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ABSTRACT

We propose a new neighbouring prediction model for mortality forecasting.
For each mortality rate at age x in year t, mx,t, we construct an image of neigh-
bourhood mortality data around mx,t, that is, Emx,t(x1, x2, s), which includes
mortality information for ages in [x− x1, x+ x2], lagging k years (1≤ k≤ s).
Combined with the deep learning model – convolutional neural network, this
framework is able to capture the intricate nonlinear structure in the mortality
data: the neighbourhood effect, which can go beyond the directions of period,
age, and cohort as in classic mortality models. By performing an extensive
empirical analysis on all the 41 countries and regions in the Human Mortality
Database, we find that the proposed models achieve superior forecasting per-
formance. This framework can be further enhanced to capture the patterns and
interactions between multiple populations.
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1. INTRODUCTION

As the populations of the world’s leading economies age, longevity risk has
become a high-profile risk in recent years, which threatens the stability of the
global financial system and brings unexpected economic challenges to individ-
uals, corporations, and governments. Meanwhile, rapid advances in Artificial
Intelligence (AI) are changing the environment in which we live. Advanced AI
techniques, such as deep learning, can stimulate better solutions for longevity
risk management through providing more sophisticated and accurate mortality
models (Richman, 2018). This paper proposes a new neighbouring prediction
model powered by convolution neural network (CNN) to improve mortality
modelling and forecasting. Achieving enhanced mortality models with better
predictability, AI techniques will act as a catalyst to help facilitate the devel-
opment of the new Life Market – the traded market in longevity and mortality
linked assets and liabilities (Blake et al., 2013).

An accurate mortality model is essential for seeking effective solutions
for longevity risk. Starting from the seminal paper by Lee and Carter, var-
ious mortality models have been developed (see, e.g., Lee and Carter, 1992;
Cairns et al., 2006, 2009; Renshaw and Haberman, 2006). For most mortality
models in the literature, they share the assumptions that mortality rates are
composed of a few additive latent factors and these factors can be decomposed
along three directions: period, age, and cohort. In this paper, we propose a
neighbouring prediction model which pushes the boundary further by captur-
ing the neighbourhood effect. The key technical innovation in this framework
is that we construct 2-dimensional images of neighbourhood mortality data,
combined with the deep learning algorithm – CNN, which is specialised to
process grid-like data such as images – to build mortality forecasting mod-
els. More specifically, for each mortality rate at age x in year t, denoted as
mx,t, we construct the 2-dimensional “image” of neighbourhood mortality data
around mx,t, that is, Emx,t(x1, x2, s), which includes mortality information for
ages in [x− x1, x+ x2], lagging k years (1≤ k≤ s). Figure 1 illustrates an exam-
ple of neighbourhood mortality data of Emx,t(3, 3, 5), where x1 = x2 = 3, s= 5.
In this construction, the neighbourhood mortality image Emx,t(3, 3, 5) has a
size of (5× 7) (i.e., (s× (x1 + x2 + 1))). Each observation of mx,t is treated
as the response variable, and this neighbourhood data will then be used to
predict mx,t.

The proposed neighbouring prediction framework is able to capture the
intricate, highly nonlinear structure in the mortality data, which can go
beyond the directions of period, age, and cohort. We call this the neighbour-
hood effect. By zooming in on the mortality table, this framework models
the mortality of age x in year t as a function of not only the age of x and
the cohort of t− x but also ages and cohorts in the neighbourhood of x.
In addition, the CNN algorithm utilised in this framework improves the
prediction performance, as CNN provides a more computationally efficient
way to specialise neural networks for data with a clear grid-structured
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FIGURE 1: Neighbouring prediction for mx,t. This figure illustrates Emx,t (x1, x2, s) neighbourhood of mx,t,
with x1 = x2 = 3, s= 5.

topology and to discover intricate relations that are highly nonlinear in the
mortality data. Moreover, reshaping the original mortality table into the
neighbourhood mortality data could significantly enlarge the sample, making
it possible to use big data to enhance the mortality forecasting. Finally,
Emx,t(x1, x2, s) is Ft−1 measurable, that is, it only uses information up to
year t− 1. This means that the neighbouring prediction model by construc-
tion has a one-year-ahead forecasting nature, in both the training set and
test set.
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(a) (b)

FIGURE 2: Conceptual modelling framework for neighbouring prediction models. (a) Pure model. (b)
Hybrid model.

Figure 2 displays the conceptual frameworks for the neighbouring predic-
tion models, including the Pure Model and Hybrid Model. In the Pure Model
(Figure 8(a)), the historical mortality data are reshaped as neighbourhood
mortality data, Emx,t(x1, x2, s), and then fed into a deep learning algorithm
to perform mortality prediction. In the Hybrid Model (Figure 8(b)), besides
neighbourhood mortality data, Emx,t(x1, x2, s), external observable factors (e.g.,
age, year, cohort, region, socio-economic variables, etc.) are fed into another
deep learning model. These two parts are joined then together with a concate-
nating function. By performing an extensive empirical analysis on 41 countries
and regions around the world, we find that the proposed model achieves
superior fitness of historical data and better out-of-sample forecast perfor-
mance. For example, the overall test error of the Pure Model (Hybrid Model)
reduces by 1.97% (2.01%) compared to the best performed benchmark model
and reduces by 7.02% (7.06%) compared to the worst performed benchmark
model.

We further propose two enhanced neighbouring prediction models by
including multi-population data. These models are able to take mortality
dependence among different populations into consideration. We use all avail-
able mortality data from all regions/countries in the sample to construct a
universal model that are applicable for all populations. In particular, the Pure
Model is enhanced with all multi-population data that are available in our
sample space, which we call Pure-All Model, or PALL Model. Similarly, the
enhanced Hybrid Model with mortality data from all populations is called
Hybrid All Model, or HALL Model. We find that the prediction performance
of the PALL Model and HALL Model is significantly improved, especially
for regions with very limited mortality data. These enhanced models not only
benefit from an increased sample size but also are capable to capture the
co-movement and dependence in mortality between different populations.

We perform various robustness checks for the proposed neighbouring pre-
diction models. First, we test the robustness of the four neighbouring mortality
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models to different CNN structures. We find that the prediction errors are sta-
ble for CNN architecture parameters. Second, we test different methods to
handle missing data. Our prediction results are robust to different methods.
Next, we perform a completelymissing data analysis – a leave-one-population-
out (LOPO) analysis. For each country/region, we pretend that the mortality
data for this particular population are completely missing. We construct a
neighbouring mortality model using mortality data from other countries,
predict the mortality rates for this population, and finally evaluate the per-
formance with the true mortality data from this population that is left out of
model estimation. This completely missing data problem cannot be tackled by
traditional mortality models. Interestingly, we find that the results from neigh-
bouring prediction model produce competitively well-prediction results in the
completely missing data case as the benchmarks using full information. These
results demonstrate that our proposed approach is able to learn representa-
tion and commonality of data and generalise the discovered intricate structure
from the data to guarantee good predicting performance. This is of particu-
lar interest in situations where data scarcity is a problem. A good example
where data may be completely missing is when life insurance companies plan to
investigate a new business line, no historical data are readily available for risk
modelling. In the final robustness check, we estimate the neighbouring mor-
tality models with an extending window estimation, while the main results are
based on splitting the data into training set (80%) and test set (20%). We show
that the proposed models have robust prediction results in both estimation
procedures.

This paper makes an important contribution to the mortality modelling and
forecasting literature. In their seminal paper, Lee and Carter (1992) proposed a
linear extrapolation model for stochastic mortality modelling and forecasting,
which has become the standard model in the mortality forecast literature. Since
then, various extensions of the Lee–Carter model have been proposed for single
population modelling (see, e.g., Cairns et al., 2006; Renshaw and Haberman,
2006; Cairns et al., 2009). For recent development of mortality modelling and
forecasting, see Blake et al. (2018) and the references therein. Our paper pro-
vides a neighbouring prediction model for mortality, which is able to capture
the neighbourhood effect and achieves more accurate out-of-sample forecast-
ing. We also propose enhanced prediction models that include mortality data
frommultiple countries. To this end, our paper also taps the literature of multi-
population mortality modelling. Started by Li and Lee (2005), a number of
two- and multi-population mortality models have been proposed to enhance
mortality modelling and reduce basis risk (see, e.g., Dowd et al., 2011; Jarner
and Kryger, 2011; Zhou et al., 2013; Chen et al., 2015; Wang et al., 2015, 2018;
Li et al., 2017; Zhu et al., 2017).

In recent years, there are also burgeoning literature on employing machine
learning in the area of mortality modelling. For example, Hainaut (2018) uses
autoencoder networks to estimate latent factors for mortality. Richman and
Wüthrich (forthcoming) extend the Lee–Carter model to multiple populations
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based on neural networks. Dong et al. (forthcoming) use tensor decom-
position to construct multi-population mortality models. Based on similar
neighbourhood idea, Perla et al. (forthcoming) perform time series forecast-
ing for mortality using deep learning algorithms such as recurrent neural
network (RNN) and CNN. They show that a simple CNN model can be
interpreted as a generalisation of the Lee–Carter model. In particular, they
show that CNNs work better than RNNs though the neighbourhood has
a time-causal property. The key contribution of our paper is to design the
mortality modelling problem as a computer vision task for capturing the
neighbourhood effect of mortality. In line with this idea, we crop mortality
tables into neighbourhood images, which preserve the intricate local relation-
ship in the mortality data. Consequently, this paper employs 2-dimensional
CNN specialised for computer vision tasks to represent and generalise the
relationship.

The rest of the paper proceeds as follows. Section 2 proposes the neighbour-
ing prediction models. Section 3 presents the main results, showing that the
proposed models have superior prediction performance in an extensive empir-
ical analysis. Section 4 provides various robustness checks. Finally, Section 5
concludes.

2. NEIGHBOURING PREDICTION MODELS

2.1. The neighbourhood effect

Most existing mortality models share the same general form, in which the cen-
tral death rate at age x and year t, mx,t, can be expressed as follows (Cairns
et al., 2009):

g(mx,t) =
I∑
i

β(i)
x · κ(i)

t · γ (i)
t−x, (2.1)

where β (i)
x represents age-related effect; κ

(i)
t represents period-related effect;

γ
(i)
t−x represents cohort-related effect, i= 1, 2, . . . , I ; and the function g( · ) is a

transformation function. For example, in Lee–Carter model (Lee and Carter,
1992), the logarithmic transformation of mx,t is specified as a two-factor
model:

log (mx,t) = β (1)
x + β (2)

x κ
(2)
t . (2.2)

In this specification, I = 2, κ (1)
t = 1, γ (1)

t−x = γ
(2)
t−x = 1. The time-varying mortality

index, κ
(2)
t , represents the overall level of mortality improvement. In another

widely used mortality model, Cairns–Blake–Dowd (CBD) model (Cairns et al.,
2006), the logit transformation of the death rate, qx,t ≈ 1− exp(−mx,t), is
modelled as:
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log
(

qx,t
1− qx,t

)
= κ

(1)
t + κ

(2)
t (x− x̄), (2.3)

where x̄ is the average age in the sample span, and we can see that in this
specification, β (1)

x = 1, β (2)
x = x− x̄, γ (1)

t−x = γ
(2)
t−x = 1. κ

(1)
t represents the overall

mortality improvement, and κ
(2)
t is the steepness of the logit transformation

of the mortality curve.
Note that a mortality model specification as in Equation (2.1) has the

following two assumptions:

(a) The mortality rate (upon g- transformation) can be decomposed into I
additive latent factors.

(b) Each factor can be decomposed into three multiplicative effects: age,
period, and cohort.

The above two assumptions achieve great prediction accuracy and model
interpretability in a parsimonious framework; hence, these models expressed
in Equation (2.1) have been the preferred methodology in the literature and
the official forecasts (e.g., U.S. Census Bureau). Assumption (a) implies a lin-
ear relationship of different latent factors. Assumption (b) indicates that each
factor is decomposed along three directions: age, period, and cohort.

In this paper, we propose a neighbouring prediction model which pushes
the boundary further by predicting mx,t with a neighbourhood around mx,t.
More specifically, we construct neighbourhood data, Emx,t(x1, x2, s), as follows:

Emx,t(x1, x2, s)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mx+x1,t−s, . . . mx+x1,t−2, mx+x1,t−1

... . . .
...

...

mx+1,t−s, . . . mx+1,t−2, mx+1,t−1

mx,t−s, . . . mx,t−2, mx,t−1

mx−1,t−s, . . . mx−1,t−2, mx−1,t−1

... . . .
...

...

mx−x2,t−s, . . . mx−x2,t−2, mx−x2,t−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.4)

In other words, for each mortality rate at age x and year t, mx,t, we can con-
struct Emx,t(x1, x2, s), which is a two-dimensional neighbourhood around mx,t,
including mortality information for ages x− x1, . . . , x, . . . , x+ x2, lagging k-
years, k= 1, 2, . . . , s, up to the year t− 1. The mortality data Emx,t(x1, x2, s) are
cropped from the original entire mortality table and collected as rectangular,
equal-sized submatrices of the full observed sample and will be used as our
predictive model inputs. As such, these submatrices of neighbourhood mor-
tality data can be treated as images. Importantly, note that in Emx,t(x1, x2, s)
defined according to Equation (2.4) is Ft−1 measurable, which means that
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(a) (b) (c)

(d)

(g) (h) (i)

(e) (f)

FIGURE 3: Examples of neighbourhood mortality data. This figure illustrates images of sample
neighbourhood mortality data, Emx,t (x1, x2, s), for total population in the US. The window width of

Emx,t (x1, x2, s) is set to be x1 = x2 = s= 6. Ages of 65, 90, 95 in the years 1945, 1975, and 2015 are displayed. In
these images, the darker the color, the lower the mortality rates.

using Emx,t(x1, x2, s) to predict mortality mx,t is performing a one-step-ahead
forecasting, even in training set (i.e., in-sample data).

Figure 3 displays images of sample neighbourhood mortality data for total
population in the US. In these images, the darker the color, the lower the mor-
tality rates. We can see that the patterns vary a lot in different neighbourhoods
in the mortality table. For example, in image of Em90,1945 (6, 6, 6), we can see two
obvious light vertical lines for years 1940 and 1943: the mortality rates of these
two years are higher than the other years. We also observe in this image that
year 1942 has much darker color than the years close to it. For Em95,1945 (6, 6, 6),
we see a steep mortality increase from age 99 to age 100 in the image, which
cannot be found from other neighbourhoodmortality data. These various local
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patterns cannot be fully represented by the three factors: age–year–cohort, in a
linear model. We construct Emx,t(x1, x2, s) in such a way that it could be treated
as 2D images; hence, not only mortality rate of age x or in year t is included
in the model, but mortality of neighbouring ages or years and their interac-
tions are also used to construct the prediction model. The 2D neighbourhood
images lead us to use 2D CNN that is specialised for such computer vision
task. Using these neighbourhood data as model inputs is important for mor-
tality forecasting as it provides a more comprehensive picture of these intricate
local nonlinear patterns.

2.2. Neighbouring prediction models

We introduce the following four neighbouring prediction models:

Pure Model:

mx,t = f (Emx,t(x1, x2, s)), (2.5)

where f ( · ) represents a predictive model constructed from certain deep learn-
ing algorithm with image data as inputs. This model is named “Pure Model”
because only historical mortality data are used as model inputs. The historical
mortality data are reshaped as neighbourhood mortality data, Emx,t(x1, x2, s),
which are then fed into a deep learning model to perform mortality prediction.
The flow chart of the conceptual framework for the Pure Model is displayed in
Figure 8(a).

Hybrid Model:

mx,t = f1 ◦ c (
f2(Emx,t(x1, x2, s)),w (Xt)

)
, (2.6)

where f2( · ) is a predictive model constructed from certain deep learning algo-
rithmwith image data as inputs and a densely connected neural layer as output;
f1( · ) and w( · ) are deep learning algorithms with vector data as inputs and
a densely connected neural layer as output; Xt is a vector of observable fac-
tors; c(·, ·) is a concatenating function which links model f2( · ) and model
w( · ); and “◦" denotes function composition. In this model, historical mortality
data are reshaped as neighbourhood mortality data, Emx,t(x1, x2, s), and fed into
deep learning model f2( · ). External observable factors (e.g., age, year, cohort,
region, socio-economic variables, etc.) are fed into another deep learningmodel
w( · ). Finally, these two parts are joined together with a concatenating function
and then learnt by deep learning algorithms. Hence, it is called Hybrid Model,
the conceptual flow chart for which is displayed in Figure 8(b).

Pure All (PALL) Model:

The Pure Model can be further enhanced by including multi-population
data. In other words, in the PALL Model, we will use all available mortality

https://doi.org/10.1017/asb.2021.13 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.13


698 C.-W. WANG, J. ZHANG AND W. ZHU

data from all regions/countries in the sample, reshape them into neighbour-
hood mortality images, and construct a universal model that is applicable for
all populations. This model will be able to take mortality dependence among
different populations into consideration. Moreover, in some regions, the data
availability and credibility may be a big issue in mortality modelling and
forecasting. Hence, the single population mortality models may not have sat-
isfying performance. As a result, including all data available from different
populations into the neighbouring prediction model potentially can signifi-
cantly increase the sample size and, hence, improve the model performance.
For example, in the empirical analysis discussed in this paper, utilising neigh-
bourhood mortality data from all populations increases the sample size to
100,608.

Hybrid All (HALL) Model:

Similarly, including data from different countries/regions can augment the
Hybrid Model to a multi-population version. Again, the HALLmodel not only
benefits from an increased sample size but also is capable to capture and model
the dependence between different populations.

The advantages of the four proposed neighbouring prediction models
are fivefold. First, this framework captures the neighbourhood effect. Using
Emx,t(x1, x2, s) to construct the feature space, the model is capable of learn-
ing the representation of the neighbourhood through advanced abstraction
and discover more general predictive relations, including age, period, cohort,
and many more abstract neighbourhood representations and relationships.
Because this model zooms in on the mortality table, it models mx,t as a func-
tion of not only the age of x but also ages in the neighbourhood of x, that
is, [x− x1, x+ x2], together with their interactions. Similarly, instead of mod-
elling mx,t as a function of t− x cohort, this framework models mx,t as a
function of the interactions of t− x cohorts and other cohorts in the neigh-
bourhood. Moreover, Emx,t(x1, x2, s) is lagging k years, where 1≤ k≤ s, which
means that by construction, the proposed framework is performing one-year
ahead forecast. Second, utilising deep learning algorithm that is specialised
for computer vision (CNN that will be described in Subsection 2.3.2), the
proposed neighbourhood model is able to discover intricate relations that
are highly nonlinear, extending the linear specification in Equation (2.1).
Third, reshaping the original entire mortality table into the neighbourhood
mortality data could significantly increase the number of observations used
to construct the prediction model (see, for example, the last column of
Table 1 how the sample size is increased after reshaping the mortality data.
In particular, in PALL and HALL models, the sample size is increased to
100,608.). Fourth, the Hybrid model in Figure 8(b) provides a convenient
framework to study the relationship between socio-economic factors and
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TABLE 1

SUMMARY OF COUNTRIES AND REGIONS IN THE HUMAN MORTALITY DATABASE.

Country Abbreviation Sample period Sample size Country Abbreviation Sample period Sample size
name (Reshaped) name (Reshaped)

Australia AUS 1921–2016 2790 Japan JPN 1947–2017 2015
Austria AUT 1947–2017 2015 Latvia LVA 1959–2017 1643
Belarus BLR 1959–2016 1612 Lithuania LTU 1959–2017 1643
Belgium BEL 1841–2018 4985 Luxembourg LUX 1960–2015 1487
Bulgaria BGR 1947–2017 1798 Netherlands NLD 1850–2016 4946
Canada CAN 1921–2016 2790 New Zealand NZL 1948–2013 1860
Chile CHL 1992–2008 341 Norway NOR 1846–2018 5046
Croatia HRV 2002–2017 310 Poland POL 1958–2016 1643
Czechia CZE 1950–2017 1922 Portugal PRT 1940–2015 2170
Denmark DNK 1835–2016 5423 Republic of Korea KOR 2003–2018 248
Estonia EST 1959–2017 1643 Russia RUS 1959–2014 1550
Finland FIN 1878–2015 4035 Slovakia SVK 1950–2017 1922
France FRA 1816–2017 6076 Slovenia SVN 1983–2017 899
Germany DEU 1990–2017 682 Spain ESP 1908–2016 3193
Greece GRC 1981–2013 837 Sweden SWE 1751–2018 8060
Hong Kong HKG 1986–2017 806 Switzerland CHE 1876–2016 4108
Hungary HUN 1950–2017 1922 Taiwan TWN 1970–2014 1209
Iceland ISL 1901–2016 3308 U.K. GBR 1922–2016 2759
Ireland IRL 1950–2017 1829 U.S.A. USA 1933–2017 2449
Israel ISR 1983–2016 868 Ukraine UKR 1959–2013 1519
Italy ITA 1872–2014 4247
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FIGURE 4: A fully connected neural network structure.

aggregate mortality changes, in addition to improving the prediction capac-
ity of the model. Finally, the PALL Model and HALL Model are able to
enhance the prediction and model the mortality dependence between different
populations.

2.3. A Convolutional Neural Network (CNN) approach

The deep learning algorithms we propose to construct prediction functions are
CNNs, a special class of neural networks (NNs) that use convolution in at least
one of their layers. In this subsection, we first describe a fully connected NN
in Subsection 2.3.1. Then in Subsection 2.3.2, we introduce the CNN approach
that will be employed for estimating the four neighbouring prediction models
in Subsection 2.2.

2.3.1. Fully connected Neural Networks (NNs)
NNs are models with multiple layers of representation (known as neurons) in
the structure, obtained by transforming the representation at one level into a
representation at a more abstract higher level. In other words, the outputs of
neurons at the previous level become inputs to other neurons at the next level.
The most common type of NNs is the fully connected architecture as illustrated
in Figure 4. This model starts with the raw input of a l-dimensional vector,
X = (X1,X2, . . . ,Xl)

′
, and eventually produces an output prediction of y. In

a deep learning NN architecture, besides an input layer and an output layer,
the structure has H(H > 1) additional hidden layers. The h-th (h= 1, 2, ...,H)

hidden layer, Z(h) =
(
Z(h)

1 ,Z(h)
2 , . . . ,Z(h)

lh

)′
, contains lh neurons, obtained by
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FIGURE 5: A sparsely connected neural network structure.

transforming the linear combination of the neurons from the previous layer
through a nonlinear function, σh−1, elementwise. More specifically,

Z(h) = σh−1

(
α(h−1) + ω(h−1)Z(h−1)

)
, (2.7)

where α(h−1) is a (lh × 1)-vector of bias units that captures the intercepts in the
model; ω(h−1) is a (lh × lh−1)-dimensional weight matrix; σh−1 is called activa-
tion functions and is usually pre-assumed and nonlinear. Finally, this is a fully
connected structure in which neurons between two adjacent layers are fully
pairwise connected.

2.3.2. Convolutional Neural Networks (CNNs)
CNNs are special neural networks that use the convolutional kernels (a.k.a.
filters) to derive features from the data in at least one of their layers. After the
pioneering work by LeCun et al. (1998), CNNs fell out of favour for more than
one decade until the breakthrough work by Krizhevsky et al. in 2012 and have
become the workhorse of deep learning with larger volumes of data and more
computing power becoming available. CNNs provide a more computationally
efficient way to specialise neural networks for data with a clear grid-structured
topology. This makes CNNs very suitable to construct our proposed neigh-
bouring prediction models in Subsection 2.2, with the reshaped neighbourhood
mortality images Emx,t(x1, x2, s) as inputs (see Figure 3). As a result, in this
paper, we propose to use CNN to construct neighbouring prediction models.

CNNs leverage three key ideas to improve the computational efficiency and
the predictive ability of the model: sparse connection, weight sharing, and the
use of multiple layers (LeCun et al., 2015). Figure 5 uses layers h− 1, h, and
h+ 1 in the NN architecture to illustrate the differences between a fully

https://doi.org/10.1017/asb.2021.13 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.13


702 C.-W. WANG, J. ZHANG AND W. ZHU

Convolution 
+ activation

Pooling Convolution 
+ activation

Pooling

Flatten
Fully 
connected

Neural networks

Output

Feature maps

… … …

Input Neighbourhood
Mortality Data 

,

FIGURE 6: An illustrative CNN architecture in constructing neighbouring prediction models.

connected NN and a sparsely connected CNN. For example, the neuron Z(h)
3 is

impacted with only three neurons in layer h− 1 (shaded in yellow). Similarly,
only three neurons in the next layer, layer h+ 1, are affected by Z(h)

3 (also
shaded in yellow). The three weights, ω1,ω2, and ω3, are shared by all neurons
in layer h. Although each neuron is connected to the local conjunctions from
the previous layers, the use of multiple layers connects most of the neurons
in an indirect way. For example, while Z(h+1)

3 is directly connected to three
neurons in layer h (connections represented in solid arrows), it can be indirectly
linked to many neurons in remote layers (connection represented in dashed
arrows).

The local connection is achieved through the convolution operation, a fun-
damental building block in CNN model. Compared to regular fully connected
neural networks, which learn global patterns in the input feature space, CNNs
are only connected to small regions and learn local patterns, using convolu-
tion operation. This not only improves the computational efficiency of CNN
models but also makes them very suitable to process image data with local
patterns. Constructing neighbouring prediction models with CNNs involves
four main components: (1) convolution operation; (2) nonlinear activation; (3)
pooling; and (4) fully connected neural networks. Figure 6 illustrates the four
components in a CNN architecture. The neighbourhood mortality data are fed
into the CNN architecture and go through several layers of components (1)–
(3), that is, convolution operation, nonlinear activation, and pooling. Units
in the convolution layer are arranged in feature maps and passed through a
nonlinear activation function. A pooling function is then used to aggressively
down-sample feature maps. Pooling plays an important role in reducing the
number of parameters to proceed and creating translation-invariance to small
shifts. In this paper, we use Max pooling (Zhou and Chellappa, 1988), which
is a typical pooling operation that extracts the maximum value from the input
feature maps. Online Appendix A provides a detailed example to illustrate the
2D-convolution.

In the last stage of the architecture, these layers of convolution, activation,
and pooling are flattened and stacked into fully connected NNs and the out-
put is the model forecast formx,t. Finally, it is worth mentioning that mortality

https://doi.org/10.1017/asb.2021.13 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.13


NEIGHBOURING PREDICTION FORMORTALITY 703

rate is obviously a non-negative value. This non-negative property can be easily
guaranteed in a CNN framework, by simply choosing the output layer acti-
vation function with non-negative range. Throughout this paper, we use the
Rectified Linear Unit (RELU), defined as σ (x)=max (x, 0), as the nonlinear
activation function in our empirical analysis.

Remark 1. The parameters in the CNN architecture are learnt through stochastic
gradient descent (SGD; see, e.g., Bottou and Bousquet, 2008), where their gradi-
ents are computed with backpropagation, which is implemented in the TensorFlow
(Abadi et al., 2016) and accessible via the Keras library in R (Chollet et al., 2018).
Backpropagation is a procedure to apply chain rule for calculating derivatives of
an objective function. For backpropagation in detail, see, for example, Hastie
et al. (2005).

3. EMPIRICAL ANALYSIS

3.1. The data

In this section, we apply the proposed neighbouring predictionmodels to all the
populations in the Human Mortality Database (HMD; http://www.mortality.
org). The HMD collects a rich set of mortality data for 41 countries and
regions, including deaths, exposures, etc. We use total population mortality
data between age 65 and 95. Robustness tests show that the model proposed in
this paper is robust to age intervals and genders. For Hybrid Model, we con-
sider year and cohort factors for all the 41 countries and regions as observable
factors. For HALL model, we further add country name indicators as observ-
able variables. Table 1 summarises the mortality data. For both left and right
panels, the last column reports the new sample size after reshaping the data into
the neighbourhood mortality images according to Equation (2.4). Also note
that the sample size after reshaping reported in the table is that after removing
samples with “NA” values. We also train the models using other methods to
handle missing data, and we find consistent results.

Following the machine learning convention, we split the sample into
two subsamples: training set and test set. Training set contains 80% of the
data and is used to estimate the model, and test set contains the remain-
ing 20% data to evaluate the out-of-sample performance. Such a procedure
treats data as random sample. However, it is important to note that this
does not imply that our model assumes observations are independent. As
an illustration example, suppose we construct a 3× 3 neighbourhood mor-
tality data (i.e., images), Emx,t(1, 1, 3) and Emx+1,t(1, 1, 3) for mx,t and mx+1,t,
respectively. Then, there will be an overlapped neighbourhood which includes
mx,t−3,mx,t−2,mx,t−1,mx+1,t−3,mx+1,t−2, and mx+1,t−1. This means both mx,t and
mx+1,t will be impacted and predicted by the overlapped neighbourhood. In
other words, although the samples (Emx,t(1, 1, 3),mx,t) and (Emx+1,t(1, 1, 3),mx+1,t)
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are treated as random sample in the learning procedure, it does not mean that
the CNNmodel we train assumes mx,t and mx+1,t are independent. As a robust-
ness check, in Subsection 4.4, we perform an extending window prediction
procedure, which splits data by preserving the temporal order.

We evaluate and compare the prediction power of different models based
on one-step-ahead forecasts, using mean absolute percentage error (MAPE)
defined as follows:

MAPE = 100%
N

∑
t

∑
x

∣∣∣∣mx,t − m̂x,t

mx,t

∣∣∣∣ , (3.1)

where m̂x,t is the predicted value ofmx,t based on different predictive models;N
is the number of observations in the test set. MAPE is a commonly used mea-
sure to evaluate forecasting for mortality. To improve the robustness of the
prediction results, throughout the empirical analysis of this paper, we adopt the
ensemble idea and neighbouring prediction models are averaged over 20 train-
ing runs (see, e.g., Dietterich, 2000). In particular, multiple different random
seeds are used to initialise neural networks and predictions are constructed by
averaging forecasts from all models trained.

Preliminary analysis indicates a trade-off in the neighbourhood window
size: Using a larger (smaller) window size to construct the neighbourhood
mortality data captures more (less) neighbourhood information that can be
abstracted by the CNN model, but produces more (less) noises. Therefore, in
order to strike a balance between accuracy and stability, in this section, we
estimate the neighbouring prediction models with a median window width of
x1 = x2 = s= 6. Given the size of the neighbourhood data, we use a kernel size
of 3× 3. In addition, for the depth of the feature maps in the CNN architec-
ture, we use depths of 8, 16, and 16 in the first, second, and ending output,
respectively. We call this a [8-16-16] structure. The number of neurons in the
fully connected layer is set to be 16. In the CNN-Hybrid model, for the func-
tion ω( · ), we use a fully connected neural network model that has 1 hidden
layer with 4 neurons and we call this a [8-16-16] + [4] structure. More details of
the CNN structure used for these two models are illustrated in Listings 1 and 2
in Online Appendix B.

We use four mortality models that have been widely used in the mortal-
ity modelling literature as our benchmark models. Table 2 summarises the
specifications of the four models, including the Lee–Carter Model (LC; Lee
and Carter, 1992), Renshaw–HabermanModel (RH; Renshaw andHaberman,
2006), Cairns–Blake–DowdModel (CBD; Cairns et al., 2006), and CBDModel
with Quadratic Term and Cohort Effect (M7; Cairns et al., 2009). These four
models are representative benchmarks. In particular, LC and CBD contain age
effect and period effect only; RH and M7 are models with age effect, period
effect, and cohort effect. In addition, LC, CBD, RH, and M7 models have 1,
2, 3, and 4 latent factors, respectively.
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TABLE 2

SPECIFICATIONS OF FOUR STOCHASTIC MORTALITY MODELS AS BENCHMARK MODELS.

Mortality model 1: Lee–Carter model
log (mx,t)= β (1)

x + β (2)
x κ

(2)
t

Mortality model 2: Renshaw–Haberman model
log (mx,t)= β (1)

x + β (2)
x κ

(2)
t + β (3)

x γ
(3)
t−x

Mortality model 3: Cairns–Blake–Dowd model

log
(

qx,t
1− qx,t

)
= κ

(1)
t + κ

(2)
t (x− x̄)

Mortality model 4: Cairns–Blake–Dowd model with quadratic term and cohort effect

log
(

qx,t
1− qx,t

)
= κ

(1)
t + κ

(2)
t (x− x̄)+ κ

(3)
t ((x− x̄)2 − σ̂ 2

x )+ γ
(4)
t−x

3.2. Pure model and hybrid model prediction results

We first discuss the prediction results with the models that utilise mortality
data from individual country only, that is, Pure Model and Hybrid Model,
which are summarised in Table 3. For both left and right panels, columns
1–4 display prediction errors from the four benchmark models; the fourth and
third last columns show prediction errors from Pure Model for training set
and test set, respectively; the last two columns show prediction errors from
the Hybrid Model for training and test sets. It is important to note that in the
proposed neighbouring prediction model, the neighbourhood mortality data,
Emx,t(x1, x2, s), contain information up to time t− 1 (see Equation (2.4)) and are
used to predict mx,t, which is the mortality information at time t. This indicates
that the neighbouring prediction model, by the construction, is performing a
one-step-ahead forecasting even with training set. Therefore, MAPE of the
neighbouring prediction results with both the training set and the test set is
comparable to the benchmarkMAPEs. The second part of Table 3 summarises
the overall average prediction errors of different models. We can see that on
average, Pure (Hybrid) Model produces 4.22% (4.26%) prediction error on the
training set and 4.87% (4.83%) prediction error on the test set. In contrast,
benchmark models have 6.84%, 7.63%, 10.87%, and 11.89% prediction errors
for LC, CBD, M7, and RH, respectively. In addition, Pure and Hybrid models
have very close training errors and test errors, indicating that these models are
not overfitting the data.

It is also interesting to compare the results between the Pure Model and
Hybrid Model. We see that the Hybrid Model has smaller average test error
(4.83%) than the Pure Model (4.87%). Moreover, Hybrid produces more stable
prediction performance. This can be shown from the standard deviations of the
prediction errors among the 41 populations. For example, the standard devi-
ations of the prediction errors from the Pure Model are 1.55% and 1.87% for
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TABLE 3

SUMMARY OF PREDICTION RESULTS FOR SINGLE POPULATION PURE MODEL AND HYBRID MODEL.

Pure Pure Hybrid Hybrid Pure Pure Hybrid Hybrid
LC CBD M7 RH (%) (%) (%) (%) LC CBD M7 RH (%) (%) (%) (%)
(%) (%) (%) (%) (training) (test) (training) (test) (%) (%) (%) (%) (training) (test) (training) (test)

AUS 4.66 5.78 9.80 4.07 3.57 4.21 3.58 4.07 JPN 5.48 6.86 10.42 24.02 2.77 2.99 3.06 3.24
AUT 5.70 10.55 7.03 4.53 2.94 3.18 2.97 3.10 LVA 9.93 9.10 5.22 16.10 4.01 4.78 3.90 4.51
BLR 8.06 7.30 8.79 18.51 3.97 5.04 3.94 4.95 LTU 6.98 11.42 8.81 13.22 4.24 5.33 4.31 5.27
BEL 6.47 6.72 19.68 11.07 4.18 4.83 4.20 4.81 LUX 12.50 13.44 11.45 20.96 8.06 10.04 8.26 9.81
BGR 6.56 7.13 13.49 10.00 4.10 5.00 3.95 5.04 NLD 5.26 4.57 10.44 6.29 4.38 5.60 4.43 5.57
CAN 4.60 5.22 2.55 12.82 2.79 3.17 2.74 3.06 NZL 6.58 6.60 5.46 7.94 4.92 5.74 4.78 5.56
CHL 5.94 5.85 4.97 10.28 3.69 4.10 4.62 4.22 NOR 7.19 5.55 11.52 6.34 4.32 4.71 4.33 4.85
HRV 6.22 10.29 5.11 4.76 3.97 4.54 4.03 4.69 POL 4.59 8.52 3.25 16.45 2.76 3.03 2.72 2.93
CZE 5.37 8.23 3.31 5.36 3.11 3.39 3.10 3.40 PRT 6.40 7.56 17.21 24.42 4.08 4.70 4.14 4.83
DNK 7.73 4.79 10.23 5.97 4.66 5.54 4.73 5.49 KOR 3.40 5.68 3.18 3.13 8.44 5.89 6.48 4.08
EST 10.38 9.62 5.73 61.80 4.81 5.84 4.74 5.74 RUS 10.53 7.17 6.86 15.18 2.80 3.29 2.86 3.33
FIN 5.78 7.19 16.91 5.57 5.17 7.21 5.46 7.20 SVK 6.97 7.28 4.34 8.59 4.14 5.07 4.11 4.91
FRA 6.56 8.69 51.01 18.27 3.98 4.26 3.98 4.21 SVN 4.99 10.85 4.81 6.66 4.59 5.54 4.67 5.58
DEU 5.21 11.61 3.33 4.79 2.40 2.46 2.91 2.92 ESP 10.33 7.50 30.54 6.68 4.26 5.12 4.05 4.90
GRC 6.90 9.65 5.58 6.09 2.95 2.99 3.22 3.14 SWE 8.16 4.94 55.79 6.55 5.54 6.47 5.63 6.58
HKG 6.36 5.82 4.73 3.59 5.24 5.85 5.38 5.81 CHE 5.61 8.12 7.45 26.44 4.57 5.66 4.47 5.48
HUN 6.84 8.72 5.20 6.44 2.94 3.49 2.94 3.39 TWN 4.08 4.47 3.49 5.76 3.24 3.83 3.44 4.04
ISL 15.00 15.12 15.13 16.39 9.96 12.51 10.46 12.73 GBR 6.03 4.54 5.02 4.62 3.41 3.61 3.50 3.60
IRL 8.23 5.86 5.29 24.30 4.35 5.24 4.47 5.25 USA 4.06 5.96 3.26 4.88 2.13 2.23 2.13 2.23
ISR 4.83 6.48 3.64 9.89 4.00 4.37 4.29 4.91 UKR 8.33 6.28 6.51 10.44 3.19 3.88 3.18 3.57
ITA 5.64 5.61 25.60 8.29 4.28 5.05 4.30 5.01

Overall average errors for 41 countries and regions

LC CBD M7 RH Pure Pure Hybrid Hybrid
(%) (%) (%) (%) (%) (%) (%) (%)

(training) (test) (training) (test)

6.84 7.63 10.78 11.89 4.22 4.87 4.26 4.83
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training set and test set, respectively. In contrast, the corresponding standard
deviations for Hybrid are 1.49% and 1.86%. These results suggest the benefit of
using the Hybrid Model by including more information.

3.3. Enhancing prediction with multi-population data

In this section, we discuss the results of the proposed neighbouring predic-
tion models with multi-population data, using PALL and HALL models.
Each of the enhanced models constructs a single prediction model applicable
for all 41 populations in the sample. This universal model not only benefits
from more data, but it is also enhanced, being able to model the interactions,
comovements, and dependence among multiple populations.

For each country/region, we divide its sample into 80%-training set and
20%-test set. Next, we collect training data from all populations to fit a Pure
Model or a HybridModel that incorporates mortality dependence and is appli-
cable to all populations. Finally, we evaluate the out-of-sample prediction
performance of each country/region individually using its corresponding test
sets, based on the MAPE in Equation (3.1). The prediction results are col-
lected in Table 4. We can see that PALL and HALL not only have better
performance than the benchmarks, but they also improve the individual Pure
and Hybrid models. In particular, PALL in general has slightly larger training
errors but much smaller test errors. The overall average test error of the PALL
Model is 4.61%, improved by 0.26% compared to the Pure Model. This indi-
cates that enhanced with bigger data sets, the proposed Pure Model strikes a
better bias-variance trade-off, improving the predicativity by sacrificing a lit-
tle goodness-of-fit. Similarly, compared to individual Hybrid Model, HALL
strikes a better balance between bias and variance, leading to better out-of-
sample performance. Comparing HALL and Pure Models, we see that HALL
has average test error of 4.49%, which is 0.38% lower than the average test
error of Pure Model.

It is also interesting to note that for populations that suffer more from
the data scarcity problem, they tend to benefit more significantly from the
enhanced model. The best example to explain this point is the mortality data
from Republic of Korea (KOR). It has sample period from 2003 to 2018, only
16 years. Even after reshaping into neighbouring mortality data set, the sam-
ple size becomes 248, which is still very small. Hence, the individual Pure
Model based on KOR data only has test error of 5.89%, which is not sat-
isfying compared to the benchmark models. However, enhanced with more
data from other populations, the PALL Model has a test error of 2.78%.
The performance of PALL improves 3.11% (i.e., error reduction) compared
to the Pure Model and improves 0.62%, 2.90%, 0.40%, and 0.35%, compared
to the benchmark models LC, CBD, M7, and RH, respectively. This indicates
that PALL is particular useful when data availability and credibility are pri-
mary issues for mortality modelling of certain populations. Similar to PALL,
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TABLE 4

SUMMARY OF PREDICTION RESULTS FOR PALL MODEL AND HALLMODEL.

PALL PALL HALL HALL PALL PALL HALL HALL
LC CBD M7 RH (%) (%) (%) (%) LC CBD M7 RH (%) (%) (%) (%)
(%) (%) (%) (%) (training) (test) (training) (test) (%) (%) (%) (%) (training) (test) (training) (test)

AUS 4.66 5.78 9.80 4.07 3.79 3.98 3.69 3.97 JPN 5.48 6.86 10.42 24.02 3.05 3.08 2.81 3.08
AUT 5.70 10.55 7.03 4.53 3.09 3.10 2.94 2.82 LVA 9.93 9.10 5.22 16.10 4.39 4.29 4.12 4.06
BLR 8.06 7.30 8.79 18.51 4.45 4.63 4.02 4.14 LTU 6.98 11.42 8.81 13.22 4.70 4.77 4.58 4.53
BEL 6.47 6.72 19.68 11.07 4.65 4.88 4.62 4.69 LUX 12.50 13.44 11.45 20.96 9.27 9.80 9.17 8.60
BGR 6.56 7.13 13.49 10.00 5.02 5.22 4.65 4.77 NLD 5.26 4.57 10.44 6.29 5.09 5.37 4.95 5.80
CAN 4.60 5.22 2.55 12.82 2.87 2.95 2.76 2.96 NZL 6.58 6.60 5.46 7.94 4.95 5.16 4.82 4.96
CHL 5.94 5.85 4.97 10.28 4.05 4.31 3.78 3.82 NOR 7.19 5.55 11.52 6.34 4.60 4.63 4.46 4.64
HRV 6.22 10.29 5.11 4.76 3.56 3.52 3.60 3.03 POL 4.59 8.52 3.25 16.45 3.06 3.09 2.80 2.92
CZE 5.37 8.23 3.31 5.36 3.15 3.25 2.85 2.94 PRT 6.40 7.56 17.21 24.42 4.25 4.37 4.09 4.04
DNK 7.73 4.79 10.23 5.97 5.23 5.57 5.11 5.37 KOR 3.40 5.68 3.18 3.13 3.38 2.78 3.23 2.45
EST 10.38 9.62 5.73 61.80 5.36 5.46 5.00 5.33 RUS 10.53 7.17 6.86 15.18 3.58 3.52 2.98 3.13
FIN 5.78 7.19 16.91 5.57 5.84 6.79 5.67 6.97 SVK 6.97 7.28 4.34 8.59 4.25 4.49 4.05 4.09
FRA 6.56 8.69 51.01 18.27 4.42 4.48 4.37 4.52 SVN 4.99 10.85 4.81 6.66 5.06 5.00 4.77 4.94
DEU 5.21 11.61 3.33 4.79 2.51 2.51 2.29 2.17 ESP 10.33 7.50 30.54 6.68 4.99 5.11 4.73 4.86
GRC 6.90 9.65 5.58 6.09 3.09 2.90 3.05 2.94 SWE 8.16 4.94 55.79 6.55 6.85 6.81 7.30 6.74
HKG 6.36 5.82 4.73 3.59 4.95 4.99 4.72 4.26 CHE 5.61 8.12 7.45 26.44 4.72 4.96 5.01 5.00
HUN 6.84 8.72 5.20 6.44 3.48 3.54 3.22 3.30 TWN 4.08 4.47 3.49 5.76 3.28 3.63 4.44 4.54
ISL 15.00 15.12 15.13 16.39 11.69 12.11 11.43 13.64 GBR 6.03 4.54 5.02 4.62 3.37 3.51 3.53 3.69
IRL 8.23 5.86 5.29 24.30 4.92 4.99 4.71 4.60 USA 4.06 5.96 3.26 4.88 2.32 2.41 2.93 2.74
ISR 4.83 6.48 3.64 9.89 4.10 4.03 3.88 3.94 UKR 8.33 6.28 6.51 10.44 3.66 3.65 4.68 3.89
ITA 5.64 5.61 25.60 8.29 5.24 5.50 5.17 5.31

Overall average errors for 41 countries and regions

LC CBD M7 RH PALL PALL HALL HALL
(%) (%) (%) (%) (%) (%) (%) (%)

(training) (test) (training) (test)

6.84 7.63 10.78 11.89 4.49 4.61 4.41 4.49
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FIGURE 7: Ranking of prediction performances. This figure displays the ranking of model performances
based on out-of-sample prediction errors.

the HALL Model also tends to improve the performance more for population
with restricted data availability. For example, for populations with reshaped
sample sizes smaller than 1000 (e.g., CHL, HRV, KOR), HALL has significant
prediction improvement in both training and test sets.

Comparing the prediction results from the four neighbouring prediction
models, that is, Pure, Hybrid, PALL, and HALL, it is clear that the model
performance is enhanced by including bigger data sets from multiple pop-
ulations. In particular, compared to the benchmark models, the proposed
neighbouring prediction models all have lower average prediction errors, with
HALL model producing the smallest average test errors among all models
(4.49%). The neighbouring prediction models also have more stable per-
formance, with smaller standard deviations of the prediction errors among
different populations. Figure 7 further demonstrates the superiority of the pro-
posed neighbouring prediction model, which displays the ranking of model
performances. The eight models are ranked based on the prediction errors.
HALL ranks as the best performing model in 22 out of 41 countries/regions,
followed by PALL (5 out of 41) and Hybrid (4 out of 41). The PALL Model
has the second-best performance in 17 out of 41 populations. In addition, both
Pure and Hybrid models are the second-runner up models in 11 out of 41 coun-
tries/regions. Finally, Hybrid, PALL, and HALL are ranked last in none of the
countries/regions.

4. ROBUSTNESS ANALYSES

4.1. Robustness: CNN structure

Previously, all empirical results are based on the baseline CNN architecture of
[8-16-16] for the Pure Model and [8-16-16]+[4] for the Hybrid Model. In this
section, we perform robustness tests for different CNN structure parameters,
using US mortality data as an example. The results are shown in Table 5. Panel
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TABLE 5

ROBUSTNESS CHECK FOR CNN STRUCTURES.

Panel A: Prediction errors for the Pure Model with different CNN structures

Pure [8-16] Pure [16-16] Pure [8-16-16] Pure [8-16-32]

x1/x2/s Training (%) Test (%) Training (%) Test (%) Training (%) Test (%) Training (%) Test (%)

2 2.29 2.40 2.12 2.21 2.18 2.24 2.37 2.49
3 2.21 2.28 2.11 2.16 2.20 2.25 2.20 2.28
4 2.31 2.49 2.07 2.17 2.41 2.52 2.43 2.55
5 2.38 2.48 2.28 2.34 2.42 2.46 2.51 2.55
6 2.15 2.26 1.99 2.08 2.13 2.23 2.14 2.29
8 2.19 2.33 2.05 2.17 2.20 2.35 2.09 2.18
9 2.87 3.08 2.48 2.57 2.72 2.84 6.70 4.85

Panel B: Prediction errors for the Hybrid Model with different CNN structures

Hybrid [8-16-16]+[4] Hybrid [8-16-16]+[8] Hybrid [8-16-16]+[4-8] Hybrid [8-16-16]+[64-16]

x1/x2/s Training (%) Test (%) Training (%) Test (%) Training (%) Test (%) Training (%) Test (%)

2 2.29 2.40 2.19 2.28 2.16 2.24 2.27 2.39
3 2.21 2.28 2.25 2.32 2.08 2.10 2.13 2.18
4 2.31 2.49 2.51 2.66 2.38 2.52 2.24 2.30
5 2.38 2.48 2.40 2.50 2.28 2.33 2.09 2.14
6 2.13 2.23 2.18 2.29 2.10 2.14 1.95 2.06
8 2.19 2.33 2.07 2.16 2.10 2.23 2.04 2.10
9 2.87 3.08 2.86 3.07 2.86 3.02 2.62 2.74
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FIGURE 8: 3D illustration of robustness check for CNN structures. (a) Test error of Pure models. (b) Test
error of Hybrid models.

1 shows the robustness test results for the Pure Model, and Panel 2 for the
Hybrid Model. Each row shows the results for different window sizes of the
neighbourhood mortality data, that is, different values of x1, x2, and s. Figure 8
illustrates the test errors of different models with 3D plots.

We are relieved to find that the prediction errors are stable for different
combinations of CNN architecture parameters. Moreover, we also observe
some patterns of trade-off. For example, in general, when window length
increases from 2 to 9 years, both training and testing errors first decrease and
then increase for all CNN structures. This is because increasing window size
will capture more neighbourhood information that can be abstracted by the
CNN model and hence obtain more accurate prediction results. However, too
large window size will produce more noises. In addition, too large window size
will also reduce the effective sample size used to train the model. In practi-
cal application of this model, window sizes of 4–6 years in general seem to
be reasonable choices. In addition, more complicated CNN structures may
help improve the goodness-of-fit of the model; however, they tend to under-
perform in test sets. For example, moving from left columns to right columns,
the complexity of CNN structures is increasing and the prediction errors gen-
erally first decrease and then increase. For Pure Models, the structure with the
best performance is [16-16], and for Hybrid model, it is [8-16-16]+[64-16].

4.2. Robustness: Methods to handle missing data

In the main results of this paper, we delete missing mortality data. As another
robustness check, it is also interesting to see whether different methods to han-
dle missing data will impact the mortality prediction of our proposed model.
In this subsection, using Sweden’s mortality data as an example (as the U.S.
data set does not have missing data issue), we compare three methods: (1)
linear interpolation with the non-missing mortality data of the two nearest
ages; (2) interpolation according to the Gompertz law (log (μx)= a+ bx); and
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(3) interpolation according to the Gompertz–Makeham law (μx = a+ beγx).
Results are summarised in Table 6. We find that prediction results are robust
to different methods.

4.3. Robustness: Leave-One-Population-Out (LOPO) analysis

In this subsection, we perform another interesting robustness check: a com-
pletely missing data analysis. For each country/region, we pretend that the
mortality data for this particular population are completely missing. We
construct a neighbouring mortality model using mortality data from other
countries, predict the mortality rates for this population, and finally evaluate
the performance with the true mortality data from this population that is left
out of model estimation. In other words, we are performing a LOPO analysis.
More specifically, the LOPO analysis is performed in two steps. First, for each
population, we train the model using all data from the other countries/regions,
leaving all of its own information out, and calculate corresponding training
error. Second, we evaluate the out-of-sample performance by calculating the
test error of the trained model using the data of this population that is left out
in the first step. It is important to note that traditional mortality models can-
not address the completely missing case.We find that the LOPO have satisfying
prediction performance. This LOPO exercise further demonstrates the predic-
tion power of the neighbouring prediction models. Our proposed approach
is able to learn representation and commonality of data and generalise the
discovered intricate structure from the data to guarantee good predicting per-
formance. This is of particular interest in countries where data scarcity is a
problem.

We use the HALL model to perform LOPO exercise, and the results are
summarised in Table 7. Benchmark models could not address the issue of
completely missing data; hence, a LOPO exercise is not possible for them.
Interestingly, the neighbouring model produces competitively well-prediction
results in the completely missing data case as the benchmarks using full infor-
mation, with overall test error of 5.05%. It is important to note that in LOPO
analysis, training errors are calculated with a large sample that includes data
of 40 populations. In contrast, test errors are calculated for each tested pop-
ulation whose information is left out in the model training stage. As a result,
in Table 7, we observe that errors are stable for training but not test samples
and test errors are generally smaller than training errors. Since the training
errors and test errors in the LOPO analysis are calculated on different data
sets, they are no longer comparable. The results demonstrate the power of big
data in mortality modelling using deep learning algorithms – when data are
sufficiently big, the neighbouring prediction model can be general enough to
learn the intricate structure and pattern from the data and make reliable pre-
dictions. The LOPO exercise results are particularly useful in the case when
data are completely unavailable, for example, when life insurance companies
plan to investigate a new business line, but no historical data are available yet.
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TABLE 6

ROBUSTNESS CHECK FOR METHODS TO HANDLE MISSING DATA.

Panel A: Missing value robustness check of Pure model

Pure [8-16] Pure [16-16] Pure [8-16-16] Pure [8-16-32]

Training (%) Test (%) Training (%) Test (%) Training (%) Test (%) Training (%) Test (%)

Remove 5.99 6.85 6.01 6.94 5.54 6.47 6.11 6.82
Interpolation 5.93 6.68 5.24 6.29 6.08 6.72 5.70 6.42
Gompertz 5.83 6.55 5.56 6.56 6.11 6.62 5.83 6.58
Gompertz–Makeham 5.70 6.51 5.83 6.93 5.82 6.76 5.92 6.71

Panel B: Missing value robustness check of Hybrid model

Hybrid [8-16-16]+[4] Hybrid [8-16-16]+[8] Hybrid [8-16-16]+[4-8] Hybrid [8-16-16]+[64-16]

Training (%) Test (%) Training (%) Test (%) Training (%) Test (%) Training (%) Test (%)

Remove 5.63 6.58 6.18 6.57 6.11 6.79 5.97 6.46
Interpolation 5.54 6.34 5.50 6.32 5.76 6.43 5.69 6.39
Gompertz 5.94 6.34 5.67 6.34 5.75 6.36 5.66 6.41
Gompertz–Makeham 5.63 6.39 5.65 6.38 5.59 6.33 5.73 6.54
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TABLE 7

SUMMARY OF THE COMPLETELY MISSING DATA ANALYSIS.

LOPO (%) LOPO (%) LOPO (%) LOPO (%) LOPO (%) LOPO (%)
(training) (test) (training) (test) (training) (test)

AUS 5.28 4.11 GRC 5.06 3.26 POL 5.63 2.91
AUT 4.99 3.07 HKG 5.20 5.10 PRT 5.46 4.25
BLR 5.32 4.52 HUN 4.98 3.24 KOR 5.29 3.77
BEL 5.44 4.96 ISL 5.72 25.42 RUS 5.52 3.77
BGR 5.03 4.86 IRL 6.54 6.22 SVK 5.41 4.22
CAN 5.02 2.87 ISR 5.31 3.87 SVN 5.55 5.40
CHL 5.50 4.41 ITA 5.36 5.06 ESP 5.60 6.90
HRV 5.52 4.08 JPN 5.33 3.36 SWE 5.41 7.33
CZE 5.06 2.96 LVA 5.15 4.32 CHE 5.57 5.58
DNK 5.23 5.36 LTU 5.46 4.87 TWN 5.41 4.80
EST 5.20 5.13 LUX 5.28 9.27 GBR 5.39 3.33
FIN 5.07 6.12 NLD 5.97 5.49 USA 5.41 2.15
FRA 5.36 4.60 NZL 5.79 5.25 UKR 5.93 3.71
DEU 5.33 2.49 NOR 5.43 4.56

Overall average errors for 41 countries and regions

LOPO (%) LOPO (%)
(training) (test)

5.40 5.05

4.4. Robustness: Extending window prediction

Our main results with the neighbouring prediction are based on splitting the
data sample into 80% training set and 20% test set. In this robustness analy-
sis, we evaluate the neighbouring prediction models with an extending window
estimation procedure. We start estimating the models with the data in the first
80% years. We then perform one-year-ahead forecast based on the obtained
prediction models. We then extend the estimation window by one year, re-
estimate the model, and perform one-year-ahead forecast again. This extending
window procedure continues until all data are exhausted. The extending win-
dow forecasting procedure splits data by preserving temporal order, which
avoids look-ahead bias. The results are summarised in Table 8. We can see
that the prediction results are similar to the main results presented in previous
sections. In fact, the prediction accuracies from the extending window forecast-
ing procedure are slightly higher than using the 80–20% splitting procedure.
For example, for HALL model, the average MAPE is 3.91%. This is 2.93%
better than the best performed benchmark model and 7.98% better than the
worst performed benchmark model. The results demonstrate that the neigh-
bouring prediction models are robust with different prediction procedures.
Robustness analyses also show that the prediction performance is robust to
different training-test splittings.
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TABLE 8

SUMMARY OF EXTENDING WINDOW FORECASTING RESULTS.

Pure Hybrid PALL HALL Pure Hybrid PALL HALL
(%) (%) (%) (%) (%) (%) (%) (%)

AUS 3.16 3.78 3.78 3.48 JPN 3.67 4.22 3.50 3.13
AUT 4.73 5.19 4.24 3.74 LVA 4.07 4.06 4.57 4.03
BLR 4.67 3.70 3.71 3.15 LTU 5.04 4.82 4.53 4.19
BEL 4.04 3.93 3.63 3.05 LUX 8.90 8.41 9.76 9.11
BGR 5.96 4.73 3.93 3.17 NLD 4.00 4.04 3.48 2.74
CAN 2.94 2.77 2.88 2.26 NZL 4.34 4.60 4.49 4.53
CHL 3.74 7.48 6.24 6.16 NOR 4.02 4.31 3.97 3.53
HRV 4.43 5.21 4.01 3.84 POL 3.37 3.68 2.97 2.56
CZE 3.67 4.07 3.29 3.04 PRT 3.82 4.11 3.72 3.12
DNK 4.15 4.29 3.62 3.17 KOR 3.91 4.37 3.96 4.35
EST 4.81 5.39 5.66 4.89 RUS 4.57 4.12 4.23 3.16
FIN 4.09 4.68 3.81 3.18 SVK 5.01 4.45 4.04 3.55%
FRA 3.89 4.32 3.65 2.94 SVN 4.82 5.17 5.26 5.01
DEU 3.41 3.25 3.66 3.08 ESP 4.45 4.26 3.70 3.24
GRC 4.55 5.81 4.56 4.25 SWE 4.17 4.03 3.50 3.29
HKG 6.08 5.52 5.04 4.55 CHE 4.73 3.32 4.54 3.83
HUN 3.09 3.41 3.23 2.81 TWN 3.64 3.30 3.10 4.27
ISL 16.06 15.61 13.96 13.74 GBR 4.43 4.90 3.17 2.56
IRL 5.69 5.99 4.78 4.32 USA 2.10 2.23 2.43 2.04
ISR 5.40 4.82 4.59 4.24 UKR 4.53 3.55 3.39 2.28
ITA 4.19 4.07 3.42 2.95

Overall average errors for 41 countries and regions

Pure (%) Hybrid (%) PALL (%) HALL (%)

4.64 4.73 4.34 3.91

5. CONCLUSION

In this paper, we propose a new neighbouring prediction framework for
mortality forecasting. The proposed models make use of the neighbourhood
mortality data, Emx,t(x1, x2, s), combined with the deep learning algorithm that
is suitable for computer vision tasks - 2D CNN. This framework is able to
capture the intricate nonlinear structure in the mortality data: the neighbour-
hood effect, which can go beyond the directions of period, age, and cohort.
An extensive empirical analysis is conducted using mortality data from all the
41 countries and regions in HMD. We find that the proposed models achieve
superior forecasting performance, and they can be further enhanced to model
mortality comovements and dependence, by including multi-population data
from different countries/regions. More interestingly, in a completely missing
data exercise, we find the neighbouring prediction models can produce very
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satisfying performance even if the model for each particular country/region
is trained with data from the other countries/regions, treating all of its own
information as missing. These results demonstrate the power of the proposed
neighbouring prediction models using big data and deep learning algorithms
in mortality forecasting. The neighbouring prediction models proposed in this
paper can stimulate better solutions for longevity risk management through
providing more sophisticated and accurate mortality models.

Since the focus of this paper is to introduce the new neighbouring prediction
models, we do not discuss applying the proposed models in longevity risk man-
agement. As a result, an interesting future work path is to investigate pricing
mortality- or longevity-linked securities as well as reducing population basis
risk with these models. Some interesting questions that follow, among others,
include how to perform simulation study and how to evaluate forecast uncer-
tainty for the neighbouring prediction models. We leave the discussion of these
questions for future research.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit https://doi.org/
10.1017/asb.2021.13
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