
J. Fluid Mech. (2018), vol. 856, pp. 79–102. c© Cambridge University Press 2018
doi:10.1017/jfm.2018.709

79

Effects of helicity on dissipation in
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The dimensionless dissipation coefficient β = εL/U3, where ε is the dissipation rate,
U the root-mean-square velocity and L the integral length scale, is an important
characteristic of statistically stationary homogeneous turbulence. In studies of β, the
external force is typically isotropic and large scale, and its helicity Hf either zero or
not measured. Here, we study the dependence of β on Hf and find that it decreases
β by up to 10 % for both isotropic forces and shear flows. The numerical finding is
supported by static and dynamical upper bound theory. Both show a relative reduction
similar to the numerical results. That is, the qualitative and quantitative dependence of
β on the helicity of the force is well captured by upper bound theory. Consequences
for the value of the Kolmogorov constant and theoretical aspects of turbulence control
and modelling are discussed in connection with the properties of the external force.
In particular, the eddy viscosity in large-eddy simulations of homogeneous turbulence
should be decreased by at least 10 % in the case of strongly helical forcing.
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1. Introduction
The Richardson–Kolmogorov cascade picture of fully developed turbulence relies

on the assumption that the dissipation rate of turbulent kinetic energy remains finite
in the limit of vanishing viscosity, i.e. on the dissipative anomaly (Frisch 1995; Eyink
2003). The behaviour of the mean dissipation rate ε as a function of viscosity is
mostly studied in non-dimensional terms through the Reynolds-number dependence
of the dimensionless dissipation factor β = εL/U3 (Batchelor 1953), where U
denotes the root-mean-square velocity and L the size of the largest eddies in the
flow. The dimensionless dissipation rate is not only of interest in turbulence theory,
as it enters adjustable coefficients in turbulence models such as the eddy viscosity
in the k–ε model (Tannehill, Anderson & Pletcher 1997; Goto & Vassilicos 2009).
The Smagorinsky constant in large-eddy simulations (LES) also depends on β. Since
its introduction, the question remains as to whether the infinite-Reynolds-number
asymptote of β is a universal quantity, i.e. whether it depends on the forces
generating the turbulence and on the boundary conditions (Bos, Shao & Bertoglio
2007; Goto & Vassilicos 2009). Since β is related to the Kolmogorov constant CK
(Lumley 1992), the question of universality concerning β extends to the Kolmogorov
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80 M. Linkmann

constant. The latter has been an open question since the inference by Landau against
universality of constants like CK (Landau & Lifshitz 1959; Frisch 1995). In particular,
it is very difficult to disprove universality for forces acting at one single characteristic
scale, as is the case for turbulence generated by a uniform grid in e.g. a wind tunnel
(Frisch 1995). The present paper examines the universality of β and CK with respect
to external forces which differ in their topological properties, namely their respective
helicities, while acting at the same single characteristic length scale.

The value of β has been measured in experiments (Sreenivasan 1984, 1998;
Burattini, Lavoie & Antonia 2005) as well as in direct numerical simulations (DNSs)
(Wang et al. 1996; Gotoh, Fukayama & Nakano 2002; Kaneda et al. 2003; Donzis,
Sreenivasan & Yeung 2005; Bos et al. 2007; Goto & Vassilicos 2009; Yeung, Donzis
& Sreenivasan 2012; McComb et al. 2015; Yeung, Zhai & Sreenivasan 2015; Ishihara
et al. 2016). Although the experiments differed in the flow configuration and the
DNSs in the properties of the external forcing and the run time, the results are
generally consistent in terms of β 6 1. However, there is significant spread between
the data points for experimental and numerical results alike. Similarly, experimentally
measured values for the Kolmogorov constant CK resulted in consistent values
CK ' 1.6 for different flow configurations albeit with considerable scatter in the
data (Sreenivasan 1995). Furthermore, the highest-resolution DNS of homogeneous
isotropic turbulence carried out so far revealed a difference between the numerically
and experimentally measured values of CK , with CK = 1.8± 0.1 obtained numerically
(Ishihara et al. 2016). In summary, for both β and CK the difference between the
measured values is not large enough to support non-universality, nor is the statistical
error small enough to disprove it.

Any question of universality, however, must be taken in the appropriate context,
which is here that of ‘equilibrium turbulence’ (Batchelor 1953; Vassilicos 2015),
where the maximal inertial flux Π equals ε. There are many flow configurations
where the relation Π = ε is violated, such as in decaying turbulence and for unsteady
flows (Bos et al. 2007; Valente & Vassilicos 2012; Valente, Onishi & da Silva 2014;
Vassilicos 2015; Bos & Rubinstein 2017), where the variation in the Taylor surrogate
L/U3 describes variations of Π and not of ε (McComb et al. 2010; Valente et al.
2014). In such cases, the value of β may differ from that for equilibrium turbulence
for reasons connected with the unsteadiness of the flow. Therefore the present paper
is only concerned with homogeneous turbulence maintained in a statistically stationary
state by large-scale external forcing.

Recent numerical results suggest that β depends on the number density of stagnation
points in the large-scale flow field, i.e. on topological details of the large-scale flow
(Goto & Vassilicos 2009). The dependence of the inertial flux (and thus ε) on the
topology of the flow field had already been inferred by Moffatt (1985, 2014) through
the effect of kinetic helicity on the nonlinear structure of the Navier–Stokes equations.
The kinetic helicity is the L2-inner product (u, ω) of the velocity field u and the
vorticity field ω=∇× u. It is not only a measure of the alignment between velocity
and vorticity and a conserved quantity under Euler evolution, but also a topological
invariant of the Euler equations related to the linking number of infinitesimal vortex
lines (Moffatt 1969, 1985). Since an alignment between u and ω results in a depletion
of nonlinearity, regions of high helicity have been conjectured to be related to low
levels of dissipation (Moffatt 2014). Similar conclusions concerning a depletion of
energy transfer in the presence of strong helicity had already been obtained by
Kraichnan (1973) based on interactions of helical Fourier modes. Although helicity
is an inviscid invariant, it does not have a coercive effect on the dynamics compared
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Non-universal bounds on the dissipation rate 81

to e.g. the enstrophy in two-dimensional turbulence, because it is in general not
sign definite. However, once the helicity is made sign definite through a projection
operation, the energy cascade direction is reversed (Biferale, Musacchio & Toschi
2012, 2013) and the corresponding helically projected Navier–Stokes equations admit
globally regular solutions (Biferale & Titi 2013).

Owing to its aforementioned connection to nonlinear Navier–Stokes dynamics and
its relevance to atmospheric physics (Lilly 1986), the effect of helicity has been
studied in a variety of turbulent flows, including homogeneous isotropic turbulence
(Chen, Chen & Eyink 2003a; Chen et al. 2003b; Gledzer & Chkhetiani 2015;
Kessar et al. 2015; Sahoo & Biferale 2015; Stepanov et al. 2015; Alexakis 2017),
rotating turbulence (Mininni & Pouquet 2010a,b) and the atmospheric boundary
layer (Deusebio & Lindborg 2014). However, the dependence of β on the helicity
of the external force has never been investigated analytically or numerically. The
present work aims to close this gap by providing both analytical estimates and
numerical measurements of β as a function of the helicity of the forcing. In view of
universality, helicity is also a convenient tool to distinguish between forcing functions
while keeping parameters such as characteristic length and time scales the same.

Mathematically rigorous bounds for the dissipation rate have been derived from
the existence of weak solutions of the Navier–Stokes equations for a variety of wall-
bounded flows (Howard 1972; Busse 1978; Doering & Constantin 1994; Kerswell
1998; Nicodemus, Grossmann & Holthaus 1998) as well as for the case of periodic
boundary conditions and sufficiently smooth forcing functions (Childress, Kerswell &
Gilbert 2001; Foias et al. 2001; Doering & Foias 2002). Concerning the dimensionless
dissipation coefficient β, Doering & Foias (2002) derived the following bound:

β 6 β∞ +
γ

Ref
, (1.1)

where β∞ and γ are constants depending on the forcing function (Doering & Foias
2002), and Ref a Reynolds number defined with respect to the characteristic length
scale of the external force. The value of the upper bound has been calculated
and compared to experimental and numerical data for different flow configurations
(Doering, Eckhardt & Schumacher 2003; Doering & Petrov 2005; Rollin, Dubief &
Doering 2011). In all cases the upper bound is approximately an order of magnitude
larger than the measured value. However, for generalisations of Kolmogorov flow
where the effect of different forcing scales has been studied, the predicted variation
of β∞ is in qualitative agreement with numerically obtained values for β (Rollin
et al. 2011). In view of universality, following the arguments by Frisch (1995), the
dependence of β on the forcing band can indeed be expected.

The aim of this paper is to demonstrate that the upper bound theory also
captures the quantitative dependence of β∞ as a function of the helicity of the
force independently of its time dependence, in the sense that it is able to predict
non-universal relative values of β∞ in agreement with numerical results. For this
purpose bounds for forces which differ in their level of helicity and dimensionality
are calculated explicitly, and the upper bound theory is extended to include
time-dependent forces. The main results of this analysis are as follows. (i) Helical
forces lead to lower bounds for β∞ compared to non-helical forces. This supports
the rationale of Moffatt (1985, 2014) that a high level of helicity should inhibit the
energy cascade. (ii) Dynamic forces lead to larger bounds than static forces, where
the value of the bound depends now also on the characteristic time scale of the
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82 M. Linkmann

force. A comparison to DNS data then shows that the relative dependence of β∞ on
helicity as predicted by the upper bound theory is in good qualitative and quantitative
agreement with numerically measured values of β, and the results are independent
of the dynamical details of the force. The relative values of β∞ are related to the
relative values of the Kolmogorov constant CK in order to predict a qualitative and
quantitative dependence of CK on the helicity of the forcing. Finally, the effect helical
forces on the Smagorinsky constant in LES is discussed.

This paper is organised as follows. The necessary mathematical concepts are
introduced in § 2 alongside the statement of the main problem and a summary of
the derivation of the general upper bound by Doering & Foias (2002). This method
is applied to time-dependent forces in § 3, while the helicity dependence of static
forces is studied in § 4, including implications for the Kolmogorov constant and the
Smagorinsky constant in LES in §§ 4.2 and 4.3, respectively. A comparison to DNS
data is carried out in § 5. The main results are summarised and discussed in § 6.

2. Background
The Navier–Stokes equations are considered on a three-dimensional domain Ω =
[0, L]3 with periodic boundary conditions

∂tu=−
1
ρ
∇P− (u · ∇)u+ ν1u+ f , (2.1)

∇ · u= 0, (2.2)

where u(·, t) ∈ L2(Ω) is the velocity field, ν the kinematic viscosity, P the pressure,
f (·, t) ∈ L2(Ω) an external mechanical force and ρ the density which is set to unity
for convenience. The initial conditions are assumed to be sufficiently well-behaved
to allow weak solutions, i.e. solutions of the corresponding integral equation where
all derivatives act on test functions, which are by definition infinitely many times
differentiable. In the following such weak solutions are considered and any occurrence
of a derivative acting on u is understood as shorthand notation for u integrated against
the derivative of a smooth test function.

Leray (1934) established the existence of weak solutions of the Navier–Stokes
equation in three spatial dimensions for square-integrable sufficiently regular initial
conditions and external forces (Ladyshenskaya 1969; Constantin & Foias 1988;
Doering & Gibbon 1995; Foias et al. 2001). These weak solutions are square
integrable and the existence result is valid for the three-dimensional torus as well
as for the whole space R3 with the appropriate boundary conditions. Regarding the
external force, sufficiently regular usually means that the Fourier coefficients of the
force are square summable (or square integrable, in the case of R3) at all times and

sup
t>0
‖(−∆)−1/2 f ‖2

2 = L3 sup
t>0

∑
k 6=0

1
|k|2
| f̂ (k, t)|2 <∞. (2.3)

Furthermore, the forces must be solenoidal at all times.
For static forces Doering & Foias (2002) derived an upper bound on ε from weak

solutions by decomposing the force f into an amplitude f0 ∈R and a shape function
φ ∈ L2([0, 1]3), such that

f (x)= f0φ(x/Lf ), (2.4)

where Lf is the characteristic scale at which the force is acting. The shape function
is further restricted by the requirements ‖φ‖2= 1 and ‖∇(−∆)−Mφ‖∞<∞ for some
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Non-universal bounds on the dissipation rate 83

M ∈ N. Such M can always be found, with the minimum requirement for φ ∈

L2([0, 1]3) being M > 1. A bound for ε was then derived from the energy inequality

ε(t)= ν‖∇u‖2
2 6 ( f , u)6 f0‖φ‖2 ‖u‖2, (2.5)

by taking the inner product of the Navier–Stokes equations with (−∆)−M f and
integrating over the volume where several integrations by parts need to be carried
out such that all derivatives act on the force instead of on the velocity field and
the resulting inner products are bounded from above using the Cauchy–Schwarz and
Hölder inequalities. Finally the long-time average 〈·〉t is taken (the time average can
be placed on rigorous mathematical grounds by considering statistical solutions to the
Navier–Stokes equations (Foias et al. 2001)), resulting in

f0 6
‖∇(−∆)−Mφ‖∞〈‖u‖2〉

2
t

Lf‖(−∆)−M/2φ‖2
2
+
ν‖(−∆)−M+1φ‖2〈‖u‖2〉t

L2
f ‖(−∆)

−M/2φ‖2
2

. (2.6)

Substitution of the upper bound for f0 into (2.5) and subsequent rearrangement then
yields the following upper bound for β:

β = β[φ](Ref )≡
εLf

U3
6 β∞ +

γ

Ref
, (2.7)

where U = 〈‖u‖2
2〉

1/2
t and

β∞ = β∞[φ] ≡
‖∇(−∆)−Mφ‖∞‖φ‖2

‖(−∆)−M/2φ‖2
2

and γ = γ [φ] ≡
‖(−∆)−M+1φ‖2‖φ‖2

‖(−∆)−M/2φ‖2
2

,

(2.8a,b)
hence both β∞ and γ are functionals of the shape function φ. Here, it is important to
observe that unlike β∞, γ depends only on space-averaged quantities and is therefore
fully described by the (spatial) regularity of the shape function, while β∞ is dominated
by its local structure. The latter is brought about through β∞ depending on the L∞-
norm of the shape function, which involves single-point values.

3. Time-dependent forces

The first task is to extend the results of Doering & Foias (2002) to time-dependent
forces. If, as above, the inner product of all terms in the Navier–Stokes equation
with (−∆)−M f is taken, an extra term arises on the left-hand side which does not
necessarily vanish in the long-time average:

−〈((−∆)−M∂t fi, ui)〉t = 〈(ui, uj∂j(−∆)
−Mfi)〉t + ν〈((−∆)

−Mfi, 1ui)〉t

+〈((−∆)−Mfi, fi)〉t. (3.1)

The main obstacle for an estimation of β for time-dependent forces thus lies in
that the new term on the left-hand side of (3.1) may not be bounded. This would
occur if f were rough in time. In order to proceed, f could either be assumed
to be temporally sufficiently well behaved, i.e. f (x, ·) ∈ H1([0,∞)), or convoluted
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84 M. Linkmann

with a filter kernel Gτ
∈H∞([0,∞)) such that (Gτ

∗ f )(x, ·) ∈H1([0,∞)). The latter
approach introduces a time scale τ , which will turn out to be useful in the assessment
of the resulting upper bound of β. Therefore, instead of using (3.1), before taking
the inner products the force is smoothed by convolution with Gτ , resulting in

−〈((−∆)−M∂t(Gτ
∗ fi), ui)〉t = 〈(ui, uj∂j(−∆)

−MGτ
∗ fi)〉t + ν〈((−∆)

−MGτ
∗ fi, 1ui)〉t

+〈((−∆)−MGτ
∗ fi, fi)〉t. (3.2)

After some intermediate steps involving estimates of Gτ and its time derivative which
can be found in appendix A, one obtains

β∞ =
〈‖∇(−∆)−Mφ‖∞〉t〈‖φ‖2〉t

〈‖(−∆)−M/2φ‖2
2〉t

+
ωf

ω

〈‖(−∆)−Mφ‖2〉t〈‖φ‖2〉t

〈‖(−∆)−M/2φ‖2
2〉t

, (3.3)

with ω=U/Lf = 1/T denoting the frequency corresponding to the forcing-scale eddy
turnover time and ωf 6 1/τ the characteristic frequency of the smoothed forcing, with
τ being set by the filter width. For static forcing ωf = 0, the time averages in the
definitions of the coefficients β∞ and γ can be omitted, and the forms of β∞ and γ
as in (2.8) are recovered. Dynamic forces can thus be expected to yield larger bounds
due to the extra term in (2.8) which occurs only for time-dependent forces. This may
imply that the bound becomes less tight for dynamic forces but it could also indicate
that the value of β for dynamic forces may be larger than for static forces. This point
will be further assessed in § 5 using results from numerical simulations.

4. Dependence of β on the helicity of the force
In order to highlight the influence of the helicity of the force on the upper bound of

β, the coefficients β∞ and γ given in (2.8) are calculated explicitly for static forcing
functions which differ in the helicity of their corresponding shape functions. For this
purpose we consider two shape functions which are eigenfunctions of the curl operator

φ(1) =
1

√
A2 + B2 +C2

A sin 2πz+C cos 2πy
B sin 2πx+ A cos 2πz
C sin 2πy+ B cos 2πx

 , (4.1)

and

φ(−1)
=

1
√

A2 + B2 +C2

A cos 2πz+C sin 2πy
B cos 2πx+ A sin 2πz
C cos 2πy+ B sin 2πx

 , (4.2)

where A, B, C ∈R and ‖φ(±1)
‖2 = 1; see appendix B for further details. These shape

functions are by construction fully helical, as their relative helicity is given by

ρφ(±1) =
(φ(±1),∇× φ(±1))

‖∇× φ(±1)‖‖φ(±1)‖
=±
‖φ(±1)

‖
2
2

‖φ(±1)‖2
2
=±1, (4.3)

as φ(±1) are eigenfunctions of the curl operator with eigenvalues one and minus one,
respectively. The latter also implies that φ(1) and φ(−1) are orthogonal with respect to
the L2-inner product. A shape function φ(ρφ) of arbitrary relative helicity ρφ is then
constructed by suitable linear combination of φ(1) and φ(−1):

φ(ρφ) =

√
1+ ρφ

2
φ(1) +

√
1− ρφ

2
φ(−1). (4.4)
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Non-universal bounds on the dissipation rate 85

Force functions f (ρf ) of a given relative helicity ρf ≡ρφ are then constructed according
to equation (2.4). A further assessment of the effect of dimensionality can be carried
out by setting one or two of the coefficients A, B or C to zero.

Before calculating the values of β(ρf )
∞ corresponding to f (ρf ), certain topological

and geometrical properties of the two functions corresponding to the cases ρf = 1 and
ρf = 0 are discussed. The Navier–Stokes equations subject to a fully helical force f (1)

with f (1)0 = νk2
f have an exact ‘laminar’ solution. (Here, laminar refers to vanishing

nonlinearity, and does not necessarily imply a layered structure.) This solution is
f (1) itself; it is known as Arnol’d–Beltrami–Childress (ABC) flow (Childress 1970;
Dombre et al. 1986) and has been studied extensively in connection with dynamo
action in magnetohydrodynamics (MHD). Depending on the values of A, B and C:
f (1) has up to eight stagnation points (Dombre et al. 1986). In contrast, a ‘laminar’
flow given by f (0) has only the trivial stagnation points x= y= z= 0 and x= y= z=π
independently of the values of A, B and C: see appendix D. The two functions also
differ in terms of their symmetry groups: while the symmetry group of f (1) is
isomorphic to Z2 × Z2 × Z2 (Dombre et al. 1986), that of f (0) is isomorphic to
Z2 ×Z2 (see appendix D).

The dependence of the coefficients β
(ρf )
∞ and γ (ρf ) on ρf is now obtained by

straightforward analytical evaluation of the norms on the right-hand side of (2.8).
Since φ(ρf ) consist of trigonometric functions they satisfy (−∆)−Mφ(ρf )=φ(ρf )/(2π)2M,
and the L2-norm of their gradients is calculated directly:

‖(−∆)−M/2φ(ρf )‖
2
2 = ((−∆)−M/2φ(ρf ), (−∆)−M/2φ(ρf ))

= (φ(ρf ), (−∆)−Mφ(ρf ))=
(φ(ρf ), φ(ρf ))

(2π)2M
=

1
(2π)2M

. (4.5)

The evaluation of ‖∇(−∆)−Mφ(ρf )‖∞=‖∇φ
(ρf )‖∞/(2π)2M proceeds explicitly by using

the definition of the L∞-norm,

‖∇φ(ρf )‖∞ = sup
x∈[0,1]3

|∇φ(ρf )| = sup
x∈[0,1]3

(∂iφ
(ρf )

j ∂iφ
(ρf )

j )1/2, (4.6)

where a sum over repeated indices is implied. Evaluating the last term in (4.6) for
φ(ρf ) results in

‖∇φ(ρf )‖∞ = 2π

(√
1+ ρf

2
+

√
1− ρf

2

)
. (4.7)

See appendix B for further details. The values for the norms are now combined
according to (2.8), leading to

β(ρf )
∞
=
√

2π
(√

1− ρf +
√

1+ ρf

)
, (4.8)

γ (ρf ) = (2π)2. (4.9)

From (4.8) one obtains the following expression for the helicity dependence of the
asymptote normalised by the zero-helicity value β(0)

∞
:

β
(ρf )
∞

β
(0)
∞

=

√
1+ ρf +

√
1− ρf

2
6 1, (4.10)
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which implies β
(ρf )
∞ /β(0)

∞
∈ [1/

√
2, 1]. That is, a helical large-scale force results

in a lower estimate for the non-dimensional total asymptotic energy dissipation
rate compared to a non-helical force, provided the forces are acting on the same
single length scale. In contrast, the approach to the asymptote is independent of ρf

following (4.9). Equation (4.10) is the first main result of this paper.
Since β∞ is also a measure of the inertial flux of the turbulent cascade for

statistically steady turbulence in the infinite-Reynolds-number limit, it implies that a
high level of helicity has a detrimental effect on the energy cascade. Thus the results
obtained by the upper bound theory are qualitatively in accord with the predictions by
Moffatt concerning the effect of helicity on turbulence dynamics. The latter prediction,
however, was concerned with the helicity of the flow and not the forcing, which is
assessed here. It is known that large-scale helicity injection does not lead to highly
helical flows, as mirror symmetry is quickly recovered at successively smaller scales
(Chen et al. 2003a; Deusebio & Lindborg 2014; Kessar et al. 2015). Hence (4.10)
could perhaps best be viewed in terms of a large-scale control problem: through an
adjustment in the helicity of the forcing it may be possible to regulate the value of
the inertial flux across scales without having to invoke a depletion of nonlinearity in
regions of high helicity at intermediate or small scales.

4.1. Variational approach for bidirectional static forces
The values for the bounds given in (4.8) and (4.9) do not depend on the dimensionality
of the force because setting either one or two of the coefficients A, B or C in (4.1)
and (4.2) to zero does not alter the results. However, for forces depending on only
one spatial coordinate the upper bounds can be improved through a generalisation
of the variational method developed by Doering et al. (2003) for shear flows with
unidirectional force, where the streamwise component of the Navier–Stokes equations
is projected on a suitable multiplier function. The resulting upper bound on β is then
evaluated by minimisation over the set of multiplier functions (Doering et al. 2003;
Rollin et al. 2011).

This method is not applicable for three-dimensional (3-D) forces, as an average
over the direction of the force is taken. In order to apply it to the present case,
set A = B = 0 such that φ = (φx(y), 0, φz(y)) for y ∈ [0, 1], where φx and φy are
periodic functions on [0, 1]. Let ψ = (ψx(y), 0, ψz(y)) be a function whose second
derivative Ψ = (∂yψx, 0, ∂yψz) is square integrable (i.e. ψ ∈ H2([0, 1])) and which
satisfies (ψ, φ) 6= 0. As in Doering et al. (2003), consider Φ ≡ (−∂−1

y φx, 0,−∂−1
y φz),

such that (Ψ , Φ) = (∂yψ, −∂yφ) = (ψ, φ). Following the procedure outlined in § 2,
i.e. taking the inner product of the Navier–Stokes equation with ψ and integrating by
parts, one obtains

β 6 min
ψ

max
ũ

(
(ũ, (ũ · ∇)ψ)(ũ, φ)

(Ψ ,Φ)
+
(ũ, ∂yΨ )(ũ, φ)

Ref (Ψ ,Φ)

)
, (4.11)

where ũ = (ux, uy, uz) = u/U. The next step consists of a maximisation over all
divergence-free normalised vector fields ũ. The inner products in the numerators on
the right-hand side of (4.11) are considered separately, beginning with the inertial
term

(ũ, (ũ · ∇)ψ) =
∫
Ω

dx uxuy∂yψx(y)+ uzuy∂yψz(y)=
∫
Ω

dx uxuyΨx(y)+ uzuyΨz(y)
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=

∫
Ω

dx ũ · uyΨ (y)6 ‖Ψ ‖∞‖uyũ′‖1 = ‖Ψ ‖∞

∫
Ω

dx |uy| |

√
u2

x + u2
z |

6 ‖Ψ ‖∞

∫
Ω

dx |uy|(|ux| + |uz|)6
‖Ψ ‖∞

2

∫
Ω

dx u2
x + u2

z + 2u2
y

=
‖Ψ ‖∞

2

(
1+

∫
Ω

dx u2
y

)
, (4.12)

where ũ′ = (ux, 0, uz), while the monotonicity of the square-root was used in√
u2

x + u2
z 6
√
(|ux| + |uz|)2 and the triangle inequality in |uxuy|6 (u2

x + u2
y)/2. For the

viscous term, one obtains

|(ũ, ∆1/2Ψ )| = |(ũ′, ∆1/2Ψ )|6 ‖∆1/2Ψ ‖2‖ũ′‖2 = ‖∆
1/2Ψ ‖2

(
‖ux‖

2
2 + ‖uz‖

2
2

)1/2
, (4.13)

since Ψy = 0. The last term to evaluate is

|(ũ, ∆1/2Φ)| = |(ũ, φ)| =
∣∣∣∣∫
Ω

dx φxux + φzuz

∣∣∣∣6 ∣∣∣∣∫
Ω

dx φxux

∣∣∣∣+ ∣∣∣∣∫
Ω

dx φzuz

∣∣∣∣
6 ‖φx‖2‖ux‖2 + ‖φz‖2‖uz‖2 6 ‖ux‖2 + ‖uz‖2, (4.14)

since the normalisation ‖φ‖2 = 1 implies ‖φx‖2 6 1 and ‖φz‖2 6 1. Following the
procedure of Doering et al. (2003), set

ξ 2
= ‖ux‖

2
2 + ‖uz‖

2
2, (4.15)

such that

‖uy‖
2
2 = 1− ‖ux‖

2
2 + ‖uz‖

2
2 = 1− ξ 2, (4.16)

(‖ux‖2 + ‖uz‖2)
2
= ξ 2
+ 2‖ux‖2‖uz‖2 6 2ξ 2, (4.17)

where the inequality 2|xy|6 x2
+ y2 was used again. Now (4.11) can be written as

β 6 min
ψ

1
(Ψ ,Φ)

max
ξ∈[0,1]

(
ξ(2− ξ 2)
√

2
‖Ψ ‖∞ +

‖∆1/2Ψ ‖2

Ref

√
2ξ 2

)
. (4.18)

For Ref → ∞ the maximisation over ξ results in ξ =
√

2/3 and maxξ∈[0,1] ξ(2 −
ξ 2)/
√

2= 4/
√

27, such that

β∞ 6 min
ψ

max
ũ

(ũ, (ũ · ∇)ψ)(ũ, ∆1/2Φ)

(Ψ ,Φ)
6 min

ψ

1
(Ψ ,Φ)

4‖Ψ ‖∞
√

27
. (4.19)

The remaining minimisation over the multiplier Ψ proceeds by minor modifications of
the method devised by Doering et al. (2003) and Rollin et al. (2011). For this purpose,
consider

(Ψ ,Φ)= (Ψ , (Φ − C))6 ‖Ψ ‖∞‖(Φ − C)‖1, (4.20)

for any constant vector C = (Cx, Cy, Cz), as ψx and ψz are periodic functions with
zero mean. The inequality is saturated if Φ −C and Ψ are fully aligned, that is if Ψ
is a unit vector pointing in the direction of Φ − C. The minimum over Ψ in (4.19)
is therefore realised for

min
Cx,Cz

∫ 1

0
dy |Φ − C|, (4.21)
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from which the conditions for C realising the minimum become

0 =
∂

∂Cx

∫ 1

0
dy
√
(Φx −Cx)2 + (Φz −Cz)2

∣∣∣
Cx,z=Cmin

x,z

=

∫ 1

0

Φx −Cmin
x√

(Φx −Cmin
x )2 + (Φz −Cmin

z )2
, (4.22)

0 =
∂

∂Cz

∫ 1

0
dy
√
(Φx −Cx)2 + (Φz −Cz)2

∣∣∣
Cx,z=Cmin

x,z

=

∫ 1

0

Φz −Cmin
z√

(Φx −Cmin
x )2 + (Φz −Cmin

z )2
. (4.23)

For the periodic functions φX considered here Cmin
x =Cmin

z =0 satisfies these conditions.
Hence the final result for the minimax problem in the limit Ref →∞ is

β∞ 6 min
ψ

max
ũ

(ũ, (ũ · ∇)ψ)(ũ, ∆1/2Φ)

(Ψ ,Φ)
6

4
√

27

1∫ 1

0
dy|∂−1

y φ|

. (4.24)

The final step consists of an evaluation of the integral on the right-hand side of (4.24)
for the static shape functions φ(ρf ) considered here for A= B= 0, resulting in

β
(ρf )
∞

β
(0)
∞

=

(
π

2

∫ 1

0
dy

√
1−

√
1− ρ2

f sin (4πy)

)−1

>
2
√

2
π
' 0.9003. (4.25)

See appendix C for the calculation. The ratio between the dissipation factors is now
larger compared to the previous estimate in (4.10) because the minimisation procedure
replaces the L∞-norm of ∇−1φ with essentially the L1-norm. For the helical shape
functions φ(±1) one thus expects no effect from the minimisation owing to the fact
that unlike for ∇φ(ρf ) with |ρf |< 1, the L∞-norm of ∇φ(±1) equals the L1-norm.

4.2. Implications for the value of the Kolmogorov constant
The dimensionless dissipation coefficient has a direct relation to the Kolmogorov
constant CK , since the relation ε = βU3/Lf can be viewed as a special case of
Kolmogorov scaling formally extended to the turbulence production range (Lumley
1992). More precisely, if u` is the magnitude of the velocity-field fluctuations at
scale ` in the inertial range, then Kolmogorov scaling of the energy spectrum implies
ε`/u3

` ∼C−2/3
K = const. Formally extending this scaling to the production range, where

` = Lf and u` ' U would yield the desired result, which by consequence implies
CK ∼β

−2/3. However, this is only justified if Lf lies in the inertial range, which is not
the case at finite Reynolds number. That is, the argument can only be applied in the
formal limit of infinite Reynolds number, where the inertial range extends through all
k 6= 0. This limit corresponds to replacing β with β∞, which yields

CK ∼ β
−2/3
∞

. (4.26)

It is important to point out that this argument does not take into account that ε can
vary locally, a point already made by Lumley (1992). Therefore, the scaling given
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in (4.26) can only be viewed as an approximation. Equation (4.26) can now be used
to obtain the ratio of Kolmogorov constants for helical and non-helical forces from
the ratio β(ρf )

∞ /β(0)
∞

:

C(ρf )

K

C(0)
K

=

(
β
(ρf )
∞

β
(0)
∞

)−2/3

. (4.27)

For 3-D static forces, where the minimisation procedure cannot be applied, one obtains
the following explicit dependence of the relative value of the Kolmogorov constant on
the helicity of the external forcing from (4.10) and (4.27):

C(ρf )

K

C(0)
K

=

(√
1+ ρf

8
+

√
1− ρf

8

)−2/3

6 21/3. (4.28)

For shear flows where the minimisation procedure does apply, one obtains

C(ρf )

K

C(0)
K

=

(
π

2

∫ 1

0
dy

√
1−

√
1− ρ2

f sin (4πy)

)2/3

6
π2/3

2
. (4.29)

The estimates hence result in the following range of values for the two extreme cases:

1.07'
π2/3

2
6

C(1)
K

C(0)
K

6 21/3
' 1.26. (4.30)

4.3. Implications for the Smagorinsky constant in LES
As mentioned in the Introduction, the value of β is not only of theoretical interest
because of its relation to the parametrisation of the subgrid scales in LES, such as
for the Smagorinsky model (Smagorinsky 1963). The aim of LES is to simulate only
the motion at large and intermediate scales, while the effect of the small scales is
modelled. More precisely, let u be the velocity field u convoluted with a filter kernel
G∆, where ∆ is the characteristic filter width: u=G∆

∗u. The evolution of the filtered
field is then governed by the following equations:

∂tu=−
1
ρ
∇P− (u · ∇)u+ ν1u+ f −∇ · τ∆, (4.31)

∇ · u= 0, (4.32)

where τ∆ij = uiuj − uiuj is the subgrid-scale stress tensor and we assume ∆< Lf such
that f = f . Since τ∆ij is not closed in term of u, it must be modelled. The Smagorinsky
model for τ∆ij is based on the observation that the mean energy flux in 3-D turbulence
proceeds from the large scales to the small scales, it models the deviatoric part of
τ∆ij as

τ∆ij = 2(cS∆)
2
√

sijsijsij, (4.33)

where sij = (∂iuj + ∂jui) is the resolved-scale strain tensor and cS the Smagorinsky
constant, which is an adjustable parameter. Since the subgrid-scale energy transfer at
scale ∆ is given by

Π∆
= sijτ

∆
ij , (4.34)
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the Smagorinsky model leads to a pointwise non-negative subgrid-scale energy flux,

Π∆
= sij2(cS∆)

2
√

sijsijsij = 2(cS∆)
2
√

sijsijsijsij > 0. (4.35)

The Smagorinsky constant can be related to β∞ using the estimate by Lilly (1967) for
the value of the Smagorinsky constant for statistically steady homogeneous isotropic
turbulence, cS = (3CK/2)−4/3/π, in combination with (4.26):

cS =

(
2

3CK

)4/3

π
∼ β1/2

∞
. (4.36)

In terms of the dependence of cS on ρf , the above scaling results in a relative relation
between cS and β∞,

cS(ρf )

cS(0)
=

(
β∞(ρf )

β∞(0)

)1/2

, (4.37)

which implies the following dependence of cS on the relative helicity of the forcing,

cS(ρf )

cS(0)
=

(√
1+ ρf +

√
1− ρf

2

)1/2

, (4.38)

for isotropic forcing, and

cS(ρf )

cS(0)
=

(
π

2

∫ 1

0
dy

√
1−

√
1− ρ2

f sin (4πy)

)−1/2

, (4.39)

for shear flows. In summary, the values of cS decrease for increasing ρf , and in the
case of a strongly helical force the usual value of cS ' 0.17 (Lilly 1967) of the
Smagorinsky constant should be decreased according to the corresponding values
of β∞. Since the eddy viscosity νE = 2(cS∆)

2
√

sijsij depends quadratically on cS, it
depends linearly on β∞, which results in a decrease of at least 10 % in the case of
strongly helical forcing.

In the context of subgrid-scale modelling, the effect of helicity is usually included
through an extra model term (Yokoi & Yoshizawa 1993; Li et al. 2006; Baerenzung
et al. 2008; Inagaki, Yokoi & Hamba 2017), leading to an additional diffusion
mechanism in the model. Here, the modelling of the unresolved inertial dynamics
as a dissipative loss is the same and only the amount of dissipation is changed
depending on the helicity of the external force. Li et al. (2006) investigated different
subgrid-scale models in a priori and a posteriori analyses of isotropic helical
turbulence. The effect of the newly introduced terms in helical subgrid-scale models
was found to be quite small. Interestingly, the dynamic Smagorinsky model, where the
model coefficient is adjusted in response to the flow, performed best in comparison
with DNS data. An a posteriori analysis of the static Smagorinsky model with cS

adjusted as discussed here could be of interest in this context.
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5. Numerical simulations

Equations (2.1)–(2.2) are solved numerically in a three-dimensional periodic domain
of length Lbox = 2π using a fully de-aliased pseudospectral code. In order to assess
the influence of helicity, dimensionality and time dependence of the forcing on
the value of the dimensionless dissipation coefficient, DNSs were carried out using
different forcing functions, including the static forces constructed using the shape
functions given in (4.2) and (4.1) according to (4.4). Simulation series carried out
using these static shape functions are identified by the label S, followed by the
dimensionality of the force and the relative helicity level. Here, the label 1D2C
refers to one-dimensional two-component shape functions where e.g. A = B = 0
while 3D refers to three-dimensional forces with A = B = C. Since the different
implementations of time-dependent forcing have little effect on the measured value
for β (Bos et al. 2007), it is sufficient to consider only one type of time-dependent
forcing for comparison to the static forces. The time-dependent forcing was given by
a Gaussian distributed δ(t)-correlated stochastic process, which is particularly suited
to the present investigation because it gives optimal control over both kinetic energy
and helicity injection rates. The helicity of the random force is set by expanding the
Fourier modes f̂ of the force field in a basis consisting of eigenfunctions of the curl
operator (Constantin & Majda 1988; Waleffe 1992), i.e. into positively and negatively
helical modes, such that the helicity of the force can be adjusted exactly at each
wavevector (Brandenburg 2001). Simulation series carried out using dynamic forcing
are identified by the labels D1 and D2, followed by the helicity level of the force.
All simulations of series S and D2 are carried out using 2563 collocation points,
while simulations of series D1 were carried out using 5123 collocation points. The
force always acts on the large scales Lf =π/kf , i.e. at wavenumbers kf 6 2.5 for runs
of series D1 and at kf = 1 for all other simulations. For case D2, the random force
is equivalent to a phase-shifted ABC-flow with randomly chosen phases and values
of A, B and C.

All runs are carried out with a fixed time step dt chosen by the Courant–Friedrichs–
Lewy criterion, where in the case of white-in-time forcing dt determines the
characteristic frequency of the force by ωf = 2π/dt. According to (3.3), white-in-time
forcing should therefore lead to a maximal weighting of the extra contribution to
β∞ originating from the time dependence of the forcing compared to forces with
larger correlation times. Measurements are taken after the simulations have reached a
statistically stationary state; all simulations are evolved for more than 25 large-eddy
turnover times in stationary state. It has been pointed out by Bos et al. (2007) that
averaging intervals of more than 10 large-eddy turnover times are necessary in order
to obtain accurate values of β. The long run time of the simulations is particularly
important for the present study in order to distinguish the helicity dependence of the
measured values of β from the statistical error, resulting in a need to compromise
between achievable run time and resolution. A summary of the numerical details
including information on the small-scale resolution and measured values of ε, U,
L and β is given in table 1. For comparison purposes with results given in the
literature for isotropic turbulence, where βL = εL/U3, with L being the integral scale,
is measured instead of β = εLf /U3; values of βL are also provided in the table. For
the same reason, U is calculated as U=

√
2E/3, where E is the time-averaged kinetic

energy per unit volume.
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Run id N Re Reλ ε U L β δβ βL δβL ρ ρf kmaxη
ν

103
t/T

D1-0 512 842 162 0.11 0.61 0.97 1.56 0.03 0.48 0.01 0.004 0.0 1.27 0.705 29
D1-1 512 846 168 0.08 0.57 1.05 1.35 0.05 0.45 0.02 0.15 1.0 1.39 0.705 27

D2-0 256 584 151 0.09 0.68 1.55 0.88 0.06 0.433 0.03 0.001 0.0 1.37 1.8 111
D2-025 256 532 142 0.06 0.61 1.56 0.86 0.04 0.427 0.02 0.04 0.25 1.48 1.8 100
D2-05 256 538 146 0.06 0.61 1.59 0.84 0.05 0.42 0.03 0.08 0.5 1.50 1.8 102
D2-075 256 535 146 0.05 0.59 1.64 0.77 0.04 0.40 0.02 0.14 0.75 1.57 1.8 98
D2-1 256 616 167 0.06 0.65 1.71 0.68 0.05 0.37 0.03 0.17 1.0 1.50 1.8 106

S3D-0 256 611 143 0.02 0.41 1.50 0.95 0.02 0.45 0.01 −0.0008 0.0 1.26 1.0 54
S3D-025 256 600 142 0.018 0.40 1.52 0.92 0.02 0.447 0.01 0.07 0.25 1.30 1.0 60
S3D-05 256 619 148 0.016 0.39 1.58 0.85 0.02 0.426 0.01 0.11 0.5 1.34 1.0 58
S3D-075 256 629 154 0.014 0.386 1.63 0.78 0.03 0.40 0.01 0.14 0.75 1.39 1.0 54
S3D-1 256 614 156 0.01 0.37 1.67 0.72 0.02 0.38 0.01 0.16 1.0 1.46 1.0 65

S1D2C-0 256 645 151 0.56 1.26 1.54 0.89 0.03 0.43 0.01 0.01 0.0 1.24 3.0 115
S1D2C-025 256 584 143 0.41 1.14 1.54 0.88 0.02 0.43 0.01 0.07 0.25 1.36 3.0 168
S1D2C-05 256 608 150 0.37 1.13 1.62 0.80 0.02 0.41 0.01 0.11 0.5 1.40 3.0 167
S1D2C-075 256 615 155 0.31 1.10 1.68 0.73 0.02 0.39 0.01 0.15 0.75 1.49 3.0 157
S1D2C-1 256 630 162 0.26 1.08 1.76 0.65 0.02 0.36 0.01 0.18 1.0 1.53 3.0 162

TABLE 1. Specifications of the numerical simulations. N denotes the number of grid points
in each Cartesian coordinate, Re the Reynolds number with respect to the root-mean-square
velocity U, the integral scale L and the kinematic viscosity ν, Reλ the Taylor-scale
Reynolds number, ε the dissipation rate, β = εLf /U3 the dimensionless dissipation rate,
βL= εL/U3 the dimensionless dissipation rate with respect to L, δβ and δβL the respective
standard errors, ρ the relative kinetic helicity, ρf the relative helicity of the forcing, η the
Kolmogorov microscale, kmax the highest resolved wavenumber, T = L/U the large-eddy
turnover time and t/T the steady-state run time in units of T . The values given for ε,
U, L and ρ are ensemble averages, with the ensemble consisting of snapshots taken at
intervals of T in order to obtain statistically independent samples. The identifiers D and
S refer to dynamic and static forces, respectively. The two sets of simulations using static
forces differ in the dimensionality of the force as indicated by the labels 3D and 1D2C.

5.1. Comparison between numerical and analytical results
A comparison between the values of the rigorous bounds given in (4.8) and (4.25) and
the measured values given in table 1 shows that the measured values are considerably
smaller than the corresponding estimates. The range of values for the non-helical
3-D forces 0.43 6 βL

(0) 6 0.49 obtained from the present DNSs are consistent with
existing data from the literature for 3-D isotropic turbulence (Wang et al. 1996;
Gotoh et al. 2002; Kaneda et al. 2003; Donzis et al. 2005; Yeung et al. 2012;
McComb et al. 2015; Yeung et al. 2015; Ishihara et al. 2016), and the analytically
obtained estimates differ by an order of magnitude from the measured values. Such
a discrepancy between the measured value and the rigorous estimate has also been
obtained for a particular type of dynamic forcing (Doering & Petrov 2005), given by

f̂ (k, t)=

{
(ε/2Ef )û(k, t) for 0< |k|6 kf ,

0 otherwise,
(5.1)

where f̂ (k, t) is the Fourier transform of the force and Ef the total energy contained in
the forcing band. The rigorous bound derived by Doering & Petrov (2005) resulted in
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FIGURE 1. (Colour online) Value of β as a function of ρf normalised by its value at
ρf = 0 from datasets D2, S3D and S1D2C compared to the analytical predictions in (4.10)
and (4.25). (a) β = εLf /U3, (b) βL = εL/U3, where L is the integral scale.

β∞= 4π
√

3/5' 9.73, which could be tightened to β∞= 2
√

2π assuming Kolmogorov
scaling for the energy spectrum, i.e. interestingly to the same value as β(0)

∞
obtained

here for the static 3-D force.
Figure 1 presents a comparison of values for β(ρf )/β(0) (figure 1a) and β

(ρf )

L /β
(0)
L

(figure 1b) obtained from datasets D2, S3D and S1D2C and the analytical predictions
of (4.10) and (4.25). As can be seen from the figure, the measured values are in broad
agreement between the different datasets despite the lack of isotropy in case 1D2C and
the dynamical nature of the forcing in case D2. Symmetries specific to the choice
A = B = C in case S3D have therefore little or no influence on the value of β.
Furthermore, the functional dependence of the ratios β(ρf )/β(0) and β

(ρf )

L /β
(0)
L on ρf

is consistent with the analytical predictions. This implies that although the upper
bounds are by an order of magnitude higher than the measured values, there is
good agreement between the analytical and the numerical results concerning the
ratio β(ρf )/β(0), which in the limit Re→ ∞ is predicted to follow (4.10) for 3-D
forces and (4.25) for shear flows. Differences between the ρf -dependence of β and
βL originate from a ρf -dependence of the integral scale, which is discussed briefly in
§ 5.3.

The effect of finite Reynolds number on the measurements can be quantified through
the conventionally band-forced runs D1-0 and D1-1. For this purpose, it is useful
to consider the empirical formula obtained by a least-squares fit to a dataset of βL
resulting from DNSs of stationary homogeneous isotropic turbulence maintained with
the dynamic forcing specified in (5.1) for kf 6 2.5 (McComb et al. 2015),

β
(0)
L = 0.47+

18.9
Re

, (5.2)

which yields βL(Re= 834)= 0.49, in good agreement with the measured value for run
D1-0 shown in table 1. For run D1-1 the same equation is considered after adjusting
the value of the asymptote according to the aforementioned estimates

β
(1)
L = 0.42+

18.9
Re

, (5.3)

which results in βL(Re = 846) = 0.45, again in good agreement with the measured
value for run D1-1 shown in table 1. Hence the ratio 0.9 of the asymptotes and a
helicity-independent approach to the asymptotes is consistent with the data.
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Concerning a possible influence of the time dependence of the forcing on the value
of β∞, the comparison of values for β obtained from runs D2 and S3D shown in
table 1 demonstrates that the value of β is comparable between the dynamically
and the statically forced simulations, provided the forces act at the same length
scales. Furthermore, the ratio β(ρf )/β(0) appears to be largely unaffected by the time
dependence of the forcing as can be seen in figure 1. That is, the dynamical details
of the forcing have little influence on the value of β and possibly also on that of
the asymptote β∞. Note that the measured values of β for the dynamically forced
simulations D1-0 and D1-1 are higher than those obtained from D2-0 and D2-1,
despite the larger Reynolds number which most probably results from differences in
the range of wavenumbers the force is applied in. The dependence of β on the width
of the forcing band was studied analytically and numerically for Kolmogorov flow
by Rollin et al. (2011). The analytical estimates suggested an increase of β∞ with
the width of the forcing band, which was confirmed by DNS results. The behaviour
observed here is consistent with these results, as runs of series D2 were forced at
kf = 1 in order to enable a like-for-like comparison to the statically forced series S3D
runs, while runs of series D1 were forced more conventionally in the wavenumber
band 1 6 kf 6 2.5 in order to compare with results in the literature.

In summary, not only the qualitative but more importantly the relative quantitative
helicity dependence of the measured values of β is in good agreement with the helicity
dependence of the upper bounds. Moreover, this dependence of β on the helicity of
the forcing appears to be independent of its dynamical features.

5.2. Kolmogorov constant
Concerning the Kolmogorov constant CK , recent numerical measurements (Ishihara
et al. 2016) showed that accurate numerical measurements of CK require Taylor-scale
Reynolds numbers Reλ > 700 and hence very high resolution DNSs. Furthermore,
numerical results at Reλ = 2297 requiring 12 2883 collocation points revealed a
difference between the numerically and experimentally measured values of CK , with
CK = 1.8 ± 0.1 obtained numerically (Ishihara et al. 2016) and CK ' 1.6 obtained
from experimental data for several flow configurations (Sreenivasan 1995). The value
of the Kolmogorov constant thus appears still to be an open question, and DNSs
at much higher Reynolds numbers than those carried out in the present paper are
necessary to test any predicted variations for the Kolmogorov constant such as those
presented here.

5.3. Further observations
As can be seen from table 1, the integral scale is slightly larger for helical forces
with L(0)/L(1) ' 0.9 consistently in all test cases. Although a proper interpretation
of integral scale is perhaps ambiguous as the largest scales are dominated by the
forcing in the present simulations, the measurements suggest that helically forced
flows consist of larger eddies. This is expected given the depletion of nonlinearity in
regions of high helicity (Moffatt 1985, 2014). Although mirror symmetry is generally
recovered quickly at the small scales, (Kraichnan 1973; Chen et al. 2003a; Deusebio
& Lindborg 2014; Kessar et al. 2015), the high level of helicity at the large scales
diminishes the forward flux of kinetic energy and hence the efficiency of the kinetic
energy cascade leading to less generation of small-scale turbulent fluctuations (Moffatt
2014). In the decaying case, the same effect results in a delay in the onset of the
decay for non-zero helicity (Polifke & Shtilman 1989). A similar conclusion can be
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100

10–1

10–2

10010–1

S1D2C

D2

S3D

0 0.5 1.0

0.35U3

U

FIGURE 2. Value of ε as a function of U on a logarithmic scale for datasets S1D2C, D2
and S3D. The solid line shows the scaling ε∼U3, which corresponds to a fixed value of
β and Lf . The grey shading indicates different values of ρf . A trend can be observed: for
a fixed value of U, the dissipation rate decreases with increasing forcing helicity.

achieved by noting that despite comparable large-scale and Taylor-scale Reynolds
numbers, the helically forced turbulent flows are all better resolved, implying that the
Kolmogorov microscale is larger for the helically forced simulations compared to the
non-helically forced runs.

A reduction in the formation of small-scale structures with increasing ρf is
reminiscent of drag-reducing processes in wall-bounded flows. More precisely, at
a given value of U a decrease in ε in homogeneous turbulence corresponds to a
decrease in the wall shear stress in wall-bounded flows. Such an effect is indeed
obtained with increasing ρf as shown in figure 2, where ε is presented as a function
of U. It can be quantified through the measure

R(ρf )=
β(0) − β(ρf )

β(0)
, (5.4)

which equals the ratio of the corresponding dissipation rates at fixed U. From the
analytical and numerical results, one obtains R(ρf = 1)' 30 %.

6. Conclusions
Upper bounds for the dimensionless dissipation coefficient β have been evaluated

analytically depending on the relative helicity ρf of the external forcing. The main
results were: (i) helical forces lead to a lower estimate of the flux compared to a
non-helical force, (ii) a time-dependent force results in a larger estimate of the flux
compared to a static force, owing to an extra term appearing in the upper bound.
The calculated values of β(ρf ) were subsequently compared with values obtained from
DNSs which differed in the helicity level, the time dependence and the dimensionality
of the forcing. The agreement between the theoretically and numerically obtained
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values is good concerning the ratio β(ρf )/β(0) despite a difference of an order of
magnitude between theory and simulation results concerning the single quantities β(ρf ).
Time-dependent forces do not lead to larger values of β(ρf ) compared to static forces,
and the value of the ratio β(ρf )/β(0) is comparable between static and dynamic forces.
This indicates that the extra term that appears in the upper bounds for dynamic forces
arises from an analytical difficulty in deriving tight estimates for dynamic forces and
does not carry any relevant information concerning the value of the energy flux.

In summary, even though the actual estimates are not very tight, the upper bound
theory captures well the dependence of helicity, i.e. of a topological property, of
the force on the forward flux of kinetic energy not only qualitatively but also
quantitatively. This result is robust under differences in the dynamical properties of
the forcing. The forward flux of energy across the scales can thus be described by the
spatial regularity and the helicity of the force, which in principle can be adjusted by
the experimenter. Hence it may be possible to devise a particular type of force which
controls this forward flux of energy, thus leading to a suppression or enhancement
of turbulence and thus of e.g. nonlinear mixing or drag. The present results also
suggest that detailed knowledge of the topological properties of a naturally occurring
external force field may enable some predictions about the level of turbulence in a
flow. Since β is related to the model coefficient relating the turbulent kinetic energy
to its dissipation rate in the k–ε model and to the eddy viscosity in LES, the present
results may also be useful in practical applications concerned with flows subject to
helical forces such as in atmospheric physics.
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Appendix A. Time-dependent forcing
Let f = f0g(t)φ(x/Lf ) and consider a Gaussian filter function Gτ , with characteristic

time scale τ . From the energy inequality one obtains an upper bound for ε by the
same boundedness argument as in the case of static forcing:

ε6 f0〈g〉t‖φ‖2〈‖u‖2〉t. (A 1)

The next step proceeds similarly to the static case by taking the inner product of
all terms in the Navier–Stokes equations with Gτ

∗ (−∆)−M f , and the arguments
concerning the spatial dependence of the force are exactly the same. Each term in
equation (3.2) is now considered separately, beginning with the new term on the left-
hand side,

−〈((−∆)−M∂t(Gτ
∗ fi), ui)〉t = −〈((−∆)

−M∂tGτ
∗ fi, ui)〉t

=

〈
τ 2

t3
((−∆)−MGτ

∗ fi, ui)

〉
t

, (A 2)

which results in

〈((−∆)−M∂t(Gτ
∗ fi), ui)〉t 6 f0

∣∣∣∣〈τ 2

t3
Gτ
∗ g
〉

t

∣∣∣∣ ‖(−∆)−Mφ‖2〈‖u‖2〉tL2M
f . (A 3)
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For the terms on the right-hand side one obtains

〈(ui, uj∂j(−∆)
−MGτ

∗ fi)〉t 6 f0|〈Gτ
∗ g〉t|‖∇(−∆)−Mφ‖∞(〈‖u‖2〉t)

2L2M−1
f , (A 4)

ν〈((−∆)−MGτ
∗ fi, 1ui)〉t 6 f0|〈Gτ

∗ g〉t|‖(−∆)−M+1φ‖2(〈‖u‖2〉t)
2L2M−2

f , (A 5)

〈((−∆)−MGτ
∗ fi, fi)〉t = f 2

0 〈(G
τ
∗ g)g〉t‖(−∆)−M/2φ‖2

2L2M
f , (A 6)

where in the last line 〈(Gτ
∗ g)g〉t > 0. Hence one obtains the upper bound

f0 6 U
|〈Gτ
∗ g〉t|

〈(Gτ ∗ g)g〉t

(
‖(−∆)−Mφ‖2

‖(−∆)−M/2φ‖2
2
+

U
Lf

‖∇(−∆)−Mφ‖∞

‖(−∆)−M/2φ‖2
2
+
ν

L2
f

‖(−∆)−M+1φ‖2

‖(−∆)−M/2φ‖2
2

)
,

(A 7)
which substituted into (A 1) yields after some rearrangement a bound on β:

β 6
|〈Gτ
∗ g〉t|〈g〉t

〈(Gτ ∗ g)g〉t

(
|〈(τ 2/t3)Gτ

∗ g〉t|
|〈Gτ ∗ g〉t|

Lf

U
‖(−∆)−Mφ‖2‖φ‖2

‖(−∆)−M/2φ‖2
2

+
‖∇(−∆)−Mφ‖∞‖φ‖2

‖(−∆)−M/2φ‖2
2
+

1
Re
‖(−∆)−M+1φ‖2‖φ‖2

‖(−∆)−M/2φ‖2
2

)
. (A 8)

The summand on the right-hand side of the above inequality can be further
approximated by considering

lim
t→∞

(τ 2/t3)Gτ
∗ g= 0, (A 9)

since both Gτ and g are bounded, and

lim
t→0
(τ 2/t3)Gτ

∗ g= 0, (A 10)

since Gτ
= exp (−τ 2/t2) goes to zero faster than any power for t→ 0. The average

value is thus dominated by the integrand at t= τ and can be approximated as

|〈(τ 2/t3)Gτ
∗ g〉t| ' |〈Gτ

∗ g〉t|/τ , (A 11)

such that with the definitions ωf = 1/τ and ω=U/Lf one obtains (3.3).

Appendix B. Evaluation of norms for shape functions φρf .

The terms to evaluate explicitly are ‖∇(−∆)−Mφρf ‖∞ and ‖φ(ρf )‖
2. We first

establish that the fully helical shape functions are normalised to unity:

‖φ(±1)
‖

2
2 =

1
|[0, 1]3|

1
A2 + B2 +C2

∫
[0,1]3

dx dy dz (B2(sin (2πx)2 + cos (2πx)2)

+C2(sin (2πy)2 + cos (2πy)2)+ A2(sin (2πz)2 + cos (2πz)2))= 1. (B 1)

Since φ(±1) are eigenfunctions of the curl operator, they are also orthogonal with
respect to the L2-inner product, i.e. (φ(1), φ(−1)) = 0. For a shape function with
fractional relative helicity we therefore obtain

‖φ(ρf )‖
2
2 =

(√
1+ ρf

2
φ(1) +

√
1− ρf

2
φ(−1),

√
1+ ρf

2
φ(1) +

√
1− ρf

2
φ(−1)

)

=
1+ ρf

2
‖φ(1)‖2

2 +
1− ρf

2
‖φ(−1)

‖
2
2 = 1. (B 2)
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The term ‖∇(−∆)−Mφ(ρf )‖∞=‖∇φ
(ρf )‖∞/(2π)2M is calculated by first considering the

gradients of the shape functions:

∇φ(1) =
2π

√
A2 + B2 +C2

 0 B cos 2πx −B sin 2πx
−C sin 2πy 0 C cos 2πy
A cos 2πz −A sin 2πz 0

 , (B 3)

∇φ(−1)
=

2π
√

A2 + B2 +C2

 0 −B sin 2πx B cos 2πx
C cos 2πy 0 −C sin 2πy
−A sin 2πz A cos 2πz 0

 . (B 4)

Now the L∞-norm of ∇φ(ρf ) can be calculated. For this purpose, set α≡
√
(1+ ρf )/2

and γ ≡
√
(1− ρf )/2, such that

‖∇φ(ρf )‖∞ = sup
x∈[0,1]3

(
3∑

i,j=1

∂iφ
(ρf )

j ∂iφ
(ρf )

j

)1/2

= sup
x∈[0,1]3

(
3∑

i,j=1

[
∂i

(
αφ

(1)
j + γφ

(−1)
j

)]2
)1/2

=
2π

√
A2 + B2 +C2

sup
x∈[0,1]3

(B2
[(α cos 2πx− γ sin 2πx)2 + (γ cos 2πx− α sin 2πx)2]

+C2
[(α cos 2πy− γ sin 2πy)2 + (γ cos 2πy− α sin 2πy)2]

+A2
[(α cos 2πz− γ sin 2πz)2 + (γ cos 2πz− α sin 2πz)2]

1/2
)

=
2π

√
A2 + B2 +C2

sup
x∈[0,1]3

(B2
[α2
+ γ 2

− 4αγ cos 2πx sin 2πx]

+C2
[α2
+ γ 2

− 4αγ cos 2πy sin 2πy] + A2
[α2
+ γ 2

− 4αγ cos 2πz sin 2πz]
1/2
) .

(B 5)

Since
√

a is a monotonic function for a∈R, the supremum is realised at a point x=
(x, y, z)∈ [0, 1]3 where each summand is maximal. This is the case for x= y= z= 1/8
since cos π/4= 1/

√
2 and sin π/4=−1/

√
2, such that

‖∇φ(ρf )‖∞ =
2π

√
A2 + B2 +C2

((A2
+ B2
+C2)[α2

+ γ 2
+ 2αγ ])1/2 = 2π|α + γ |

=
√

2π
(√

1− ρf +
√

1+ ρf

)
. (B 6)

Finally, one obtains

‖∇(−∆)−Mφ(ρf )‖∞ = ‖∇φ
(ρf )‖∞/(2π)2M

=

√
2π
(√

1− ρf +
√

1+ ρf
)

(2π)2M
. (B 7)

Appendix C. Evaluation of the integrals in (4.24) for bidirectional static forces

Consider the two static forces φ(±1) for A=B= 0. For simplicity we set C= 1, such
that

−∂−1
y φ(1) =

1
2π

−sin2πy
0

cos 2πy

 and −∂−1
y φ(−1)

=
1

2π

 cos 2πy
0

−sin2πy

 , (C 1a,b)
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such that

−∂−1
y φ(ρf ) =

√
1+ ρf

2

−sin2πy
0

cos 2πy

+√1− ρf

2

 cos 2πy
0

−sin2πy

 . (C 2)

The evaluation of the integral on the right-hand side of (4.24) proceeds by explicit
calculation. For convenience, set α ≡

√
(1+ ρf )/2 and γ ≡

√
(1− ρf )/2, such that∫ 1

0
dy |∂−1

y φ(ρf )| =
1

2π

∫ 1

0
dy
√
(α cos 2πy− γ sin 2πy)2 + (γ cos 2πy− α sin 2πy)2

=
1

2π

∫ 1

0
dy
√
α2 + γ 2 − 2αγ sin 4πy

=
1

2π

∫ 1

0
dy

√
1−

√
1− ρ2

f sin 4πy, (C 3)

where the integrand has no closed-form antiderivative. For the extreme cases ρf =±1
and ρf = 0, one obtains∫ 1

0
dy |∂−1

y φ(±1)
| =

1
2π

∫ 1

0
dy
√
(sin 2πy)2 + (cos 2πy)2 =

1
2π
, (C 4)∫ 1

0
dy |∂−1

y φ(0)| =
1

2π

∫ 1

0
dy
√

1− sin 4πy=
1

2π

∫ 1

0
dy
√
(cos 2πy− sin 2πy)2

=
1

2π

∫ 1

0
dy
√

2| sin (2πy+π/4)| =
1

2π

∫ 1

0
dy
√

2| sin 2πy| =

√
2

π2
.

(C 5)

Appendix D. Stagnation points and symmetries
In this appendix we consider the stagnation points and symmetries of a flow

corresponding to φ(0), i.e. given by

v(0) ≡

ẋ(t)
ẏ(t)
ż(t)

=
A sin 2πz(t)+C sin 2πy(t)

B sin 2πx(t)+ A sin 2πz(t)
C sin 2πy(t)+ B sin 2πx(t)

 , (D 1)

on the periodic domain [ 0, 1 )3. The stagnation points of v(0) require v(0) = 0, but

ẋ(t)= 0 H⇒ A sin 2πz(t)=−C sin 2πy(t), (D 2)
ż(t)= 0 H⇒ B sin 2πx(t)=−C sin 2πy(t), (D 3)

result in ẏ(t)=−2C sin 2πy(t). Hence v(0) = 0 if and only if x= y= z= 0 or x= y=
z=π. The symmetry group of v(0) consists of the four elements {id, σ1, σ2, σ3}, where
id denotes the identity transformation and

σ1(x)=−x, σ1(y)=−y, σ1(z)=−z, σ1(t)= t, (D 4a−d)

σ2(x)= x+π, σ2(y)= y+π, σ2(z)= z+π, σ2(t)= t, (D 5a−d)
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σ3(x)=−x−π, σ3(y)=−y−π, σ3(z)=−z−π, σ3(t)=−t. (D 6a−d)

Since σ3 = σ1 ◦ σ2, the set {id, σ1, σ2, σ3} indeed forms a group. It is isomorphic to
the direct product of the cyclic group of two elements Z2 with itself because σ 2

i = id
for i ∈ {1, 2, 3}.
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