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Abstract
In this paper, we propose an estimator of the survival probability for a Lévy risk model observed at low
frequency. The estimator is constructed via a regularised version of the inverse of the Laplace transform.
The convergence rate of the estimator in a sense of the integrated squared error is studied for large
sample size. Simulation studies are also given to show the finite sample performance of our estimator.
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1. Introduction

The surplus process of an insurance company is given by the following process:

Xt = u + ct�Jt; t≥ 0 (1.1)

where u≥ 0 is the initial surplus and c>0 the constant premium rate. Here the aggregate claims
process J = {Jt, t≥ 0} is a subordinator with Laplace exponent

ψ JðsÞ=
ð1
0
ð1�e�sxÞνðdxÞ; s>0 (1.2)

where ν is the Lévy measure of J supported on (0, ∞) satisfying the condition
μ=E½J1�=

Ð1
0 xνðdxÞ<1. Here we suppose the safety loading condition holds, i.e. c> μ. The infinite-

time horizon ruin probability Ψ(u) is defined by

ΨðuÞ= P inf
0≤ t<1

Xt < 0 jX0 = u
� �
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The corresponding survival probability Φ(u) is defined by
ΦðuÞ= 1�ΨðuÞ

For simplicity, we will suppose that Φ(u) has the first derivative g(u) which is of the polynomial
growth, i.e.

jgðuÞ j ≤kðp + uqÞ (1.3)

for some k, p and integer-valued q.

The statistical inference for the ruin probability has been studied by many authors
(see e.g. Frees, 1986; Hipp, 1989; Croux & Veraverbeke, 1990; Pitts, 1994; Bening & Korolev,
2002; Politis, 2003; Mnatsakanov et al., 2008; Zhang & Yang, 2013). Statistical methodology
has some advantages over analytic and probabilistic methods. On the one hand, the model
can be more general. For example, no specific structure on the claim size distribution is assumed.
On the other hand, in practical situations, instead of knowing the specific model one can only
obtain the data on the surplus. Thus, statistical methodology can be directly used to analyse the
insurances risk from the data. For more recent contributions on statistical inference of the
ruin probability we refer the reader to Mnatsakanov et al. (2008), Shimizu (2012) and Zhang &
Yang (2013).

In Zhang & Yang (2013), the ruin probability for the pure-jump Lévy risk model is estimated and
the key tool for estimation is the Pollaczek–Khinchin formula. The authors apply the Fourier method
to transform the infinite sum of convolutions to a single integral and then construct the estimator
of the ruin probability. In Mnatsakanov et al. (2008), the authors consider an empirical-type
estimator of the Laplace transform of the ruin probability, recovered it by a regularised Laplace
inversion technique, and show the weak consistency in a sense of the integrated squared error (ISE).
In Shimizu (2012), the author constructs an estimator of the Gerber–Shiu function for the
Wiener–Poisson risk model in a manner similar to Mnatsakanov et al. (2008) and shows the
consistency in the ISE sense.

In this paper, we will estimate the ruin probability in the pure-jump Lévy risk model. Note that in the
Lévy risk model there may exist an infinite number of jumps of small size in the finite time
interval. For an insurance company, if the surplus has lots of small fluctuations, it is not easy to
identify the inter-claim times. One feasible way of dealing with this problem is to observe the surplus
process.

The rest of this paper is organised as follows. In sections 2 and 3 we will present the exact estimator
of Φ(u) and study its properties. In section 4, we will do some simulations to show the finite sample
size performance of the estimator. Finally, some conclusions are given in section 5. All the technical
proofs will be presented in the Appendix.

2. Construction of the Estimator

2.1. Preliminaries: general notation

Throughout the paper, we use the primary notations and assumptions.

∙ A≲B signifies that there exists an universal constant k> 0 such that A≤ kB.

∙ Symbols �!P and �!D stand for the convergence in probability, and in distribution, respectively.
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∙ LM is the Laplace transform for a function M: for s> 0

LMðsÞ=
ð1
0
e�suMðuÞdu

∙ fk kK=
ÐK
0 f ðtÞj j2dt

� �1
2
for any function f and K>0. In particular, fk k= fk k1. We say that f∈L2

(0, K) if fk kK <1. In particular, f∈L2(0, ∞) if fk k<1.

∙ For a stochastic sequence {Xn, n≥ 1} and any real-valued sequence {Rn, n≥1}, Xn = OP(Rn) if, for
any ϵ>0, there exists a constant d such that P Xn

Rn

��� ���>d
� �

≤ ϵ for all n and Xn = oP(Rn) if, for any
ϵ>0, P Xn

Rn

��� ���> ϵ
� �

! 0 as n→∞.

∙ Nða; bÞ indicates the Gaussian distribution with mean a and variance b.

2.2. Estimator

As we know, the exact closed-form expression for Φ(u) is difficult to obtain, but the corresponding
Laplace transform of Φ(u) can be obtained easily by Morales (2007). The Laplace transform of Φ(u) is

LΦðsÞ=
1�

Ð1
0
zνðdzÞ
c

s� 1
c

Ð1
0 1�e�szð ÞνðdzÞ� �

=
1�ρ

s� 1
c ψ JðsÞ

; s> 0 ð2:1Þ

where ρ = (μ)/(c).

By the Pollaczek–Khinchin formula for Φ(u) in Huzak et al. (2004), we can obtain Φ(0) = 1 − ρ.

Now we consider to construct an estimator of LΦ(s). It follows from (2.1) that we have to estimate
the parameter ρ and the function ψJ(s). Suppose that the observations consist of a discrete sample
Jtni j tni = ih; i= 0; 1; 2; :::; n

n o
for some fixed h> 0. Let Δn

i J= Jtni �Jtni�1
, i = 1, 2,… , n.

Immediately, an unbiased estimator for ρ is given by

eρn = 1
cnh

Xn
i= 1

Δn
i J (2.2)

Obviously, we can obtain an estimator of Φ(0) which is given by

Φ̂nð0Þ= 1� eρn (2.3)

Because J is a spectrally positive Lévy process, the Laplace exponent is denoted by ψJ(s) via

E e�sJt
	 


= e�tψ JðsÞ; s>0 (2.4)

Let us consider the empirical Laplace transform function of the increments of J, at each stage
n (below s>0):

fϕnðsÞ=
1
n

Xn
i=1

e�sΔn
i J (2.5)

Then we set fψ Jn
ðsÞ=� 1

h
logfϕnðsÞ; s> 0

Let fψ Jn
ðsÞ be an estimator of ψJ(s).
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Therefore, we can define fLΦðsÞ as an estimator of LΦ(s) as follows:

fLΦðsÞ= 1�eρn
s� 1

c fψ Jn
ðsÞ ; s> 0 (2.6)

In order to estimate the original functions Φ(u), we will apply the L2-inversion method proposed by
Chauveau et al. (1994) to fLΦðsÞ. The L2-inversion method is defined as follows, which is available
for any L2(0, ∞) functions.

Definition 2.1 Let m> 0 be a constant. The regularised Laplace inversion L�1
m : L2ð0;1Þ2ð0;1Þ is

given by

L�1
m gðtÞ= 1

π2

ð1
0

ð1
0
ΨmðyÞy�1

2e�tvygðvÞdvdy (2.7)

for a function g∈L2(0, ∞) and t∈ (0, ∞), where

ΨmðyÞ=
ðam
0
coshðπxÞcosðx log yÞdx

and am = π−1cosh−1(πm).

Remark 2.2 It is well known that the norm L−1 is generally unbounded, which causes the
ill-posedness of the Laplace inversion. However, L�1

m is bounded for each m>0, in particular

L�1
m

�� ��≤m Lk k= ffiffiffi
π

p
m (2.8)

For details and further information see Chauveau et al. (1994).

Proposition 2.3 For s>0, we have fLΦðsÞ =2L2ð0;1Þ.

From Proposition 2.3, we know fLΦðsÞ =2L2ð0;1Þ for s>0. Hence the L2-inversion method in
Definition 2.1 cannot be applied directly. Below, let us define

ΦθðuÞ= e�θuΦðuÞ; u> 0 (2.9)

for arbitrary fixed θ> 0.

It is obvious that Φθ(u)∈L2(0, ∞) and

LΦθ ðsÞ=LΦðs + θÞ; s> 0 (2.10)

Obviously, L2
Φθ

2 Lð0;1Þ.

We define an estimator of LΦθ as follows:gLΦθ ðsÞ= fLΦðs + θÞ; s> 0 (2.11)

We have gLΦθ 2 L2ð0;1Þ by (2.6) and (A.6).

For suitable m(n)>0, we have gΦθ;mðnÞðuÞ=L�1
mðnÞ gLΦθ ðsÞ

� �
ðuÞ; u> 0 (2.12)
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Finally, we construct an estimator of Φ(u) as follows:

eΦmðnÞðuÞ=
eθu gΦθ;mðnÞðuÞ; u> 0

Φ̂nð0Þ; u= 0

8<: (2.13)

3. Asymptotic Properties of Estimators

We first consider the asymptotic properties of eρn and fψ Jn
ðsÞ.

Theorem 3.1 As mentioned in section 1, we suppose that the safety loading condition holds andÐ1
0 z2νðdzÞ<1. Then, for s>0 eρn�ρ �!P 0 (3.1)

fψ Jn
ðsÞ�ψ JðsÞ �!P 0 (3.2)

ffiffiffi
n

p eρn�ρð Þ �!D N 0;
1
c2h

ð1
0
z2νðdzÞ

� �
(3.3)

ffiffiffi
n

p fψ Jn
ðsÞ�ψ JðsÞ

� �
�!D N 0;

1
h2

ehð2ψ JðsÞ�ψ Jð2sÞÞ�1
� �� �

(3.4)

as n ! 1.

Remark 3.2 By (3.1) and (3.3), it is easy to obtain

Φ̂nð0Þ�Φð0Þ �!P 0;
ffiffiffi
n

p ðΦ̂nð0Þ�Φð0ÞÞ �!D N 0;
1
c2h

ð1
0
z2νðdzÞ

� �
(3.5)

Now, we will present our main result which states a convergence in probability of the ISE.

Theorem 3.3 Suppose that the conditions of Theorem 3.1 are satisfied and Φ(u) has first derivative

g(u) with polynomial growth. Then, for m nð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nð Þ
log nð Þ

� �r
, B>0 and u> 0, we have

eΦmðnÞðuÞ�ΦðuÞ�� ��2
B =OP ðlognÞ�1

� �
; n ! 1

Remark 3.4 The explicit integral expression for the estimator of the survival probability is

eΦmðnÞðuÞ=
euθ
π2

Ð1
0

Ð1
0 e�usygLΦθ ðsÞΨmðnÞðyÞy�1

2dsdy; u> 0

1�eρn; u= 0

(
where ΨmðnÞðyÞ=

Ð amðnÞ
0 cos h ðπxÞcos x log ðyÞð Þdx, amðnÞ = π�1 cosh�1 πmðnÞð Þ and m nð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð Þ

log nð Þ
� �r

:

4. Simulation Studies

In this part we provide some simulation results to illustrate the behaviour of our estimator.
We assume that the Lévy measure is given by νðdxÞ= λ 1

μ0
e�

1
μ0
xdx. Then (Jt)t≥ 0 is a compound

Poisson process where the Poisson intensity is λ and the individual claim sizes are exponentially
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distributed with mean μ0. Let the premium rate be c and c> λμ0. In this case, the survival probability
is given by

ΦðuÞ= 1�μ0
λ

c
e
� 1

μ0
�λ

c

� �
u
; u≥ 0 (4.1)

Because gðuÞ=Φ0ðuÞ= μ0λ
c

1
μ0
� λ

c

� �
e
� 1

μ0
�λ

c

� �
u
and c >λμ0, we have gðuÞ< μ0λ

c
1
μ0
� λ

c

� �
, we have that g(u)

satisfies the condition of the polynomial growth.

First, we give the simulation of survival probability when the initial surplus u = 0. Let us take
c = λ = 10, μ0 =

1
2 and h = 0.1. Obviously, we have Φ(0) = 0.5 by (4.1). On Figure 1, we

plot the true survival probability point and some mean points with sample sizes n = 1,000; 8,000;
10,000; 50,000; 100,000; 500,000 as u = 0, which are computed based on 500 simulation
experiments.

Now, Figure 1 shows that the results improve as the sample size increases. In order to give the better
depiction, we use the following tables to compare data.

Table 1 shows some true value data and some mean data with sample sizes n = 1,000; 8,000;
10,000; 50,000; 100,000; 500,000 as u = 0, which are computed based on 500 simulation
experiments. Table 2 shows the errors of the mean data and true value.

On Table 2, we can find that the errors are very small when the sample size n≥8,000.
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Figure 1. True point and mean points.
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If the initial surplus u>0, we plot the true survival probability curve and some mean points with
sample sizes n = 1,000; 8,000; 10,000; 50,000; 100,000; 500,000. Let us take c= λ= 10, μ= 1

2,
h=0.1 and θ=0.075.

Tables 3 and 4 give some data to show the behaviour of our estimator as the initial surplus u>0.
Table 3 shows some true values and some simulation results when the initial surplus u> 0. Table 4
shows the errors of some simulation results and true value.

Figure 2 shows the results improve as the sample size increases. However, when the sample size
n<10,000, we can find that the simulation results are not good. This result may explain the
slow rate of the estimator. Therefore, our simulations need to choose a large sample size
(e.g. n≥ 100,000). On Table 4, the errors is very small when the sample size n≥ 100,000.

Table 1. True value and some estimation values of survival probability at u= 0.

Sample size

n= 1,000 n=8,000 n=10,000 n=50,000 n=100,000 n=500,000 True value

u=0 0.4897 0.4972 0.5020 0.5016 0.5013 0.4998 0.5

Table 2. Error of true value and some estimation values in Table 1.

Sample size

n=1,000 n= 8,000 n= 10,000 n=50,000 n=100,000 n=500,000

u=0 0.0103 0.0028 0.002 0.0016 0.0013 0.0002

Table 3. True value and some estimation values of survival probability at u> 0.

Sample size

n=1,000 n=8,000 n=10,000 n= 50,000 n=100,000 n=500,000 True value

u=0.81 0.8364 0.7365 0.7322 0.7199 0.7190 0.7539 0.7541
u=1.11 0.9272 0.8376 0.8310 0.8029 0.7916 0.8133 0.8179
u=2.21 1.0052 0.9876 0.9836 0.9640 0.9520 0.9368 0.9394
u=4.31 0.9639 1.0051 1.0068 1.0155 1.0193 1.0038 0.9926
u=6.41 0.9201 0.9752 0.9789 0.9979 1.0078 1.0068 0.9991
u=7.91 0.9002 0.9561 0.9604 0.9811 0.9926 0.9989 0.9998
u=8.81 0.8925 0.9469 0.9514 0.9720 0.9837 0.9935 0.9999
u=10.01 0.8864 0.9377 0.9432 0.9619 0.9732 0.9867 1.0000
u=11.21 0.8846 0.9318 0.9362 0.9545 0.9647 0.9810 1.0000
u=12.31 0.8863 0.9291 0.9332 0.9498 0.9587 0.9770 1.0000
u=13.41 0.8908 0.9288 0.9325 0.9470 0.9544 0.9742 1.0000
u=14.21 0.8956 0.9299 0.9333 0.9461 0.9524 0.9730 1.0000
u=15.31 0.9044 0.9332 0.9362 0.9464 0.9509 0.9724 1.0000

Chunhao Cai et al.

344

https://doi.org/10.1017/S1748499517000100 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499517000100


5. Conclusions

In this paper, we adopted the regularised Laplace inversion technique since it was an easy
way to construct an estimator of the Laplace transform of the survival probability. The rate of

Table 4. Error of true value and some estimation values in Table 3.

Sample size

n=1,000 n=8,000 n=10,000 n=50,000 n= 100,000 n=500,000

u= 0.81 0.0823 0.0176 0.0219 0.0342 0.0351 0.0002
u= 1.11 0.1093 0.0197 0.0131 0.015 0.0263 0.0046
u= 2.21 0.00658 0.0482 0.0442 0.0246 0.0126 0.0026
u= 4.31 0.0287 0.0125 0.0142 0.0229 0.0267 0.0112
u= 6.41 0.079 0.0239 0.0202 0.0012 0.0087 0.0077
u= 7.91 0.0996 0.0437 0.0394 0.0187 0.0072 0.0009
u= 8.81 0.1074 0.053 0.0485 0.0279 0.0162 0.0064
u= 10.01 0.1136 0.0623 0.0568 0.0381 0.0268 0.0133
u= 11.21 0.1154 0.0682 0.0638 0.0455 0.0353 0.019
u= 12.31 0.1137 0.0709 0.0668 0.0502 0.0413 0.023
u= 13.41 0.1092 0.0712 0.0675 0.053 0.0456 0.0258
u= 14.21 0.1044 0.0701 0.0667 0.0539 0.0476 0.027
u= 15.31 0.0956 0.0668 0.0638 0.0536 0.0491 0.0276
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Figure 2. True curve and mean points.
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convergence for the estimator is logarithmic. Although the convergence rate is slower than that in
Croux & Veraverbeke (1990), Bening & Korolev (2002), Zhang & Yang (2013), the procedure is
easy to manipulate in practice.
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Appendix

Proof of Proposition 2.3: The first derivative of fψ Jn
ðsÞ is denoted by eψ JnðsÞ as follows:

fψ J
0
n
ðsÞ= 1

h

Pn
i=1

Δn
i Je

�sΔn
i J

Pn
i=1

e�sΔn
i J

(A.1)
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The second derivative of fψ Jn
ðsÞ is denoted by fψ J

00
n
ðsÞ as follows:

fψ J
00
n
ðsÞ= 1

h

Pn
i= 1

Δn
i Je

�sΔn
i J

� �2

� Pn
i=1

Δn
i J

� �2e�sΔn
i J
Pn
i= 1

e�sΔn
i J

Pn
i=1

e�sΔn
i J

� �2

=� 1
h

P
f1≤ i≠ j≤ng

Δn
i J�Δn

j J
� �2

e�sΔn
i Je�sΔn

j J

Pn
i=1

e�sΔn
i J

� �2 ðA:2Þ

By Taylor expansion we obtain

s� 1
c
fψ Jn

ðsÞ= s 1� 1
c
fψ J

0
n
ð0Þ

� �
� s2

2
1
c
fψ J

00
n
s�ð Þ; 0≤ s� ≤ s (A.3)

By (A.1), we have fψ J
0
n
ð0Þ= 1

nh

Xn
i=1

Δn
i J (A.4)

By (A.2) and (A.4), we have

s� 1
c
fψ Jn

ðsÞ= s 1� eρnð Þ + 1
ch

P
f1≤ i≠ j≤ng

Δn
i J�Δn

j J
� �2

e�s�Δn
i Je�s�Δn

j J

Pn
i=1

e�s�Δn
i J

� �2 (A.5)

Thanks to c μ, we have

0≤ s 1� eρnð Þ≤ s� 1
c
fψ Jn

ðsÞ≤ s (A.6)

almost surely.

Therefore, by (2.6) and (A.6), we know that fLΦðsÞ2ð0;1Þ.

Proof of Theorem 3.1: First, we have eρn = 1
c
1
nh

Xn
i=1

Δn
i J

Because J has independent and stationary increments, we know that the random variables
Δn

i J; i= 1; 2; :::; n

 �

are independent and identically distributed.

Thanks to c μ,
Ð1
0 z2νðdzÞ<1 and (2.4), we have

E½Δn
i J�=E½Jh�

= hμ<1

Var½Δn
i J�=Var½Jh�

= h
ð1
0
z2νðdzÞ<1

By law of large numbers and central limit theorem it follows that the (3.1) and (3.3) are right.

Non-parametric estimation

347

https://doi.org/10.1017/S1748499517000100 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499517000100


Next, we consider the (3.2) and (3.5).

Because of fϕn =
1
n

Xn
i= 1

e�sΔn
i J

and the properties of Δn
i J; i= 1; 2; :::; n


 �
, we havefϕn �!P e�hψðsÞ (A.7)

and ffiffiffi
n

p fϕn�e�hψðsÞ
� �

�!D N 0; e�hψð2sÞ�e�2hψðsÞ
� �

(A.8)

as n ! 1.

Since � 1
h log ðxÞ is a continuous function defined on (0, ∞) and its first derivative is not equal 0 on

(0, ∞), we may make use of Continuous Mapping Theorem and Delta Theorem to obtain (3.2)
and (3.5).

For the proof of Theorem 3.3 we need the following Lemma A.1.

Lemma A.1 Suppose that, for a function f∈L2(0,∞) with the derivative f′,Ð1
0 t t

1
2f ðtÞ

� �′
� �2

t�1dt<1, then

L�1
n Lf�f

�� ��=O ðlognÞ�1
2

� �
ðn ! 1Þ

Lemma A.1 can be essentially obtained by the proof of Theorem 3.2 in Chauveau et al. (1994) and it
shows that L�1

n can be a Laplace inversion asymptotically in ISE sense.

Proof of Theorem 3.3: Let us first observe that (see (2.13))

eΦmðnÞ�Φ
�� ��2

B ≤ e2θB eΦθ;mðnÞ�Φθ

�� ��2
B

≤ 2e2θB L�1
mðnÞgLΦθ�L�1

mðnÞLΦθ

��� ���2 + Φθ;mðnÞ�Φθ

�� ��2� �
ðA:9Þ

In order to deal with the bias part, i.e. the second term on the right-hand side of (A.9), let us write
Φ′

θ = gθ and note thatð1
0

x
ffiffiffi
x

p
ΦθðxÞ

� �′h i21
x
dx≲

ð1
0
Φ2

θðxÞdx +
ð1
0
x2g2θðxÞdx

= Φθk k2 +
ð1
0
x2 gðxÞe�θx�θΦðxÞe�θx	 
2

dx

≲ Φθk k2 +
ð1
0
x2g2ðxÞe�2θxdx +

ð1
0
x2Φ2ðxÞe�2θxdx

= Φθk k2 +
ð1
0
x2e�2θx g2ðxÞ +Φ2ðxÞ� �

dx

Chunhao Cai et al.

348

https://doi.org/10.1017/S1748499517000100 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499517000100


It is obvious that g2ðxÞ +Φ2ðxÞ≲1 + jx j C for some integer-valued C. Thusð1
0

x
ffiffiffi
x

p
ΦθðxÞ

� �′h i21
x
dx<1

By Lemma A.1, we may conclude that

Φθ;mðnÞ�Φθ

�� ��2 =O
1

logmðnÞ
� �

; n ! 1 (A.10)

Next, let us consider the first term on the right-hand side of (A.9), the variance part. It is immediate
from (2.1), (2.6), (2.10) and (2.11) that

gLΦθ�Lθ

��� ���2 = ð1
0

ð1�ρÞ 1
c fψ Jn

ðs + θÞ� 1
c ψ Jðs + θÞ

� �
s + θ� 1

c fψ Jn
ðs + θÞ

� �
s + θ� 1

c fψ Jðs + θÞ
� � +

ρ�eρnð Þ
s� 1

c fψ Jn
ðs + θÞ

0@ 1A2

ds (A.11)

Exploiting (A.6) and the fact that P ω 2 Ω; eρn = 1f gð Þ= 0, it follows after some algebra that, almost
surely, the right-hand side of (A.11) is bounded by

2

1�eρnð Þ2 I1 +
2 eρn�ρð Þ2
1�eρnð Þ2 I2 (A.12)

where

I1 =
ð1
0

1
c2

fψ Jn
ðs + θÞ�ψ Jðs + θÞ

� �2

ðs + θÞ4 ds; I2 =
ð1
0

1

ðs + θÞ2ds<1

By Theorem 3.1, it follows that

I1 =OP
1
n

� �
(A.13)

2

1�eρnð Þ2 =OPð1Þ (A.14)

2 eρn�ρð Þ2
1�eρnð Þ2 =OP

1
n

� �
(A.15)

as n→∞.

Combining (A.12), (A.13), (A.14) and (A.15) yields

gLΦθ�LΦθ

��� ���2 =OP
1
n

� �
; n ! 1 (A.16)

Combining (2.8), (A.10) and (A.16), we have

eΦmðnÞ�Φ
�� ��2

B =OP
m2ðnÞ

n

� �
+OP

1
logmðnÞ

� �
(A.17)

With an optimal mðnÞ=
ffiffiffiffiffiffiffi
n

log n

q
balancing the two terms on the right-hand side of (A.17), the order

becomes OP((log n)−1).
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