
J. Fluid Mech. (2019), vol. 859, pp. 204–246. c© Cambridge University Press 2018
doi:10.1017/jfm.2018.779

204

Near-wake behaviour of a utility-scale
wind turbine

Teja Dasari1,2, Yue Wu2, Yun Liu2,3 and Jiarong Hong1,2,†
1Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA

2St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55414, USA
3Department of Mechanical and Civil Engineering, Purdue University Northwest,

Westville, IN 46391, USA

(Received 29 September 2017; revised 25 September 2018; accepted 25 September 2018;
first published online 16 November 2018)

Super-large-scale particle image velocimetry (SLPIV) and the associated flow
visualization technique using natural snowfall have been shown to be effective
tools to probe the turbulent velocity field and coherent structures around utility-scale
wind turbines (Hong et al. Nat. Commun., vol. 5, 2014, article 4216). Here, we
present a follow-up study using the data collected during multiple deployments from
2014 to 2016 around the 2.5 MW turbine at the EOLOS field station. These data
include SLPIV measurements in the near wake of the turbine in a field of view of
115 m (vertical) × 66 m (streamwise), and the visualization of tip vortex behaviour
near the elevation corresponding to the bottom blade tip over a broad range of
turbine operational conditions. The SLPIV measurements provide velocity deficit and
turbulent kinetic energy assessments over the entire rotor span. The instantaneous
velocity fields from SLPIV indicate the presence of intermittent wake contraction
states which are in clear contrast with the expansion states typically associated with
wind turbine wakes. These contraction states feature a pronounced upsurge of velocity
in the central portion of the wake. The wake velocity ratio Rw, defined as the ratio
of the spatially averaged velocity of the inner wake to that of the outer wake, is
introduced to categorize the instantaneous near wake into expansion (Rw < 1) and
contraction states (Rw > 1). Based on the Rw criterion, the wake contraction occurs
25 % of the time during a 30 min time duration of SLPIV measurements. The
contraction states are found to be correlated with the rate of change of blade pitch
by examining the distribution and samples of time sequences of wake states with
different turbine operation parameters. Moreover, blade pitch change is shown to
be strongly correlated to the tower and blade strains measured on the turbine, and
the result suggests that the flexing of the turbine tower and the blades could indeed
lead to the interaction of the rotor with the turbine wake, causing wake contraction.
The visualization of tip vortex behaviour demonstrates the presence of a state of
consistent vortex formation as well as various types of disturbed vortex states. The
histograms corresponding to the consistent and disturbed states are examined over
a number of turbine operation/response parameters, including turbine power and
tower strain as well as the fluctuation of these quantities, with different conditional
sampling restrictions. This analysis establishes a clear statistical correspondence
between these turbine parameters and tip vortex behaviours under different turbine
operation conditions, which is further substantiated by examining samples of time
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series of these turbine parameters and tip vortex patterns. This study not only offers
benchmark datasets for comparison with the-state-of-the-art numerical simulation,
laboratory and field measurements, but also sheds light on understanding wake
characteristics and the downstream development of the wake, turbine performance
and regulation, as well as developing novel turbine or wind farm control strategies.

Key words: atmospheric flows, geophysical and geological flows, wakes

1. Introduction
Wind energy has emerged as one of the fastest-growing renewable energy resources

in recent decades (Leung & Yang 2012; Zheng et al. 2016). With the exponential
increase in size, the modern wind turbines rise above 100 m, occupying a substantial
portion of the atmospheric boundary layer (ABL). The turbulent flows around these
gigantic structures impose unprecedented challenges for the research community to
implement the knowledge from laboratory research in industrial applications. Despite
past research efforts, as reviewed by a number of publications (Leishman 2002; Snel
2003; Vermeer, Sorensen & Crespo 2003; Sanderse, van der Pijl & Koren 2011;
Sørensen 2011a,b), the complex flows around utility-scale turbines and multi-turbine
arrays remain poorly understood, which contributes to sub-optimal performance at
the plant scale and an average power loss of 10 %–20 % (Barthelmie et al. 2007,
2009). Such loss, referred to as wake loss, is caused by wind turbines in wind farm
interacting with the turbulent wake flows from upstream turbines which carry less
kinetic energy and intensified turbulence. In addition, the wake-generated turbulence is
a major source of fatigue loading, which drives premature component failure, results
in expensive over-design criteria and limits the turbine and wind farm innovation
potential (Frandsen et al. 2006; Musial, Butterfield & McNiff 2007; Sheng & Veers
2011). According to the literature (Vermeer et al. 2003; Göçmen et al. 2016), a
wind turbine wake is generally divided into the near wake, within 1–4D (D – rotor
diameter) behind the turbine, and the far wake, the region beyond the near wake,
where the influence of rotor properties is less important. In particular, in the near
wake, the flow field is strongly dependent on rotor properties and turbine operations
and is dominated by turbine-generated coherent structures such as blade tip and root
vortices, trailing vortex sheets, hub vortices and tower vortices, etc. As pointed out
in Sørensen (2011b), the interaction of these structures in the near wake affects
the evolution and turbulent flow characteristics of the far wake. Therefore, a better
understanding of the dependence of near-wake flow characteristics on turbine operation
and incoming flow can yield a more accurate prediction of wake growth and provide
guidance for developing ‘smart’ control to reduce wake loss and structural impact for
future wind farms. Investigation of the near wake of utility-scale wind turbines has
been conducted using analytical modelling, laboratory and field experiments as well
as numerical simulations. So far, the analytical studies of the near wake are focused
on examining the stability of coherent structures (Widnall 1972; Gupta & Loewy
1974; Okulov 2004; Okulov & Sørensen 2007), and the current analytical/empirical
models of the wake growth generally ignore the intricate details of the near wake
(e.g. Jensen 1983, Ainslie 1988). For example, Widnall (1972) studied a helical
vortex filament and its stability under small disturbances analytically, capturing three
modes of instability on a disturbed helical vortex filament. To analyse the stability
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of the wake behind a multi-bladed rotor wind turbine, Okulov & Sørensen (2007)
implemented linear stability analysis on a vortex system which includes helical tip,
root and hub vortices, showing that the stability of tip vortices strongly depends on
the radial extent of hub vorticity as well as on the type of vorticity distribution. This
work highlighted the necessity to consider all vortex structures within the near wake
for a realistic analysis of the stability of the wake. Regarding the wake modelling,
the wake velocity profiles predicted by the popular wake models (Jensen 1983;
Katic, Højstrup & Jensen 1986; Ainslie 1988; Frandsen et al. 2006) are based on
simplified mass and momentum conservation with an unrealistic top-hat shape for
the velocity deficit (Bastankhah & Porté-Agel 2014). Accordingly, as pointed out in
a recent review paper on wake models (Göçmen et al. 2016), such simplification
of the near-wake profiles could result in substantial uncertainty in the prediction
of wake behaviours. Overall, these analytical studies generally involve substantial
simplifications on flow characteristics, rotor properties and turbine operation, and do
not take into account the complexity of the atmospheric environment. Although they
can provide some fundamental guidance, their implementation to utility-scale turbines
is either significantly limited or requires considerable empirical correction.

The laboratory studies of the near wake are generally based on experiments with
small-scale turbine models in wind and water tunnels. With particle image velocimetry
(PIV), a number of studies provided detailed quantification of the near-wake velocity
field and turbulent statistics as well as coherent structure behaviours (Hu, Yang &
Sarkar 2012; Sherry et al. 2013a; Sherry, Sheridan & Lo Jacono 2013b; Nemes
et al. 2015). For example, Hu et al. (2012) used PIV with a phase-lock technique
to investigate the velocity field downstream of a model turbine in a wind tunnel.
Their study provided a quantification of the velocity profile and turbulent statistics
in the near wake and indicated a strong correlation between the peak of turbulent
kinetic energy (TKE) and the region influenced by coherent structures like blade tip
and root vortices. In a water channel, to investigate the generation and evolution
of the helical structure of the wind turbine, Sherry et al. (2013a) studied the
behaviours of the tip and root vortices of a wind turbine model utilizing phase-locked
two-dimensional PIV. The relationship between the helical vortex system and the
governing parameters of the system was explored. With the same experimental set-up,
Sherry et al. (2013b) further investigated the wake of the wind turbine model for
both the upwind and downwind configurations by examining the helicoidal pitch
and vortex circulation under different tip speed ratios with special attention to the
development of root vortices. The root vortex signatures were found to persist
only in the extreme near-wake regions (less than 0.25D) indicating strong diffusion
characteristics. Nevertheless, the scaling of the findings from these laboratory-scale
studies to utility-scale turbines is strongly limited by the significant difference in
Reynolds number, atmospheric conditions (e.g. turbulence, shear and stratification)
as well as the properties of turbine models (i.e. geometry, mechanical response and
turbine operation) between laboratory and field applications.

Compared to laboratory studies, the field measurements can provide direct
quantification of wind turbine wake flows at utility scale, but have usually very limited
spatial and/or temporal resolution. The conventional field measurement techniques for
atmospheric flows include meteorological towers instrumented with single-point wind
velocity sensors (e.g. sonic, cup-and-vane), and various wind profiling instruments
such as lidar, sodar and radar, etc. With the integration of multiple profiling
instruments and innovative scanning schemes, a number of recent field studies have
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provided an unprecedented characterization of utility-scale turbine wakes (Iungo, Wu
& Porté-Agel 2012; Hirth et al. 2015; Kumer et al. 2016). For example, Iungo et al.
(2012) conducted scanning Doppler lidar measurements with 18 m spatial resolution
in the wake of a 2-MW turbine and showed high turbulence characteristics within
the near wake. Turbulence intensity as high as 30 % was observed at the turbine top
tip level up to three rotor diameters downstream. Nevertheless, the implementation
of these techniques in the near wake is significantly limited by their spatio-temporal
resolution, which is insufficient to resolve the rich coherent structures generated
by the turbine and their interactions. Such information is important for elucidating
the physical mechanisms governing wake growth and other behaviours of the wake
(e.g. wake meandering) for utility-scale turbines.

Taking advantage of natural snowfalls, Hong et al. (2014) implemented super-large-
scale PIV (SLPIV) and flow visualization with natural snowflakes to study, for the first
time, the complex flow field and coherent structures in the near wake of a 2.5 MW
wind turbine. This study revealed the rich interaction of tip vortices and quantified a
flow field of approximately 36×36 m2 at ∼0.3D from the rotor. In addition, this study
also demonstrated the strong correlation between the high-resolution instantaneous
flow field and turbine operation parameters. However, due to the constraints of
measurement capacity, the near-wake flow fields obtained in the seminal study
were limited to the elevation span of the lower-blade tip, far from an adequate
characterization of the entire near wake. Moreover, the experiment only had a sample
duration of the flow field and the tip vortex visualization for a few minutes, limiting
statistical investigation over a wide range of turbine operational and flow conditions.

With the advancement of computational power, high-fidelity numerical simulations
have been used extensively to investigate the fundamental physical processes in
turbine wake flows. In particular, a number of large eddy simulation (LES) studies
were conducted recently to provide physical insights into the near wake. For example,
Kang, Yang & Sotiropoulos (2014) conducted a systematic investigation on the wake
meandering of a hydrokinetic turbine using actuator disk, line and turbine resolving
LES techniques, and pointed out that turbine hub and tip vortex interaction in the
near-wake region (less than 3D) triggered wake meandering on a hydrokinetic turbine.
Ivanell et al. (2015) studied the flow in the near-wake region on a turbine model by
comparing the LES simulation and experimental results, showing a good agreement
between the results from the two approaches. Inspired by the measurement data from
Hong et al. (2014), Yang et al. (2016) investigated in detail the peculiar elongated tip
vortex patterns in the near wake using LES, and revealed the formation of secondary
counter-rotating spiral vortices which arise out of centrifugal instability mechanisms
within the tip vortex shear layers. However, this study did not examine the connection
between tip vortex behaviour and turbine operational parameters. It is noteworthy that
the current numerical simulations of utility-scale turbines are solver dependent and
cannot incorporate complete turbine geometrical characteristics due to computational
constraints. In addition, the effects of the real atmospheric environment and highly
dynamic response (e.g. aeroelasticity) of the utility-scale turbines are very difficult to
capture in the current simulations.

The current paper presents the continuation of our field measurements from
Hong et al. (2014) using SLPIV and flow visualization with natural snowflakes.
In particular, by combining the data from multiple field campaigns from 2014
to 2016, we overcome the limitation of Hong et al. (2014) in the study of the
near-wake behaviours of a utility-scale turbine. The paper is structured as follows: § 2
provides a brief description of the experimental methods, field campaigns and data
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CSAT3 sonic anemometer
Cup-and-vane anemometer, temperature, RH sensor

EOLOS 2.5 MW
wind turbine

z = 129 m

z = 80 m

L = 170 m

D
 =

 9
6 

m

z = 30 m

Top tip

Hub height

Bottom tip

FIGURE 1. Schematic of the 2.5 MW turbine and the met tower at EOLOS station.

process procedures. Section 3.1 reports the results of the near-wake velocity field
spanning from the blade-bottom tip to the top tip with unprecedented spatio-temporal
resolution using the data from the field campaign in February 2016. Section 3.2
reports a statistical analysis of the connection of tip vortex behaviours with turbine
operational and flow conditions in the near wake combining the data from all the
field campaigns from 2014–2016. Section 4 provides a summary and discussion of
the results.

2. Experimental method

The field experiments are conducted at EOLOS Wind Energy Research Field Station
(referred to as the EOLOS station hereafter) in Rosemount, MN. As shown in figure 1,
the EOLOS station consists of a 2.5 MW Clipper Liberty C96 wind turbine (referred
to as the EOLOS turbine hereafter) and a 130 m meteorological tower (referred to
as the met tower hereafter). The EOLOS turbine is a 3-bladed, horizontal-axis, a
pitch-regulated machine with a rotor diameter (D) of 96 m and a supporting tower
80 m in height, capable of operating at variable wind speed. The EOLOS turbine
has the standard instrumentation to record turbine operational conditions and rotor
instrumentation including accelerometers and strain gauges installed on each blade
for characterizing blade deformations as well as tower instrumentation comprised
of strain gauges mounted at the tower base for quantifying structural response. The
met tower, located 170 m (corresponding to ∼1.77D) south of the turbine (as the
south is the predominant wind direction), is designed to characterize the atmospheric
conditions during the operation of the EOLOS turbine. Note that this distance is
slightly different from the value (i.e. ‘160 m’) presented in previous publications
using the EOLOS facility. This adjustment is made according to a recent field survey
that precisely calibrated the location of the EOLOS turbine and the met tower. The
met tower instrumentation includes a number of wind velocity (sonic, cup-and-vane
anemometers), temperature and humidity sensors installed at elevations ranging from
7 m to the highest point of the rotor, 129 m. Four of these elevations (129, 80,
30 and 10 m) are instrumented with high resolution, Campbell Scientific CSAT3
3D sonic anemometers with a sampling rate of 20 Hz. These four heights were
selected to match the rotor top, rotor hub, rotor bottom and standard 10 m height.
Three metres below each of the CSAT3’s (elevations of 126, 77, 27 and 7 m) and
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at points representing elevations at the midpoint between the edge of the rotor and
hub height (105 and 55 m) are standard cup-and-vane anemometers. Overall, the data
from the instrumentation on the EOLOS turbine and the met tower, including turbine
operational conditions (e.g. power, blade pitch and tip-speed-ratio, etc.) and turbine
structural response (e.g. blade and tower base strain, etc.) and atmospheric conditions
are sampled continuously 24 h a day and stored on backed up servers. The detailed
information of the facility and the instrumentation at the EOLOS station is provided
in the supplemental document of Hong et al. (2014).

The experiments employ the SLPIV and flow visualization approach from Hong
et al. (2014) to investigate the flow field and the coherent structures in the near wake.
Briefly, the experimental set-up is composed of an optical assembly for illumination, a
camera and the corresponding data acquisition system. The optical assembly includes
a 5 kW highly collimated search light (a divergence <0.3◦ and initial beam size
of 300 mm in diameter) and a curved reflecting mirror for projecting a horizontal
cylindrical beam into a vertical light sheet. The sheet expansion angle is controlled by
adjusting the mirror curvature. The illumination system is affixed to a trailer, providing
good mobility for aligning the light sheet with the predominant flow direction, as
required for planar PIV measurements. To yield better light sensitivity for recording
the flow field over a larger sampling area, we replaced the camera system used
in Hong et al. (2014) with the Sony-A7RII camera. The camera, mounted with a
50 mm f /1.2 lens, can provide 4K-resolution 30 Hz videos with continuous data
recording for approximately 30 min, sufficient for recording large-scale turbulent
flows in the atmospheric boundary layer (ABL). The original SLPIV technique using
natural snowflakes was validated through a comparison with the sonic measurements
at different elevations of the met tower at the EOLOS station in Toloui et al. (2014).
Recently, the updated experimental set-up has been employed to study the settling
behaviour of snowflakes within a field of view (FOV) of 7 m × 4 m in the ABL at
the EOLOS station (Nemes et al. 2017). The snowflake trajectories were successfully
analysed using two-dimensional particle tracking velocimetry (PTV), which revealed
an enhanced the settling behaviour of the snowflakes due to atmospheric turbulence.
These studies substantiate the efficacy and robustness of our techniques for full-scale
turbulent flow studies in the atmospheric environment.

The present paper uses five datasets obtained from four deployments in the past
three years. The information for each dataset is summarized in tables 1 and 2 with a
schematic presented in figure 2 illustrating the key parameters for the measurement
set-up. Specifically, as shown in table 1 and figure 2, the location of the FOV for each
dataset is characterized by its downstream distance from the tower (xFOV), its offset
from the central tower plane (yFOV) and the elevation of the FOV centre above the
ground level (zFOV). The dimensions of the FOV are characterized by its height (H)
and width (W). The distance between the camera and the light sheet is represented
by LCL with Θ indicating the tilt angle of the camera. Among all the five datasets,
the Feb 2016b dataset has the largest FOV which covers the entire wake flow field
on the streamwise-vertical (xz) plane located at 0.19D offset from the central tower
plane. This dataset is exclusively used for quantitative examination of the near-wake
turbulent flow field. The rest of the datasets, with a smaller FOV covering the region
where the turbine blade intersects with the light sheet plane near the bottom of its
revolution (referred to as the bottom tip elevation), are used to investigate the tip
vortex behaviours and their correlations with the turbine operation/response. Table 2
summarizes the detailed meteorological information as well as the turbine operational
conditions for all the datasets. The wind speed and direction are measured by the
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FIGURE 2. (Colour online) Schematic of the measurement set-up used in the deployments.

sonic anemometer at the nacelle of the EOLOS turbine. Temperature and humidity
are measured at the met tower. The turbulence intensity and Obukhov length are
calculated from the acquired data accordingly. Note that the turbulence intensity and
the Obukhov length are not available for the Apr 2014 dataset due to the failure
of the acquisition system for the measurements from the nacelle and the met tower
during the deployment.

To quantify the near-wake velocity field using the Feb 2016b dataset in § 3.1, the
first step is to correct the image distortion (i.e. the variation of the magnification
across the image) induced by the tilt angle of the camera. Following the method
employed in Toloui et al. (2014), the local imaging magnification is calculated
using the thin lens equation: M(i, j)= 1/[L(i, j)/f − 1], where M(i, j) is the imaging
magnification at an arbitrary point (i, j) and L(i, j) is the distance between the lens
and point (i, j). Then the resolution for each pixel is calibrated through local imaging
magnification and the physical dimension of the pixel. Starting from the image centre
to the edges of the image, the process of image resolution calculation can be iterated
to update the resolution on each pixel across the entire FOV. Subsequently, based
on the resolution of each pixel and its location, undistorted (i.e. de-warped) images
are calculated using the image warping function provided in MATLAB (MathWorks,
Inc.). These images are further enhanced through background subtraction for velocity
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(a) (b) (c)

FIGURE 3. A sample of (a) raw image, (b) de-warped image and (c) enhanced image
after background subtraction showing the steps of image processing before the velocity
vector calculation. Insets in (c) demonstrate the various snow patterns at different regions
in the FOV that are traced to obtain velocity vectors using cross-correlation. The size of
each inset corresponds to the smallest interrogation window size (32× 32 pixels) used in
the cross-correlation.

vector calculation. Figure 3 provides a sample image with raw, de-warped and
enhanced versions from the Feb 2016b dataset to illustrate the abovementioned
pre-processing steps.

The velocity vectors are calculated using the adaptive multi-pass cross-correlation
algorithm from LaVision Davis 8. To improve the vector quality, the original 4K video
is downsized 4 times (using binning for noise reduction) to images of 960 × 540
pixels for cross-correlation. The corresponding pixel resolution of approximately
0.12 m pixel−1 (shown in table 1) is not sufficient to resolve the individual snow
particles in the images. Therefore, our SLPIV relies on tracking the large-scale snow
patterns and associated coherent structures (e.g. tip vortices, trailing edge vortex sheets,
etc.) in the near wake for quantifying the velocity field. These large-scale patterns are
the result of the preferential concentration of the snowflakes in a turbulent flow field
due to the inertia of the particles and regions of significant strain rate and vorticity
in the flow (Guala et al. 2008; Hong et al. 2014). Thus, the large-scale velocity field
in the near wake of the turbine can be obtained by tracking the motion of these
snow patterns. The flow velocity field measurements based on the pattern tracking
technique have been conducted broadly in the literature (e.g. Aya, Fujita & Yagyu
1995, Fujita, Muste & Kruger 1998, Scarano 2002, Choi et al. 2007, Asay-Davis
et al. 2009, Liu, Wang & Choi 2012, Sayanagi et al. 2013, Patsaeva et al. 2015). For
example, Aya et al. (1995) developed a video image analysis method for measuring
the velocity distribution of a flooding river, from tracking the ripple-like structures
on the river surface caused by turbulence and pressure fluctuation at various scales.
Fujita et al. (1998) applied the same method and measured a 45 000 m2 surface flow
of a flooding river with an estimated mean velocity error at approximately 3 %. The
insets in figure 3(c) demonstrate distinct snow patterns at different regions in our
FOV which are used for tracking the large-scale fluid motion in the near wake of the
EOLOS turbine.
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The cross-correlation is first conducted using an initial interrogation window of
128×128 pixels which is then reduced to 32×32 pixels with 50 % overlap, leading to
a spatial resolution of 3.8 m/vector. The final interrogation window size (i.e. 32× 32
pixels) is optimized to capture distinct snow patterns in the images as shown in
figure 3(c). The cross-correlation is also applied to image pairs with 5 frame skip in
a time sequence of images to ensure sufficient displacement of snow patterns between
the two images within a pair, resulting in temporal resolution of 6 Hz. To maintain
continuity in the flow field quantification, all frames are cross-correlated even with
the applied 5 frame skip. In other words, the frame skip applied is a moving window
which ensures every flow field image is cross-correlated with a corresponding image
that is 5 frames ahead in time rendering 53 668 (1791 s) vector fields. Hence, each
vector field is not completely de-correlated with the immediate neighbouring vector
fields (in time), but the vector fields which are 5 frames or more apart are completely
de-correlated. Note that our final interrogation window typically covers a significant
fraction of the void boundary and thereby does not usually cause discontinuities in the
vector fields at the scale of our interest. However, there are instances where our final
window is entirely covered by a void, which results in missing vectors. We estimate
that such missing vectors typically amount to 3 %–4 % of the total vectors in the
FOV and are filled up through standard PIV interpolation based on the neighbouring
vectors.

To address the issue related to snowflake traceability and the uncertainties involved
in the measurement of velocity and other turbulent statistics, we follow the detailed
approach laid out in our prior work (Hong et al. 2014; Toloui et al. 2014). The
settling velocity of snow particles is removed from our flow field (i.e. add the
settling velocity to the vertical velocity component). In addition, for our experiments,
the average snowflake particle size (i.e. equivalent diameter) is estimated to be
1.1 mm, which renders the particle response time (τp) to be ∼0.04 s using the
same approach employed in Toloui et al. (2014). In our PIV analysis, the minimal
resolvable flow time scale (τf ) is determined by the time scale associated with the
smallest interrogation window size used in our cross-correlation, i.e. 3.8 m. Based on
the maximum value of the root-mean-squared streamwise velocity fluctuations in our
sampling area (4.6 m s−1), τf is estimated to be 0.82 s. Therefore, the corresponding
Stokes number St = 0.05 indicates good traceability of snow particles with respect
to the flow time scale of our interest. In addition, as mentioned above, the flow
quantification is achieved through not tracking snowflakes but tracking the patterns
formed by the snowflake concentration variation. Liu & Shen (2008) has established
a solid physical foundation through theoretical analysis and validation experiments
for such measurements. According to Liu & Shen (2008), the velocity measured
through tracking the snow patterns with our set-up (i.e. a well-defined light sheet and
side view camera imaging) is a combined result of the averaged flow convection and
snowflake diffusion (under gravity) within the thickness of the light sheet. Based on
our estimate of the traceability of individual snowflakes, after removing the settling
velocity, the snowflake diffusion time scale is sufficiently smaller than the flow time
scale of our interest. As a result, the variation of snowflake concentration recorded
on our SLPIV images is dominated by the convective motion of material lines in
the flow (Wu, Ma & Zhou 2005), and the displacement of snow patterns should
adequately reflect the flow velocity at the scale of our interest.

Regarding the measurement uncertainty, according to Toloui et al. (2014), the
uncertainty of the SLPIV velocity measurement method consists of contributions
from uncertainties in both the calibration process and the PIV vector calculation.
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Briefly, the velocity uncertainty involved in the calibration process (due to the
camera inclination and location uncertainty, etc.) is estimated to be 0.09 m s−1. The
uncertainty due to PIV vector calculation is estimated to be 0.04 m s−1 following
the guidelines from Raffel et al. (2007). In addition, following the method used
in Toloui et al. (2014), the uncertainty caused by the out-of-plane motion of the
snowflakes (including the contribution from the average misalignment of 10◦ between
the predominant wind direction and the light sheet) is estimated to be negligible in
comparison to the two uncertainty sources mentioned above. As a result, the estimated
total uncertainty of velocity measurement is 0.1 m s−1.

To provide an estimate of the effect of the missing vectors due to the voids in
the FOV, as a worst case scenario, the missing vectors are inserted with maximum
and minimum values found within a 9 × 9 vector neighbourhood of the location of
missing vector, corresponding to 144× 144 pixels. This neighbourhood size, slightly
larger than the largest interrogation window size of 128 × 128 pixels used in the
cross-correlation, is selected since it covers the largest void pattern in our snow
PIV image and therefore does not yield any missing vectors which are caused by
the interrogation window located completely inside a void. Correspondingly, the
wake streamwise velocity and turbulent kinetic energy (TKE) obtained with the
maximum/minimum values inserted vectors are found to be ∼1 % lower and ∼6 %
higher, respectively (both averaged over the entire profile) than those measured with
the interpolated vectors. Besides this void-induced uncertainty, the uncertainties for
the statistical quantities such as mean velocity, TKE and probabilistic distribution (i.e.
histograms) are dominated by the convergence error. Such a convergence error can be
estimated via bootstrap analysis following Hong et al. (2014) and Toloui et al. (2014).
We have performed a bootstrap analysis by randomly selecting subsamples of 1500
data points out of the total data points of 1790 to calculate the statistical distribution
of measured mean velocity and TKE. The criterion for uncertainty is taken to be
twice the standard deviation of the measured statistics distribution, which provides a
95 % level of confidence. As a result, the spatially averaged convergence error over
the span of our measurement area is 0.5 % for the mean velocity and 2 % for the TKE.
We also performed the bootstrap analysis in the study of the statistical distribution
of wake states presented in § 3.1. Similarly, we randomly select subsamples of 1200
data points out of the total data points of 1378, which are obtained after conditional
sampling on the turbine operation region and nacelle misalignment. The average
uncertainty (averaged value for all the bins) of the probability of wake states is
calculated to be 12 % in the histograms presented in figure 10.

In the study of tip vortex behaviours and their correlations with turbine operation/
response, the images from the datasets are analysed to categorize tip vortex behaviour
under the prescribed criteria explained in § 3.2. Then different vortex behaviours
are compared with the turbine operation/response parameters at corresponding
timestamps to evaluate their statistical correlation in the form of histograms. To ensure
decorrelation of the samples, the precise time stamp of the tip vortex behaviour is
maintained and is assigned to only one category of the vortex behaviours, as explained
in detail in § 3.2. In addition, samples of time sequences of turbine operation/response
parameters marked with the occurrence of the specific tip vortex behaviour are further
examined to explore the connection between tip vortex behaviours and the turbine
operation/response.
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3. Results
3.1. Near-wake velocity field

The turbulent flow field in the near wake of the turbine is examined using the Feb
2016b dataset which has a FOV of 115 m (vertical) × 66 m (streamwise) centred
at 0.41D downstream of the turbine tower and 0.19D offset from the central tower
plane. Figure 4 presents the time-averaged velocity field and the streamwise velocity
profile in the near wake obtained from a recording of 30 min duration. In this dataset,
the turbine blade intersects with the light sheet plane at z= 33 m and z= 127 m, as
indicated by the dashed horizontal lines in figure 4(b). The contours of the velocity
magnitude exhibit a region of low velocity spanning from 7 to 8 m s−1 in the centre
portion of the wake, and the velocity increases substantially as it approaches the
region near the edge of the wake, showing a clear velocity deficit.

To further examine the velocity distribution quantitatively, figure 4(b) presents
the averaged streamwise velocity profile at x = 0.5D extracted from the velocity
vector field shown in figure 4(a), in comparison with the incoming flow velocity
profile obtained from the anemometer data from the met tower. According to the
average wind direction in the Feb 2016b dataset, the met tower is located at 1.71D
downstream of the turbine tower with a 0.46D offset from the central tower plane (i.e.
x= 1.71D, y= 0.46D). Under this circumstance, all of the sonic anemometers installed
on the met tower are adversely affected by the wake produced by the met tower itself.
In addition, considering 5◦ wake expansion and no presence of wake meandering at
x= 1.71D, the cup-and-vane anemometers at z= 102, 77 and 52 m are influenced by
the EOLOS turbine wake. Therefore, the time-averaged incoming flow profile U∞(z)
during the deployment is obtained using a logarithmic fit of the velocity measured
with the two cup-and-vane anemometers, located at z= 126 and 27 m, which are free
from the influence of both the wakes of the met tower and the turbine. Note that the
anemometer located at z= 7 m is also excluded in the fitting of incoming flow profile
due to the non-negligible influence of ground roughness on the velocity profile at
this elevation. All the velocity profiles are normalized with U∞ = 11.6 m s−1 which
is the mean incoming velocity obtained by spatially averaging the incoming velocity
profile between the top and bottom tip elevations. The figure shows a clear deficit
of the cup-and-vane measurements at z = 102, 77 and 52 m in comparison to the
logarithmic fit, confirming the influence of the turbine wake on the measurements at
these elevations. More importantly, the comparison highlights the significant deficit
in the near-wake velocity distribution.

To facilitate comparison between the near-wake profile obtained using SLPIV
with those from the literature, the profile of the wake deficit at x = 0.5D, i.e.
∆U(z)/U∞(z) = 1 − U(z)/U∞(z) is presented in figure 4(c). For comparison, the
wake deficit obtained from a wind tunnel PIV measurement of Hancock & Pascheke
(2014) at x = 0.5D, y = 0, and that from a recent lidar measurement of Iungo et al.
(2012) at x = 0.5D, y = 0, are also provided in the figure. In particular, the wind
tunnel measurement was performed on a model turbine with the scale ratio of 1 : 300
to represent a 5 MW turbine with a hub height of 90 m and a rotor diameter of
120 m. The incoming and wake flow were both measured using a Dantec FibreFlow
Laser Doppler Velocimetry system, and the incoming flow yields z0 of 0.0002 m and
U∗ of 0.137 m s−1. The lidar measurement was performed around a 2-MW Enercon
E-70 wind turbine with a spatial resolution of 18 m. This lidar dataset is selected
for comparison as it is the only published field measurement around utility-scale
turbines that provides the near-wake velocity distribution at a downstream location
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FIGURE 4. (Colour online) (a) Time-averaged velocity vector field (1 : 2 skip applied
in both horizontal and vertical directions for clarity) superimposed with the velocity
magnitude contours, showing the near wake of the EOLOS turbine for the Feb
2016b dataset. (b) Time-averaged streamwise velocity profile at x = 0.5D, y = 0.19D
in comparison to the time-averaged velocity profile obtained from the cup-and-vane
anemometers from the met tower located at x = 1.71D, y = 0.46D. The dot-dashed line
in the figure is a logarithmic fit of the data points at z = 27 and 126 m, i.e. U/U∗ =
κ−1 ln(z/z0), where the friction velocity U∗=0.95 m s−1, the roughness length z0=0.53 m
and the von Kármán constant κ = 0.41. (c) Time-averaged streamwise velocity deficit
profile at x= 0.5D, y= 0.19D in comparison to the profile measured by wind tunnel PIV
of Hancock & Pascheke (2014) at x= 0.5D, y= 0 and the profile measured with lidar of
the 2 MW Enercon E-70 wind turbine (Iungo et al. 2012) at x= 0.5D, y= 0.
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close to that of our SLPIV measurements. Since Iungo et al. (2012) does not provide
lidar data for the incoming flow, to obtain its wake deficit profile, the incoming
flow is estimated through a logarithmic fit of the lidar measurements of the velocity
profile outside the turbine wake at x = 6D, similar to that shown in figure 4(b).
The corresponding logarithmic curve yields z0 of 0.057 m and U∗ of 0.72 m s−1.
To compare the measurements of different turbines, in figure 4(c), the elevation is
normalized using the rotor diameter D and hub height H of the corresponding turbine.

As the figure shows, SLPIV and lidar measurements display similar variation
in velocity deficit across the elevation span, while the wind tunnel result exhibits a
much lower deficit in the region around the turbine hub. Moreover, the lidar-measured
profile shows a substantially larger velocity deficit compared to other profiles even
though it was collected at the same downstream location with respect to the turbine
tower (i.e. x = 0.5D). To provide a more quantitative and robust comparison of
the wake deficit across these profiles, we calculated the spatially averaged wake
deficit ϕ = 1U(z)/U∞(z) by averaging the wake deficit within the blade span (i.e.
the elevations between the top tip and the bottom tip indicated by the two dashed
horizontal lines in figure 4b). The results show that ϕ = 0.29 for SLPIV, 0.31 for the
wind tunnel and 0.52 for the lidar measurements. In addition, based on the parameters
(e.g. thrust coefficient CT = 0.7) from our SLPIV, we calculate ϕ using a number of
wake models to assess their performance in capturing the velocity deficit of the near
wake of utility-scale wind turbines. For models with range extended to the near wake,
such as the Risø WAsP model of Katic et al. (1986) and the Risø analytical model
of Frandsen et al. (2006), the calculations show that ϕ = 0.29 for Risø WAsP and
0.34 for Risø analytical, both in a close range compared to the SLPIV result. Other
models, including the UO FLaP model of Ainslie (1988), ECN Wakefarm model of
Crespo et al. (1988) and the one from Bastankhah & Porté-Agel (2014), are intended
to be used downstream of x= 2D, where the ϕ is calculated to be 0.52 for UO FLaP,
0.54 for ECN Wakefarm and 0.30 for Bastankhah’s model, respectively.

In addition, both the velocity and wake deficit profiles from our SLPIV measurements
exhibit two ‘bumps’ (i.e. local velocity minima) at z= 60 m and 110 m, respectively,
which are a result of a slight upsurge of streamwise velocity at elevations around
the hub height. Similar features of this kind in the near-wake profile have also been
reported in Magnusson (1999), Whale et al. (1996) and Schulz et al. (2017). In
particular, Magnusson (1999) attributed the cause of such features to the local blade
geometry and lift generation. Specifically, the flow blockage can reduce substantially
around the blade root according to the specific blade design, leading to a decrease
of velocity deficit. Comparatively, a considerable increase of deficit occurs in the
mid-section of the blades where the optimum lift is produced. Moreover, due to a
reduction of lift generation associated with the presence of tip vortices, the velocity
profile tends to recover to the undisturbed state at the elevations closer to the blade
tip. A combination of the above-mentioned variation in velocity profiles results in
the two-bump feature in the near-wake velocity deficit profile. Compared with the
SLPIV result, the deficit profile from the wind tunnel experiment shows a significantly
steeper reduction around the hub height, which makes the bumps in the profile more
prominent and they shift towards the elevations corresponding to the blade tips. Such
difference between SLPIV and wind tunnel measurements may be a result of the
following two reasons: (i) the results from the two measurements are not at the same
spanwise location, with SLPIV recorded at y = 0.19D and the wind tunnel data on
the tower plane; (ii) the turbine model employed in the wind tunnel experiment has
a larger spacing between the blade roots and the hub, and yields less blockage. The
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FIGURE 5. (Colour online) (a) Time-averaged in-plane TKE (kxz) contour showing the
near wake of the EOLOS turbine for the Feb 2016b dataset. (b) The in-plane TKE profile
of SLPIV at x= 0.5D, y= 0.19D in comparison to the profile measured by wind tunnel
PIV of Hancock & Pascheke (2014) at x= 0.5D, y= 0.

profile of lidar does not display similar features, which may be primarily caused by
its relatively low spatial resolution (i.e. 18 m) compared to PIV measurements.

To examine the turbulent characteristics of the near wake, the in-plane turbulent
kinetic energy (TKE, i.e. kxz = (〈u′2〉 + 〈w′2〉)/2, where u′ and w′ are the velocity
fluctuations in x and z directions, respectively) is calculated using the instantaneous
velocity fields and is presented in figure 5. The contour of kxz (figure 5a) shows a
region of relatively low kxz around the hub height, and local maxima of kxz in the
region between the hub height and the elevations corresponding to the turbine blade
tips. Quantitatively, a more than 80 % increase in kxz is observed in the region of local
maxima with respect to the values in the region around the hub height. Accordingly,
figure 5(b) presents the in-plane TKE profile extracted from the contour plot, in
comparison to that from the wind tunnel experiment of Hancock & Pascheke (2014).
For better comparison, both profiles are scaled by U2

∞
. Note that the lidar result

of Iungo et al. (2012) shown in figure 4 is not provided for TKE comparison here,
since the paper only shows the TKE profiles along fixed elevation angles rather than
at fixed streamwise locations, which makes the comparison difficult. As the figure
shows, the kxz profile of SLPIV highlights a local minimum around the hub height. In
contrast, the kxz profile from the wind tunnel measurement exhibits a strong upsurge,
near the same region, around the blade root elevations. Such a difference is attributed
to the spanwise offset of the two measurements. At the tower plane (i.e. in the case
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of the wind tunnel measurement), the turbulence associated with the nacelle wake can
significantly enhance the near-wake TKE in this region. With a spanwise offset (i.e. in
the case of the SLPIV measurement), the influence of nacelle wake on the local TKE
decreases in the region around the hub height. In addition, the SLPIV result exhibits
two local maximum values around z = 55 m and 112 m, respectively. The locations
of the maxima correspond to (z − H)/D ≈ ±0.3, in the vicinity of the locations
where ‘bumps’ in the velocity profiles are identified in figure 4(b), suggesting the kxz
peaks may be connected to the high local mean velocity gradient. Such bumps are
shifted to the region slightly outside of the blade tip at (z − H)/D ≈ ±0.55 for the
wind tunnel profile. Simple geometrical considerations reveal that the spanwise offset
between measurement planes is insufficient to account for the difference observed
in the figure. In other words, considering the TKE peaks above the hub height,
peak in our measurement is below the corresponding elevation where the blade tip
intersects the measurement plane, while in the wind tunnel measurement the TKE
peak occurs above the blade tip elevation. Notably, a recent numerical study using
LES on a model-scale turbine (Santoni et al. 2017) revealed that a considerable (and
asymmetrical) flux of TKE occurs in the spanwise directions. In addition, another
LES study (Foti et al. 2018) showed that the operation region of the turbine also
induces a shift of the TKE peaks (streamwise turbulence intensity in the paper, which
is similar to TKE) to the inside of the blade tip elevations, specifically for region
3 of turbine operation. Therefore, we believe this shift of TKE peaks could be an
effect of spanwise transport of TKE and/or variations in the region of operation of
the turbine, which needs to be further investigated in future studies.

Before closing this section, it is worth pointing out that SLPIV can only resolve
a certain percentage of the in-plane TKE due to the filtering effect associated with
two-point cross-correlation with a finite interrogation window size. Correspondingly,
the turbulence associated with flow structures smaller than our interrogation window,
e.g. the velocity fluctuations induced within the snow voids formed by tip vortices,
cannot be captured from our measurements. Hence, for the completeness of our
analysis, a rough assessment of the filtering effect is provided here using sonic
anemometer measurements which were shown to effectively capture wake turbulence,
including that induced by the tip vortices at the EOLOS site (Toloui, Chamorro &
Hong 2015). The assessment is conducted using the hub height sonic anemometer
at the met tower for a time period of 14 min, different from that of the SLPIV
experiment. The period is carefully selected using the following criteria: (i) mean
wind direction of −7◦ from the north to ensure that the sonic anemometer is located
inside the turbine wake but outside the influence zone of the wake of the met tower
structure; (ii) mean wind speed of ∼10 m s−1 and a turbulence intensity of ∼18 %,
matching those of the SLPIV measurement. The in-plane TKE is calculated using
both the filtered and unfiltered velocity components from the sonic anemometer data.
Based on the Taylor frozen eddy hypothesis, the scale of the temporal filter is chosen
to match the interrogation window size of the SLPIV measurements. Accordingly,
the ratio of filtered to unfiltered in-plane TKEs is regarded as the percentage of
the in-plane TKE captured by SLPIV. The result shows that SLPIV is capable
of capturing 95 % of the total in-plane TKE. This estimate involves uncertainties
due to the following reasons: (i) the sonic measurement provides only single-point
estimates rather than those of the entire two-dimensional plane; (ii) the sonic and
SLPIV measurements do not occur at the same period; (iii) the measurement location
of SLPIV (centred around x = 0.41D) differs from that of the sonic anemometer
(x = 1.71D). Note that the above analysis assumes the 20 Hz sonic anemometer
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captures all the TKE within the turbine wake. This assumption is reasonable since
the energy-containing scale in the turbine wake has been shown to be close to (at least
of the order of) that of atmospheric flows according to the literature (Vermeer et al.
2003; Frandsen 2007). According to Kunkel & Marusic (2006), who compared the
performance of hotwire and sonic anemometers for measuring atmospheric turbulence,
we estimate the sonic anemometer captures >97 % of TKE measured from the
hot-wire under the field conditions of our SLPIV experiment.

To further investigate the characteristics of the near wake, the instantaneous
velocity vector fields are examined individually in conjunction with the turbine
operational conditions. In particular, figure 6 presents two samples of the instantaneous
velocity field at different instances in time where the near wake depicts distinct
behaviours, referred to as the wake expansion state and wake contraction state
hereafter. Figures 6(a) and 6(b) show a sample of the instantaneous flow field and
the corresponding streamwise velocity profile at x = 0.5D, respectively, illustrating
a typical wake expansion state. The wake expansion, characterized by a significant
velocity deficit in the central portion of the wake, is the dominant wake state as the
turbine is operated to extract kinetic energy from the incoming wind. Nevertheless, it
is observed that the near wake also exhibits contracting behaviour occasionally. As
shown in figure 6(c,d), the wake contraction state exhibits a pronounced upsurge of
the velocity in the central portion of the wake. In this region, the velocity magnitude
rises above the average velocity (over the entire elevation span) of the wake, and
occasionally exceeds the free stream velocity measured above the blade-top tip height
in the field of view of the SLPIV.

To obtain a quantitative characterization of the two distinct wake states mentioned
above, we introduce the wake velocity ratio Rw based on the instantaneous near-wake
velocity field obtained from SLPIV. Specifically, as shown in figure 7, the cross-
section of the entire wake is divided into an inner disk (referred to as the inner
wake hereafter) and an outer annulus (referred to as the outer wake hereafter) of
equal area. Then Rw is defined as the ratio of the spatially averaged velocity of the
inner wake (ūin) to that of the outer wake (ūout), i.e. Rw = ūin/ūout. At the sampling
plane of the SLPIV (i.e. y= 0.19D), the inner wake corresponds to an elevation span
from z = 46 to 114 m, and the outer wake includes the region between z = 33 and
46 m as well as that between z= 114 and z= 127 m. For each instantaneous sample,
we can calculate ūin and ūout by spatially averaging the streamwise velocity over the
corresponding elevation spans within the field of view of the SLPIV, and subsequently
obtain the Rw. Note that the streamwise velocity of the entire region rather than that
at a specific streamwise location is used for spatial averaging to ensure a more robust
characterization of the inner wake flow speed in comparison to that of the outer wake.
According to the definition of Rw, Rw > 1 indicates the averaged streamwise velocity
in the inner wake is higher than that in the outer wake, representing the characteristic
of a wake contraction, while Rw < 1 suggests a lower velocity in the inner wake
and matches the trait of wake expansion. In the following analysis, the Rw will be
employed to quantify the different wake states. Nevertheless, it is important to point
out that the contraction state defined using Rw > 1 does not necessarily correspond to
a propeller state of a wind turbine which would require a comparison between the
incoming and the wake flows. Instead, the Rw criterion provides a demarcation of
when the turbine operates at the desired conditions and when it is underperforming,
which leads to a reduced velocity deficit in the inner wake.
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FIGURE 6. (Colour online) Samples of instantaneous velocity field (1 : 2 skip applied in
both horizontal and vertical directions for clarity) in the near wake of the EOLOS turbine
showing two distinct wake behaviours. A sample of the wake expansion state including
(a) the instantaneous velocity vector field superimposed with velocity magnitude contours
and (b) the corresponding streamwise velocity profile at x = 0.5D. A sample of the
wake contraction state including (c) the instantaneous velocity vector field superimposed
with velocity magnitude contours and (d) the corresponding streamwise velocity profile at
x= 0.5D.
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FIGURE 7. (Colour online) A schematic illustrating inner and outer wake zones for the
definition of wake velocity ratio Rw.
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FIGURE 8. (Colour online) (a) Time series of wake ratio Rw. (b) Probability histogram
of Rw.

Figure 8(a) shows the variation of Rw over the time duration of the SLPIV
measurements. In this period, the turbine was operated mostly in the region >2
(i.e. 94.6 % of the time) and the averaged yaw error was 5.42◦. The mean value
of Rw was 〈Rw〉 = 0.947, indicating a predominately wake expansion state according
to our Rw-criterion described above. However, the Rw also fluctuates substantially
over the period and has a standard deviation, σRw = 0.089. Particularly, approximately
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FIGURE 9. Schematics illustrating the blade element velocities and the corresponding
angles associated with blade element velocity triangle.

25 % of the time duration can be classified as a wake contraction state with Rw > 1.
Moreover, figure 8(b) indicates approximately 16 % of the time duration yields a value
of Rw that is more than one σRw above 〈Rw〉, representing a strong wake contraction
state, while approximately 10 % of the cases have Rw more than one σRw below 〈Rw〉

which is classified as a strong expansion for the following analysis.
Although not discussed extensively in the literature, the variation of wake states

observed here is reminiscent of the wind turbine wake transition to a propeller state
reported in a number of prior analytical and numerical studies (Eggleston & Stoddard
1987; Sørensen, Shen & Munduate 1998; Sebastian & Lackner 2011, 2012). These
studies suggest that wind turbine wakes can show a contraction-like behaviour under
specific conditions of operation. Specifically, the theoretical analysis presented in
Eggleston & Stoddard (1987) pointed out that wake contraction phenomena can appear
in the operation of a variable-pitch turbine with an axial induction factor (a) greater
than 0.5. They referred to the operating state of the turbine under such conditions
as the propeller transition state, including turbulent wake state (TWS) occurring for
0.5< a< 1.0 and the vortex ring state (VRS) occurring for thrust coefficient, CT > 1.0
and a > 1.0 (figure 2.7 on page 32 of Eggleston & Stoddard (1987)). They further
showed that the specific values of CT and a causing different turbine operational
states depend on the relative values of blade pitch (β) and relative velocity angle
(Φ) formed at the wind turbine blade leading edge, as illustrated in figure 9. During
regular operation, the turbine is continuously subjected to highly fluctuating incoming
velocities U∞, due to atmospheric turbulence, and rapid β changes associated with
the turbine control mechanism. The net effect of such rapid changes is a change in
the angle of attack α shown in figure 9(c). The results from this theoretical work
were supported by a follow-up study from Sørensen et al. (1998) using a numerical
method that combines the actuator disc principle with the Navier–Stokes equations,
which provided additional refinement of the transition conditions of different turbine
wake states. The specific role of unsteady effects was further explored by Sebastian
& Lackner (2011, 2012) who studied the appearance of propeller transition states for
the case of offshore turbines subjected to highly unsteady conditions (e.g. turbines
undergoing rocking motion due to turbine tower/platform pitching). Specifically,
these transition states, which essentially cause the wake to contract, representing
a momentary loss of lift of the turbine, were correlated to the time derivative of
the pitch of the turbine tower. Exclusively during leeward motion, the turbine blade
bound circulation was found to change from a positive to a negative value indicating

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

77
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.779


Near-wake behaviour of a utility-scale wind turbine 225

a clear transition to propeller states. As the turbine tower moves in the leeward
direction, the relative velocity of the incoming wind approaching the blade decreases
(i.e. decrease of the angle of attack) which causes a loss of lift. Alternatively, as U∞
drops suddenly (resulting in a much lower α) due to any other unsteadiness, the wind
turbine may not extract any energy at that moment and instead acts like a propeller
as the rotor cannot slow down rapidly due to inertia. In addition, the turbine tower
in leeward motion can cause the rotor to interact with its own wake which also
contributes to the contraction of the turbine wake (Sebastian & Lackner 2011). It is
noteworthy that, using numerical simulation, Sebastian & Lackner (2011) also showed
that propeller transition states occur a staggering 30 %–50 % of the time for offshore
(floating and monopile) turbines. Specifically, the monopile type of offshore turbines,
which are similar to on-land turbines in the way they are mounted, do undergo wake
transitions approximately 30 % of the time, which is close to the observations in the
current SLPIV study.

Following guidance from the above-mentioned literature, we examined blade pitch
(β), incoming velocity (U∞), the effective angle of attack (αE), revolutions per minute
(r.p.m.) of the rotor (Ω), Φ and the gradient of blade pitch (dβ/dt) to study the
wake expansion and contraction states (defined using Rw-criterion). Two key turbine
operational parameters that represent the relative positioning of the turbine blades and
the wind are the effective angle of attack αE and the blade pitch β. Both parameters
are readily available from the sensor readings of the EOLOS turbine. The former is
derived using αE = a tan (2U∞(1− a)/ΩD(1+ a)) − β − β0, where U∞ is measured
from the sonic anemometer on the nacelle, Ω is the turbine rotational speed, D is the
rotor diameter, β is the blade pitch angle controlled by the control mechanism and
β0 is the blade pre-twist of 2.1◦, and the axial induction factor a is neglected in the
calculation of αE due to the relatively large uncertainty involved in its estimate. Here
U∞ is estimated at the hub height which does not capture the variation of local wind
speed approaching the turbine blades across the entire rotor span. Therefore, the latter
(β) is introduced potentially as a more effective indicator of change of blade position
relative to the wind since it is controlled by the pitch control unit at nacelle and is
not affected by the variation of incoming wind speed across the rotor span.

Figure 10 presents histograms of wake states over the effective angle of attack (i.e.
αE) and the rate of change of blade pitch (i.e. dβ/dt). To reduce the adverse impact
of a number of uncertainties on the correlation among wake states and these turbine
operational parameters, the following pre-processing steps have been applied to the
data before they are presented in figure 10. First, a 10 s low-pass filter is applied
to αE to eliminate the jitter in the signal. The 10 s span is determined considering
that αE is employed to represent the relative positioning of the turbine blades and the
wind across the entire rotor span in an average sense. With a rotor diameter of 96 m
and the averaged incoming wind velocity measured at the hub height of ∼10 m s−1,
the turbulent flow time scale corresponding to the spatial scale of the rotor span
is approximately 10 s based on the Taylor frozen eddy hypothesis. In general, this
low-pass filter reduces the impact of the uncertainties associated with the variation of
flow speed across the rotor span in our analysis. For consistency, the blade pitch and
the Rw are also smoothed with the low-pass filter of the same size. In addition, for
better correlation between wake flows and turbine operation, a 4 s shift (backward in
time) is applied to the data of Rw considering the difference of locations between the
rotor plane and the centre of the SLPIV measurement region as well as the average
wind speed at the hub height. Moreover, conditional sampling is employed on the
turbine operation region (i.e. region >2 to rule out time periods with a constant blade
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FIGURE 10. Probability histograms of αE and dβ/dt under different Rw ranges.

pitch of 1◦). This condition ensures only time periods with varying β are considered
to calculate dβ/dt. As a last step, conditional sampling on nacelle misalignment (i.e.
the misalignment angle between the rotor axis and the light sheet orientation) is
also applied to avoid the influence of the nacelle flow structures on the FOV. Both
conditional sampling steps in total eliminated ∼23 % of the data samples over the
SLPIV measurement duration of 1790 s (∼30 min).

As shown in figure 10(a), the histograms of the wake expansion and contraction
states do not show any appreciable separation over αE when all expansion and
contraction events are considered (i.e. Rw<1 for expansion and Rw>1 for contraction).
Nevertheless, a remarkable shift of the histogram for the contraction state towards
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negative αE can be observed when only strong expansion and contraction events (i.e.
Rw 6 〈Rw〉 − σRw for expansion and Rw > 〈Rw〉 + σRw for contraction) are included
(figure 10b). Compared to the trend for αE, the expansion and contraction histograms
exhibit a significantly clearer separation over dβ/dt (figure 10c,d). In particular, the
mean value of dβ/dt for expansion and contraction is 0.21 deg s−1 and −0.11 deg s−1

(figure 10c), respectively. When only strong expansion and contraction events are
sampled (figure 10d), 98 % of strong expansion events occur at positive dβ/dt and
67 % of strong contraction is concentrated in the region of negative dβ/dt. Overall,
figure 10 clearly shows a strong connection between the wake states and turbine
operational parameters. Compared to αE, dβ/dt is evidently the more effective
parameter to correlate with the transition of wake states owing to the uncertainties
involved in the estimation of αE using the available sensor information from the
turbine.

To further substantiate the direct connection between the pitch control and the
wake transition, two sample time sequences of Rw are extracted from SLPIV. Each
sequence has a time duration of 60 s, covering at least one incident of the wake
transition between wake expansion and contraction states. The sequences of Rw,
corresponding β and dβ/dt (with low-pass filter applied as mentioned in the last
paragraph) are presented in figure 11. The SLPIV velocity fields corresponding to
these two time sequences are provided as supplementary movies 1 and 2 available
at https://doi.org/10.1017/jfm.2018.779. Figure 11(a) shows a sequence that consists
of a strong wake contraction event, in which Rw becomes significantly larger than 1
for ∼40 % (23 s out of 60 s) of the entire time duration. The figure shows a clear
one-to-one correspondence between Rw and dβ/dt. Specifically, as β increases during
the time stamps of 1015–1035 s, dβ/dt is positive and the corresponding Rw < 1.
Accordingly, in this period, the wake flow stays predominantly in the expansion state
(evidenced by the two inset figures at 1027 and 1033 s; please see the supplementary
movie 1 for more information). As soon as β starts decreasing at approximately
1035 s, dβ/dt becomes negative and Rw rises above 1 within ±1 s (i.e. within the
uncertainty involved in the time shift between the rotor plane and the centre of the
SLPIV measurements). The corresponding wake flow switches to the contraction
state and shows consistent contraction until approximately 1060 s when dβ/dt goes
back to approximately 0 and Rw drops to values very close to 1 (evidenced by
the two inset figures at 1042 and 1048 s; and check the supplementary movie 1
for viewing the dynamic process of wake transition). For comparison, as shown in
figure 11(b), the second time sequence is selected to show the wake transition that
involves a weak contraction/expansion event (i.e. with Rw in the close vicinity of 1).
Similar to figure 11(a), the correspondence between dβ/dt and Rw is still appreciable.
Specifically, dβ/dt starts with a positive value, then drops below 0 and rises above
0, while accordingly, Rw increases from significantly below 1 to slightly above 1
and drops down. However, as shown in the corresponding inset figures of the wake
velocity fields and the supplementary movie 2, the absolute value of Rw is not a
clear indicator of a contraction/expansion wake state. This situation corresponds to
the distributions in the vicinity of dβ/dt = 0 in figure 10(d), where there is no
substantial separation between the wake expansion and contraction states over dβ/dt.
Such a situation occurs when the flow surge in the inner wake introduced by negative
dβ/dt is not strong enough compared to the outer wake velocity, and the turbine
performance is less affected.

To summarize, the above analysis indicates that the temporal variation in β (i.e.
dβ/dt) is best correlated with the contraction phenomena identified through Rw.
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FIGURE 11. (Colour online) Sample time sequences of the blade pitch β, the
corresponding rate of change of pitch dβ/dt and Rw showing the wake transition involving
(a) a strong contraction state and (b) a weak contraction state. Inset figures are the
instantaneous velocity vector fields (1 : 3 skip applied in both horizontal and vertical
directions for clarity) superimposed with the velocity magnitude contours obtained from
SLPIV measurements.

Furthermore, to establish a physical link between dβ/dt and turbine (both tower and
blade) deflection as suggested in the literature (e.g. Sebastian & Lackner (2011)), we
analyse the signals of tower strain and blade strain gauges installed on the EOLOS
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FIGURE 12. Time series of (a) blade pitch β (solid line) and tower strain (dashed line)
representing tower deflections in the streamwise direction of the flow, and (b) blade pitch
β (solid line) and the blade strain (dashed line) representing flapwise deflection from high
pressure side to the low pressure side. Both strains are reported in microstrain.

turbine during our flow measurements. Figure 12 presents the signals of these strain
gauges together with the blade pitch change, illustrating the strong connections
between the β variations and the thrust on the turbine tower and blades. Specifically,
figure 12(a) shows a strong negative correlation with a correlation coefficient of
−0.90 between the blade pitch and the tower foundation strain measured on the
downstream side of the turbine (a measure of leeward motion of the turbine).
Similarly, a strong correlation (correlation coefficient of −0.92) is found between
the blade pitch variations and the flapwise deflections of the rotor measured by the
blade strain gauges mounted at 44.4 % span of the blade (21.6 m from the blade root,
i.e. the farthest point where a strain gauge is installed) on the high pressure side as
shown in figure 12(b). The results suggest that as β decreases, both the blades and
the tower are flexed in the leeward direction (into the rotor wake), causing interaction
between the rotor and the turbine wake that results in wake contraction, as identified
in the above-mentioned literature and observed in our experiments.

It is to be noted that on-land turbines may not have the intense rocking motion
expected for offshore turbines, but the literature has provided support for substantial
deflection of the tower and blades experienced by utility-scale on-land turbines,
particularly during higher regions of operation. For the tower deflection, Bang, Kim &
Lee (2012) performed measurements on a 1.5 MW turbine and found that the turbine
tower deflects by 0.17 m at the nacelle elevation during the low wind conditions.
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U∞ U∞ 

(a) (b)

FIGURE 13. Schematic illustrating the fore–aft deflection of the turbine tower and the
blade flapwise deflection due to blade pitch (β) variation. (a) Typical wake expansion
state of the turbine and (b) wake contraction state caused by the interaction of rotor and
turbine wake.

Nasrabad (2016) carried out FAST simulations on 1.5 MW turbine and showed
that the turbine nacelle could deflect by 0.2 m under normal operation. Another
recent study, by Zendehbad, Chokani & Abhari (2017), conducted experiments on
a 2 MW turbine using a novel ground-based optical technique and demonstrated a
strong correlation between the tower tip deflection and the strain gauge measurements
at the tower foundation. The study also revealed the turbine tower to deflect by
a maximum of 0.8 m for high wind velocities (which are very similar to our
experimental conditions). Although the experiments measured deflections of the
tower in the sideways direction (perpendicular to the incoming wind direction), the
study highlights the extent of the deflections that typical on-land turbines experience.
Moreover, through accelerometer measurements conducted on a 3 MW offshore
turbine, El-kafafy et al. (2014) showed that the deflections in the predominant wind
direction (fore–aft direction), which constitute a primary mode of vibration, are
typically 50 % higher than that those in the sideways direction. For turbine blade
deflection, using FAST simulations on NREL 5 MW (126 m diameter rotor, 90 m
hub height) turbine, Jonkman et al. (2009) showed that the turbine blades experience a
10 times larger deflection in the fore–aft direction (4–5.5 m relative to the undeflected
blade pitch axis) compared to a typical nacelle deflection of 0.5 m in the fore–aft
direction when the turbine operates above region 2. Follow-up numerical simulations
on utility-scale turbines based on fluid–structure interaction, by Bazilevs et al. (2011)
and Bazilevs et al. (2014), further found flapwise deflections of up to 5.6 m.

Overall, based on the above-mentioned literature and the strong correlations between
blade pitch and the thrust forces on the tower and blades observed in our experiments,
we suggest that the interaction between rotor and turbine wake can contribute
considerably to the wake contraction. This mechanism is schematically represented
in figure 13. As blade pitch β decreases, the turbine tower and blades flex in the
streamwise direction, as shown in figure 13(b), leading to wake contraction. We also
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acknowledge that aeroelastic flutter of the turbine blades, during rapid changes of α
or rocking of the turbine, could also play a role in the appearance of wake transitions,
though it is not considered in the current analysis. It is noteworthy that, to the best
of our knowledge, very few laboratory and field experiments have reported and
discussed such intermittent wake transition, which may be attributed to the following
reasons. Regarding the laboratory experiments, the incoming flow conditions are
generally idealized and the turbine models do not fully capture the control dynamics
and mechanical characteristics of utility-scale turbines. For field measurements, the
conventional techniques do not have sufficient temporal and spatial resolution to
capture such wake behaviour. In addition, the majority of field measurements were
conducted further downstream of the turbines where such intermittent wake behaviour
may not persist.

3.2. Near-wake tip vortex behaviours
In this section, the behaviours of near-wake tip vortices visualized as snow voids are
analysed and correlated with turbine operation/response parameters. This analysis is an
extension of the work from Hong et al. (2014) which, for the first time, demonstrated
the inter-connection between tip vortex behaviour and turbine operation/response
parameters using a 6 min video of snow voids in the near wake of a utility-scale
turbine. As described in § 2, the present analysis includes 4 datasets (i.e. Apr 2014,
Nov 2015, Dec 2015, Feb 2016a) with a total duration of 2 h and with a field of
view confined to the region covering the tip vortices generated at the blade-bottom tip
level. These datasets, obtained from multiple deployments conducted in 2014–2016,
cover a wide range of turbine operational and atmospheric conditions. The turbine
operation/response parameters used for the analysis include critical turbine supervisory
control and data acquisition (SCADA) parameters, their derivatives as well as the
strain sensor data at the base of the turbine tower. These parameters either have
been employed or can be readily incorporated into the control strategy of the turbine.
As discussed in § 1, the behaviour of tip vortices in the near wake can significantly
influence the turbulence characteristics and the evolution of the wake far downstream.
Therefore, the analysis in the section aims to establish a statistical correlation between
tip vortex behaviour and readily available operational and response information
from utility-scale turbines, which can benefit wind energy developers in formulating
advanced control strategies to improve the total power production and load mitigation
of wind farms in the future.

In the present analysis, the tip vortex behaviour is categorized primarily into a
consistent state and disturbed state, according to the general temporal variation of
snow void patterns shown in each image frame of the recorded videos. The disturbed
state is further divided into different types, referred to as Type I, Type II and Type
III hereafter, based on specific features of the disturbed snow voids in the images.
Figure 14 presents sample images illustrating the consistent state of tip vortices and
different types of disturbed state. As figure 14(a) shows, the consistent state of tip
vortices is characterized by a sequence of snow voids with clearly defined outlines,
typically resembling the shape of a disk or an ellipse with a tapered tail. The number
of voids appearing in the images ranges from 3 to 5 in our datasets, depending on
the incoming flow velocity and tip-speed-ratio of the turbine. In the Type I disturbed
state, as shown in figure 14(b), the snow voids are utterly unrecognizable or absent
within the field of view. In contrast, for both Type II (figure 14c) and III (figure 14d)
disturbed states, snow voids are still identifiable but smeared due to disturbance.
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Flow

Consistent Type I disturbed

Type II disturbed Type III disturbed

4 m 4 m

4 m 4 m

(a) (b)

(c) (d)

FIGURE 14. Sample images of snow voids illustrating (a) consistent state, (b) Type I
disturbed state, (c) Type II disturbed state and (d) Type III disturbed state of tip vortices.

Particularly, Type III state shows disturbed voids associated with vortex interactions
such as leap frogging (i.e. roll-up of adjacent tip vortex filaments around each other)
and merging, while such vortex interactions are not appreciable in the Type II state.
To obtain an objective classification of different tip vortex states, we use the criteria
based on the temporal variation of void size, void shape and void spacing for the first
void (i.e. the most upstream void which is expected to be best correlated with the
turbine operation) that enters the field of view of our measurements. These criteria are
summarized in table 3. Specifically, tip vortex voids are earmarked as consistent only
if all of the criteria are satisfied and as Type II/III if at least one criterion is satisfied.
In addition, based on these criteria, we have developed image analysis algorithms
to autonomously classify different vortex states. The results from the autonomous
image processing are not very sensitive to the change of the exact threshold (i.e.
50 % in the table) within the range of 50 %–80 %. Note that although we present the
qualitative observation of Type II and III disturbed states as mentioned above, we do
not differentiate the two states through quantitative metrics due to the challenges of
determining non-ambiguous metrics for such classification. More importantly, as the
classification of the void states is mutually exclusive, a robust decorrelation of the
samples is ensured. The decorrelation process renders 2/3 of the total duration of
the visualization data for correlating with turbine operation/response, i.e. for example,
the Feb 2016a dataset which is 1790 s long produces 1193 tip vortex behavioural
events/classifications which are completely de-correlated from one another.

In the following analysis, the probabilistic distribution of turbine operation/response
parameters corresponding to the categorized tip vortex states above is examined in
the form of histograms. For this statistical analysis, we have conducted a thorough
exploration of the information available in the EOLOS turbine database at the time
duration corresponding to the tip vortex videos. Such information includes: (i) turbine
SCADA parameters such as wind velocity measured from the sonic anemometer at the
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Tip vortex state Classification criteria
Void size variation Void circularity Void spacing (streamwise

variation direction) variation

Consistent state <50 % of the
average size of

neighbouring 3 voids

<50 % of the
average

circularity of
neighbouring

3 voids

<50 % of the
average circularity
of neighbouring

3 voids

Type I disturbed state Tip voids
undetectable

N/A N/A

Type II and III
disturbed state

>50 % of the
average size of

neighbouring 3 voids

>50 % of the
average spacing
of neighbouring

3 voids

>50 % of the
average circularity
of neighbouring

3 voids

TABLE 3. The criteria used to classify different tip vortex states.

nacelle (used for gauging turbine tip-speed-ratio and controlling turbine operational
region and yaw angle), turbine power, rotor speed and blade pitch; (ii) the strain gauge
data at the turbine tower base. Several critical variables are also derived from turbine
operation/response, namely, normalized turbine power P∗ and downwind tower strain
S∗, the corresponding fluctuation intensity of power IP, fluctuation intensity of tower
strain IS and effective angle of attack αE. All these variables are used for a statistical
demarcation of consistent and disturbed states of tip vortices and are presented in
the analysis below. Specifically, the normalized turbine power P∗ is calculated as
(P− Pmin)/(Pmax − Pmin) where P, Pmin and Pmax are the instantaneous, minimum and
maximum values of power recorded within a dataset, respectively, and the downwind
tower strain S∗ is obtained through the same fashion of normalization as that of the
power, with the data from the strain gauge closest to the direction opposite (i.e. 180◦)
to the mean wind direction of each dataset. The fluctuation intensity of power IP is
calculated as the ratio of standard deviation of the power P to the mean of P over a
sliding period of 30 s. The fluctuation intensity of strain IS is calculated in the same
fashion as that of IP. The effective angle of attack αE is derived following the same
method as in § 3.1. In addition, considering the highly unsteady and multivariate
nature of field measurements, a conditional sampling technique is applied in the
current analysis to: (i) improve statistical demarcation of tip vortex behaviours with
turbine operation/response parameters; (ii) elucidate underlying physical mechanisms
governing turbine operational condition and tip vortex behaviours. Particularly, for
the present analysis, the turbine yaw error (i.e. the misalignment angle between the
wind direction and the rotor axis), turbine operational regions and types of disturbed
tip vortex state are chosen as conditional sampling parameters.

Figure 15 presents the probability histograms of power fluctuation intensity IP,
tower strain fluctuation intensity IS and effective angle of attack αE for consistent
and disturbed states of tip vortex events under different restrictions of yaw error.
Specifically, no yaw error restriction is applied in figure 15(a–c) while a stringent
restriction of yaw error <3◦ is employed in figure 15(d–f ). For each histogram, twelve
bins of equal size, covering from the minimum to maximum values of each turbine
operation/response variable presented in the histogram, are selected to demonstrate the
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FIGURE 15. The probability histograms of power fluctuation intensity (IP), tower strain
fluctuation intensity (IS) and effective angle of attack (αE) for consistent and disturbed
states of tip vortices under no yaw error restriction (a–c) and a restriction of yaw error
<3◦ (d–f ).

statistical distribution of the turbine variables under consistent and disturbed tip vortex
states. A similar convention of bin size choice is employed consistently throughout
the paper. Without a yaw error restriction, no significant difference in the IP histogram
between the consistent and disturbed states (figure 15a) is observed. However, there
is a clear separation in the distribution of IS for consistent and disturbed states of tip
vortices (figure 15b). For the disturbed state, the distribution of IS appears to follow
a normal distribution, while a significant portion of IS is clearly biased towards the
lower values of IS for the consistent state. With an increased yaw error restriction,
there is an improved separation of the IS histograms between consistent and disturbed
states of the tip vortices, as shown by a comparison of figures 15(b) and 15(e). In
particular, with increasing yaw restriction, the IS histogram of the consistent state
approaches an exponential distribution, characterized as 0.62e−14.87Is through least
square fitting. It is worth noting that an exponential distribution was identified for
the relationship between the tip vortex stability and the turbulence intensity of the
incoming flow in recent wind turbine LES studies (e.g. Ivanell et al. (2010) and
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Sarmast et al. (2014)), which may shed some light on the underlying mechanism of
the trend observed for IS here. As a comparison, with an increasing yaw restriction,
the IS histogram of the disturbed state resembles a normal distribution with the mean
value moving towards higher IS. The least square fit of the histogram yields a normal
distribution with a mean value of 0.13 and a standard deviation of 0.06. In contrast to
the IS histograms, the IP histograms (figure 15a,d) and αE histograms (figure 15c, f ) do
not seem to be strongly affected by the yaw error restriction. Similarly, the normalized
turbine power P∗ and tower strain S∗ are not appreciably influenced by the yaw error
restriction, and therefore are not shown in figure 15 for brevity. To summarize here,
figure 15 suggests a correlation between the tip vortex behaviour and tower strain
fluctuations which represent fluctuations in the inherent strength of the vortices. In
addition, these trends improved with yaw error restriction, indicating a definite effect
of wind direction misalignment which needs to be minimized for further investigation.
Therefore, for the following analysis in this paper, the yaw error is restricted to be
less than 3◦, consistent with the restriction imposed in figure 15(d–f ).

To further elucidate the correlations between the tip vortex behaviour and the
turbine operation/response parameters, a restriction on the regions of turbine operation
is applied to the analysis to de-couple the effects caused by the turbine control unit
(TCU) operation, and results are presented in figure 16. Figure 16(a–e) shows
histograms when the turbine operates in region 2 or below, during which TCU is
designed to maximize power extraction with the available sub-optimal wind speeds
by setting blade pitch to the minimum. For comparison, figure 16( f –i) presents
histograms for regions greater than 2, where the turbine operation is regulated to
maintain a relatively constant output power and the rotational speed of the turbine
blades to protect the turbine from overload and structural failure. According to the
changing TCU operation, the distributions of the consistent and disturbed states of the
tip vortices as functions of turbine operation/response parameters vary substantially,
as shown in the figure.

Figure 16(a) shows the power fluctuation IP histogram, in which considerable
separation is observed between the consistent and disturbed states of the tip vortices
when turbine operation is restricted to the regions 62. Compared to figure 15(d), the
centre of the IP histogram of the disturbed state clearly shifts towards higher values
of IP, and its distribution approximates a normal distribution with a peak value of
0.09 and a standard deviation of 0.05. In regions 62, the turbine power is directly
proportional to the thrust on the turbine, thus a fluctuation in power is manifested as a
fluctuation of the tower strain. As a result, the distribution of tower strain fluctuation
IS presented in figure 16(b) shows similar trends as those of figure 16(a). Moreover,
compared to figure 15(e), the distribution of the disturbed state is less clear with a
restriction on regions 62, while the IS distribution for consistent state becomes more
concentrated to the region of very low IS. Restricting turbine operation to regions
62 limits the effective angle of attack αE to high values (i.e. 99 % incidence above
5◦), as shown in figure 16(c), where no clear separation is observed between the
histograms of the consistent and disturbed states. Figure 16(d,e) shows the histograms
of normalized turbine power P∗ and tower strain S∗ in regions 62. Similar to those
for all regions, no appreciable separation between the consistent and disturbed state
is observed.

When the turbine operates in regions >2, as shown in figure 16( f –j), all histograms
show a noticeable discrepancy compared to those presented in figure 16(a–e). One
essential cause for such a discrepancy is the TCU auto-adjustment. When operating
in regions >2, the turbine is able to generate power close to (or even exceeding)
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the rated power, therefore the TCU curbs the power fluctuation to protect the turbine
from excessive thrust loads while still maintaining the designed power output. As a
result, figure 16( f ) shows that the IP distribution in regions >2 is largely concentrated
in the lower values of IP compared to figure 16(a). Specifically, more than 50 % of
the consistent states and more than 75 % of the disturbed states of tip vortices are
observed in the range of 0 < IP < 0.025. In region >2, due to the effect of power
regulation and blade pitching, the correlation between power and strain fluctuations
diminishes, evidenced by the significant difference between IP histogram (figure 16f )
and IS histogram (figure 16g) in this region. Moreover, a separation for consistent
and disturbed tip vortex states is observed in figure 16(g). The least square fit of the
IS histogram of the disturbed state yields a normal distribution with a mean value of
0.12 and a standard deviation of 0.04, similar to that shown in figure 15(e) without
a turbine region restriction. Regarding the effective angle of attack αE, the restriction
of the turbine to higher regions causes the distribution of αE to spread towards lower
values as opposed to that of regions <2. More remarkably, such region restriction
leads to clear separation between the consistent and disturbed states, with disturbed
tip vortices occurring at smaller values of αE and the consistent state concentrated
mainly above αE > 5◦. In line with trends observed for αE, the histogram of the
normalized tower strain S∗ (figure 16j) also exhibits a clear separation between
consistent and disturbed states with a restriction of turbine regions (i.e. regions >2),
due to the inherent connection among blade angle of attack and forces on the turbine
blades and tower structures. As for the normalized turbine power P∗ (figure 16i), the
restriction of regions >2 shifts the distribution of P∗ to the range of 0.5< P∗ < 1
for both consistent and disturbed states. A slight separation between the distributions
of the two states is observed in comparison with the corresponding figure of regions
<2 (figure 16d), but is not as appreciable as the trends shown for αE and S∗. To
summarize, the conditional sampling based on turbine operational regions yields
clearer correlations between tip vortex behaviour and turbine operation/response
parameters, manifested as separation of the distributions of IP, IS; P∗, S∗ and αE
according to the consistent and disturbed states of the tip vortices. Nevertheless, the
trends of such separation of distributions are dependent on specific turbine operational
regions. In particular, no separation is observed for P∗, S∗ and αE in lower turbine
regions (62).

To further elucidate the intricate connection between disturbed tip vortex patterns
and turbine operation/response, a conditional sampling of specific types of disturbed
state is implemented in addition to the yaw and turbine operational region restrictions.
Specifically, we choose to focus on the Type I disturbed state in the analysis here
for the following reasons. Firstly, the underlying aerodynamic origin of the Type
I disturbed state is strongly connected to turbine performance. For example, the
reduction of turbine power generation causes a drastic weakening of tip vortices,
which further results in the disappearance of the tip vortex signature in the near wake
under highly turbulent atmospheric conditions. Therefore, it is reasonable to expect
that the conditional sampling based on the Type I disturbed state would improve
the correlation of tip vortex behaviour with turbine power and tower strain which is
inherently connected to the power generation. Secondly, the Type I disturbed state
corresponds to complete disappearance of the voids, whose flow features can be
distinguished from those of Type II and III in a non-ambiguous way. Figure 17
shows the histograms of the effective angle of attack αE, normalized turbine power
P∗ and normalized tower strain S∗ for consistent and Type I disturbed tip vortex
states under the yaw and region restrictions. The histograms of IP and IS do not
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yield a significant difference compared to those in figure 16, and therefore, are not
presented here for brevity. As the figure shows, in the lower turbine regions (62), the
distribution of the Type I disturbed state (figure 17a) is slightly shifted to the region
of low αE in comparison to that of all disturbed states shown in figure 16(c). A
similar trend is also observed for P∗ (figure 17b). Note that the conditional sampling
at this stage (i.e. yaw error, turbine region and disturbed state type) substantially
reduces the number of samples available for statistical analysis, which makes some
histograms appear choppy. This issue limits the further analysis of the data based on
conditional sampling, and we expect to resolve this issue through more data recording
in future deployments. In higher turbine regions (>2), as shown in figure 17(d–f ),
the histograms generally resemble those shown in figure 16(h–j), indicating that the
majority of disturbed tip vortices in higher turbine regions are in the Type I state.
Nevertheless, with a restriction on the type of disturbed state, there is a measurable
increase of separation between the distributions for the disturbed and consistent
states in the αE, P∗ and S∗ histograms. Such a separation increase is manifested by
10 %–15 % of the samples of the disturbed state shifting towards lower values and
the distribution of the consistent state staying relatively unchanged in comparison to
the corresponding ones in figure 16.

In addition to the histograms of turbine operational/response parameters, the direct
correspondence between the tip vortex behaviour and turbine operation/response is
examined by marking the incidences of disturbed states of tip vortices in the time
series of these parameters. Note that, under field conditions, the characteristics of tip
vortices are inevitably influenced by multiple physical variables, and therefore, it is
difficult to establish a one-to-one correspondence between tip vortex behaviour and a
specific turbine operational/response parameter unless stringent conditional sampling
is imposed. Figure 18 presents two sample time series of turbine operation/response
parameters marked with regions corresponding to the occurrence of the disturbed
turbine states. The first sample displays the variation ofαE in a period of approximately
350 s with the incidences of all types of disturbed states marked by the grey vertical
bands (figure 18a). The specific time sequence is chosen such that the turbine
operation is confined to regions 62 (approximately 96 % of the time here), yaw error
is restricted to <3◦ and the average value of IP for the time period is around 0.1.
These restrictions allow us to sample the data only in the region around the probability
peak of the disturbed state, as shown in figure 16(a). As shown in figure 18(a), the
grey vertical bands occur almost exclusively in the time periods around local minima
of αE, indicating the consistent generation of tip vortices is likely to be disturbed
when the utility-scale turbine operates under low αE and experiences sharp changes of
αE. The second sample shows the change of S∗ in a period of 1790 s with incidences
of the Type I disturbed state marked by the grey vertical bands (figure 18b). This
sample time series, corresponding to a time period with the lowest wind speed
fluctuations among all of the datasets, is selected to allow clear demonstration of
the one-to-one correspondence between tip vortex behaviour and turbine operations.
In addition, similar to that in figure 18(a), a yaw error restriction (<5◦) is imposed
on the data to minimize the effect of yaw misalignment on the results. Note that
the yaw error restriction is relaxed and no turbine region restriction is imposed here
in comparison to previous cases to retain as many Type I disturbances as possible.
Figure 18(b) illustrates that most Type I disturbed states tend to occur in the vicinity
of the local minima associated with a sudden large drop of S∗. Such a drop in
S∗ is strongly correlated with a significant loss of the lift generated by the turbine
blades, resulting in drastic weakening of the tip vortices (i.e. a major cause of the
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FIGURE 17. The probability histograms of effective angle of attack (αE), turbine power
(P∗) and tower strain (S∗) for consistent and Type I disturbed tip vortex states under a
restriction of yaw error <3◦ for (a–c) turbine operational regions 62 and (d–f ) turbine
operational regions >2.

Type I disturbed state of tip vortices). The general trend observed here is consistent
with the histograms shown in figure 17( f ). In addition, the time series suggests
that Type I disturbances have a higher tendency to occur in the periods when the
turbine operations or the incoming wind fluctuations cause a significant lowering of
turbine loading.

4. Conclusions and discussion
4.1. Conclusions

Using super-large-scale particle image velocimetry (SLPIV) and flow visualization
with natural snow, this study presents the first systematic experimental investigation of
the velocity field and the coherent vortex structures in the near wake of a utility-scale
wind turbine at unprecedented spatial and temporal resolution. The turbulent flow
field for a time duration of 30 min is first examined using the SLPIV measurements
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FIGURE 18. Samples of time series of (a) effective angle of attack (αE) with incidences
of disturbed states marked using grey vertical bands and (b) normalized tower strain (S∗)
with incidences of the Type I disturbed state marked using grey vertical bands.

in the deployment on 3 February, 2016, which has a field of view (FOV) of 115 m
(vertical) × 66 m (streamwise) centred 0.41D downstream of the turbine tower
and 0.19D offset from the central tower plane. The time-averaged wake velocity
field exhibits a clear non-Gaussian distribution with a slight upsurge of streamwise
velocity at elevations around the turbine hub height. Combined with the incoming
velocity profile estimated from the wind measurements using a met tower near the
turbine, the time-averaged profile of the wake deficit is obtained and compared with
those from a wind tunnel experiment and a field measurement using lidar at similar
locations in the near wake of a turbine. The comparison shows significant differences
across these profiles around the same downstream location of the turbine (x= 0.41D),
potentially due to the spanwise offset of the measurement planes and the difference in
turbine conditions across these studies. Nevertheless, the wake deficit averaged over
the turbine blade span is calculated to be 0.29 from SLPIV, within close proximity
of the values obtained from the wake models proposed in a number of prior studies.
The in-plane turbulent kinetic energy (TKE), i.e. kxz, shows a region of relatively low
kxz around the hub height with local maxima of kxz in the region between the hub
height and the elevation corresponding to the turbine blade tips.

The instantaneous velocity fields from SLPIV indicate the presence of intermittent
wake contraction states which are in clear contrast with the expansion states typically
associated with wind turbine wakes. These contraction states feature a pronounced
upsurge of velocity in the central portion of the wake. The wake velocity ratio
Rw, defined as the ratio of the spatially averaged velocity of the inner wake to
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that of the outer wake, is introduced to categorize the instantaneous near wake
into expansion (Rw < 1) and contraction states (Rw > 1). Based on the Rw criterion,
the wake contraction occurs 25 % of the time during the 30 min time duration of
the SLPIV measurements, consistent with the numerical simulation of Sebastian &
Lackner (2011). Based on the available literature, we attribute wake transitions to the
sudden drop in the effective angle of attack (αE) and the rate of change of blade pitch
(dβ/dt). It is found that the histograms of the expansion and contraction states show
a significant separation over dβ/dt while such separation over αE is less clear. The
samples of time sequences of dβ/dt and Rw further substantiate the strong connection
between the wake state transition and the rate of change of blade pitch. Moreover,
blade pitch change is found to be strongly correlated to the tower and blade strains
measured on the turbine, establishing the crucial physical link for the occurrence of
wake contractions. This result suggests that the flexing of the turbine tower and the
blades could indeed lead to the interaction of the rotor with the turbine wake, and
cause wake contraction, as indicated by prior studies.

Based on the datasets obtained from multiple deployments conducted in 2014–2016,
the tip vortices, visualized as snow voids, are analysed and correlated with turbine
operation/response parameters including normalized turbine power (P∗), normalized
turbine tower base strain (S∗), the fluctuation intensity of power (IP) and that of tower
strain (IS) as well as the effective angle of attack (αE). The tip vortex behaviour is
categorized into a consistent state and various disturbed states (Types I, II and
III) according to different snow void patterns. The histograms corresponding to
the consistent and disturbed states are examined over the aforementioned turbine
operation/response parameters with different conditional sampling restrictions. With
yaw error restriction, it is revealed that the histogram of consistent states follows a
clear exponential distribution spanning a region of very low IS, while the disturbed
state exhibits a normal distribution with a mean value of IS significantly higher
than that of the consistent state. Imposing further restriction on turbine operational
regions, the IP histograms also show trends similar to the IS histograms but only for
lower regions (i.e. regions 62) of operation owing to the strong correlation between
power and tower strain in lower regions. For higher regions (>2), the αE, P∗ and
S∗ histograms display clear separation for the consistent and disturbed states with
disturbed states occurring towards lower values for all of the respective histograms.
Further restricting the analysis to the Type I disturbed state makes the above trends
clearer owing to the inherent aerodynamic connection with the turbine performance
characteristics. In the end, samples of time series of αE and S∗ are selected to
demonstrate the direct correspondence between tip vortex behaviours and turbine
operation/responses, which shows that most disturbance events occur in the vicinity
of the local minima associated with sudden large drops in αE and S∗.

4.2. Discussion
The velocity field measurements within the near wake of the utility-scale turbine
could serve as benchmark datasets for wind turbine wake research (i.e. laboratory,
field and computational studies). The velocity deficits measured using SLPIV can be
employed to validate and potentially improve the existing wake models derived from
prior studies. The measurements will benefit laboratory-scale studies by providing a
direct reference for controlled experimentation and improve the design of experiments
to address the scalability issues. As current field-scale techniques (e.g. lidar and sodar)
are typically deployed to capture large-scale wake patterns (primarily the far wake)
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considering their coarse spatial and temporal resolution, our measurements in the
near wake could provide a crucial link of turbulence–turbine interaction and whole
wake characteristics. The numerical studies on wind turbine wakes could also utilize
the velocity deficit and TKE measurements to improve the high-fidelity simulation
techniques that can predict the most realistic wake characteristics and evolution. We
acknowledge our measurements are limited to the region adjacent to the turbine and
to a specific spanwise location (0.19D) with very few prior studies available for
direct comparison. However, the datasets are still invaluable considering the dearth of
reliable data at utility scale. For example, a study similar to the current work but in
a different spanwise location would provide further useful information which could
all be combined together to arrive at the complete three-dimensional structure of the
turbulent near wake. Such further studies will also explain the discrepancies in the
velocity deficit and TKE measurements noticed in the current work. In general, longer
time sequences collected in line with the current work at multiple spanwise locations
under different turbine operational conditions are needed for a robust comparison
with the available literature.

The paper presents the first field evidence and the quantification of the intermittent
wake transition occurring in the near wake of a utility-scale turbine, which has been
only discussed minimally in prior analytical and numerical simulation studies. Such
intermittent near-wake transition from the expansion to contraction state can have
a profound effect on the wake evolution (e.g. near-wake length, wake recovery)
downstream. It could significantly alter the entire wake structure, including the vortex
interaction, turbulence characteristics (e.g. mixing and momentum exchange across
the wake shear layer) and overall wake instability. Although an extensive literature
has shown the influence of atmospheric turbulence on wake recovery, the effect of
these wake state transitions caused by turbulence–turbine interaction presented in
the current study has not been identified. Our results have shown that the wake
contraction state occurs for a substantial portion (i.e. approximately 25 % of the
time) of regular operation time of a utility-scale wind turbine, necessitating the
incorporation of such a phenomenon into the physics-based wake models for future
wind farm designs. In addition, through both statistical analysis and instantaneous
correspondence, our study has made the first attempt to establish a connection
between the transitions of wake states and the parameters that can be derived
from turbine SCADA data. Such information can be potentially used to develop
advanced turbine control algorithms for existing and next-generation ‘smart’ wind
farms. However, we acknowledge that our current analysis of wake transition relies
on the specification of the Rw criterion and appropriate filtering of the turbine
operation/response parameters, which involves a number of uncertainties. For example,
the Rw criterion can be affected by the choice of inner/outer wake domains, the limited
characterization of the entire wake based on the data from one spanwise location, the
uncertainties from the smoothing and time corrections of the aerodynamic parameters
and atmospheric turbulence, etc. Additionally, despite some support from the literature,
the precise mechanism governing the reported wake transition is still speculative in
the current analysis. To address these issues, further investigation will focus on
acquiring more near-wake SLPIV data at multiple spanwise locations and under
different turbine operational conditions to gain a better statistical understanding of
these wake transitions as the current analysis is based on only 30 min of data.
Moreover, there is a need to integrate our experimental work with state-of-the-art
numerical studies to fully elucidate the underlying mechanism of these intermittent
wake transitions, and potentially incorporate such unsteady effects into simulations
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to arrive at a more realistic and reliable prediction of wake behaviours. Nevertheless,
our analysis suggests the flexing of the turbine tower structure and the blades in the
fore–aft direction, owing to the typical size and mechanical properties of utility-scale
turbines, could contribute to wake transitions. This result highlights the significance
of understanding flow–structure interaction involved in utility-scale wind turbine
operation, and the potential for increasing the efficiency of wind turbines through
improvement of their structural robustness and operational strategies.

The tip vortex analysis presented in our paper reveals interesting correlations
between the tip vortex patterns and the turbine operation/response parameters. Similar
to the wake transition results mentioned above, such information can be potentially
employed for developing novel turbine control strategies for wind farm optimization.
Specifically, on the one hand, tip vortex behaviour is an effective indicator of
overall wake stability (Ivanell et al. 2010), the information of which can be used
in physics-based wake models for more accurate prediction of wake evolution. On
the other hand, the turbine operation/response parameters used for correlating with
the tip vortex behaviours are/can be derived from readily available turbine SCADA
inputs, facilitating the direct incorporation of such information into individual turbine
or wind farm controls. Although the current study incorporated deployments from
multiple years, the trends exhibited in the histograms highlight the need for more
data to achieve converged statistical distributions under stringent conditional sampling.
The subtle differences between the different types of tip vortex disturbances and their
underlying causes could not be studied in detail for the same reason. Hence all the
near-future deployments will aim at collecting tip vortex behavioural data along with
whole wake measurements.

In summary, the current study provides a detailed analysis of the near-wake flow
field of a utility-scale wind turbine, including interesting intermittent wake transitions
and tip vortex patterns, and establishes a statistics-based linkage between these wake
behaviours and turbine operational/response parameters. This study not only offers
benchmark datasets for comparison with the-state-of-the-art numerical simulation,
laboratory and field measurements, but also sheds light on understanding wake
characteristics and their downstream development, turbine performance and regulation,
as well as developing novel turbine or wind farm control strategies. Following
the methodology presented in the current paper, the future study will focus on
investigating the three-dimensional structure of the near wake with data from multiple
spanwise locations and establishing a more detailed and robust statistical description
of the wake behaviours with extended datasets under each specific turbine operational
condition.
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