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Abstract
Bovine herpesvirus 1 (BHV-1) causes a variety of diseases and is globally distributed. It infects

via mucosal epithelium, leading to rapid lytic replication and latent infection, primarily in

sensory ganglia. Large amounts of virus can be excreted by the host on primary infection or

upon recrudescence of latent infection, resulting in disease spread. The bovine immune

response to BHV-1 is rapid, robust, balanced, and long-lasting. The innate immune system is

the first to respond to the infection, with type I interferons (IFNs), inflammatory cytokines,

killing of infected host cells, and priming of a balanced adaptive immune response. The virus

possesses a variety of immune evasion strategies, including inhibition of type I IFN production,

chemokine and complement binding, infection of macrophages and neutrophils, and latency.

BHV-1 immune suppression contributes to the severity of its disease manifestations and to the

bovine respiratory disease complex, the leading cause of cattle death loss in the USA.
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1. Introduction

Bovine herpesvirus 1 (BHV-1) causes a variety of diseases

(Gibbs and Rweyemamu, 1977) and infection is world-

wide (Beer, 2012). The diseases it causes are costly both

in direct disease effects and in lost trade. Immunosup-

pression by BHV-1 potentiates secondary infections, and

it is a major component of the bovine respiratory disease

complex (BRDC), which has a large economic impact on

the cattle industry in the USA (Jones and Chowdhury,

2007; Anon, 2011).

BHV-1 has been found to infect a number of artiodactyl

species, and is closely related to viruses infecting other

domestic and wild ungulates (Thiry et al., 2006). It is

considered the prototype herpesvirus species of rumi-

nants (Robinson et al., 2008). BHV-1 is also similar to the

(human) type species of its genus (Varicellovirus),

subfamily (Alphaherpesvirinae, aHV), and family

(Herpesviridae, HV) and demonstrates similar life-cycle

events. The human HV viruses, and the aHV viruses of

veterinary importance such as BHV-1, have been exten-

sively studied.

Although similar in many respects to the human

immune response to human herpesvirus 1 (HHV-1), the

differences in the bovine immune system, physiology,

lifestyle and BHV-1 proteins mean the bovine immune

response to BHV-1 is unique. The impact of the diseases

caused by BHV1, and the promise of their mitigation by

immunologic means, make understanding BHV1 infection

and the bovine immune response to it important and

relevant.

2. BHV-1 life-cycle

2.1. Classification

BHV-1 is a member of the HV family, whose type species

is HHV-1, also known as herpes simplex virus 1 (HSV-1).*Corresponding author. E-mail: Randall.L.Levings@aphis.usda.gov

*c Cambridge University Press 2013 This is a work of the U.S. Government and is not
subject to copyright protection in the United States.
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Membership in the family is based on virion architecture:

a core containing a linear double-stranded (ds) DNA

genome, an �100 nm icosahedral capsid of 162

capsomers, an amorphous tegument, and an envelope

containing viral glycoprotein (GP) spikes (Pellett and

Roizman, 2007). HV specify a large number of enzymes

for DNA synthesis, processing of proteins, and other

functions. The genome synthesis and capsid assembly

occurs in the host cell nucleus. Production of infectious

progeny results in the destruction of the host cell. All HV

are able to remain latent in their hosts (Pellett and

Roizman, 2007).

BHV-1 is a member of the aHV sub-family, whose

type species is HHV-1. Members of this subfamily are

classified based on variable host range, short reproductive

cycle, lytic infection of cells, and ability to establish

latency primarily in sensory ganglia (Pellett and Roizman,

2007). The aHV include numerous viruses of veterinary

importance, including the varicelloviruses noted below

and gallid herpesvirus 1 (infectious laryngotracheitis

virus) and gallid herpesvirus 2 (Marek’s disease virus).

Such viruses may be studied as aHV models and for

disease control purposes (Mettenleiter, 1996; Pomeranz

et al., 2005).

BHV-1 is a member of the genus Varicellovirus, whose

type species is human herpesvirus 3 (HHV-3), also known

as varicella-zoster virus (VZV). Membership in the genus

is based on wide tissue tropism and genome arrangement

(Cohen et al., 2007). The varicelloviruses include suid

herpesvirus 1 (SHV-1, pseudorabies virus, or PRV), equid

herpesvirus 1 (EHV-1, equine abortion virus), equid

herpesvirus 4 (EHV-4, equine rhinopneumonitis virus),

and felid herpesvirus 1 (FHV-1, feline viral rhinotracheitis,

or FVR) (Davison, 2010).

Isolation of BHV-1 was first reported in the USA in

1956 (Madin et al., 1956). Subtypes 1.1, 1.2a, and 1.2b,

formerly including 1.3a and 1.3b that are now a separate

species (BHV-5), were identified by genetic and antigenic

analysis (Engels et al., 1981; Misra et al., 1983; Brake and

Studdert, 1985; Metzler et al., 1985; Wyler et al., 1989) and

were associated with geographic range and prevalence of

clinical manifestations (Edwards et al., 1990; van Oirschot

et al., 1995; D’Arce et al., 2002).

2.2. Virion structure

2.2.1. Genome
There are six sequence arrangements of the dsDNA

genomes of HV, based on the presence and location of

repeats of terminal sequences. BHV-1 takes the D form, in

which the terminal sequence is repeated in an inverted

orientation internally. The genome segment between the

repeats (unique short, or US) exists in two orientations

relative to the unique long (UL) segment (Pellett and

Roizman, 2007).

The genome of BHV-1 was first mapped by

Mayfield et al. (1983), and later sequenced by an

international consortium (Schwyzer and Ackermann,

1996). The genome maps of BHV-1.1 and �1.2 (Mayfield

et al., 1983) and BHV-5 (Engels et al., 1986) were

determined and percent identity of BHV-1.1 to BHV-1.2

(95%) and BHV-1.1 to BHV5 (�85%) calculated.

Seventy-three open reading frames (ORFs) were

identified in the 135,301 base pair (bp) genome (Glazov

et al., 2010). Genes of HV overlap, and are not spliced

(Pellett and Roizman, 2007). Of the 73 genes, 33 were

found to be essential to in vitro replication, 36 were not

essential, with the status of 2 dual-copy genes incon-

clusive (Robinson et al., 2008). Most, but not all, of the

genes of BHV-1 conform to HHV-1 homologs in location,

sequence (Whitbeck et al., 1994) and replication require-

ments (Robinson et al., 2008). Of the 71 BHV-1 proteins,

67 are conserved in each of HHV3 and HHV-1 (Davison,

2010). Eight of 73 genes (spread among regulatory,

capsid, tegument, and membrane proteins) differed

from HHV-1 in their requirement for in vitro replication

(Robinson et al., 2008). Four ORFs are unique to

BHV-1: Circ; UL0.5; UL3.5; and US1.5 (Schwyzer and

Ackermann, 1996). Some genes are conserved across all

HVs, including those that encode DNA polymerase, major

capsid protein UL19 [virus protein (VP) 5], tegument

protein UL7, and some envelope GPs such as gB. Others

are conserved at the subfamily level; for aHVs, examples

include latency-associated genes and gL (Pellett and

Roizman, 2007; Davison, 2010). Genes and products of

various HVs were named for positions of their restriction

endonuclease fragments on gels, gene position on

mapped genomes, sequence of expression or identifica-

tion, and HHV-1 homolog. This can be particularly

confusing when the genome position in a virus is not

the same as the ‘genome position name’ of the HHV-1

homolog.

Host RNA polymerase II is responsible for viral DNA

transcription (Roizman et al., 2007). Viral gene transcrip-

tion is temporally regulated, in immediate early (IE, or a),

early (E, or b), early/late (leaky late, g 1), and true late

(g 2) phases (Seal et al., 1992; Roizman et al., 2007).

IE genes are defined as those transcribed in the

absence of de novo viral protein synthesis. In HHV-1, IE

transcription is induced by the tegument protein a�trans-

inducing factor (TIF) (VP 16), occurs in the first 2–4 h

after infection, and includes transcripts for six proteins

(Roizman et al., 2005). Several of these encode regulatory

proteins that stimulate expression of E and late (L) genes

(Smiley, 2004), and one [infected cell protein (ICP) 0] is

involved in blocking host cell silencing by the nuclear

domain ten protein of promyelocytic leukemia (PML)

nuclear bodies (Tavalai and Stamminger, 2009).

In BHV-1, a-TIF also stimulates IE gene transcription

by a different mechanism (Misra et al., 1995). BHV-1 IE

transcription units 1 and 2 (IEtu1 and 2) encode

homologs of HHV-1 ICP0 and ICP4, plus Circ and ICP22,
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respectively (Jones and Chowdhury, 2007). bICP0 is a

transactivator for all viral promoters and the bICP0

transcript is constitutively expressed during productive

infection (Jones and Chowdhury, 2007). bICP0 apparently

does not bind to specific DNA sequences, suggesting that

it activates by interacting with cellular transcriptional

machinery (Jones and Chowdhury, 2007). bICP0, 4, and

22 activate E genes.

E (or b) gene transcription occurs 4–8 h after HHV-1

infection. b gene proteins include enzymes and DNA-

binding proteins involved in DNA replication. g 1 genes

are only moderately stimulated by DNA replication, and

they can be difficult to differentiate from b and from g 2

genes. gB and gD genes are g 1 in HHV-1 (Roizman et al.,

2007), but in BHV-1 the proteins are produced as early

as 2–4 h after infection (before DNA replication)

(Baranowski et al., 1996). g 2 genes are defined as having

almost no production without DNA replication, and are

largely involved in virion assembly. gC is a g 2 protein.

Most capsid, tegument, and envelope GPs are encoded by

g genes.

In addition to the ORFs identified in the BHV-1

genome, ten micro RNA (miRNA) genes have been

identified, encoding 12 mature miRNAs with 14 miRNA-

encoding loci. Two are located close to the origin of

replication.

2.2.2. Core
For HHV-1, there is no specific protein coating the DNA in

the core. There are polyamines, which are suggested to

neutralize the DNA for better packing within the capsid

(Roizman et al., 2005).

2.2.3. Capsid
The capsid of HHV-1 is made up of 162 capsomers

with T=16 icosahedral symmetry. The capsid is composed

of an outer layer and an intermediate shell, with potential

channels between the core and outside of capsid. The

outer shell is composed of four proteins. VP5 is the

major capsid protein, with five copies in each penton

capsomere and six in each hexon capsomere (Roizman

et al., 2007). VP5 is conserved across aHV (Davison,

2010) and BHV-1 VP5 is an essential gene (Robinson

et al., 2008).

2.2.4. Tegument
The space between the envelope and the surface of the

capsid is mostly unstructured in HHV-1, but contains a

variety of viral proteins (Roizman et al., 2007) differen-

tially located in an inner and outer layer. They play a wide

variety of roles, from capsid transport during entry

and egress to regulation of transcription, translation, and

apoptosis (Kelly et al., 2009). In BHV-1, the tegument

protein VP8 (UL47) is the most abundant protein in the

virion (Carpenter and Misra, 1991) and appears to act as

an RNA-transporting protein (Verhagen et al., 2006). VP22

of BHV-1 is similar to that of HHV-1, but has some

differences in cellular localization (Harms et al., 2000;

Zheng et al., 2005). VP22 activities include microtubule

reorganization and intracellular trafficking. UL41 encodes

the viral host shutdown (VHS) protein of BHV-1 – it is

conserved in aHVs (Muylkens et al., 2007). In other aHVs

studied, VHS is an mRNA-specific RNase that triggers

rapid shutoff of host cell protein synthesis (Smiley, 2004).

It degrades both viral and host mRNA, but the viral mRNA

continues to accumulate (Roizman and Taddeo, 2007).

The tegument also contains cellular and viral transcripts

(Roizman et al., 2007), as well as non-coding RNA (Amen

and Griffiths, 2011). The RNA may be structural, or may

code for an immunoregulatory protein as is known for

HHV8. miRNAs are also known to be packaged in the

virion (Amen and Griffiths, 2011).

2.2.5. Envelope
The aHV envelope consists of a lipid bilayer acquired

from host cellular membrane, with virus-encoded

proteins imbedded in it (Roizman et al., 2007). Twelve

envelope proteins have been described for BHV-1, ten of

which are glycosylated, whereas two are not (gN or

UL49.5 and US9) (Jones and Chowdhury, 2007). The ten

GPs are named gB, gC, gD, gE, gG, gH, gI, gK, gL, and gM

(Turin et al., 1999). gB, gC, and gD are considered ‘major’

or more abundant GPs, and others (e.g. gE and gH) as

‘minor’ GPs (Baranowski et al., 1996). Most GPs are

homologous in function and structure to those specified

by HHVI but there are clear differences in sequences and

roles (Turin et al., 1999).

There are striking differences between the varicello-

viruses HHV-3 and BHV-1; gE is essential in HHV3, but

not in BHV-1, and gD is essential in BHV-1, but not

present in VZV (Robinson et al., 2008; Davison, 2010).

The gN of HHV-1 and SHV1 is glycosylated, whereas

UL49.5 is a ‘false GP’ in BHV-1 (Muylkens et al., 2007). GP

complexes of BHV-1 were variously named by their

positions in polyacrylamide gels, by their molecular

weights, by apparent homology with the GPs of other

HV including HHV-1, and finally in accordance with

the homologous HHV-1 GPs. The three major BHV-1

GPs can serve as examples: gB (named GVP 6/11a/

16, 130 K/74 K/55 K, gI, and gB); gC (named GVP 3/9,

180 K/91 K, gIII, and gC); and gD (named GVP 11b,

150 K/77 K, gIV, and gD).

Five envelope GPs are involved in HHV-1 attachment

and entry, as well as fusion of infected cells: gB, gC, gD,

gH, and gL (Spear et al., 2000; Rey, 2006). It is believed

similar mechanisms apply to all aHV except those lacking

gD, e.g. HHV3. The homodimer gC first binds non-

specifically, possibly electrostatically (Cohen et al., 2007)

to the host cell membrane glycosaminoglycans. Binding

by other GPs (e.g. gB non-specifically to those same

receptors, or gD specifically to its receptors) can

contribute to binding, and gC is not required for

attachment. This is followed by the homodimer gD

binding to one of the three cellular receptors that vary
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by cell type and species, although they are usually

homologous (Connolly et al., 2001). The three types of

receptors are: herpesvirus entry mediator (HVEM) A;

members of the nectin family; and 3-O-sulfated heparin

sulfate. The use of receptors is specific for each of the

closely related aHV studied (HHV-1, HHV-2, SHV-1, and

BHV-1) (Campadelli-Fiume et al., 2000; Spear, 2004). The

use of multiple receptors by any one aHV may be due to

the receptors’ presence and absence on various cell types

(e.g. epithelium versus T cells) and their presence on

various cell surfaces (e.g. apical for primary infection,

tight junctions for cell-to-cell spread) (Spear, 2004).

In describing fusion of the viral envelope with the

cell membrane, the differences in gB and gD among

the aHV make comparisons difficult. It seems all HVs

require gB and gH/gL for entry and cell–cell fusion, and

some (including HHV-1 and BHV-1) also require gD

(Spear et al., 2006; Atanasiu et al., 2010). gD of HHV-1

has a receptor binding face and a fusion activation face.

The nectin-1 and HVEM binding sites are distinct, and

the amino- and carboxyl-terminal peptides of gD play a

role in covering or revealing binding sites (Di Giovine

et al., 2011). gD assumes a different conformation in

the absence of receptor, bound to HVEM, and bound

to nectin-1 (Spear et al., 2006). It is believed that

gD-receptor binding results in a displacement of the

gD C-terminal region, triggering virus envelope – cell

membrane fusion by gB or gH/L (Krummenacher et al.,

2005).

‘Lead roles’ in fusion have been assigned to each of gB

and gH. gB is a homotrimer with fusion domains similar

to the vesicular stomatitis virus fusion GP (Heldwein

et al., 2006). Homologs within the HV are highly

conserved. A furin protease site is present on almost all

gB homologs (including BHV-1 gB), but not on HHV-1.

Since gH/gL did not resemble any documented viral

fusion protein at a structural level, Atanasiu et al., (2010)

proposed that receptor-activated gD alters gH/gL, which

in turn up-regulates the fusogenic potential of gB.

Conversely, Roizman et al., (2007) proposed fusion is

due to a fusion peptide (Tu and Kim, 2008) and heptad

repeats of gH, possibly activated by gB and conforma-

tionally altered gD. In this model, gL may block exposure

of the repeats if not activated.

2.3. Virus entry into the host

The ‘portals of entry’ for BHV-1 are the mucous

membranes of the upper respiratory tract, the genital

tract, or the conjunctiva (Muylkens et al., 2007). Direct

nose-to-nose contact or aerosol over short distances

can result in infection (Mars et al., 1999, 2000). Genital

infection can result from mating, or via infected semen

(Muylkens et al., 2007). It has been proposed that the first

cells infected with HHV3 are the epithelium and T cells

(Abendroth et al., 2010; Arvin et al., 2010).

Although BHV-1 subtypes were associated with differ-

ent routes of infection, this may have been due to

geographical isolation and common transmission. Each

subtype will infect by the less-common route (Muylkens

et al., 2007), and no difference in tropism was found

using ovine respiratory and genital mucosal explants

(Steukers et al., 2011). However, it should be noted that

an anti-gC monoclonal antibody (MAb) was described

that failed to react with all BHV1 genital isolates tested

(Rijsewijk et al., 1999), and gC differences in HHV-1 and

�2 do influence cell tropism properties (Muylkens et al.,

2007).

2.4. Dissemination in the host

Intracellular BHV-1 virions were detected at 10 h post-

infection, with transmission to adjacent cells occurring at

that time (Babiuk et al., 1975). gE (Rebordosa et al., 1996),

gI, and gG are important to cell-to-cell spread of HHV-1.

gD, gB, and gH/L are required for cell-to-cell spread by

BHV-1, with contributions from gE and gG (Trapp et al.,

2003; Muylkens et al., 2007). It has been noted that

microvesicles secreted by HHV-1-infected cells (light [L]-

bodies) contain tegument proteins that can prepare cells

for infection (Meckes and Raab-Traub, 2011).

Extracellular BHV-1 virions were detected at 12–13 h

post-infection (Babiuk et al., 1975), which would allow

infection of adjacent and non-adjacent cells. The virus

may spread by viremia, leading to, e.g. abortion or

systemic disease. Viremia may be cell-free (Kaashoek

et al., 1996) but is more likely via infected lymphocytes

(LC) (Nandi et al., 2009).

2.5. Latency

Neurons of the peripheral nervous system are infected

by cell-to-cell spread (Jones and Chowdhury, 2007). In a

BHV-1 respiratory infection, this involves the trigeminal

ganglia (TG), usually only first-order neurons. BHV-1

does not invade the central nervous system via the

olfactory pathway as BHV5 does, due to differences in gE

(Al-Mubarak et al., 2004; Chowdhury et al., 2006). High

levels of virus gene expression and infectious virus are

detected in the TG 1–6 days after infection (Jones and

Chowdhury, 2007). Then lytic gene expression and

infectious virus levels drop, but viral genomes can be

detected, and latency-related (LR) and ORF-E transcripts

are produced at high levels. LR transcripts are detected

early after neuron infection (Devireddy and Jones, 1999)

and may have a role in determining the outcome of

neuronal infection (Jones and Chowdhury, 2007).

BHV-1 LR gene products inhibit cell proliferation,

bICP0 RNA expression, and apoptosis (Lovato et al.,

2003; Jones et al., 2006). BHV-1 LR protein appears to

prevent cell cycle progression in neurons, with enhanced
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survival of infected neurons (Schang et al., 1996). The LR

gene is antisense to bICP0, which is a transactivator for all

viral promoters. Expression of the BHV-1 LR gene alone

promotes survival in cell cultures stimulated to enter

programmed cell death (Ciacci-Zanella et al., 1999). The

LR gene contains two ORFs, and the LR RNA is

alternatively spliced in TG at day 7 (the transition to

latency). The alternate transcript codes for a fusion of one

ORF and part of the other, and the resulting protein binds

two host cell proteins that can induce apoptosis,

including BH3-interacting domain death agonist (Bid). It

also binds an ‘enhancer-binding protein’ (C/EBP-a),

which stimulates lytic gene transcription in other HVs.

ORF-E is a small ORF within the LR promoter (and

antisense to LR), which may maintain neuron function

after infection (Jones and Chowdhury, 2007).

In HHV-1, miRNAs are expressed during latency that

target ICP0 and ICP4, lytic genes (Boss and Renne, 2010).

One of the 12 mature miRNAs encoded in BHV-1 is

antisense to the LR gene (Glazov et al., 2010).

BHV-1 latency may also be established in cells of

lymphoid origin. BHV-1 DNA has been detected in

lymphoid tissues when infectious virus was undetectable

(Jones and Chowdhury, 2007). However, LR-RNA is not

extensively expressed in those tissues (Winkler et al.,

2000).

Upon reactivation, bICP0 expression is stimulated,

likely due to host entities (E2F family members) acting

on early promoters (Workman and Jones, 2010). LR

and ORF-E expression drop, and expression of other

(lytic) genes is readily detected (Jones and Chowdhury,

2007). Dexamethasone treatment can trigger reactivation.

It stimulates expression of cellular transcription factor

C/EBP-a (described above), which interacts with the

early promoter of bICP0 (Workman and Jones, 2010).

Upon reactivation, aHV can spread from the infected

neuron to adjacent cells at the axon synapse and along

the axon’s length (Tomishima and Enquist, 2002).

2.6. Transmission from the host

Virus is excreted from the host for 7–10 days after

infection (Jones and Chowdhury, 2007), with some

reports of 10–17 days with 1010 TCID50 (Straub, 1990).

Nose-to-nose contact, aerosol, breeding contact with

infected prepuce or vaginal epithelium, artificial insemi-

nation with infected semen, and even mechanical

transmission by ticks has been reported (Straub, 1990).

2.7. Consequences of infection

Diseases caused by BHV-1 include infectious bovine

rhinotracheitis (IBR) (McKercher et al., 1955), conjuncti-

vitis (McKercher et al., 1959), infectious pustular vulvo-

vaginitis (Kendrick et al., 1958), infectious pustular

balanoposthitis (Huck et al., 1971), and abortion (Orms-

bee, 1963) in adult cattle, as well as encephalitis (French,

1962a, 1962b), enteritis (Gratzek et al., 1966), and

generalized disease (Van Kruiningen and Bartholomew,

1964) in calves.

BHV-1 is also a significant initiator of and contributor

to ‘shipping fever’ pneumonia (Yates, 1982; Hodgins

et al., 2002; Ellis, 2009), a fibrinous pneumonia caused

by bacterial infection that is usually with Mannheimia

haemolytica and less commonly Pasteurella multocida or

others, subsequent to viral infection combined with

other factors. BHV-1 infection does this by increasing

susceptibility to secondary bacterial infection of the

lower respiratory tract through injury to and induction

of other changes in the tract and its cells, as well as

through the local and more generalized immunosuppres-

sion described in later sections and elsewhere (Yates,

1982; McChesney and Oldstone, 1987; Tikoo et al., 1995;

Babiuk et al., 1996; Hodgins et al., 2002; Ellis, 2009;

Levings and Roth, 2013).

The BRDC that includes BHV-1 respiratory disease and

shipping fever is the leading cause of cattle death loss in

the USA (Anon, 2011a), and has been estimated to cost

the US cattle industry US$3 billion annually (Jones and

Chowdhury, 2007). The cost of BHV-1 and associated

disease has resulted in extensive vaccination in North

America, and to eradication campaigns in some European

countries, including an expensive national program in

Switzerland using a (serology) test-and-remove strategy

(van Drunen Littel-van den Hurk, 2006).

3. The bovine innate immune response to BHV-1

3.1. The mammalian and bovine responses to
alphaherpesvirus infections

The most studied mammalian immune systems are those

of mice and humans. Aspects have been studied in other

species due to zoonotic diseases, the species’ economic

importance, as disease models, or to discern origins or

commonalities. Some features appear to be fundamental

and are conserved among vertebrates, jawed vertebrates,

or mammals (Hirano et al., 2011), allowing useful

generalizations or extrapolations. However, there are

also differences in strategies, component members,

sequences and so possibly modes of action [e.g. of

interleukins (IL)] between mammalian orders, families,

genera, and species.

It has been noted that ‘Cattle specific evolutionary

breakpoint regions have a higher density of species-

specific variations in genes having to do with lactation

and immune responsiveness’ (Bovine Genome Sequen-

cing and Analysis Consortium et al., 2009). Investigations

of bovine-specific immune phenomena have been

hampered by a lack of reagents (Rouse and Babiuk,

1978; Boysen et al., 2006), which is being addressed by
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the US Veterinary Immune Reagent Network and the

European ‘Immunological Toolbox’ (Entrican et al.,

2009). The interactions of stress, nutrition, and fertility

with the innate and adaptive immune systems are

important for cattle (Lippolis, 2008). The innate immune

system (particularly phagocytic cell function), is suscep-

tible to stress and nutrition impacts in cattle (Roth and

Perino, 1998), and stress including social factors may

impact their adaptive immune system (Salak-Johnson and

McGlone, 2007).

Most of what is known about immunity to aHV was

first elucidated in the HHV-1-mouse system, and then

confirmed or expanded in HHV-1/2-human and other

systems, e.g. SHV1-mouse or -swine. Studies of beta- and

gamma-HV (bHV and g HV) have also been instructive,

but revealed differences in viral strategies, e.g. g HV

employ more molecular mimicry than do aHV (Pellett

and Roizman, 2007).

In most cases, cattle are able to overcome a primary

BHV-1 infection, so the primary immune response

provides valuable information for primary, secondary,

and passive immunity. The subject has been well

reviewed at intervals (Rouse and Babiuk, 1978; Wyler

et al., 1989; Tikoo et al., 1995; Babiuk et al., 1996; Engels

and Ackermann, 1996; Muylkens et al., 2007). Briefly,

the first insult results in interaction with non-specific

soluble factors (constitutive and induced), which recruit

innate immune cells to the site and activate them. These

immune cells secrete more cytokines, kill virus-infected

cells, and bridge to the adaptive response, including by

presenting antigen (Ag) to LCs. Helper T cells then

activate macrophages (Mf) and natural killer (NK) cells,

and promote the proliferation of specific cytotoxic

T lymphocytes (CTLs). Later, peaking after the infection

is largely resolved, virus-neutralizing (VN) and other

antibodies (Abs) are detectable. They likely help with

clearing extracellular virus and with cellular cytotoxicity,

and then can protect the host from reinfection.

The bovine innate immune response to BHV-1 is

the focus of the remainder of this review. The bovine

adaptive immune response to the virus and vaccination to

prevent the diseases BHV-1 causes are the subjects of

another review (Levings and Roth, 2013).

3.2. Non-immune barriers

The organism can protect itself from infection

through avoidance of infected cohorts or materials

(Medzhitov et al., 2012). Mucous secretion and ciliary

action of epithelia, coughing, and sneezing, antimicrobial

substances in the air surface liquid, enzymes in tears

and saliva, and tight junctions between epithelial cells

protect the host from infection (Roth and Perino, 1998;

Ackermann et al., 2010; Keele and Estes, 2011). The host

must also have the correct receptors to be infected by

a virus; e.g. humans beings are not infected by many

non-human animal or plant viruses (Mayer, 2011). Once

infected or colonized, the host may tolerate the foreign

organism (Medzhitov et al., 2012). Non-specific com-

ponents of inflammation such as fever and the low pH

of infiltrates may hamper viral infection (Mayer, 2011).

Intracellular repression, e.g. cellular silencing of transcrip-

tion (Roizman et al., 2005) and stress-induced shutdown

of translation (Buchkovich et al., 2008), are additional,

non-immune responses to infection.

3.3. Innate immune system components and
activities

The first response to viral infection involves the innate

immune system, which is able to recognize and resist or

kill foreign organisms. Should the infection continue,

the innate response will have primed the more powerful

adaptive response (Iwasaki and Medzhitov, 2010;

Shetnten and Medzhitov, 2011), which in turn uses many

of the tools in the innate system. Innate and adaptive

immune cells have a complex interaction in aHV

infections (Schuster et al., 2011).

3.3.1. Infected cells
Infection of non-immune (e.g. mucosal epithelial) cells

triggers molecular signals for the infected and neighbor-

ing cells, including antimicrobial peptides (Klotman and

Chang, 2006; Ackermann et al., 2010) and interferons

(IFNs). Many of the same triggers and signals are used in

innate immune cells. Pathogens express signature mole-

cules, known as pathogen-associated molecular patterns

(PAMPs), essential to their survival and pathogenicity

(Kawai and Akira, 2006; Meylan and Tschopp, 2006;

Kumar et al., 2011). These are recognized by conserved,

germline-encoded host sensors known as pathogen

recognition receptors (PRRs). Several families of PRRs are

known to play a role in host defense, including toll-like

receptors (TLRs), retinoic acid-inducible gene I (RIG-I)-

like receptors (RLRs), nucleotide-binding oligomerization

domain (NOD)-like receptors (NLRs), and cytosolic DNA

receptors (Ackermann et al., 2010; Kumar et al., 2011).

Danger-associated molecular patterns (DAMPs) are gener-

ated by injured or dying cells or are present in the

extracellular matrix, and can modulate the activation of

PRRs (Tolle and Standiford, 2013).

The distribution of TLRs that recognize the PAMPs of

herpesviruses varies by cell type and by species (Carty

and Bowie, 2010; Paludan et al., 2011). Ten bovine TLRs

have been identified with specific but overlapping

PAMP specificities (Ackermann et al., 2010). Bovine TLR

sequences reveal 66–86% nucleotide or amino acid (aa)

sequence identity with their human/murine homologs

(Werling et al., 2006). Natural TLR variants enhance the

risk of severe infections in cattle (Seabury et al., 2010).

Four TLRs (2/6 heterodimer, 3, and 9) have been shown

to play a role in HSV resistance in mice. They act through
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MyD88 (Chew et al., 2009). TLR2 in association with TLR1

(Paludan et al., 2011) or TLR6 (Chew et al., 2009)

recognizes GPs upon attachment. Once the capsid is

internalized, viral dsDNA is recognized by TLR9 in the

endosome. When the viral DNA is transcribed, higher

order (ds, stem-loop) RNA molecules are recognized by

TLR3 (Paludan et al., 2011). When activated, the TLRs

induce different signaling cascades depending on the

adaptor protein, ultimately leading to the activation of the

transcription factors NF-kB, AP-1, and IFN-regulatory

factor (IRF)-3 (Martinon et al., 2009). HHV-1 infection

results in MyD88-dependent and TRIF-dependent signal-

ing (Vandevenne et al., 2010). TLR activation results in

the production of antimicrobial peptides, inflammatory

cytokines and chemokines, tumor necrosis factor

(TNF)-a , and costimulatory and adhesion molecules, as

well as in the up-regulation of major histocompatibility

complexes (MHCs) (Martinon et al., 2009).

The RLR family includes two RNA helicases, RIG-I and

melanoma differentiation associated gene-5 (MDA5),

which were identified as cytoplasmic, viral RNA sensors

(Martinon et al., 2009). The higher-order RNA molecules

produced after HV transcription are also recognized

by RIG-I (products of RNA polymerase III) or MDA5

(replication intermediates) in the cytoplasm (Paludan

et al., 2011). Upon viral stimulation of the two RLRs,

NF-kB and IRF3/7 are activated and, in turn, induce the

transcription of type I IFN (Ackermann et al., 2010).

NLRs are categorized in subfamilies and variably

distributed on innate immune cells and epithelia. HHV-1

is believed to trigger NALP3 (Chew et al., 2009). NLRs

stimulate cell activation, signaling through caspases

(Martinon et al., 2009). In the Mf inflammasome,

caspase-1 activation results in cleavage of pro-IL 1b to

active IL-1b and active IL-18 (Ackermann et al., 2010).

HHV-1 viral dsDNA is recognized in the cytoplasm by

DNA-dependent activator of IFN-regulatory factors (DAI)

(Paludan et al., 2011). This results in induction of type I

IFN and other genes involved in innate immunity

(Takaoka et al., 2007).

3.3.2. Type I IFNs
The IFN family of cytokines is grouped into types I,

II, and III. There are five human type I IFNs: IFN-a
(13 subtypes), -b ; -e; -k ; and -w . There is one type II IFN

(IFN-g ), and three type III (lambda) IFNs (IFN-l1–3 or

IL-28A/B and IL-29). Type I and III IFNs are expressed in

many cell types but type II is expressed in NK and T cells

(Paladino and Mossman, 2009).

Bovine IFN-a class 1 (10–12 members) and class 2

(15–20 members) each show greater sequence homology

with their human homologs than with the other bovine

class (Ohmann et al., 1987). Five bovine IFN-b genes

were identified, unlike the one in humans. The bovine

IFN-g is encoded by one gene with introns, similar to

other species (Ohmann et al., 1987). A bovine type III IFN

(bovine IFN-l3) was identified and characterized, includ-

ing characterization of its anti-viral activity (Segundo

et al., 2011). The receptor for IFN-l (IL-28Ra) is

expressed by a limited range of cells, but includes

epithelium, so mucosal epithelium can respond to IFN-l
(Perez-Martin et al., 2012).

IFN-a or -b binds Jak/Stat receptors on adjacent cells,

resulting in expression of a variety of anti-viral factors,

with activities from virus-binding to replication inhibition

(Ackermann et al., 2010). Type I IFNs induce resistance

to viral infection, increase MHC I expression and Ag

presentation, activate dendritic cells (DC) and Mfs, and

activate NK cells to kill virus-infected cells (Murphy et al.,

2008). IFN-b signals result in production of IFN-a
subspecies and other IFN-stimulated genes (ISG) includ-

ing IRF-7. IRF-7 activation results in up-regulation of IFN

type I and in a full range of ISG. IFN-l stimulation has

much the same effect, but in a more limited set of cells

(Perez-Martin et al., 2012).

In BHV-1 infection, type I IFN is present within 5 h

post-infection (Babiuk et al., 1996). It is induced in the

infected cell and in cells recruited to the site, and reaches

peak levels in nasal secretions and blood by 36–72 h post-

infection. Type I IFN levels remain elevated until virus

replication ceases (Babiuk et al., 1996). IFN-a regulates

polymorphonuclear neutrophil (PMN), NK, and Mf
effector activities and influences T-cell trafficking (Tikoo

et al., 1995). Locally induced IFN after aerosol BHV-1

infection was reported as providing partial protection

from a second infection with BHV-1 or other viruses

(Cummins and Rosenquist, 1980, 1982; MacLachlan and

Rosenquist, 1982; Ohmann et al., 1987). Intranasal (IN)

and intramuscular (IM) treatment with recombinant

bovine IFN-a1 reduced clinical signs but not virus

shedding of BHV-1 (Babiuk et al., 1987). Correlation of

IFN genotype and clinical outcome of BHV-1 infections

has been demonstrated (Ryan and Womack, 1997).

Six proteins encoded by HHV-1 inhibit IFN expression

or action: ICP0; ICP27; ICP34.5; US11; vhx; and US3

(Paladino and Mossman, 2009). HHV-1 ICP0 blocks IRF-3

and prevents IFN-b transcription. BHV-1 ICP0 inhibits

IFN-dependent transcription (Henderson et al., 2005) by

reducing IRF-3 protein levels, likely through degradation

(Saira et al., 2007). This leads to reduced IFN-b promoter

activity. In addition, bICP0 inhibits the ability of IRF-7

to activate IFN-b promoter activity, but does not reduce

IRF-7 protein levels (Jones and Chowdhury, 2007;

Jones, 2009).

3.3.3. IL and TNF-a
Bovine IL and TNF-a homologous to human and murine

members have been described, with varying degrees of

sequence similarity. These include: IL-1a and �1b
(Maliszewski et al., 1988); IL-2 (Cerretti et al., 1986), IL-

6 (Droogmans et al., 1992), IL-7 (Cludts et al., 1992), IL-10

(Hash et al., 1994), IL-12 (Zarlenga et al., 1995), IL-18
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(Shoda et al., 1999), and TNF-a (Cludts et al., 1993). Their

functions appear to be similar to the human/murine

homologs, as measured by response to similar stimuli

(White et al., 2002). The major pro-inflammatory cyto-

kines that are responsible for early responses are IL-1a ,

IL-1b , IL-6, and TNF-a . The balance of these with anti-

inflammatory cytokines (for example IL-4, IL-10) deter-

mines the status of the inflammation.

In BHV-1 infection, pro-inflammatory cytokines,

produced by infected cells and Mfs, cause an influx of

PMNs and induce ICAM-1 on epithelial cells, to which

leukocytes adhere. With increased vascular permeability,

immune cells migrate to the site of infection. IL-1 and IL-6

stimulate GM-CSF production, contribute to Mf differ-

entiation, and prime Mfs to release other molecules such

as TNF-a (Babiuk et al., 1996). IL-2 supports the growth

and differentiation of Ag-activated T cells. IL-1b and IL-2

have each been shown to enhance anti-BHV-1 responses

when administered to infected calves (Turin et al.,

1999).

3.3.4. Chemokines
Chemokines are a family of low molecular weight

chemoattractant cytokines. Chemokine expression may

result in monocyte or LC homing to the site of infection,

where the cells can differentiate or be activated. Bovine

chemokines and chemokine receptors (homologs to

human members) have been identified and similarities

but also differences noted (Son and Roby, 2006; Widdison

et al., 2010; Widdison and Coffey, 2011). BHV-1 gG is a

chemokine-binding protein, blocking activity (Bryant

et al., 2003) and preventing LC homing (Jones and

Chowdhury, 2007).

3.3.5. Complement
The complement (C) system is well conserved across

vertebrates (Zhu et al., 2005), although the bovine C5a

receptor has differences from human or murine homologs

(Nemali et al., 2008). The C cascade can be activated

by three pathways: alternate (spontaneous), lectin, and

classical (Ab). The latter is discussed elsewhere (Levings

and Roth, 2013). C can neutralize virus particles either by

direct lysis or by preventing viral penetration of host cells.

HHV-1-infected cells are killed by direct C lysis (Ohmann

and Babiuk, 1988). BHV-1 infected cells were killed by

C-dependent neutrophil-mediated cytotoxicity (CDNC)

(Ohmann and Babiuk, 1988).

Cells infected with BHV-1 (and HHV-1) express gC on

the cell surface, which can function as a receptor for

the cleavage product C3b (Ohmann and Babiuk, 1988;

Favoreel et al., 2003). It has been proposed that CDNC is

due to cross-linking of C3b between the viral gC on the

virus-infected cell and the receptor on the PMN (Babiuk

et al., 1996). The C3b receptor has also been proposed

to prevent C action on the virus or the infected cell

(Muylkens et al., 2007). In addition, it has been suggested

SHV1 incorporates host C regulators in its viral envelope

to regulate the spontaneous activation of the alternate

pathway (Favoreel et al., 2003).

3.3.6. Macrophages, neutrophils, and plasmacytoid
dendritic cells (pDC)
Innate immune system cells include phagocytic and other

cells that express PRRs that can recognize PAMPs. They

do not have memory, but can be primed in some cases.

Included in this category are the Mf, PMN, and DC.

Mfs have TLRs, scavenger receptors, and other PRRs on

their surfaces, and engulf extracellular pathogens. They

are important in BHV-1 infection, as shown by transfer

experiments (Rouse and Babiuk, 1977). Early in the

infection (after 3–4 days) they are a primary contributor of

IFN-a production, believed to be important in limiting

viral spread (Tikoo et al., 1995). Later they are stimulated

by IFN-g from T cells to kill virus-infected cells in a non-

MHC restricted way (Campos et al., 1989, Babiuk et al.,

1996). The activity is detectable as early as 2 days after

infection in lung parenchymal cells and 5–7 days after

infection in peripheral blood (Tikoo et al., 1995). BHV-1

infects Mfs, interfering with functions (Roth and Perino,

1998) such as TNF and other cytokine production, and

with participation in antibody-dependent cell-mediated

cytotoxicity (ADCC) (Tikoo et al., 1995). BHV-1 infection

of peripheral blood mononuclear cells (PBMCs) leads to

their apoptosis (Muylkens et al., 2007). Epitopes on gC

are similar to that of a Mf receptor, suggesting immune

evasion through molecular mimicry (Fitzpatrick et al.,

1990).

Neutrophils have PRR and receptors for C, and are the

principal cells engulfing pathogens (Murphy et al., 2008).

Bovine PMNs are the principal source of a-defensins, and

also produce (with epithelial cells) b-defensins and

cathelicidins (Ackermann et al., 2010). It was observed

that PMNs prevented BHV-1 plaque growth without

Ab, in a way that did not require contact (Rouse and

Babiuk, 1977). PMNs were the most effective cells in

ADCC assays, destroying infected cells more quickly

and completely, with less antiserum (Grewal et al., 1977).

BHV-1 interferes with lung PMN activities (Roth and

Perino, 1998; Muylkens et al., 2007), and PMN from BHV-

1-infected animals had reduced anti-bacterial functions

such as reduced chemotactic and phagocytic capacity

(Tikoo et al., 1995). Epitopes on gC also cross-react

with epitopes on PMNs, again suggesting immune evasion

through molecular mimicry (Fitzpatrick et al., 1990).

pDC express TLR7 and TLR9 in endosomes, with which

they sense viral nucleic acids (Gilliet et al., 2008). They

internalize Ag, including by means of Fcg IIa (Lanzavec-

chia and Sallusto, 2007), and rapidly produce large

amounts of type I IFNs when stimulated (Barchet et al.,

2005). pDC produce 1000 times the type I IFN of other

cells, can produce TNF-a and (in mice) IL-12

when stimulated, and can present Ag. So they are key

bridges from the innate immune response to the adaptive

one (Reizis et al., 2011). pDC have been identified in
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cattle – they generated high levels of type I IFN in

response to the TLR9 agonist CpG (Reid et al., 2011).

pDC have been described as the ‘professional producers’

of type I IFN in response to all human and mouse

HVs tested (Baranek et al., 2009). Although no reports of

bovine pDC response to BHV-1 have been published,

bovine pDC interacting with immune-complexed virus

were the major source of type I IFN production during

acute FMDV infection in cattle (Reid et al., 2011).

3.3.7. NK cells
NK cells are derived from a common lymphoid progenitor

with T cells and B cells, but have been categorized as

an innate immunity cell. They mediate cytotoxicity

as CTLs do (by degranulation), but the killing is not

MHC-restricted. Cytotoxic granules are released onto the

surface of the bound target cell, and the granule contents

(perforin and granzymes) penetrate the cell membrane

and induce programmed cell death. NK cells have

multiple receptor types: killer lectin-like receptors (KLRs);

killer cell immunoglobulin (Ig) -like receptors (KIRs);

and natural cytotoxicity receptors (NCRs) (Murphy et al.,

2008). NK cells can undergo a clonal-like expansion

following virus infection in human beings and mice,

and previously primed NK cells can mediate secondary

memory responses in mice in spite of lacking recombi-

nase activating gene (RAG)-recombinase-dependent

clonal Ag receptors (Paust and von Andrian, 2011; Sun

et al., 2011).

Bovine NK cells have been identified as constitutively

expressing homologs of the human NK receptors NKp46,

CD244, and CD94, and the granule proteins granulysin

and perforin (Endsley et al., 2006). Multiple receptors

have been identified on NKp46 (CD335) expressing,

CD3� LCs, including multiple KIRs and a single Ly49

(Boysen and Storset, 2009). NK cells produce IFN-g
(Boysen and Storset, 2009). Two sub-populations (CD2+

and CD2�) were distinguished, both cytotoxic, both

producing IFN-g and transcripts for KIR, CD16, CD94,

and KLRJ (Boysen et al., 2006).

NK-like cells (CD2+, CD4�, and CD8�) were stimulated

by cytokines to kill BHV-1-infected cells without MHC

restriction (Babiuk et al., 1996). NK killing was dependent

on Ag expression, with gB and gD being primary targets

and gC of lower importance (Babiuk et al., 1996). NK cells

scan host cells for both stimulatory and inhibitory signals.

The reduction in MHC production that many cause aHV

should increase NK targeting. Some HV target both signals

for reduction using miRNAs, but this activity is not among

those listed for aHV when summarized by Griffin et al.

(2010). Some aHV-infected cells do internalize gB, which

should reduce NK targeting (Deruelle and Favoreel,

2011). Blocking of host cell apoptosis by BHV-1 and

other aHVs is described elsewhere (i.e. CTL section

Levings and Roth, 2013).

3.3.8. Interferon gamma
IFN-g is produced predominantly by NK and natural

killer T (NK T) cells as part of the innate immune

response, and by CD4+T-helper 1 (Th1) and CD8+ CTL

effector T cells as part of the adaptive immune response

(Schoenborn and Wilson, 2007). IL-12 produced by

Ag-presenting cells (APC) stimulates NK and T cells to

produce IFN-g (Jaime-Ramirez et al., 2011). The bovine

IFN-g is encoded similarly to other species (Ohmann

et al., 1987).

Type II IFN is involved in the immune response to

HHV-1 (Paladino and Mossman, 2009). It is ‘a predomi-

nant response after BHV-1 infection’ (Campos et al., 1989)

and is necessary for the activation of non-MHC restricted

cytotoxic activities mediated by Mfs. HHV-1 US3 modifies

the IFN-g receptor post-transcriptionally, resulting in

inhibition of ISG induction (Paladino and Mossman,

2009).

3.4. Innate-like intermediates

Four innate-adaptive evolutionary intermediates have

been described for human beings and mice: g d T cells,

B-1 cells, NK T cells, and natural Abs (Murphy et al.,

2008).

Human and murine T cells expressing ab and g d
TCRs are said to perform non-overlapping roles in the

immune response. ab T cells are located primarily

in secondary lymphoid organs, recognize peptides in

association with MHC I and II, and respond by facilitating

the production of Ab or by lysing infected target cells.

g d T cells represent a small percent of cells in the

thymus and secondary lymph tissue, are abundant at

epithelial surfaces and use fewer gene segments (to

encode the TCR) to recognize a wider variety of Ags,

including non-classical MHCs, heat shock proteins,

and lipids (Lee et al., 2010). Some g d T cells appear to

recognize Ag without presentation (Murphy et al., 2008).

Bovine g d T cells have different characteristics (Levings

and Roth, 2013).

B-1 cells are a separate lineage of B cells (distinct

from conventional, or B-2 cells) that produce large

quantities of multi-reactive IgM, IgG3 and IgA (natural

Ab) (Tarakhovsky, 1997; Hardy, 1992). Such CD5+ cells

are found in various proportions and locations by species,

and CD5 expression in cattle may represent activation

(Haas and Estes, 2001). Naessens (1997) suggested all

bovine B cells are of the B-1 lineage because they

lack IgD.

NK T cells express TCRs using one invariant a chain,

paired with one of a few b chains, and they produce

cytokines rapidly (Murphy et al., 2008). It has been

posited that cattle don’t have NK T cells based on their

lack of a functional CD1d gene and a failure to react to a

potent NK T stimulus (Van Rhijn et al., 2006).
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4. Summary/conclusions

BHV-1 is an aHV infecting a variety of artiodactyl

species. Its 135,301 bp genome includes 73 genes, whose

transcription is temporally regulated. The 12 envelope

proteins include five GP involved in viral attachment and

entry. Infection results in both rapid lytic replication and

latent infection, primarily in sensory ganglia.

The infected cell recognizes the pathogen’s compo-

nents and replicative intermediates by means of a variety

of PRRs, and responds using internal signals and signaling

of other cells via IL to express anti-viral factors. Pro-

inflammatory cytokines produced by infected cells and

Mf result in recruitment and activation of innate immune

cells. These cells, including Mfs, PMNs, pDCs, and NK

cells, use similar PRRs and signals, phagocytose the

pathogen or kill infected cells, and if insufficient to clear

the infection, prime and bridge to the adapative immune

response.

The virus possesses a variety of immune evasion

strategies, including: inhibition of type I IFN production

by multiple mechanisms; binding of chemokines and C

cleavage products; infection of Mfs and PMNs resulting

in reduced function; immune evasion via molecular

mimicry; and latent infection with decrease of structural

gene expression. In summary, there is a delicate balance

between viral infection, host response, and viral evasive

measures in BHV-1 infection and immunity in cattle.
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