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D. J O V A N O V I Ć1, R. F E D E L E2, F. T A N J I A2, S. D E N I C O L A2,3 and M. B E L IĆ4
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Abstract. A theoretical investigation of the propagation of a relativistic electron (or
positron) particle beam in an overdense magnetoactive plasma is carried out within
a fluid plasma model, taking into account the individual quantum properties of
beam particles. It is demonstrated that the collective character of the particle beam
manifests mostly through the self-consistent macroscopic plasma wakefield created
by the charge and the current densities of the beam. The transverse dynamics of the
beam–plasma system is governed by the Schrödinger equation for a single-particle
wavefunction derived under the Hartree mean field approximation, coupled with
a Poisson-like equation for the wake potential. These two coupled equations are
subsequently reduced to a nonlinear, non-local Schrödinger equation and solved in
a strongly non-local regime. An approximate Glauber solution is found analytically
in the form of a Hermite–Gauss ring soliton. Such non-stationary (‘breathing’ and
‘wiggling’) coherent structure may be parametrically unstable and the corresponding
growth rates are estimated analytically.

1. Introduction
Recently, we developed a self-consistent description of
the transverse quantum dynamics of a cold relativistic
electron (positron) beam in a cold magnetized plasma
(Fedele et al. 2012). We assumed that the plasma is im-
mersed in a strong constant and uniform external mag-
netic field B0 = B0ẑ. The ions are immobile, forming a
uniform background of density n0. The electron/positron
beam, before entering the plasma, is traveling along
the z-axis (called the longitudinal direction) with the
velocity βcẑ (β ≈ 1). We study an overdense regime,
in which the beam’s unperturbed density nb is much
smaller than the plasma density, nb ≈ N/πσ2

⊥σz , where
N, σz , and σ⊥ are the number of particles, beam length,
and beam spot size respectively. The beam is sufficiently
long so that its longitudinal dynamics is ignored, i.e.
all physical quantities depend on the variable ξ =
z − βct and the transverse coordinates r⊥ = (x, y). We
consider a long beam limit, in which the beam is much
longer than the plasma wavelength, ∂2/∂ξ2 �ω2

pe/c
2,

and a paraxial beam motion, dx/dξ ∼ dy/dξ� 1, i.e.
we consider electron rays whose slopes (to ẑ) are very
small, which implies that the transverse motion is non-
relativistic. For each individual particle, at each ξ, we ac-
count for the uncertainty relation between its transverse
position and the transverse momentum, 〈x2〉1/2〈p2

x〉1/2 �
�/2 and 〈y2〉1/2〈p2

y〉1/2 � �/2 respectively. For sim-
plicity, we take 〈x〉 = 〈y〉 = 〈px〉 = 〈py〉 = 0. In

the quantum picture, the beam is represented as an
ensemble of electron rays whose slopes are affected by
the uncertainty due to quantum diffraction (quantum
paraxial diffraction). The collective quantum nature of
the beam particles, which manifests when the inter-
particle distance δ is comparable or smaller than the
thermal de Broglie wavelength λT , viz., δ � λT , is
assumed to be negligible. Since the particle motion is
relativistic in the z-direction, we have λT = h/m0γ0vT ,
where vT =

√
kBT/m0γ0 is the thermal velocity (kB

and T being the Boltzmann constant and the transverse
beam temperature respectively). Such condition readily

leads to T � (m0c
2/γ0kB)(nbλ

3
c)

2/3 ∝ n
2/3
b /γ0, where

λc is the electron Compton wavelength. For a typical
electron/positron beam, with the density nb ∼ 1013−1015

cm−3, the energy γ0 ∼ 102 −104, and moderate temperat-
ure that permits the (classical) cold beam approximation,
10−2 �T � 104 K, we can ignore the overlapping of
wavefunctions of the particles and take into account
only the individual quantum properties (the uncertainty
principle and the spin).

Under these conditions, the transverse beam dynamics
is described by correcting the paraxial geometric optics
of electrons with their paraxial wave optics, given in
terms of a single-particle wavefunction. In Jagannathan
et al. (1989) and Khan and Jagannathan (1995), this was
done in the presence of external electromagnetic fields,
but without the self-consistent collective effects due to
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electromagnetic interaction. Remarkably, the concomit-
ance of the individual quantum nature of the particles
and the collective effects enable the beam to manifest
quantum behavior at macroscopic level, which was also
observed in the Sokolov–Ternov effect (Sokolov and
Ternov 1963), quantum excitation (Huang et al. 1995;
Huang and Ruth 1998), quantum free electron lasers
(Preparata 1988; Bonifacio et al. 2005), etc. Within the
Hartree’s mean field approximation, this physical con-
comitance has been recently considered to describe the
macroscopic manifestation of the individual quantum
particle nature via classical collective effects due to
the plasma wakefield (PWF) excitation, leading to the
formation of coherent structures (Chen et al. 1985;
Rosenzweig et al. 1988). Recently, the nonlinear and
collective quantum evolution of a relativistic charged
particle beam has been studied in detail (Fedele et al.
2012) for both strictly local and moderately non-local
plasma wakefield response.

2. Basic equations
The fluid model for the beam–plasma system was in-
troduced with the Lorentz–Maxwell system of equations
where the charges and currents were provided by the
plasma and the relativistic beam. Under the conditions
described above, the Lorentz–Maxwell system can be
linearized and reduced to (see Fedele et al. 2012):(

∇2
⊥ −

ω2
pe

ω2
UH

ω2
pe

c2

)
Uw =

ω2
pe

ω2
UH

ω2
pe

c2
ρb

n0γ0
, (2.1)

where Uw = Uw(r⊥, ξ) = −q(A1z − φ1)/m0γ0c
2 is the

dimensionless wake potential, A1z(r⊥, ξ) and φ1(r⊥, ξ) are
the perturbations of the longitudinal component of the
vector potential and the scalar potential respectively, and
ρb = ρb(r⊥, ξ) is the beam number density. Here q = −e
for electrons or q = e for positrons, ωpe = (4πn0e

2/m0)
1/2

is the electron plasma frequency, ωce = −eB0/m0c is the
electron–cyclotron frequency and ωUH = (ω2

pe + ω2
ce)

1/2

is the upper hybrid frequency.
In the paraxial approximation and for a stationary

solution in the co-moving frame, the full classical single-
particle relativistic Hamiltonian H can be expanded in
the non-relativistic transverse motion, with the unper-
turbed relativistic longitudinal motion as the leading
order motion. Then the effective single-particle Hamilto-
nian H = ΔH/H0 = (H − H0)/H0 (where H0 = m0γ0c

2

is the unperturbed energy of single particle) can be cast
in the form

H (r⊥,P⊥, ξ) =
1

2
P2

⊥ +
1

2
kcẑ · (r⊥ × P⊥)

+Uw(r⊥, ξ) +
Kr2

2
, (2.2)

where P⊥ = p⊥/m0γ0c is the dimensionless perpendic-
ular momentum, kc = −qB0/m0γ0c

2, K ≡ (kc/2)2 =
ω2
ce/4γ

2
0c

2, and r = |r⊥|. Note that the interaction of

the beam particles with the plasma is realized as a
mean field effect through the wake potential Uw , which
is generated by the charges and currents of both the
plasma and the beam particles. Introducing in (2.2), the
correspondence rules H → Ĥ = iε∂/∂ξ and P⊥ →
P̂⊥ = −iε∇⊥ , where ε ≡ �/m0γ0c = λc/γ0, for a paraxial
beam in which the individual wavefunctions do not over-
lap, we obtain the following two-dimensional spinorial
Schrödinger equation:

iε
∂

−→
Ψ

∂ξ
= −ε2

2
∇2

⊥
−→
Ψ − iεkc

2
ẑ · (r⊥ × ∇⊥)

−→
Ψ

+Uw
−→
Ψ +

Kr2

2

−→
Ψ + εkcŝz · −→

Ψ , (2.3)

where
−→
Ψ is the spinor, whose component is (Ψs), with

s ranging in the set {−1/2, 1/2} of eigenvalues of ŝz
that correspond to the ‘spin down’ and ‘spin up’ states
respectively. In general, Uw is a functional of the wave
function Ψs, where s = ±1/2, and therefore (2.3) is non-
linear. It can be decomposed into two scalar equations
for Ψs, viz.

iε
∂Ψs

∂ξ
= −ε2

2
∇2

⊥Ψs − iεkc

2
ẑ · (r⊥ × ∇⊥)Ψs

+UwΨs +
Kr2

2
Ψs + ŝzεkcΨs . (2.4)

The beam is composed of two kinds of electrons (with
‘down’ and ‘up’ spins), and its density is given by

ρb(r⊥, ξ) = (N/2σz)|
−→
Ψ |2 = (N/2σz)(|Ψ−1/2|2 + |Ψ1/2|2),

where we have assumed that statistically the beam pop-
ulation is equipartitioned into ‘down’ and ‘up’ spin states
and that each Ψs is normalized. Thus, (2.1) becomes

(
∇2

⊥ −
ω2
pe

ω2
UH

ω2
pe

c2

)
Uw =

ω2
pe

ω2
UH

ω2
pe

c2
N

2n0γ0σz

×
(
|Ψ−1/2|2 + |Ψ1/2|2

)
. (2.5)

Obviously, the wake potential is a functional of the form
Uw = Uw[|Ψ−1/2|2 + |Ψ1/2|2].

Equations (2.4) and (2.5) provide the scalar quantum
description of the beam–plasma interaction. In the cyl-
indrical coordinates (r, ϕ, ξ) and for the solutions of the
form Ψs(r, ξ, ϕ) = ψm(r, ξ) exp{i[mϕ− (kc/2)(m+ 2s)ξ]},
where m is an integer, called the vortex charge, Uw(|ψm|2)
becomes cylindrically symmetric and the Zakharov-like
system (2.4) and (2.5) can be written in the following

https://doi.org/10.1017/S0022377813000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377813000111


Coherent quantum hollow beam 399

spin-independent form:

iε
∂ψm

∂ξ
= −ε2

2

1

r

∂

∂r

(
r
∂ψm

∂r

)
+Uwψm

+

(
Kr2

2
+
m2ε2

2r2

)
ψm, (2.6)

1

r

∂

∂r

(
r
∂Uw

∂r

)
−

ω2
pe

ω2
UH

ω2
pe

c2
Uw

=
ω2
pe

ω2
UH

ω2
pe

c2
N

n0γ0σz
|ψm|2. (2.7)

From the above we note that the beam density structure
is governed by nonlinearity, the paraxial quantum dif-
fraction, and the trapping effect provided by B0. It carries
the signature of both the orbital angular momentum
and the quantum nature of individual particles that
are exhibited at the macroscopic level. Standard 2D
solitons (without vorticity, i.e. zero vortex charge) and
ring solitons (with vorticity, i.e. non-zero vortex charge)
have been found (Fedele et al. 2012) for strictly local [i.e.
∇2

⊥ � k2
H , where kH = ω2

pe/(cωUH )] and moderately non-

local (∇2
⊥ ∼ k2

H ) regimes, while the stability criteria have
been discussed for weak, moderate, and strong focusing
conditions.

3. Transverse beam dynamics in a strong
locality regime

In the strongly focused regime,

1

r

∂

∂r

(
r
∂Uw

∂r

)
�
ω2
pe

ω2
uh

ω2
pe

c2
Uw, (3.1)

and Poisson’s equation (2.7) is readily integrated as

Uw =
ω2
pe

ω2
uh

ω2
pe

c2
N

n0γ0σz

[
log

( r
r

)∫ r

0

r′ dr′ |ψm
(
r′) |2

+

∫ ∞

r

r′ dr′ log

(
r′

r

)
|ψm

(
r′) |2

]
, (3.2)

where r is a constant of integration. Obviously, in
(3.2), the relation between the wake potential Uw(r)
and the nonlinear source term |ψm(r′)|2 is non-local.
For this reason, in the literature, the corresponding
Green’s function is often referred to as the non-local
response function. In the above, the limits of integration
are adopted such that the wake potential Uw vanishes
at r = 0, while the unavoidable singularity at r → ∞ is
minimized, i.e. reduced to a weak logarithmic singularity
that does not affect the solution of the Schrödinger
equation (2.6), because it is ‘not accessible’ for the
wavefunction ψm in the presence of the external potential
Kr2. Namely, for large values of r the latter grows
much faster than log r, and the related singularity of
Uw produces no effect. For a wavefunction ψm with a
finite width, r is adopted to be the position of its ‘center

of mass’, viz.∫ r

0

r′ dr′ |ψm
(
r′) |2 =

∫ ∞

r

r′ dr′ |ψm
(
r′) |2

=
1

2

∫ ∞

0

r′ dr′ |ψm
(
r′) |2. (3.3)

The Schrödinger equation (2.6) is simplified by intro-
ducing the transformation ψm(r, ξ) = χ(r, ξ)/

√
r when it

reduces to

iε
∂χ

∂ξ
= −ε2

2

∂2χ

∂r2
+ Vχ, with

V =Uw +
1

2
Kr2 +

ε2

2r2

(
m2 − 1

4

)
. (3.4)

The effective potential V is a nonlinear functional of ψm
that can be expanded as

V ≈ V0 (ξ) + V1 (ξ) (r − r0) +
1

2
V2 (ξ) (r − r0)

2 , (3.5)

where V0(ξ) = V (r0, ξ), V1(ξ) = ∂V (r0, ξ)/∂r0, and
V2(ξ) = ∂2V (r0, ξ)/∂r

2
0. Adopting r0(ξ) to be in the

minimum of the effective potential, (3.4) and (3.5) yield

V1 =
I
r0

(
1

2
− Δ1

)
+Kr0 − ε2

r30

(
m2 − 1

4

)
= 0,

Δ1 =

∫ r
r0
dr′ |χ

(
r′) |2∫ ∞

0 dr′ |χ (r′) |2
, (3.6)

V2 = −I
r20

(
r0
dΔ1

dr0
+

1

2
− Δ1

)
+K +

3ε2

r40

(
m2 − 1

4

)
,

(3.7)

and I = (Nω4
pe/n0γ0σzc

2ω2
uh)

∫ ∞
0 dr′ |χ(r′)|2. To determ-

ine the position of the minimum of the effective potential
V , we conveniently rewrite (3.6) as

V
(0)
1 (r0) ≡ I

2r0
+Kr0 − ε2

r30

(
m2 − 1

4

)
=

I
r0

Δ1. (3.8)

When the ‘center of mass’, defined by (3.3), is sufficiently
close to the bottom of the potential well, r ≈ r0(⇒
Δ1 �Kr20/I), the above equation is readily solved in the

form r0 = r
(0)
0 + δr0 (δr0 � r0), where

r
(0)
0 =

1

2K
1
2

{[
I2 + 16Kε2

(
m2 − 1/4

)] 1
2 − I

} 1
2

,

δr0 =

[
dV

(0)
1 (r(0)

0 )

dr
(0)
0

]−1
I
r
(0)
0

Δ1. (3.9)

However, since Δ1 depends on the position of the
centroid of the wave function, r̄(ξ), to be determined self-
consistently from (2.6), this problem remains essentially
nonlinear even in a strongly nonlocal limit.
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4. Hollow ring soliton as a
Hermite–Gaussian coherent state

Our (3.4) with (3.5) describes the motion of an isolated
quantum particle in the external potential V , the latter
being both time-dependent and propagating in space.
Such equation for a linear oscillator possesses solutions
in the form of wave packets, whose centroids follow the
motion of a classical particle. These coherent packets
were described by Schrödinger (1926), but eventually
got forgotten. The coherent packets were rediscovered
nearly 40 years later by Glauber (1963) and now, in the
literature, they are known as the ‘coherent’ or ‘Glauber
states’ (see e.g. Schulten 2000, pp. 90–95). A Glauber
state is characterized by two distinct types of motions:
the ‘wiggling’ associated with the classical propagation
of its centroid, and the quantum ‘breathing’ associated
with the oscillations of the width of the wave packet.
Generalizing the procedure of de Nicola et al. (1995) and
de Martino et al. (1997) to the case of a time-dependent
parabolic potential in the presence of an external force,
the generalized Glauber solution of (3.4) and (3.5) can
be written as a superposition of Hermite–Gaussian
modes, viz.

χ =
∑
k

αk χk (r, ξ) , (4.1)

where αk are arbitrary constants and the wiggling/
breathing Hermite–Gaussian modes χk(r, ξ), given by

χk (r, ξ) =
[
π 22k+1(k!)2σ (ξ)2

]− 1
4 Hk

[
r − r (ξ)√

2 σ (ξ)

]

× exp

{
iφk (ξ) +

i

ε
r r′ (ξ)

+

[
i

2ε

σ′ (ξ)

σ (ξ)
− 1

4 σ (ξ)2

]
[r − r (ξ)]2

}
, (4.2)

are orthogonal and constitute a complete set. Here the
prime denotes the first derivative and Hk is the Hermite
polynomial of order k and the Hermite–Gaussian func-
tions χk are normalized as

∫ ∞

−∞
|χk (r, ξ)|2 dr = 1. (4.3)

The cylindrical coordinate r is positive definite and the
wavefunction χ(r, ξ), formally, has no physical meaning
when r < 0. We consider a strongly non-local regime,
i.e. a ‘thin ring’ with σ� r, and the contribution of the
region r ∈ (−∞, 0] to the integral in (4.3) is negligible
(it contains only a distant tail of the Gaussian in
χk(r, ξ)). As for a normalized wavefunction (4.1) we have∑

k |αk|2 = 1, and we can express the intensity I as

I =
ω2
pe

ω2
uh

ω2
pe

c2
N

n0γ0σz
. (4.4)

The radially independent part of the phase of the kth
mode, φk(ξ), is given by

φk (ξ) =φk,0 −
∫ ξ

0

dξ′

{
ε (2k + 1)

4 σ2 (ξ′)
+
V2

(
ξ′)

2ε

×
[
r0

(
ξ′)2 − r

(
ξ′)2

]
+
r
(
ξ′)2

2ε
+
V0

(
ξ′)
ε

}
,

(4.5)

where φk,0 are arbitrary constants. The position of the
‘center of mass’, r(ξ), satisfies the equation of motion of
a classical particle,

r′′ (ξ) = −V2 (ξ) [r (ξ) − r0 (ξ)] , (4.6)

which is readily integrated as

r (ξ) = r
(0)
0 + δr0

σ (ξ)

σ (0)
cos

[∫ ξ

0

ε dξ′

2 σ(ξ′)2

]

+
2σ (ξ)

ε

∫ ξ

0

dξ′ σ
(
ξ′) V2

(
ξ′) δr0 (

ξ′)

× sin

[∫ ξ

ξ′

ε dξ′′

2σ (ξ′′)2

]
, (4.7)

where δr0 is an arbitrary amplitude of the radial excur-
sion (or wiggling) of the wave packet. To be consistent
with the strong localization regime in which our equa-
tions are valid, the latter needs to scale as δr0 < σ or
δr0 ∼ σ. As the temporal dependence of the position of
the centroid of the wave packet r is known in advance,
the description of coherent structures in the relativistic
particle beam via the Hermite–Gaussian Glauber modes
in a strongly non-local regime remains essentially linear.
Thus, one overcomes the conceptual problem of the
nonlinearity of moving structures as discussed in the
preceding section. The characteristic length σ(ξ) satisfies
the Ermakov–Pinney equation

σ′′ (ξ) + V2(ξ) σ (ξ) − ε2

4 σ (ξ)3
= 0, (4.8)

which can be integrated with the use of the estimate for
V2(ξ) that is obtained from (3.7) using (4.2), viz.

V2 (ξ) =K +
3ε2

r
(0)
0

4

(
m2 − 1

4

)
+

I
2r(0)

0

2

[
r
(0)
0

σ (ξ) λ2
− 1

]

+ O
[
σ (ξ)

r
(0)
0

]
, (4.9)

where, for the k = 0 mode whose ‘center of mass’ is
located close to the bottom of the potential well, we
have λ2 �

√
π. For higher modes, k = 1, 2, 3, . . ., the

wavefunction χk , and consequently the effective potential
V , features several minima and maxima close to each
other, with a separation ∼ σ, and the simple expansion
(3.5) appears to be inappropriate. A qualitatively viable
solution is obtained if we use instead an effective wake
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potential Uw , calculated as a ‘moving average’ across the
wavefunction, that possesses only one minimum. Then
using the leading order part of (4.9) in σ/r0, viz.

V2 (ξ) ≈ I
2r(0)

0 σ (ξ)λ2

, (4.10)

the Ermakov–Pinney equation (4.8) takes the form

σ′′ (ξ) +
I

2r(0)
0 λ2

− ε2

4 σ (ξ)3
= 0, (4.11)

whose simplest solution is the stationary state σ = s =
constant, where

s =
(
ε2r

(0)
0 λ2/2I

) 1
3

. (4.12)

For an infinitesimally small deviation from the station-
ary state (4.12), setting σ = s+ dσ and solving with the
accuracy of the first order in dσ, (4.11) yields a solution
that is oscillating with a ‘breathing frequency’ Ω(B)

0 , viz.

σ = s+ δs cos
(
Ω

(B)
0 ξ

)
, where Ω

(B)
0 =

√
3 ε

2s2
, (4.13)

and δs is an arbitrary constant satisfying δs� s. Such
oscillations of the characteristic length σ give rise to
the characteristic ‘breathing’ (i.e. periodic swellings and
contractions) of the wavefunction.

In the case of finite deviations from the stationary
state (4.12), the ‘breathing frequency’ Ω(B) is determined
by the integration of the Ermakov–Pinney equation
(4.11) in quadratures, which yields(
dσ

dξ

)2

= σ2
0η

2
0 − I

λ r
(0)
0

(σ − σ0)−
ε2

4

(
1

σ2
− 1

σ2
0

)
, (4.14)

where the initial values σ0 = σ(ξ = 0) and η0 = η(ξ = 0)
are arbitrary constants. Without loss of generality, we
may adopt η0 = 0 (which corresponds to a particular
choice of the initial ‘time’ ξ = 0) and integrate (4.14) as

ξ =

(
λ r

(0)
0

I

) 1
2 ∫ σ

σ0

|σ′ dσ′|√
(σ0 − σ′) (σ′ − σ1) (σ′ − σ2)

, (4.15)

where the roots σ1,2 are given by

σ1,2 =
(
s3/4σ2

0

)(
1 ±

√
1 + 8 σ3

0/s
3

)
. (4.16)

Without further loss of generality, we may also take
σ0 � s, when (4.16) gives the ordering of the roots
σ0 � s � σ1 � 0 � σ2, and the square root in (4.15)
is a real quantity when σ0 � σ � σ1. Conversely, if we
adopt the initial value σ0 in the domain s > σ0 � 0 (or
σ0 < 0), we obtain the same result as above when we
exchange σ0 and σ1 (or σ0 and σ2 respectively). In the
special case σ0 = s, there is a double root σ0 = σ1 = s,
with σ2 = −s/2, corresponding to a stationary solution
σ(ξ) = s = constant.

Introducing the change of variables t′ =√
(σ0 − σ′)/(σ0 − σ1) and the parameter μ=

√
(σ0 − σ1)/(σ0 − σ2), (4.15) is rewritten as

ξ =

(
λ r

(0)
0

I

) 1
2

2√(
1 − μ2

)
(σ1 − σ2)

∫ t

0

dt′

×
(
σ1

√
1 − μ2t′2√
1 − t′2

− μ2σ2

√
1 − t′2√

1 − μ2t′2

)
, (4.17)

where the upper boundary is given by t =√
(σ0 − σ)/(σ0 − σ1). The integrals in (4.17) are readily

evaluated as∫ t

0

dt′
√

1 − μ2t′2√
1 − t′2

= E
[
sin−1 (t)

∣∣ μ2
]

and

∫ t

0

dt′
√

1 − t′2√
1 − μ2t′2

= E

[
sin−1 (μ t)

∣∣ 1

μ2

]
, (4.18)

where E(φ|n) =
∫ φ

0 dϑ
√

1 − n sin2 ϑ is the elliptic integ-
ral of the second kind. The evolution equation (4.15)
describes a periodic motion whose half-period T1/2 is
identified as the ‘time’ ξ required for propagation from
σ′ = σ0 to σ′ = σ1 (i.e. from t′ = 0 to t′ = 1 in (4.17) and
(4.18)). The dependence of the corresponding breathing
frequency Ω(B) = π/T1/2 on the initial value σ0 can
be easily found by the numerical integration of (4.17),
revealing a nearly linear dependence and the possibility
of a parametric instability when the ratio Ω(B)/ω0 has an
integer value. The most likely candidate is Ω(B)/ω0 = 2,
obtained when σ0/s = 1.0757.

The solution presented in this section has the form
of a hollow beam, which can be identified as a breath-
ing/wiggling ring soliton, displayed in Fig. 1. Our pro-
cedure is not applicable if the beam is located exactly at
the axis, r = 0, when the function log r′ in (3.2) is rapidly
varying across the beam and the applied separation of
spatial scales is not possible.

5. Parametric instability of a ring soliton
Using the leading order expression (4.10) for the coef-
ficient of restoring force and (3.6), the position of the
center of mass of the wave packet takes the form

r (ξ) = r
(0)
0 + δr0

σ (ξ)

σ (0)
cos

[∫ ξ

0

ε dξ′

2 σ(ξ′)2

]

+
I σ (ξ)

ε r
(0)
0 λ2

∫ ξ

0

dξ′ δr0
(
ξ′) sin

[∫ ξ

ξ′

ε dξ′′

2σ (ξ′′)2

]
.

(5.1)

We can see from above that the center of mass may
propagate to a large distance if the quantities δr0(ξ

′)

and sin[
∫ ξ
ξ′ dξ

′′ ε/2σ(ξ′′)2] in (5.1) are in resonance with
each other. Then the motion of the external potential
produces an additional force on the wave packet during
each cycle, which gives rise to a secular growth of its
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Figure 1. (Colour online) The evolution of a typical Glauber mode, found as the numerical solution of the (3.4) for a linear
quantum oscillator 2i ∂χ/∂ξ = ∂2χ/∂r2 − r2χ. The initial condition has the form of a Gaussian, displaced from the bottom of the
potential well, χ(0, r) = exp[−(r − 5)2/2].

position r. Such behavior is recognized as the parametric
instability of the ring soliton (4.2).

The characteristic frequency of the motion of the
effective potential can be estimated as follows. For
the Hermite–Gaussian states, the quantity Δ1 (3.6) is
evaluated as

Δ1 = − 1√
π 2kk!

∫ r0(ξ)−r(ξ)√
2 σ(ξ)

0

dρ exp
(
−ρ2

)
Hk (ρ)2 , (5.2)

and from (3.9) we see that the location of the potential
minimum, δr0, depends on the time-like variable ξ only
through the combination [r0(ξ) − r(ξ)]/σ(ξ), viz.

δr0 (ξ) =
I
r
(0)
0

[
dV

(0)
1 (r(0)

0 )

dr
(0)
0

]−1

Δ1

[
r0 (ξ) − r (ξ)√

2 σ (ξ)

]
. (5.3)

Since Δ1 is a monotonous function, (5.3) indicates that
δr0(ξ) has the same periodicity as the argument of
the function Δ1. We note that the numerator r0(ξ) −
r(ξ) oscillates with the characteristic wiggling frequency
Ω(W ) ∼ ε/2σ (see (4.7)), while the denominator is an
elliptic function (see (4.17) and (4.18)), which can be
written as σ(ξ) = 〈σ〉 + σ̃(ξ), where 〈σ〉 = constant
and σ̃(ξ) oscillates with the breathing frequency Ω(B) �√

3 ε/2σ, see (4.13). Thus, the ‘temporal’ evolution of
δr0(ξ) is, to the leading order, distinguished by the
wiggling (with the characteristic frequency Ω(W )) and
the beating between the breathing and the wiggling
(with the characteristic frequency Ω(B) ∓ Ω(W )). Both
these processes can be resonant of Green’s function ∼
sin[

∫ ξ
ξ′ dξ

′′ ε/2σ(ξ′′)2] inside the integral in (5.1) and can
give rise to a secular growth of excursions of the wave
packet, i.e. to the parametric instability of coherent state.
The growth rate Γ of such parametric instability is
estimated by balancing the perturbation of the left-hand

side of (3.4) with the nonlinear drive due to the motion
of the potential V , viz. Γχ ∼ (dr0/dξ)(∂χ/∂r), together
with (3.9), the strong localization condition, and the
orderings dV (0)

1 /dr0 ∼ 4K and r(0)
0 ∼ (m2ε2/K)

1
4 give

Γ

Ω(W )
∼ 1

4
√

2π

I
εK

1
2

δr0

σ
. (5.4)

It should be noted that expansion (3.5) is not valid
when the amplitude of excursions exceeds the width
of the wave packet, δr0 � σ. The simple estimate
(4.10) for the coefficient V2, used in the integration of
the Pinney–Ermakov equation, also becomes inaccurate.
Furthermore, in the regime δr0 � σ the growthrate Γ
of the parametric instability becomes comparable with
the characteristic frequency of the Hermite–Gauss mode
dφk/dξ ∼ ε/4σ2. In such a case, a full set of equations
is to be used to describe the evolution of a relativistic
particle beam, which is a more demanding task.

6. Conclusions
We have self-consistently studied the strongly non-local
plasma wakefield response driven by a relativistic cold
electron (or positron) beam in a cold, overdense, strongly
magnetized plasma, accounting for the individual
quantum nature of beam particles. The density, energy,
and temperature of the system were assumed to be such
that the overlapping of particle wave functions was neg-
ligible. Within the Hartree’s mean field approximation, it
has been shown that the system manifests the individual
quantum nature at the macroscopic level leading to the
formation of coherent structures. For a sufficiently long
beam, the self-consistent non-local plasma wakefield
response is governed by a Poisson-like equation for the
wake potential and the spinorial Schrödinger equation.
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In the cylindrical symmetry, the spinorial equation has
been reduced to a scalar Schrödinger equation for a
wavefunction whose squared modulus is proportional
to the beam density profile. These governing equations
have a strong non-local character when the beam spot
size is much smaller than the characteristic magnetized
plasma wavelength, i.e. for ∇2

⊥ �ω4
pe/(c

2 ω2
UH ).

Employing the procedure proposed by Krolikowski
et al. (2004) and extensively used in nonlinear optics, we
have obtained an analytic, fully nonlinear solution in the
form of a hollow beam. These ring solitons are similar to
the self-similar structures known as accessible solitons in
nonlinear optics (Briedis et al. 2005; He et al. 2008; Belić
and Zhong 2009; Zhang and Yi 2009). However, due to
the presence of the singularity of the non-local response
function in the center of a relativistic particle beam,
the strongly non-local analogue of the fundamental 2D
optical solitons has not been found in our case. We have
demonstrated that the ring solitions in particle beams,
besides stable stationary states, may also feature the
‘breathing’ (the oscillations of their width) and the
‘wiggling’ (oscillations around the equilibrium position)
coherent states. These motions may resonantly couple
with the natural frequency of the ring soliton, yielding
the parametric instability and the destruction of the
coherence of particle bunch. The conditions for such
resonant coupling and the resulting growth rates have
been estimated.
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