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Previous experiments have revealed that shock waves driven through dissipative
media may become unstable, for example, in granular gases, and in molecular gases
undergoing strong relaxation effects. The current paper addresses this problem of
shock stability at the Euler and Navier–Stokes continuum levels in a system of disks
(two-dimensional) undergoing activated inelastic collisions. The dynamics of shock
formation and stability is found to be in very good agreement with earlier molecular
dynamic simulations (Sirmas & Radulescu, Phys. Rev. E, vol. 91, 2015, 023003).
It was found that the modelling of shock instability requires the introduction of
molecular noise for its development and sustenance. This is confirmed in two stability
problems. In the first, the evolution of shock formation dynamics is monitored without
noise, with only initial noise and with continuous molecular noise. Only the latter
reproduces the results of shock instability of molecular dynamics simulations. In
the second problem, the steady travelling wave solution is obtained for the shock
structure in the inviscid and viscous limits and its nonlinear stability is studied with
and without molecular fluctuations, again showing that instability can be sustained
only in the presence of fluctuations. The continuum results show that instability takes
the form of a rippled front of a wavelength comparable with the relaxation thickness
of the steady shock wave, at scales at which molecular fluctuations become important,
in excellent agreement with the molecular dynamic simulations.

Key words: granular materials, molecular dynamics, shock waves

1. Introduction

A granular medium is a system of solid, macroscopic sized particles that undergo
dissipative collisions. When looking at large systems of granular particles, granular
materials are complex, as they can exhibit solid, liquid and gaseous behaviours
(Jaeger, Nagel & Behringer 1996). Due to the dissipative nature of the medium, some
type of energy input is necessary for the flow to become fluidized. This may be
accomplished by gravity acting on particles that are free to move, (e.g. an avalanche),
by agitating the particles or in multiphase flows with an influential interstitial fluid
(i.e. particles within a moving liquid or gas). The understanding of these processes is
important, especially in the handling and processing of granular materials in industrial
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applications, for example, in the handling of ingredients for food processing or
pharmaceuticals. By including a source of energy input, a granular medium may also
experience shock-like dynamics. Sharp gradients appear for macroscopic properties,
such as the number density and kinetic energy of the particles.

Interestingly, shock dynamics in granular materials has also revealed the propensity
for instability and pattern formation. For example, granular media subjected to a
vertically oscillating driver, which drives repeatedly strong shocks and expansion
waves into the non-uniform granular gas, develop finger-like patterns (Bizon et al.
1998; Carrillo, Pöschel & Salueña 2008). Similar finger-like patterns have been
observed for rapid granular flows down a chute (Pouliquen, Delour & Savage 1997;
Boudet & Kellay 2013). Experiments have also identified unstable formations of
finger-like jets in granular media dispersed by shock waves driven through air (Frost
et al. 2012; Rodriguez et al. 2013), although the complex multi-phase dynamics
has prevented the authors from clearly identifying the mechanisms controlling the
instability. The goal of this paper is to investigate such instabilities, limiting the
study to only the granular gas phase in the kinetic regime where particle collisions
dominate the dynamics.

Very recently Sirmas & Radulescu (2015) have isolated the problem of shock
instability in a globally one-dimensional transient problem of a piston driven shock
wave. Molecular dynamic simulations revealed that the shock develops a ripple
instability. In the present paper, the mechanism controlling this instability is addressed
at the continuum Euler and Navier–Stokes levels of description. The continuum
description also permits us to frame quantitatively the problem of shock formation
and stability problems. A model for the shock formation and its steady travelling
wave solution is derived, which is used for nonlinear stability analyses by direct
simulation in the presence of molecular noise.

The remainder of the paper is as follows. Background to the state-of-the-art on
shock dynamics in a granular gas is provided in § 2. The continuum model used in the
present paper is described in § 3. The steady one-dimensional (1-D) travelling wave
solution describing the shock structure is given in § 4. Its 1-D unsteady evolution
is described in § 5. Section 6 provides the stability analyses in two dimensions and
a discussion of the instability mechanism. The stability of the front is studied in
the presence of molecular fluctuations during its initial transient formation and under
steady propagation.

2. Background

Previous studies have investigated the problem of shock waves in granular gases,
for example, in one dimension (Ben-Naim et al. 1999; Kamenetsky et al. 2000),
quasi-one dimension (Meerson & Puglisi 2005) and two dimensions (Salueña,
Almazán & Brilliantov 2011; Sirmas & Radulescu 2015). To simplify the problem of
shock waves in a granular gas, the classical problem of a piston propagating into a
granular gas has been considered (Goldshtein, Shapiro & Gutfinger 1996; Kamenetsky
et al. 2000). These studies have addressed the one-dimensional structure and evolution
of shock waves driven by a piston, as sketched out in figure 1. For simplicity, these
studies model the granular medium as a system composed of frictionless, solid
particles that interact inelastically, whereby hydrodynamic equations can be obtained
(Brilliantov & Pöschel 2004). In an early study, Goldshtein et al. (1996) showed that
the steady shock structure in granular media is composed of three distinct regions,
as represented in figure 1. The structure, as shown in figure 1, is best represented
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FIGURE 1. Temperature distributions for a piston driven shock wave through a
dissipative medium.

by looking at the granular temperature, which is a measure of the kinetic energy of
the particles. In such a structure, a piston propagates forward, causing a shock wave
to travel ahead at some velocity D. The first region of the shock structure follows
immediately behind the shock front. This region is composed of a rapid increase in
granular temperature which characterizes the ‘excitation’ region (region I). Due to the
inelasticity and increased rate of the collisions following this fluidizing region, the
granular temperature of the material falling further behind the shock starts to decrease,
while density increases; this marks the ‘relaxing’ region (region II). Eventually, the
density becomes sufficiently high while the equilibrium region tends to zero granular
temperature, which is characterized by the ‘equilibrium’ region (region III). In reality,
collisions have been shown to become elastic for sufficiently low impact energies,
yielding viscoelastic collisions (Bridges, Hatzes & Lin 1984; Ramírez et al. 1999).
For such a medium, a similar structure is expected as compared to a purely inelastic
gas, although some kinetic energy is conserved in the equilibrium region (Sirmas &
Radulescu 2015).

The evolution of the shock structure due to the piston propagating into a granular
medium was addressed by Kamenetsky et al. (2000), who investigated the evolution
of such a structure numerically by solving the one-dimensional Euler equations for
frictionless, inelastic disks. The authors revealed interesting dynamics prior to the
shock wave attaining the developed structure illustrated in figure 1. In particular, the
authors found that the lead shock front pulls back towards the piston for a short
period, before attaining a constant velocity. The dynamics of this stage was not
explained nor further explored, although it could affect the stability of the wave
(Sirmas & Radulescu 2015). The influence of initial packing fraction of particles
and their degree of inelasticity were explored in this context, although the study
was not extended to systems involving viscoelastic collisions. Sirmas & Radulescu
(2015) investigated this problem with activated inelastic collisions via molecular
dynamics simulations, revealing that the pulling back of the shock front is only seen
for sufficiently strong shocks that activate a majority of the inelastic collisions.

Two-dimensional molecular dynamics simulations were conducted by Sirmas &
Radulescu (2015) to investigate the stability and evolution of such piston driven
shock waves through dissipative gases. The model used by the authors assumed that
the frictionless disks collide inelastically with a constant coefficient of restitution if the
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impact velocity between two disks exceeded some threshold. They showed that shock
waves become unstable for sufficiently high piston velocities, with instabilities taking
the form of density non-uniformities and convective rolls in the relaxing region of the
shock structure. Analysis of the transient evolution of the shock structure indicated
that the onset of instability occurs during a re-pressurization of the gas following
the initial relaxation of the medium behind the lead shock. These results suggested
that the mechanism controlling the instability is likely of the vorticity-generating
Richtmyer–Meshkov type.

Qualitatively, a structure similar to that shown in figure 1 is observed for sufficiently
strong shock waves driven into molecular gases, whereby the shock is strong enough
to bring about inelastic collisions between molecules (i.e. via endothermic reactions
or vibrational relaxation) (Zeldovich & Raizer 1966). Interestingly, these types of
relaxing shock waves have also been shown to sometimes become unstable. In this
context, stability is referred to the presence of ripples or corrugations along the shock
front. Experimentally, unstable shock structures have been observed in sufficiently
strong shocks leading to ionization (Griffiths, Sandeman & Hornung 1976; Glass
& Liu 1978; Grun et al. 1991). Similar instabilities have also been observed for
strong shock waves leading to molecular dissociation (Griffiths et al. 1976). Further
experiments have revealed that shock waves can also become unstable when neither
ionization nor dissociation is expected. This has been observed in shock waves
through gases composed of heavy molecules, characterized by a high specific heat
and influenced by vibrational relaxation, such as carbon dioxide (Griffiths et al.
1976; Mishin et al. 1981; Hornung & Lemieux 2001), propane (Hornung & Lemieux
2001) and freon (Semenov, Berezkina & Krassovskaya 2012). The similarity between
granular media, whereby there are strong relaxation effects within the shock structure,
suggests that investigating the stability of shock waves through granular media may
shed light on the instabilities seen in molecular gases.

Traditionally, the methodology used to investigate granular flow phenomena has
been via molecular dynamics (MD), whereby each particle is modelled determin-
istically, as studied by Sirmas & Radulescu (2015). Although MD is the most
popular technique, it can be computationally expensive when simulating systems with
a large number of particles. Motivated by this, there is a large interest in modelling
granular flows at the continuum level, albeit with some challenges (Campbell 1990;
Tan & Goldhirsch 1998; Goldhirsch 2003). With this consideration, the current study
investigates whether the results and conclusions given by Sirmas & Radulescu (2015)
at the microscale particle level can also be recovered at the continuum hydrodynamic
level.

3. Modelling methodology
3.1. Problem definition

The problem studied is the evolution of a shock wave developed when a piston is
suddenly accelerated from rest to ũp in a uniform granular gas with zero macroscopic
speed (figure 2). The system is composed of N colliding disks (in two dimensions),
with identical masses and diameters, occupying an initial volume fraction η. All
collisions are assumed to be elastic, unless the impact velocity (normal relative
velocity, as shown in figure 3) exceeds a velocity threshold ũ∗, i.e.

|ũi(N) − ũj(N)|> ũ∗. (3.1)
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¡up

FIGURE 2. Sketch of piston propagated through system of disks.
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FIGURE 3. Sketch of a pairwise collision between two particles demonstrating the normal
and tangential components of velocity with respect to the line of action.

If the collision is inelastic, the disks collide with a constant coefficient of restitution
ε, which gives the ratio of pre- and post-collision normal velocities,

ε=−
(ũ′i(N) − ũ′j(N))

(ũi(N) − ũj(N))
where 0 6 ε6 1. (3.2)

This is a simple treatment for viscoelastic collisions (Kuwabara & Kono 1987;
Pöschel, Brilliantiov & Schwager 2003).

3.2. Molecular dynamics model
The problem described was first solved by molecular dynamics using the event driven
molecular dynamics algorithm (Alder & Wainwright 1959; Pöschel & Schwager 2005).
Details are provided by Sirmas & Radulescu (2015) and Sirmas et al. (2012). For each
simulation, a piston is suddenly accelerated to velocity ũp into a system of N disks of
diameter d̃ that follow Maxwell–Boltzmann statistics. The state variables were found
by coarse grain averaging of the positions and velocities of the particles.

3.3. Continuum model
A continuum level description of the problem can be established from kinetic theory
(Goldshtein & Shapiro 1995). We use a standard description for granular gases, with
a modification of the equation of state facilitating analytical results and a modification
of the cooling term accounting for the activated dissipation modelled.

The hydrodynamic description uses the initial density ρ̃o, the initial internal
energy ẽo and the initial mean free path λ̃o as characteristic variables for non-
dimensionalization. The ˜( ) denotes dimensional variables. Applying the described
scaling yields the following non-dimensional variables for density, energy (and
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granular temperature), pressure, velocity, space coordinate, diameter, time and
activation energy, respectively, as

ρ =
ρ̃

ρ̃o
=

(
ñm̃
ñom̃
= n
)
, e=

ẽ
ẽo
=

(
T̃

T̃o
= T

)
, p=

p̃
ρ̃oẽo

,

u=
ũ
√

ẽo
, x=

x̃

λ̃o
, d=

d̃

λ̃o
, t=

t̃

λ̃o/
√

ẽo
, Ea =

Ẽa

ẽo
.

 (3.3)

For a two-dimensional granular gas, the granular temperature T̃ = ẽ= (1/2)m̃ ˜̄u2, where
ū represents the root mean squared velocity (Brilliantov & Pöschel 2004). When ūo is
mentioned in this manuscript it is referring to the initial root mean squared velocity.

The mean free path for a system of disks was adapted from Brilliantov & Pöschel
(2004) and re-written more conveniently as

λ̃= λ̃(d̃, η)=
d̃
√

2
4
√

πg2(η)η
, (3.4)

where the pair correlation function for a granular gas in two dimensions is used
(Torquato 1995) as follows:

g2(η)=
1− (7/16)η
(1− η)2

. (3.5)

The scaling is applied to the dimensional form of the hydrodynamic equations as
presented by Brilliantov & Pöschel (2004), and recast in pseudo-conservation form
appropriate for numerical treatment as

∂ρ

∂t
+∇ · (ρu)= 0 (3.6)

∂ρu
∂t
+∇ · (ρuu)−∇ · P = 0 (3.7)

∂ρetot

∂t
+∇ · (ρuetot)− P :W − u · (∇ · P)+∇ · q= ζ , (3.8)

where the specific total energy is

etot = T + 1
2 |u|

2
= e+ 1

2 |u|
2, (3.9)

with heat flux

q=−κ∇T, (3.10)

pressure tensor

P ij =−pδij + (2µ1 −µ2)
∑

i

Wiiδij + 2µ2Wij (3.11)

and strain rate tensor

W ij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
. (3.12)
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For the Navier–Stokes (N–S) equations, the transport coefficients need to be given.
One commonly used set of coefficients is that by Jenkins & Richman (1985), which
is convenient in the current study as the terms are independent of ε and therefore
are unaffected by the viscoelastic collision model. The transport coefficients from the
Jenkins and Richman approach are given for thermal conductivity, bulk viscosity and
shear viscosity, respectively, as

κ =

√
π

2
ρ dT1/2

(
1

ηg2(η)
+ 3+

(
9
4
+

4
π

)
ηg2(η)

)
, (3.13)

µ1 =
2
√

π
ρT1/2ηg2(η), (3.14)

µ2 =

√
π

8
ρ dT1/2

[
1

ηg2(η)
+ 2+

(
1+

8
π

)
ηg2(η)

]
. (3.15)

These terms have shown good agreement in comparing continuum and MD
simulations for rapid granular flows (for example, see Rericha et al. (2002) and
Carrillo et al. (2008) for their implementation).

3.4. Cooling rate for activated inelastic collisions
The conservation of energy (3.8) has a source term ζ accounting for the rate of energy
loss per unit volume due to dissipative collisions of particles. When all collisions are
inelastic with a constant coefficient of restitution, this cooling rate takes the form
(Brilliantov & Pöschel 2004)

ζ =−
4

d
√

π
(1− ε2)ρT3/2ηg2(η). (3.16)

The current model assumes activated inelastic collisions, where inelastic collisions
occur for only a fraction of collisions, which makes the cooling rate from (3.16)
invalid. Using kinetic theory arguments and assuming a local Maxwellian distribution,
Sirmas & Radulescu (2015) obtained a modified cooling rate,

ζ ∗ =−
4

d
√

π
(1− ε2)ρT3/2ηg2(η) exp

{
−

1
2

Ea

T

}(
1+

1
2

Ea

T

)
, (3.17)

where (1/2)u∗2/u2
rms = Ea/T for disks of equal mass (Vincenti & Kruger 1975).

A detailed derivation of this result can be found in a previous study by Sirmas
(2017).

3.5. Equation of state
For a two-dimensional granular system, the hydrostatic pressure is related to ρ and T
through the equation of state

p= ρeZ = ρTZ, (3.18)

where the compressibility factor Z must be identified. In the dilute limit, the
hydrostatic pressure can be approximated with Z = 1. However, for denser systems,
the packing factor η becomes important. One simple equation of state for hard disks
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relating Z to η is that from Helfand, Frisch & Lebowitz (1961), which takes the
form

ZHelfand(η)=
1

(1− η)2
. (3.19)

An equation of state which is dependent on ε has also been used in the literature,
for example, by Jenkins & Richman (1985), Goldshtein & Shapiro (1995), Brilliantov
& Pöschel (2004), with the compressibility factor taking the form

Zinelastic(η, ε)= (1+ (1+ ε)ηg2(η)). (3.20)

At the dilute limit (η→ 0), Z = 1 for both approximations. As η increases, there
are slight discrepancies, although ZHelfand still lies within 5 % of the inelastic equation
of state. Due to its relative accuracy, and its prior use in Sirmas et al. (2012) and
Sirmas & Radulescu (2015), the Helfand equation of state is used in this study. Using
the Helfand equation of state also allows for the analytical expressions for shock-jump
conditions and sound speed to be used in the analysis, as formulated by Sirmas et al.
(2012).

3.6. Numerical method
The conservation equations (3.6)–(3.8) were solved using a compressible finite volume
method implemented in a custom code developed by Falle (Falle 1991; Falle &
Komissarov 1996). A second-order time splitting was used to treat the convective,
diffusive and cooling contributions to the temporal changes of the mass, momentum
and energy density. A linear Riemann solver was used to treat the convective terms.
Diffusion terms were spatially discretized using central differences. The cooling terms
in equations (3.7)–(3.8) were solved explicitly. The discretization follows standard
practice for compressible reactive flows – see for example Maxwell et al. (2017).
Adaptive mesh refinement was used (Falle & Komissarov 1996). Cells were refined
in regions where the primitive variables differed by 0.1 % between grid levels. If the
cell needed to be refined, a region extending 5–10 cells from this region was refined
from the current grid level (Falle & Komissarov 1996).

The numerical problem was set in the piston frame of reference for the transient
problems, and in the shock frame of reference when studying the nonlinear stability of
the shock. The boundaries parallel to the shock wave and piston have symmetric wall
boundary conditions. Any perturbations of the flow field are provided to the incoming
density flow field, which is done by separating the flow into equal sized square bins
with sides dx and prescribing some magnitude of fluctuations to the density.

The minimum resolution required was found by investigating the convergence of the
shock structure calculated for an elastic (ε= 1) system of disks in the given system of
equations. Based on the results, a minimum resolution of ∆=λo/8 was set at the most
refined scale for the continuum simulations. Sirmas (2017) provides further discussion.

4. Stucture of the steady shock wave
The present section details the structure of the steadily propagating shock wave in a

dissipative gas. The current analysis only considers the inviscid shock structure, where
a frozen shock front is assumed, followed by a finite relaxation region. This is similar
to the methodology used for the structure of Zeldovich–von Neumann–Doring (ZND)
detonation waves (see, for example, Fickett & Davis (2000)).
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T

D

Initial state

P∞, ®∞, T∞

Ps, ®s, Ts, us

Po, ®o
To, uo = 0

P(x), ®(x), T(x), u(x)

u∞ = up

Relaxing region

Shocked state

Equilibrium
state

x-xp

FIGURE 4. Expected inviscid steady-state shock structure assuming a frozen shock front
with a finite relaxation region.

The simplified inviscid structure that is considered is shown in figure 4. In the
expected structure, a shock is propagating into a medium at velocity D, where the
initial state is characterized by subscript ( )o. At the shock front, there is a jump to
the shocked state, denoted by subscript ( )s. In the current analysis, this was assumed
to be a frozen shock jump, assuming no energy is lost during this jump. Following the
initial shock jump is the relaxation zone, which causes the temperature to decrease
due to inelastic collisions, which is assumed to occur over a finite distance. The
state within this region is variable in space, requiring the controlling equations to
be identified. Although there will always be a small fraction of inelastic collisions
in the current model, the end of this relaxation region was identified as a region
where there is a negligible number of collisions that are activated. At the end of the
relaxation region is the ‘equilibrium’ state, which is denoted by subscript ( )∞, which
has speed up.

4.1. Gas dynamic jump solutions for the inert shock and relaxing region
The shock jump across the leading inert shock was obtained by Sirmas et al. (2012)
for a system of elastic disks, with the shock front supported by some velocity us.
For a purely elastic medium, the piston velocity up = us. For such a medium, using
Helfand’s equation of state (3.19), the Hugoniot relation representing all possible
shock is given as

ps

po
=

1
2

(
1−

vs

vo

)
+ (1− ηo)

2

vs

vo

(
1−

vo

vs
ηo

)2

−
1
2

(
1−

vs

vo

) , (4.1)

where v = 1/ρ. The maximum compression that can be achieved across the shock
wave can be found by letting ps/po → ∞ in (4.1). The maximum compression
achievable is thus (

vs

vo

)
max

=
1
6

(
1+ 4ηo +

√
(1− 8(ηo − 1)ηo

)
. (4.2)
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The properties across the initial shock for a given velocity D and initial packing
fraction ηo are given by Sirmas et al. (2012) as

vs

vo
=

4+ψ + 4ψ + 4ψηo +
√
−24ψ(1+ψ)η2

o + (4+ψ + 4ψηo)2

6ψ
, (4.3a)

ps

po
= 1+ψ

(
1−

vs

vo

)
, (4.3b)

us

D
= 1−

vs

vo
(4.3c)

Ts

To
=

ps

po

vs

vo

(
1− ηo

vo

vs

)2

(1− ηo)2
, (4.3d)

where ψ is related to the shock Mach number and the initial value of γ

ψ ≡
D2

povo
= γo

D2

co
2
= γoMo

2, (4.4)

with

γ =

(
∂ln p
∂ln ρ

)
s

= 1+ (1− η)−2
+ 2η(1− η)−1. (4.5)

In the limit of a high Mach number, where po→0 in (4.3b), the post-shock pressure
can be written as

ps =
D2

vo

(
1−

vs

vo

)
=

u2
s

vo

1(
1−

vs

vo

) . (4.6)

This relationship, combined with the maximum compression ratio for a given ηo in
(4.2), yields the initial shocked states in the limit of a high Mach number, which are
only a function of ηo and D.

In the limit of a large shock velocity, it is shown by Sirmas et al. (2012), that the
temperature behind the shock front for a high shock strength can be approximated by
using (4.3b) as

Ts

To
≈

1
2

us
2

eo
=

1
2

D2

eo

(
1−

(
vs

vo

)
max

)2

. (4.7)

This is a useful simplification, especially when determining whether a given piston
velocity will provide sufficient energy to activate inelastic collisions.

The jump conditions across the entire relaxing region are obtained in a similar
fashion by requiring that the mass, momentum and energy fluxes be constant across
the entire shock structure. Since there will always be a small fraction of collisions
that are inelastic, there will never be a state at true equilibrium. However, the present
work assumes that the equilibrium region can be identified as the state where only
a small fraction of collisions is activated. Quantitatively, the equilibrium state was
approximated as the point where the amount of energy involved in activated collisions
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only represents, at maximum, 1 % of the overall energy involved in collisions.
Although 1 % is taken arbitrarily, it is shown later in this section that this value
is sufficient to represent the equilibrium region. For the cooling rate considered in
(3.17) this percentage is represented as

X = exp
{
−

1
2

EA

T

}(
1+

1
2

EA

T

)
6 0.01. (4.8)

This gives an approximate temperature for the equilibrated state as

T∞ ≈ 0.075EA. (4.9)

With the temperature of the equilibrated state defined, the Hugoniot of all equilibrium
states can be given as

p∞
po
= 0.075EA

vo

v∞

 1− ηo

1−
vo

v∞
ηo


2

. (4.10)

Based on the condition for equilibrium, the end state will only lie on this Hugoniot if
Ts from (4.7) is greater than T∞, which implies the presence of a relaxing structure.
For the case where Ts < 0.075EA, the shock wave can be characterized by only
the elastic collisions, and the shocked state presented in § 4.1 also represents the
equilibrium state, with us = up. Combining (4.9) and (4.7), the minimum piston
velocity that yields a relaxing structure can therefore be approximated as

Ts = 0.075EA =
1
2 up

2
→ up ≈ 0.39E1/2

A , (4.11)

with EA= (1/2)u∗2, the transition between elastic and relaxing structures can be related
to the ratio up/u∗ as

up

u∗
≈ 0.275. (4.12)

This is in agreement with the results presented by Sirmas & Radulescu (2015), who
demonstrated a transition between an ‘elastic’ Hugoniot and an ‘inelastic’ Hugoniot
between up/u∗ = 0.2–0.3.

The post-shock equilibrium properties are found by equating the pressure given by
the Rayleigh line and the Hugoniot. The Rayleigh line takes the same slope as that
used for the initial shocked state variables, with

p∞
po
= 1+ψ

(
1−

v∞

vo

)
. (4.13)

A simple analytical result cannot be obtained for the equilibrium states as done for
the initial shocked state, although results obtained numerically are presented later in
this section.

Limiting values can be given by considering the limit of a high Mach number,
where po is negligible. Applying this to (4.10) yields(

v∞

vo

)
max

= ηo, (4.14)
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FIGURE 5. (Colour online) Relationship between the ratio D/up with (a) up/ūo and
(b) up/u∗ for different values of u∗, with η= 0.012.

and a simple relationship between D and up can be obtained by considering the
conservation of mass across the full structure, which can simplify to

D=
up

(1− ηo)
. (4.15)

Finally, by taking po→ 0 in (4.13) and combining with (4.4), (4.14) and (4.15), the
equilibrium pressure in the limit of high Mach number can be given as

p∞ =
u2

p

vo(1− ηo)
. (4.16)

While the jump conditions and shock structure can be parametrized in terms of
shock speed D, the simulations that are provided in the next sections have shock
waves controlled by the input piston velocity up, as this would also be the natural
parameter to change in numerical and physical experiments. Therefore, an important
characteristic to consider is the relationship between the shock speed and piston
velocity. The following results assumed that the velocity at the piston is equal to the
velocity at the equilibrated state. Since the equilibrium state is independent of ε, it
is not necessary to explore the role that ε has on the shock velocity in this section.
Figure 5(a) gives the relationship between D/up and up obtained for different values
of u∗, where ηo= 0.012. Initially, at low values of up, all values of u∗ yield a similar
relationship between D and up that follows what is obtained for an elastic system
of disks (shown as the black dashed line). As up increases, the relaxing structure
begins forming and the D/up diverges from the elastic limit. This is shown to first
occur for u∗/ūo = 5, and other values of u∗ diverge at greater values of up. For large
values of up, all cases of u∗ are shown to eventually converge to some limiting value.
These results are shown again in figure 5(b), where the piston speed scaled by the
activation threshold is shown along the x-axis. As has been shown with (4.12), there
is a noticeable transition after up/u∗ ≈ 0.3 whereby all relaxing shocks are shown to
have the same value of D/up. In this figure, to the left of this transition the velocities
are represented by the elastic behaviour, and are independent of u∗. To the right
of this transition, the velocity is shown to be independent of the initial energy (i.e.
ūo). The relaxing region can further be separated into two regions. In the first zone,
between up/u∗ ≈ 0.3–2.0, the shock wave is shown to slow down with respect to
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the piston speed as up increases. Eventually the ratio D/up is shown to asymptote
to some limit near up/u∗ ≈ 2.0. The solid black line represents the limiting velocity
obtained from the maximum compaction limit, as described by (4.15). A similar trend
is observed for varying ηo, with the limiting velocity increasing with increasing ηo,
in agreement with (4.15).

4.2. Model for the steady shock structure
The time-dependent one-dimensional inviscid relaxing shock structure is given by
restricting equations (3.6)–(3.8) in one dimension and omitting the terms involving
viscosity and heat diffusion. After some manipulation (Sirmas 2017), this yields

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u
∂x
= 0, (4.17)

∂u
∂t
+ u

∂u
∂x
+

1
ρ

∂p
∂x
= 0, (4.18)

∂p
∂t
+ u

∂p
∂x
+ c2 ∂u

∂x
=

ζ ∗

ρ2

(
∂e
∂p

)
ρ

, (4.19)

where the scaled speed of sound for such a medium is given by Sirmas et al. (2012)
as

c2
=

√
T(1+ (1− η)−2 + 2η(1− η)−1). (4.20)

The travelling wave solution is obtained by adapting (4.17)–(4.19) to the shock frame
of reference and setting the time derivatives to zero. The shock frame coordinate z
measures the distance behind the shock front, which travels at the steady speed D,
i.e. z= x− Dt. This transformation provides a series of coupled ordinary differential
equations which can be integrated using the shock-jump conditions derived in § 4.1 as
boundary conditions.

dρ
dz
=−

σρ

ξu
,

du
dz
=
σ

ξ
,

dp
dz
=−

σρu
ξ
, (4.21a−c)

where ξ = 1−M2 and M = u/c. The thermicity is defined as

σ ≡ ζ ∗/c2ρ2

(
∂e
∂p

)
ρ

. (4.22)

The treatment is similar to the ZND detonation structure, with the only difference
being the heat loss term in the thermicity instead of the effect of exothermic chemical
reactions. The temperature can be found from the equation of state.

For the described system the two boundaries are the initial shocked state (at z= 0)
and the equilibrium state (at z → −∞). The initial shocked state was defined by
the shock-jump states obtained from (4.3), given a specific shock speed D. The rear
boundary condition in the equilibrium region does not need to be defined, as it is
automatically satisfied by the system of ordinary differential equations. The shock
structure was obtained by numerical integration of (4.21) using a fourth-order Runge–
Kutta scheme.
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FIGURE 6. (Colour online) Steady-state shock distribution of (a) density, (b) pressure,
(c) temperature and (d) velocity obtained for different shock speeds D (normalized by
ūo), with u∗/ūo = 10, ε= 0.95 and ηo = 0.012.

4.3. The steady shock structure and its asymptotic forms
Figure 6 shows example profiles for the macroscopic states (ρ, p, T and u) where the
shock front speed D was varied for u∗/ūo= 10, ε= 0.95 and ηo= 0.012. As expected
for increasing D, the jumps in temperature and pressure are higher at the shock front.
The density is not noticeably higher since the shock strengths are sufficiently strong
to approach the maximum gas dynamic compaction for elastic disks. Following the
shock front there are sharp changes in density, pressure, and temperature. Results show
that increasing D causes the density in the relaxing region to increase significantly,
which can be attributed to the larger cooling rate, also represented by a sharper drop
in temperature. The velocity also decreases within the relaxation region, approaching
the velocity of the piston. In comparing the length it takes for the temperature and
pressure to stabilize to a near-equilibrium state, it can be seen that stronger shock
waves yield a shorter relaxation region. Although the pressure appears to come to
equilibrium, the density still increases, albeit at a slower rate, due to a small fraction
of collisions still being inelastic. Similar structures are observed for varying ε and ηo.
By decreasing ε the length of the relaxation region decreases, as previously discussed
by Kamenetsky et al. (2000) and Sirmas & Radulescu (2015). Similarly, decreasing
ηo also decreases the length of the relaxation region.

Interestingly, the profiles can be collapsed to a unique distribution when scaled by
u∗ as the characteristic speed, confirming the findings of Sirmas & Radulescu (2015).
Figure 7, shows, for example, the shock profiles calculated for different values of D
and u∗ where D/u∗ = 2.0, ηo = 0.012 and ε = 0.95. The distribution of density in
figure 7(a) shows that there are identical structures of density for similar values of
D/u∗, while keeping ηo and ε the same.
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FIGURE 7. (Colour online) Steady-state shock distribution of (a) density, (b) pressure,
(c) temperature and (d) velocity, with energy and velocity scaled with u∗, obtained for
different values of D and u∗ where D/u∗ = 2, ηo = 0.012 and ε= 0.95.

By scaling velocities by u∗ and energy by u∗2, the profiles for density, pressure and
velocity profiles collapse, with the exception of the initial state. This is an important
finding, which allows for the shock structures through the remainder of this paper to
only be parameterized by three parameters D/u∗, ε and ηo. These results suggest an
independence from the initial kinetic energy of the granular medium for sufficiently
strong shock waves, which is not unlike what is observed in molecular gases with
the strong shock approximation (Zeldovich & Raizer 1966). By demonstrating the
independence on the initial energy, the analysis in this section and subsequent sections
can be applied to an initial state being fluidized or dispersed with zero temperature.
Appendix A provides further justification on this invariance based on the governing
equations.

The characteristic thickness of the relaxing shock wave, henceforth referred to as
the relaxation length lR, was found to be related to the shock instability, as discussed
later. It is defined as the distance between the shock front (z= 0) and the beginning of
the equilibrium zone, as defined by the criterion (4.9). Figure 8(a) gives its variation
with varying up/u∗ and ηo, where ε = 0.95. The results show that regardless of the
packing factor, the transition between an elastic and a relaxing shock structure occurs
at up/u∗≈ 0.3. For equal values of up/u∗ the relaxation length is shown to decrease as
ηo decreases, with the limiting value for lR maintaining this trend. Figure 8(b) shows
how lR varies with up/u∗ and ε, where ηo= 0.012. The results show that the transition
between an elastic to a relaxing shock structure is still shown to occur at up/u∗≈ 0.3.
For similar values of up/u∗ the relaxation length is shown to decrease as ε decreases,
with the limiting value for lR also following this trend.
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FIGURE 8. (Colour online) Relationship between the relaxation length normalized by the
initial mean free path with up/u∗ for (a) varying ηo (with ε = 0.95) and (b) varying ε
(with ηo = 0.012).

5. Dynamics of shock formation process in one dimension
The first test of the continuum description is the comparison with the MD results of

Sirmas & Radulescu (2015) for the 1-D transient formation of the shock wave and its
relaxation to a steady state, with the steady solution described in the previous section.
The solution to the transient 1-D problem also permits us to determine if the instability
observed with MD is a longitudinal one, affected by the initial pulsating transient.

5.1. One-dimensional relaxation to the steady state
Figure 9 gives the results for the one-dimensional distributions of density, pressure
and temperature at different times, obtained for up/ūo = 20, u∗/ūo = 10, ε= 0.95 and
ηo= 0.012. MD results were obtained by ensemble averaging over 50 simulations with
each simulation containing 30 000 disks in a domain of (Lx × Ly)/λo = 172 × 17.2.
At an early time (t/τo = 0.32) there is a small jump in density, and large jumps in
pressure and temperature along the piston face. The behaviour was similar for all
models. At t/τo = 1.60, the density rises sharply along the piston face, attributed to
the drop in temperature, beginning to form the expected relaxing shock structure. This
leads to a drop in pressure. At later times (t/τo = 2.88 and t/τo = 5.44), temperature
and pressure plateau to some value along the piston, representing the formation of the
‘equilibrium’ zone. Density continues to rise, albeit with a significantly lower gradient
than in the relaxing region. The density increasing can be attributed to a small fraction
of collisions still being inelastic within the ‘equilibrium’ zone leading to a negligible
change in temperature.

In general, the results shown in figure 9 demonstrate that the shock structures
and their evolution are remarkably similar for the MD and continuum models. This
similarity validates the use of continuum description as given in § 3.3, although
quantitative improvements can be sought. Small differences between the MD and
N–S results are noticeable, with N–S yielding a higher density along the piston face,
as well as sharper gradients in pressure and temperature in the relaxing region. Euler
simulations yield similar behaviour behind the leading shock, which approximates the
location and amplitude of the real non-equilibrium shock captured in the molecular
dynamics simulations.

A comparison between the shock structure for the inviscid case given in figure 9
with that expected from the steady-state distribution as calculated in § 4 is shown in
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FIGURE 9. (Colour online) Evolution of one-dimensional temperature, density and
pressure distributions, comparing MD (dot-dashed) and continuum inviscid (dashed) and
viscous (solid) models for up/ūo = 20, u∗/uo = 10, ε= 0.95 and ηo = 0.012.

figure 10. The results show that at later times the solution is well approximated by
the steady structure, with temperature, pressure and velocity agreeing very well. The
density is slightly lower in the equilibrium zone for the time evolved solution, which
may be due to boundary effects or the structure not fully coming to the steady state.
The recovery of the steady travelling solution, in spite of the large non-steady effects
in shock establishment, shows that the shock wave is stable to longitudinal instability
in the Euler and Navier–Stokes levels of description.

It is instructive to visualize the dynamics of the relaxation process in the x–t
plane, as was performed by Sirmas & Radulescu (2015). Also reconstructed were the
trajectories of the families characteristics, i.e. the particle paths (P), the forward (C+)
and the backward (C−) running characteristic, given by

P :
dxp

dt
= u, C+ :

dx+
dt
= u+ c, C− :

dx−
dt
= u− c, (5.1a−c)
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FIGURE 10. (Colour online) Comparison between the steady-state distribution and the
inviscid solution of (a) density, (b) pressure, (c) temperature and (d) velocity, obtained
after t/τo = 18.08, where up/ūo = 20, u∗/ūo = 10, ε= 0.95 and ηo = 0.012.

where u is the local particle velocity normal to the piston and c is the local speed of
sound. These paths represent the trajectories of fluid particles, right running pressure
waves and left running pressure waves, respectively (Landau & Lifshitz 1987). The
trajectories of the characteristics were obtained numerically by integrating (5.1). The
C+ characteristics were initiated from the piston face at specified intervals in time,
while C− characteristics were initiated from the shock front at similar time intervals.
Particle paths were initialized at specified locations away from the initial piston
position, denoted as ξ = x(t= 0) for each path.

Figure 11 shows the evolution of density, pressure and temperature obtained from
the MD and continuum models for the case shown in figure 9. The evolutions
are shown with selected particle paths in white, C+ characteristics extending from
the piston in black, and C− characteristics from the shock front in blue. The C+
characteristics converge along the shock front due to a sharp change in u + c. All
models give similar trends, although the Euler solution shows sharp jumps in density,
pressure and temperature at the shock front, as expected due to the lack of diffusive
terms. This differs from the MD and N–S results where the macroscopic states were
smeared on the shock front. Also seen from the shock trajectory is that there is no
apparent unstable behaviour once it reached the steady structure.

The evolution of the shock structure can be broken up and described in different
stages based on the results given in figure 11. At the beginning of the shock
development, there are large initial jumps in temperature and pressure, which gives
rise to a fast shock wave. Following this initial stage, the shock decelerates rapidly,
eventually pulling back towards the piston after roughly one mean free time (at
t/τo ≈ 1.5), thus recovering what is observed for purely inelastic media (Kamenetsky
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FIGURE 11. (Colour online) Evolution of density, pressure and temperature on an x versus
t plane, in the piston frame of reference, for up/ūo = 20, u∗/ūo = 10, ε = 0.95 and ηo =

0.012. Also shown are select particle paths (white), forward (black) and backward (blue)
running characteristics.

et al. 2000). The shock then accelerates and tends to the developed structure at
t/τo ≈ 2.5.

To further investigate the stages of the evolution, including the reversal of the shock
front to the piston, the interaction of characteristics with the evolution of temperature,
density and pressure, were analysed. A Lagrangian approach was taken to explain
the transient stages by tracking how properties of particle paths along the piston are
communicated forward. Figure 12(a) gives the density, pressure and temperature for
a particle path which originates close to the piston face, as obtained from the N–S
simulation. Figure 12(b) gives a comparison between the evolution of shock front
speed and the pressure along this particle path.

The first stages in the evolution can be related to the decay and pull back of the
shock front. During these early stages, the initially shocked particle paths were shown
to experience a strong temperature decay due to the inelastic collisions, as shown in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

34
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.345


Structure and stability of shock waves in granular gases 587

1000
900
800
700
600
500
400
300
200
100

0 1 2 3 4 5
t/†o

6 7

Density Particle path pressure
Shock front speedPressure

Temperature

8 9 0 1 2 3 4 5
t/†o

6 7 8 9

(u
sh

oc
k -

 u
p)

/u
o

18
16
14
12
10
8
6
4
2
0
-2

p/
® o

e o

(a) (b)

FIGURE 12. (Colour online) (a) Comparison of particle path properties along piston face,
and (b) comparison between pressure experienced by particle path along piston face and
shock front velocity, as obtained from N–S for up/ūo = 20, u∗/ūo = 10, ηo = 0.012 and
ε= 0.95.

figure 12(a). This decay in temperature leads to a drop in pressure and increase in
density. The rapid decay experienced by these particle paths were communicated to the
shock front via C+ characteristics traversing through the particle paths, which caused
the shock to slow down. The shock speed eventually became negative with respect to
the piston at t/τo ≈ 1.5.

The next stage is attributed to a re-pressurization felt along the piston face. At
t/τo ≈ 1.3, the pressure felt along the particle path stopped decreasing and began
increasing, which can be attributed to the increasing density and compressibility
factor playing a larger role than the decreasing temperature via the equation of
state. This re-pressurization event can be seen communicating forward to the shock
front, causing the shock to accelerate at t/τo ≈ 2.2. The delay between the pressure
increasing at t/τo ≈ 1.3 and the accelerating shock front at t/τo ≈ 2.2 in figure 12(b)
can be explained by the time it takes for C+ characteristics to be communicated from
the piston to the shock front.

At t/τo ≈ 2.8 the pressure along the piston began decreasing, leading to a
deceleration of the shock front. The dropping pressure is attributable to the
temperature decay having a larger effect via the equation of state than the density
change on the pressure. The pressure eventually stopped changing near t/τo ≈ 4.5,
with the change in density and temperature counteracting to maintain a constant
pressure. The constant pressure is attributable to the beginning of the ‘equilibrium’
region, which leads to a constant shock speed following shortly after. The steady-state
structure was formed once the ‘equilibrium’ region began extending from the piston.

Particle paths that traversed the shock front at later times, as shown in figure 13,
did not experience the complex re-pressurization event and had no effect on changing
the structure.

5.2. Effect of u∗, ε and ηo on the transient relaxation
In § 4, it was shown that for a given piston speed or shock speed, the steady structure
was uniquely described by the three non-dimensional parameters D/u∗, ε and ηo. Since
an analytical solution for the transient development is not available, it is worthwhile
assessing the influence of these parameters on the transient relaxation to a steady state.
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FIGURE 13. (Colour online) Comparison of pressure experienced by different particle
paths obtained from N–S, where ξ = x(t = 0), for up/ūo = 20, u∗/ūo = 10, ηo = 0.012
and ε= 0.95.
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FIGURE 14. (Colour online) Evolution of pressure and characteristics as obtained from
N–S for up/u∗ = 0.5 (a), 1.0 (b), 1.5 (c) and 2.0 (d) for u∗/ūo = 10, ηo = 0.012 and
ε= 0.95.

Figure 14 shows the dependence of the magnitude of the piston speed compared
with the activation threshold u∗, while figure 15 shows the evolution of the shock
speed and pressure at the piston face. At a low piston speed, figure 14(a) shows
that the shock front monotonously decayed to a steady state and did not experience
any pull back towards the piston. Analysis of the characteristics shows that the early
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FIGURE 15. (Colour online) Comparison of pressure felt for particle paths along the
piston face compared to the shock front velocity relative to the piston, as obtained from
N–S for up/ūo = 5 (a), 10 (b), 15 (c) and 20 (d), u∗/ūo = 10, ηo = 0.012 and ε= 0.95.

particle paths did not experience any rapid re-pressurization, leading to the shock
front velocity remaining positive with respect to the piston, as seen in figure 15(a).
Although there was a small decay in shock velocity, the trend is similar to that
observed for elastic media for start-up of a viscous shock wave.

With increasing piston speed, as shown in figure 14(b), there was a more rapid
decay in the shock front velocity before obtaining a constant velocity. The properties
of the particle path along the piston face, shown in figure 15(b), show that there was
a gradual re-pressurization experienced at early times, with the drop in pressure not
sufficient for the shock front velocity to slow down and pull back towards the piston
before the re-pressurization was felt at the shock front.

Figure 14(c) shows the evolution for up/u∗ = 1.5. In this case, there was a rapid
decay in the shock front velocity, leading to the shock pulling back towards the piston
in the N–S simulations. The properties of the particle path along the piston face are
shown in figure 15(c). Results show that there was a rapid drop in pressure at early
times, which was sufficient to cause the shock speed to become negative with respect
to the piston before the re-pressurization was communicated forward causing the shock
front to accelerate.

Finally, figure 14(d) shows the evolution for up/u∗ = 2.0, as previously discussed.
This case showed that increasing the ratio of up/u∗ causes a larger pressure drop to
be experienced by the early particle paths. This ultimately leads to the shock front
velocity becoming negative with respect to the piston before the re-pressurization was
able to be communicated forward to accelerate the shock front.

The results presented in figures 14 and 15 show that the behaviour of the shock
wave evolution changes with up/u∗, which was shown to play an important part on
the shock structure in § 4. For large values of this ratio (up/u∗ > 2.0) the behaviour
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FIGURE 16. (Colour online) Comparison of shock front position obtained from MD, N–S
and Euler simulations with up/ūo = 20, u∗/ūo = 10, ηo = 0.012 and varying ε.

computed by Kamenetsky et al. (2000) is recovered. However, decreasing this ratio
leads to an increased number of elastic collisions being present during the evolution,
leading to a transition between this purely inelastic behaviour, and what is expected
for elastic media.

Figure 16 shows the effect of ε on the evolution of the shock structure and
differences between the MD and continuum models for up/ūo = 20, u∗/ūo = 10,
ηo = 0.012. Results show that all values of ε gave the same behaviour of the shock
front pulling back towards the piston, although the time and distance from the piston
for the pull back differ. Figure 16(a) shows that for ε = 0.80 the front turned to
the piston at t/τo ≈ 0.5, at a distance ahead of the piston of ∼1.5λo for Euler and
∼2.6λo for N–S. The behaviour of the shock front can be described by observing
the pressure felt by the particle paths near the piston, which is shown in figure 17(a).
The early particle paths along the piston experienced a larger and more rapid pressure
drop as ε was decreased, which can simply be attributed to a larger cooling rate. The
overall dynamics was similar, with the presence of a large pressure drop, followed
by a re-pressurization prior to coming to some steady value. The more rapid pressure
drop lead to a quicker decrease in shock front velocity for lower ε, as shown in
figure 17(b). Once the transient behaviour subsided, all values of ε obtained the same
shock front velocity, as expected since the states in the equilibrium region are equal.

The role that the initial packing factor ηo has on the relaxation process is illustrated
in figure 18, obtained for up/ūo = 20, u∗/ūo = 10 and ε= 0.95. Results show that the
time for the shock front reversing towards the piston was unaffected by ηo, with each
case reversing at t/τo≈1.5. However, the distance ahead of the piston where the shock
reversed to the piston increased with greater values of ηo, where ηo= 0.005 extended
∼6.5λo ahead of the piston before reversing, while ηo = 0.025 extended ∼8λo. These
differences can be attributed to the longer relaxation zone length expected for larger
values of ηo, as shown in § 4.

5.3. Scaling of the evolution with u∗

Results in § 4 indicated that, for up/u∗ > 0.3, equal values of up/u∗ yielded the same
shock structure once scaling was completed with u∗ instead of ūo. Considering this
finding, the evolution was compared for similar values of up/u∗ with time scaled by
τ ∗= λo/u∗. Figure 19 shows the location of the shock front using such a time scaling
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FIGURE 17. (Colour online) Evolution of (a) pressure felt for particle paths along the
piston face, and (b) velocity relative to the piston, for different values of ε, as obtained
from N–S for up/ūo = 20, u∗/ūo = 10 and ηo = 0.012.
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ηo was varied, and up/ūo = 20, u∗/ūo = 10 and ε= 0.95.
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FIGURE 19. (Colour online) Comparison of shock front position obtained from N–S where
up and u∗ are varied, with up/u∗ = 2, ηo = 0.012 and ε= 0.95.

for the cases where up and u∗ were varied to satisfy up/u∗ = 2, with ηo = 0.012
and ε = 0.95. The results show that under this scaling, the evolution of each shock
structure was nearly identical. The distance and time that the reversal towards the
piston occurred were equal, occurring with the shock front 7λo ahead of the piston
at a time of 15τ ∗.
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FIGURE 20. (Colour online) Evolution of shock structure obtained from Euler simulations
where incoming flow is perturbed from t/τo= 0 to 1.0 for up/ūo= 20, u∗/ūo= 10, ε= 0.95
and ηo = 0.012. Incoming flow is perturbed in bins of dx= λo, where σ = 0.33ρo.

6. Nonlinear stability of the shock
6.1. Stability during the shock formation phase

The MD results of Sirmas & Radulescu (2015) showed that the shock becomes
rippled during the formation stage. The continuum descriptions are now investigated
to determine if they can capture this instability. The one-dimensional simulations
described in the previous section were extended to two dimensions. The incoming
flow field was perturbed for a short amount of time in order to investigate whether
perturbations would grow or decay.

Figure 20 shows the results for inviscid continuum simulations with up/ūo = 20,
u∗/ūo = 10, ε = 0.95 and ηo = 0.012. For this case, the density was perturbed
for incoming flow during the times t/τo = 0 to 1.0. A contour line was chosen
arbitrarily at ρ/ρo = 29 to visualize instabilities. The results show that the structure
did become unstable while the incoming flow field was being perturbed. However,
as the perturbations stopped, the instabilities decayed and smeared along the piston
face. Similar results were also obtained using the Navier–Stokes model, although the
perturbations diffused out more rapidly. The 1-D solutions described in the previous
sections were recovered. This example reveals that the structure remains unstable
only when the incoming flow is continuously perturbed, with perturbations unable to
amplify and sustain an unstable structure.

The continuum models assume that matter is continuously distributed without any
fluctuations. This is not a valid representation at scales comparable to the mean free
path, as density fluctuations of growing magnitude are expected to play sensible roles.
When the domain of disks is divided into bins of size dx, the variance in number

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

34
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.345


Structure and stability of shock waves in granular gases 593

MD
up

up
Continuum

®o + ®�

dx
dx

FIGURE 21. (Colour online) Schematic comparing the MD and continuum domains, where
continuum simulations are perturbed in bins of size dx× dx with amplitudes in agreement
with statistical fluctuations observed in MD being split into bins of similar dimensions.

density is inversely proportional to the cell size, yielding (Bird 1999)

σ =
ρod
√

π

2
√
η dx

. (6.1)

This result is derived in appendix A. Since it is evident that there are large fluctuations
in the MD simulations, these fluctuations were incorporated into the continuum
description to investigate the role they may play. To account for the statistical
fluctuations, perturbations were introduced into the incoming density flow field. This
was simply done by separating the domain and incoming flow into bins of size
dx× dx and perturbing the density with some value ρ ′, i.e. ρ = ρo+ ρ

′. A schematic
of these perturbed cells is shown in figure 21, which compares the representative
cell size in MD to the perturbed bins which were introduced in the continuum
model. The amplitude of the perturbations were taken randomly within the range
−2σ 6 ρ ′6 2σ , where σ was given from (6.1). This range was chosen for the simple
stepwise distribution used here to recover the same standard deviation given in the
actual distribution from MD.

Figure 22 shows the results for the evolution of the two-dimensional structure
obtained from Euler and N–S with the inclusion of these fluctuations, for the case
where up/ūo = 20, u∗/ūo = 10, ε = 0.95 and ηo = 0.012. For comparison, the coarse
grain averaged density distribution from MD is also shown. In this case, the perturbed
bins in the continuum models were given a size of dx= λo, which corresponds to a
standard deviation of σ = 0.33ρo. At initial times, a noisy flow can be seen moving
towards the piston face, which leads to a jump in density with the formation of the
shock wave. As time progressed, density rises rapidly at the piston face, which is
seen in figure 22(b), for t/τo = 2.71. Instabilities could be seen forming in the Euler
simulations at this time. At later times (t/τo = 5.41 and 8.12), N–S and MD yielded
instabilities with bumps forming near the piston face and extending ahead.

Figure 23 further compares the developed structure from N–S and MD, where
streamlines and pattern formation were outlined. Results for N–S show that the
model recovered the same formation of convective rolls in the higher density regions.
These results demonstrate that the continuum models could indeed recover the same
instability seen in MD if molecular fluctuations were included. Also given in figure 23
is the relaxation length scale under these parameters which was lR≈ 7.3λo, as obtained
in § 4. As can be seen, both MD and N–S yielded a size of these bumps that is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

34
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.345


594 N. Sirmas and M. I. Radulescu

0 2 4 6 8 10121416 0 2 4 6 8 10121416 0 2 4 6 8 10121416 0 2 4 6 8 10121416

0 2 4 6 8 10121416 0 2 4 6 8 10121416 0 2 4 6 8 10121416 0 2 4 6 8 10121416

0 2 4 6 8 10121416 0 2 4 6 8 10121416 0 2 4 6 8 10121416 0 2 4 6 8 10121416

16
14
12
10
8
6
4
2

16
14
12
10
8
6
4
2

16
14
12
10
8
6
4
2

16
14
12
10
8
6
4
2

16
14
12
10
8
6
4
2

16
14
12
10
8
6
4
2

16
14
12
10

8
6
4
2

16
14
12
10

8
6
4
2

16
14
12
10

8
6
4
2

16
14
12
10
8
6
4
2

16
14
12
10
8
6
4
2

16
14
12
10
8
6
4
2

0
4
8
12
16
20
24
28
32
36

0
4
8
12
16
20
24
28
32
36

0
4
8
12
16
20
24
28
32
36

®/
® o

®/
® o

®/
® o

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

y/
¬ o

y/
¬ o

y/
¬ o

(x - up t)/¬o (x - up t)/¬o (x - up t)/¬o (x - up t)/¬o
t/†o = 0.90 t/†o = 2.71 t/†o = 5.41 t/†o = 8.12

FIGURE 22. Evolution of shock morphology obtained at different times from Euler (a–d),
N–S (e–h) and MD (i–l) simulations with up/ūo = 20, u∗/ūo = 10, ε = 0.95 and ηo =

0.012. Continuum simulations have a perturbation size of dx= λo, which corresponds to
a standard deviation of σ = 0.33ρo.

similar in size to lR. To investigate if the wavelength of the patterns was locked to the
domain size, a larger domain of y/λo = 25 was also computed, with the results from
N–S recovering a similar structure to what was seen for the smaller domain (Sirmas
2017). The size of the bins and the amplitude of perturbations were also varied.
The results revealed that a similar wavelength of instability can still be recovered
for different bin sizes, as long as the amplitudes of perturbations are in agreement
with (6.1).

Figure 24 shows the resulting density distribution from (a) N–S and (b) MD
for up/u∗ = 3.0, u∗/ūo = 10, ε = 0.95 and ηo = 0.012. Under these conditions
lR ≈ 5.8λo, which is shown in the images. Results from MD show bumps with a
similar wavelength to lR. Results from N–S show that the structure still remained
unstable, although the wavelength of instability from N–S was larger than lR for these
parameters. Results from (a) N–S and (b) MD still show fair agreement, demonstrating
that an increasing value of up/u∗ yields a more compact unstable structure.

Figure 25 shows the results for up/u∗ = 1.0, u∗/ūo = 10, ε = 0.95 and ηo = 0.012.
Under these conditions, lR ≈ 16.8λo, as shown in the images. Unstable patterns
are difficult to see in MD, although the results from N–S demonstrate that these
parameters still became unstable, with convective rolls and bumps forming along the
piston face. The spacing of these patterns was shown to be similar to the relaxation
length.
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(a) N–S and (b) MD simulations, where up/ūo= 20, u∗/ūo= 10 and ε= 0.95. Also shown
is the relaxation length for these conditions, where lR ≈ 7.3λo. N–S simulations perturbed
with bins of size dx= λo.
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FIGURE 24. (Colour online) Comparison of shock morphology obtained at t/τo= 5.40 for
(a) N–S and (b) MD simulations, where up/ūo = 30, u∗/ūo = 10, ε= 0.95 and ηo = 0.012.
Also shown is the relaxation length for these conditions, where lR≈5.8λo. N–S simulations
perturbed with bins of size dx= λo.

Results from N–S are shown in figures 26(a) and 26(b) for up/ūo = 7.5 and 5.0,
respectively, with u∗/ūo = 10, ε = 0.95 and ηo = 0.012. The coarse grain averaged
properties in MD are too noisy to interpret any instabilities, and are not included.
For the case where up/u∗ = 0.75 in figure 26(a), convective rolls are still seen to
occur along the piston face, which occur over similar lengths to the relaxation length,
which is 29.5λo for these parameters. However, as up/u∗ is decreased to 0.50 in
figure 26(b), convective rolls are no longer seen along the piston face, yielding a
stable structure. For this case the relaxation length is 65.5λo. These results indicate
a transition between the unstable and stable structures occurring at up/u∗ ≈ 0.75 for
this value of ηo and ε.

Figure 27 shows the structures obtained from N–S for (a) ε=0.90, and (b) ε=0.80,
with up/ūo=20, u∗/ūo=10 and ηo=0.012. For these cases the relaxation length scales
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FIGURE 25. (Colour online) Comparison of shock morphology obtained at t/τo = 16.24
for (a) N–S and (b) MD simulations, where up/ūo = 10, u∗/ūo = 10, ε = 0.95 and ηo =

0.012. Also shown is the relaxation length for these conditions, where lR ≈ 16.8λo. N–S
simulations perturbed with bins of size dx= λo.
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FIGURE 26. (Colour online) Shock morphologies obtained from N–S for (a) up/ūo = 7.5
(where lR ≈ 29.5λo) and (b) up/ūo = 5.0, where u∗/ūo = 10, ε = 0.95 and ηo = 0.012.
Simulations perturbed with bins of size dx= λo.

are 3.8λo for ε = 0.90 and 2.0λo for ε = 0.80. Both results show the characteristic
unstable bumps observed with ε = 0.95, although the bumps appear larger than the
relaxation length scales. These results show that the instability becomes more compact
with decreasing ε, following the trend given for lR in § 4.

The final parameter that was investigated was the initial packing factor ηo. In
addition to ηo = 0.012 shown in figure 23, ηo = 0.025 and 0.005 were investigated,
with ε= 0.95, up/ūo = 20 and u∗/ūo = 10. The results for the developed structures at
these conditions are showing in figure 28. In the dense case shown in figure 28(a),
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FIGURE 27. (Colour online) Developed shock structures obtained from N–S and MD
simulations at t/τo= 8.12 for (a) ε= 0.90 and (b) ε= 0.80, where up/ūo= 20, u∗/ūo= 10
and ηo = 0.012. Also shown is the relaxation length for these conditions.
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FIGURE 28. (Colour online) Developed shock structures obtained from N–S for (a) ηo=

0.025 and (b) ηo = 0.005, where ε= 0.95, up/ūo = 20 and u∗/ūo = 10. Also shown is the
relaxation length for these conditions.

where ηo= 0.025, an unstable structure is recovered, with large bumps similar in size
to the relaxation length scale (lR ≈ 9.9λo). Similarly, the dilute case of ηo = 0.005,
shown in figure 28(b), recovered a more compact instability, comparable in size to
the relaxation length (lR ≈ 5.9λo). Similar to the dependence on up/u∗ and ε, varying
ηo modified the shock structure in accordance with the relaxation length scale. These
results show that the trend applies to both the dilute and dense gas regimes.

6.2. Stability of steady-state structure
While the previous section demonstrated that instability is manifested correctly during
the shock formation stage, it is worthwhile determining if the mechanism is due to the
transient pressure evolution, as argued by Sirmas & Radulescu (2015), or an intrinsic
instability of the steady shock. The stability of the steady shock structure was thus
investigated by perturbing the steady-state structure derived in § 4 for a short duration
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FIGURE 29. (Colour online) Evolution of steady-state structure in Euler simulations where
incoming flow was perturbed from t/τo= 0− 0.9 for D/ūo= 20, u∗/ūo= 10, ε= 0.95 and
ηo = 0.012.

and observing whether the perturbations grow or decay. This is a similar approach to
how multi-dimensional instabilities in exothermic shock waves (i.e. detonations) can
be investigated (see, for example, Short & Stewart (1998)).

Figure 29 shows a sequence of images for the resulting evolution of the inviscid
steady-state structure with D/ūo = 20, u∗/ūo = 10, ε = 0.95 and ηo = 0.012 which
was perturbed between the times t/τo = 0 to 0.9. Initially, instabilities formed after
perturbations were introduced, as seen at t/τo= 0.180 in figure 29(b), and up to t/τo=

7.22 in figure 29(d). Once the perturbations stopped, the front flattened out. During
this time, instabilities were pushed back into the shock structure, and did not amplify.
From this sequence it can be deduced that the shock wave is stable for the inviscid
description.

Molecular noise was also implemented into the steady structure as described above.
Figure 30 shows the evolution of the inviscid shock structure perturbed continuously
after t/τo=0 with bins of dx=λo. Similar to the previous case, D/ūo=20, u∗/ūo=10,
ε= 0.95 and ηo= 0.012. The results show that the structure began forming instabilities
immediately, visible at t/τo = 1.80. As time progressed, the instabilities continued to
grow and extend back in the negative z direction. This agrees with what was seen for
the transient case in the previous section, whereby the inviscid results remain unstable
in the presence of a continuous source of fluctuations. This again highlights the failure
of continuum models neglecting the molecular noise to treat the stability problem of
shocks in such dissipative gases.
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FIGURE 30. (Colour online) Evolution of steady-state structure in Euler simulations where
incoming flow was perturbed continuously from t/τo = 0 for D/ūo = 20, u∗/ūo = 10, ε =
0.95 and ηo = 0.012. Incoming flow was perturbed in bins of dx= λo.

The connection between the relaxation length scales and unstable patterns was also
addressed using the steady-state structure. For this case, the viscous solution was
considered. Although the steady-state structure was not obtained for the viscous case,
the inviscid structure could be shown to form a diffusive structure once implemented
into the N–S solver and given enough time to evolve. For the case given here,
the diffusive structure was shown to form after t/τo = 2.1. Therefore, in order to
investigate the stability of the viscous steady-state structure, perturbations were
implemented after this time required for a steady viscous structure to form.

Figure 31 gives the evolving shock structure from N–S for D/ūo = 20, u∗/ūo = 10,
ε = 0.95 and ηo = 0.012. Perturbations were initiated after t/τo = 2.1 in bins of size
dx= λo. The results show that instabilities did indeed form, although at a slower rate
than the inviscid model. After t/τo = 6.50, shown in figure 31(e), the characteristic
unstable pattern seen in the previous section was observed. In comparing the size of
the bumps, in figure 31(h), it can be seen that the bumps are similar in size to the
relaxation length, which for this case is approximately 7.5λo.

6.3. Instability mechanism
Both the formation of the shock wave and the travelling wave steady solution
were found to be unstable only when molecular fluctuations were introduced. The
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FIGURE 31. (Colour online) Evolution of steady-state structure in N–S simulations for
D/ūo= 20, u∗/ūo= 10, ε= 0.95 and ηo= 0.012. Incoming flow was perturbed continuously
in bins of dx= λo after t/τo = 2.1, which was the time chosen in order for the diffusive
structure of the steady-state structure to have formed. The relaxation length shown in later
times is lR/λo ≈ 7.5.

simulations reproduced well the results using molecular dynamics, in that a ripple-like
instability is established with the presence of convective rolls. The wavelength of
these instabilities is comparable to the relaxation length of the shock wave structure,
suggesting that it is controlled by the dissipation rate. Since the instability is also
present in the steady travelling wave, this rules out the transient mechanism suggested
by Sirmas & Radulescu (2015).

Standard explanations for shock instability are related to the shock Hugoniot
(Zeldovich & Raizer 1966; Landau & Lifshitz 1987; Fickett & Davis 2000). Two
of the common mechanisms of instability based on the equilibrium end states are
the D’yakov–Kontorovich instability and the process by which the fluid undergoes
phase transitions. Previously, Sirmas & Radulescu (2015) used their MD results to
reconstruct the shock Hugoniots and concluded that these mechanisms were not
responsible for the instability observed. This analysis is not repeated here, although
similar conclusions can be made using the results of the continuum models, which
were found to be in very good agreement with the MD results for global shock
jumps.

The important finding that molecular level fluctuations are required to reproduce
the ripple-like instability suggests that the mechanism for instability is not purely
hydrodynamic, but requires rarefied gas effects be incorporated in the description.
Indeed, the scale of the phenomenon studied is controlled by the relaxation rate. For
shocks that become unstable, the relaxation characteristic time is only a few mean
free times, as discussed in § 5. It is thus not surprising that non-equilibrium effects
modify the global dynamics. Here it is shown that while the mean profiles are not
sensitively affected by these non-equilibrium effects, as Euler and Navier–Stokes
models reproduce well the global dynamics, the stability is affected by these
non-equilibrium effects in a non-trivial way.

It is worthwhile investigating the relative importance of non-equilibrium effects
using the scaling arguments of Bird (1999) comparing the characteristic length scales
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of the phenomenon to the mean free path. Three limiting length scales must be
considered. The first is the rarefied gas limit. This limit, which identifies whether
continuum models are valid or whether a microscopic approach must be used, can
be formulated in terms of the Knudsen number, Kn = λ/L, which relates the length
scale of interest L to the mean free path of the particles. Generally, it is assumed
that continuum models are invalid when (Bird 1999)

Kn< 0.1− 0.2. (6.2)

In the current problem, the relaxation length lR is the length scale of interest, which
would require lR > 5λo − 10λo in order for the continuum model to remain valid.
The second limit of interest is the limit that identifies whether fluctuations play an
important role in the dynamics of the problem. Bird argues that fluctuations must be
considered if a box constructed with sides of the given length scale yields a standard
deviation of approximately 3 % (Bird 1999). This regime is particularly important
for flows close to the dense gas regime where continuum assumption still holds,
for example, in microelectromechanical systems (Gad-el Hak 2001). In the current
two-dimensional (2-D) system, by applying (B 5), the limit is found as

σ =
δ

L
→ Lcrit =

δ

0.03
, (6.3)

where δ is the mean molecular spacing between particles. Given this limit, length
scales exceeding this value are not expected to be influenced by molecular fluctuations,
while fluctuations must be considered for length scales lower than this value. The third
limit is the assumption that the gas can be treated as a dilute gas. In the limit of a
dilute gas, it is assumed that there are only binary collisions, which simplifies the
derivations from kinetic theory. The dilute gas assumption assumes that δ� d, with
the approximate limit given as (Bird 1999)

δ

d
= 7. (6.4)

Since η=π/4(d/δ)2 from (B 4), this yields a limiting packing factor of

ηdilute . 0.016. (6.5)

The relaxation length scales lR which were found in § 4 were compared to these
limiting length scales. Results from § 6 showed that instabilities occurred when the
value of up/u∗ > 0.75 (specifically seen for ηo = 0.012 and ε = 0.95). Figure 32
compares the resulting length scales for ε=0.95 obtained for different packing factors,
and compared with the limits discussed above. The solid symbols represent the cases
where up/u∗> 0.75, while the empty symbols are for piston velocities below this ratio.

The results show that for low values of up/u∗, lR lies above the limits associated
with the continuum limit (Kn < 0.1) and limit for fluctuations (σ < 3 %). As up/u∗
increases, all values of ηo begin crossing these limits. The transition at up/u∗ = 0.75
approaches the limiting boundaries while running parallel to the limit associated
with particle fluctuations (σ = 3 %). Large values of up/u∗ yielded values of lR
below these limits, signifying that fluctuations are important to consider and that the
continuum model may not be valid. While the magnitude of the relaxation length
was taken with some arbitrary equilibrium state in § 4, these results nevertheless
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The solid symbols represent the cases where up/u∗ > 0.75, while the empty symbols are
for piston velocities below this ratio.
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FIGURE 33. (Colour online) Comparison between limits in approximations with relaxation
length scales obtained from simulations for different values of ε, with ηo = 0.012 and
up/u∗ = 2.0.

show a connection between the size of the relaxation zone, and the need to consider
statistical fluctuations.

Section 6 demonstrated that results were in fair agreement when comparing the
2-D structure obtained from the continuum and MD models for ε = 0.95. However,
results in § 6.1 showed that as ε was decreased, instabilities were still shown to occur,
although the wavelengths of instabilities were in disagreement. This discrepancy can
be explained by comparing with the limits presented above. Figure 33 shows the
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values of lR for different values of ε, with ηo = 0.012 and up/u∗ = 2.0, as compared
to the limiting boundaries. The results demonstrate that a decreasing value of ε
significantly decreased the value of lR, with those given for ε = 0.90 and 0.80 lying
well below the limit of Kn = 0.1. These results show that fluctuations continue to
be important for such small relaxation lengths, although the continuum model may
not be valid, which agrees with what was observed in § 6.1. Although ε = 0.95 still
lies below these limits, the results from both § 5 and this section show that MD and
continuum agree well, which may suggest that the definition of the relaxation length
may need to be modified in future work.

7. Conclusions

Shock waves propagating in a dissipative medium, such as a granular gas or a
molecular gas undergoing strong relaxation effects, have been shown to become
unstable. The current paper addressed this problem at the continuum level by
investigating the classical problem of a piston propagating into a system of
disks (two-dimensional) that undergo activated inelastic collisions. The Euler and
Navier–Stokes equations for the continuum description were used, with the sink term
for dissipative collisions modified to treat activated collisions. Transport properties
from Jenkins and Richman were utilized for the Navier–Stokes level equations. The
results were compared with the previous findings by Sirmas & Radulescu (2015),
who performed a similar study at the microscopic level using hard particle molecular
dynamics.

One-dimensional transient behaviour and steady-state structures were obtained from
the continuum description. The transient evolution reproduced the global relaxation
dynamics observed in the molecular dynamics simulations but failed to capture any
instability. It evolved towards the derived steady-state structure. The evolution and
steady-state structure nevertheless revealed the characteristic time and length scales
of the problem. Sufficiently strong shock waves are controllable by three parameters:
the ratio between the driving piston velocity and the activation threshold for collisions
up/u∗, the coefficient of restitution ε and the initial packing factor of the disks ηo. The
independence on the initial kinetic energy is an important finding in the context of the
present work, as it implies that the results and analysis which are presented here for
an initial fluidized state also hold for an initially frozen but dispersed state. This result
is similar to the high Mach number approximation for molecular gases, which shows
an independence on the initial energy of the system (Zeldovich & Raizer 1966).

The stability of the wave during its formation phase and its steady-state propagation
were studied numerically by perturbing the upstream state. It was found that instability
was only recovered in both cases when molecular noise of the correct thermal
magnitude was introduced. The requirement of such molecular noise in the modelling
of non-equilibrium effects at scales where rarefied gas effects become important is
shown to affect only the stability of the wave, and not its global relaxation dynamics.
One interesting framework to investigate this stability problem in the future is
Landau’s fluctuating hydrodynamics, which includes thermal noise at the continuum
levels. In this respect, such stability problems in dissipative gases can benefit from
the recent results of Brey and co-workers (Brey, Maynar & De Soria 2009; Brey,
Maynar & de Soria 2011) in adapting the fluctuating hydrodynamics for granular
gases.

Overall, the current work identified the role that dissipative collisions can play on
shock wave stability and dynamics in both one and two dimensions. These results

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

34
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.345


604 N. Sirmas and M. I. Radulescu

may have implications for dissipative shock behaviour in both granular media and
molecular gases. In the context of granular media, the inclusion of activated inelastic
collisions is shown to mimic more realistic granular mixtures that may undergo
viscoelastic collisions. The obvious connection between the relaxation length scale
and ensuing instabilities is something that should now be considered in physical
phenomena exhibiting finger-like instabilities. In the context of molecular gases, the
current study may shed light on the dynamics involved in relaxing shock waves. In
a realistic molecular gas, a strong shock wave may be followed by strong relaxation
effects before coming to some equilibrium state (Zeldovich & Raizer 1966). The
current model offers an analogous system mimicking this behaviour, whereby the
activation threshold yields a method to control the temperature in the equilibrium zone,
while the coefficient of restitution can be used to tailor the relaxation zone length.
Considering this, it may be of interest to investigate the length scales involved in the
cases where shock waves have been shown to become unstable and the mechanisms
controlling instability are not fully understood (Griffiths et al. 1976; Hornung &
Lemieux 2001) to see if a similar mechanism to this study may be influencing the
dynamics.
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Appendix A. Invariance with up/u∗

The invariance of the shock structure with up/u∗ can be justified by first addressing
the governing equations controlling the shock structure. Beginning at the shock front,
in the limit of a high Mach number, as given in § 4.1, the post-shock states are

f (ηo)=

(
vs

vo

)
max

=
1
6
(1+ 4ηo +

√
(1− 8(ηo − 1)ηo) (A 1)

us

D
= (1− f (ηo)) (A 2)

ps =
D2

vo
(1− f (ηo)) (A 3)

Ts =
1
2 D2(1− f (ηo))

2. (A 4)

The first two relationships are shown to only depend on the initial packing factor, so
in the limit of high Mach number, they are expected to remain constant for any value
of up and u∗. The final two relationships are shown to also include the shock strength,
and are independent of the initial energy and pressure. By scaling with u∗2 for pressure
and temperature can alternatively be written as

ps

ρou∗2
=

D2

u∗2
(1− f (ηo)), (A 5)
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Ts

u∗2
=

1
2

D2

u∗2
(1− f (ηo))

2. (A 6)

This yields relationships for pressure and temperature as functions of only D/u∗
and ηo. Equations (A 1), (A 2), (A 5) and (A 6), confirm that the initial shock-jump
relations can be determined only as a function of D/u∗ (or up/u∗ by extension of
§ 4.1) and ηo, as seen in figure 7.

Behind the initial shock jump, the differential equations for the change in density,
pressure, temperature and velocity were shown to be controlled by the cooling rate.
Using the initial shocked state at the beginning of the relaxing region, the cooling
rate takes the form

ζ ∗ =−
4

d
√

π
(1− ε2)ρsT3/2

s ηsg2(ηs) exp
{
−

1
4

u∗2

Ts

}(
1+

1
4

u∗2

Ts

)
. (A 7)

Applying the relationship (A 1) and scaling with u∗ yields

ζ ∗

u∗3
=−

4
d
√

π
(1− ε2)

1
f (ηo)2

(
Ts

u∗2

)3/2

ηog2

(
ηo

f (ηo)

)
exp

{
−

1
4

u∗2

Ts

}(
1+

1
4

u∗2

Ts

)
.

(A 8)

When implemented into the differential equations given in (4.21) the u∗3 term cancels
out via non-dimensionalization of the other terms. Therefore, it can be concluded from
(A 8) that the rate of decay behind the shock is similar for equal values of ηo, ε and
Ts/u∗2; where Ts/u∗2 is shown to be a function of up/u∗. Therefore, similar structures
are expected for equal values of up/u∗, while keeping other parameters constant.

Appendix B. Spatial properties in system of disks
This appendix presents some details regarding spatial properties for a system of

disks, which follows the treatment of Bird (1999) for spheres. From Bird (1999), it
is noted that the mean molecular spacing between particles is

δ = n−1/f , (B 1)

where f is the number of dimensions, and the number density is

n=N/A. (B 2)

For a system of disks (two-dimensional) the spacing is

δ =

(
N
A

)−1/2

. (B 3)

Combining (B 3) and (B 2) with the definition for the packing fraction of disks, and
re-arranging for the mean spacing yields,

δ

d
=

√
π

2
√
η
, (B 4)

which is a value that is shown to play an important role in differentiating between
dilute and dense gases, and whether continuum assumptions are valid (Bird 1999).
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The standard deviation for number density in a volume, or area in this case, is
given as

σ =
1
√

nA
. (B 5)

Combining with (B 1) and (B 5), and considering A as a square with sides dx yields

σ =
d
√

π

2
√
η dx

. (B 6)
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