(β/α−1)

[
d
h0

]1/(β/α−1)−1

. (A4)
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For the inertial–capillary (IC) regime, β = 2α = 4/7 and hence the aspect ratio
becomes O(1) when h̃min/d = 1/

√
24. Therefore, the slenderness of the film breaks down

long after the minimum film thickness has fallen below the molecular length scale or, in
other words, after the continuum approximation breaks down. Thus, the long-wavelength
approximation is always valid for spontaneous rupture of sheets or when sheets are
subjected to long-wavelength disturbances of infinitesimal amplitude.

In many situations in nature and industry, the film might experience or be subject to
perturbations having finite amplitude (Benjamin & Ursell 1954; Craster & Matar 2009;
Mukherjee & Sharma 2015). In such cases, the film might rupture even if the wavelength of
the perturbation is smaller than the critical wavelength required for spontaneous rupture,
a situation that is akin to breakup of an inviscid fluid region that has been observed by
Burton and Taborek (Burton & Taborek 2007). Figure 12 shows the variation with time
of the minimum film half-thickness hmin of sheets of power-law fluids of Oh = 0.085 and
n = 0.6 that are subjected to three different perturbations of short wavelengths but albeit of
finite amplitudes χ . As the wavelength λ = λc/25 of the perturbations in each of the cases
shown is smaller than the critical wavelength λc, these films cannot rupture spontaneously
due to van der Waals forces. Figure 12 shows that the film is stable and its surface returns
to its original unperturbed state where h(t) = 1 when the amplitude of the perturbations
is given by χ = 0.1 and χ = 0.9. However, when the amplitude of the perturbation is
increased to χ = 0.95, the destabilizing van der Waals force can dominate surface tension
force and eventually causes the sheet to rupture. In these cases, the appropriate lateral
length scale of the film is given by lc = λc/25, and the variation with time of the film’s
aspect ratio is given by

ε(t̃) = h0

λc/25
τα−β = 25d√

48π2h0

[
h̃min(t̃)

h0

]1−β/α

. (A5)

Once again, in the inertial–capillary (IC) regime in which β = 2α, the aspect ratio
becomes O(1) when

h̃min

d
= 25√

48π2
> 1. (A6)

Thus, for finite-amplitude perturbations, the long-wavelength approximation can break
down before the continuum limit is reached and, in which case, the system of
two-dimensional, transient partial differential equations must be solved for analysing the
thinning of sheets as the slender-sheet equations are no longer valid. Figure 13 shows the
variation with time remaining to rupture τ of the aspect ratio ε(t) and the minimum film
half-thickness hmin determined from 2-D computations. The simulation results make plain
that ε(t) becomes O(1) before hmin = d/h0, or before the continuum limit is reached (note
that because hmin ≡ h̃min/h0, hmin = d/h0 is equivalent to saying that h̃min = d or that the
dimensional film half-thickness is equal to the molecular length scale). Furthermore, the
value of h̃min at which the aspect ratio becomes O(1) and the film is no longer slender
increases as the disturbance amplitude is increased to values beyond the largest value of
0.95 considered in this appendix.

Appendix B. Self-similar ODEs and the method for solving them

The ODEs in similarity space governing the scaling functions H(ξ) and V(ξ) are obtained
by substitution of the expressions for h, v and ξ given in (2.9a–c) into the 1-D PDEs
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t
10210010–210–4

10–4
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10–3

10–2

10–1
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100 χ = 0.1

χ = 0.9

χ = 0.95hmin

Figure 12. Computed variation with time of t of the minimum film half-thickness hmin determined from 2-D
simulations for a sheet of a power-law fluid that is subjected to different finite-amplitude perturbations χ .
Here, Oh = 0.085, n = 0.6, A = 9.21 × 10−8 and m = 1/A. The wavelength of the perturbation in each case
is λ = λc/25 but the disturbance amplitude varies as χ = 0.1 (red curve), 0.9 (black curve) and 0.95 (green
curve). The sheet is stable and hence heals as t → ∞ in the first two cases (χ = 0.1 and 0.9) whereas the sheet
is unstable and ruptures in the third case (χ = 0.95).

10–2

10–1

100

E = 1

hmin = d/h0

hmin
E(t)

hmin
E(t)

10310210110010–110–210–3
10–4

10–3

10–2

τ

Figure 13. Computed variation with time remaining to rupture τ of the aspect ratio ε(t) (green squares) and
the dimensionless minimum film half-thickness hmin (red squares) of a power-law sheet determined from 2-D
simulations. Here, Oh = 0.085, n = 0.6, A = 9.21 × 10−8 and m = 1/A, and the sheet’s surface is subjected
initially to a finite-amplitude perturbation of wavelength λ = λc/25 and amplitude χ = 0.95. As time t
increases (or τ decreases), the aspect ratio grows and reaches one (shown by the horizontal black line identified
as ε = 1) and the dimensional minimum film half-thickness h̃min decreases and equals the molecular length
scale (shown in dimensionless form by the horizontal black line hmin = d/h0), signifying that slenderness
breaks down before the continuum limit is reached. The times remaining to rupture at which the aspect ratio
equals one and the dimensional film half-thickness equals the molecular length scale are indicated by the
vertical black lines.

(2.5)–(2.6). When capillary force is neglected, the ODEs are given by

−n
3

H + βξ
dH
dξ

+ d (HV)

dξ
= 0, (B1a)

3
H4

dH
dξ

+ 4
H

d
dξ

[∣∣∣∣2m1
dV
dξ

∣∣∣∣n−1

H
dV
dξ

]
= 0. (B1b)
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We note that these two ODEs are unchanged by the introduction of the transformations
ξ → −ξ , H → H and V → −V . Thus, the ODEs allow similarity solutions such that
the sheet profile is symmetric, H(ξ) = H(−ξ), and the velocity profile is antisymmetric,
V(ξ) = −V(−ξ), about ξ = 0.

The kinematic boundary condition (B1a) can be rearranged to give

Hξ

H
= n/3 − Vξ

V + βξ
, (B2)

where (· · · )ξ = d(· · · )/dξ . The denominator of the kinematic boundary condition
vanishes when V(ξ) = −βξ at ξ = ξ0. Thus, smooth solutions will only exist if the
following regularity condition is satisfied:

Vξ (ξ0) = n
3
, V(ξ0) = −βξ0. (B3a,b)

Using the symmetry properties discussed previously, it follows that V(ξ0) = 0 and,
furthermore, that ξ0 = 0. We note that these (H, V) solutions with the stated symmetry
have the same symmetry as the solutions determined from the 2-D simulations.

The far-field behaviour of the scaling functions H and V can be determined by the
requirement that far from the rupture zone, the fluid is virtually undisturbed by the
dynamics occurring in the vicinity of the space–time singularity and the h and v profiles
evolve over significantly longer time scales. Thus, the far-field behaviour of the scaling
functions are determined by assuming that H = Pξa and V = Qξb as |ξ | → ∞, where P
and Q are non-zero constants. The exponents a and b are determined by substituting these
expressions into (2.9a–c) and the far-field boundary conditions in similarity space are then
given by

H ∼ |ξ |n/3β, V ∼ |ξ |1−1/β, as |ξ | → ∞. (B4a,b)

In the limit of n = 1, these boundary conditions reduce to those derived by Thete et al.
(2016) for Newtonian sheets.

We next integrate the momentum equation (B1b) once to obtain

8
3

∣∣∣∣2m1
dV
dξ

∣∣∣∣n−1

H
dV
dξ

− 1
H2 = k1, (B5)

where k1 is a constant that is determined by substituting the regularity condition from
(B3a,b) into (B5) such that

k1 = 8
9

nθH0 − 1
H2

0
, (B6)

where θ = (2m1n/3)n−1. Following previous works (Papageorgiou 1995; Doshi &
Basaran 2004; Burton & Taborek 2007) on self-similarity of the second kind, we construct
expansions for H and V in a Taylor series about ξ = ξ0:

H (ξ − ξ0) =
∞∑

k=0

Hk (ξ − ξ0)
k , (B7a)

V (ξ − ξ0) =
∞∑

k=0

Vk (ξ − ξ0)
k . (B7b)

These series expansions are substituted into (B1a) and (B5), and terms of order
(ξ − ξ0)

k−1 and (ξ − ξ0)
k are collected to obtain recurrence relations between series
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coefficients for Hk and Vk+1

[(k + 1)H0] Vk+1 +
[
k
(n

3
+ β

)]
Hk = Qk+1, (B8a)

[
4θnk(k + 1)H4

0

]
Vk+1 +

[
3 + 4θn

3
H3

0

]
kHk = Rk. (B8b)

Here, Qk+1 and Rk are functions of β, Hk−1, Vk and other lower order coefficients, and are
given by

Qk+1 =
{

0, for k = 1,

−(k + 1)
∑k

i=2 ViHk−i+1, for k ≥ 2,
(B9)

Rk+1 =
{

0, for k = 1,

Rk

(
Ha

i Hb
p, β

)
, for k ≥ 2,

(B10)

such that ai + bp = k, and i, p /= 0 and i, p ≤ k.
It can be seen that H = H0 and V = −βξ0 + n(ξ − ξ0)/3 are exact solutions of the

ODEs (B1a) and (B1b). Therefore, all higher order terms involving Hk, Vk+1, for k ≥ 1, in
the recurrence relations shown above will be zero. For non-trivial solutions of the ODEs
to exist, the higher order coefficients must exist, or the determinant of the coefficient
matrix that can be obtained from (B8a) and (B8b) should be zero for some k = j. Thus,
the following expression for H0 is obtained:

H0 =
(

9
nθ(4nj + 12βj − 4)

)1/3

(B11)

and the series expansions of (B8a) and (B8b) can be simplified to

H (ξ − ξ0) =
∞∑

k=0

Hjk (ξ − ξ0)
jk , (B12a)

V (ξ − ξ0) = −βξ0 +
∞∑

k=0

Vjk+1 (ξ − ξ0)
jk+1 . (B12b)

Furthermore, (B8a) can be rearranged for k = j to give

Vj+1 = −jHj

[
β + n/3
(j + 1)H0

]
. (B13)

Higher order coefficients such as H2j, H3j, . . . and V2j+1, . . . in (B12a) and (B12b) can be
expressed in terms of H0 and Hj. On account of the symmetry properties of the similarity
functions H and V discussed earlier, (B1a) and (B1b) need to be solved only over the
domain 0 ≤ ξ < ∞ rather than −∞ < ξ < ∞ and j will always take on even values. In
addition, the ODEs are also invariant if ξ → φξ and V → φV where φ is a non-zero
constant, and the coefficient Hj can then be eliminated by setting φ = H1/j

j .
A shooting method for determining the lateral exponent β is adopted to solve the

ODEs (B1a) and (B1b), subject to the regularity condition (B3a,b) and far-field boundary
condition (B4a,b). This approach follows those adopted in our group’s earlier papers
(Doshi & Basaran 2004; Thete et al. 2016), where a shooting method is coupled with
minimization of the error εv that arises in a certain velocity integral (see below). The final
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value of β is that which minimizes this error εv . The error εv is obtained by integrating
(B5) subject to the regularity condition (B3a,b) and far-field boundary conditions (B4a,b),
and is given by

εv =
∣∣∣∣
∫ ∞

0

dV
dξ

dξ

∣∣∣∣ =
∫ ∞

0

∣∣∣∣∣ 3(1 + k1H2)

2n+2mn−1
1 H3

∣∣∣∣∣
1/n

dξ = 0. (B14)

The value of j was chosen to be two following the works of Doshi & Basaran (2004)
and Thete et al. (2016). Next, a value of β was assumed and the values of H0 and k1
were determined from (B11) and (B6). The initial values of H and V at ξ = 10−4 were
obtained from expansions (B12a) and (B12b) up to order ξ j for H and ξ j+1 for V . A
fourth-order Runge–Kutta scheme, ode45, in MATLAB was then used to integrate the
equations from ξ = 10−4 to ξ = L, where L was varied from 50 to 2500 until the far field
boundary conditions were always met at ξ = L. Following these steps, the error εv given
by (B14) was evaluated. This entire procedure was then repeated for a new value of β.
Figure 3(a) shows the variation of this error εv with β, for a sheet of power-law exponent
n = 0.9.
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