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Flexural-gravity waves in ice channel with a lead
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The flexural-gravity symmetric waves propagating in an ice channel with a lead of open
water in the ice cover are investigated within the linear theory of hydroelasticity. The ice
sheets are modelled as either elastic or as rigid plates. Deflections of the elastic ice sheets
are described by the linear elastic plate equation. The flexural-gravity waves propagating
along the channel and their dispersion relations are obtained by the normal mode method.
It is shown that the dispersion relations for elastic ice approach the dispersion relations
for rigid ice as the rigidity of ice increases or the wavelength decreases. The region in
the plane ice thickness/wavenumber, where the ice cover can be treated as rigid with a
prescribed accuracy, is determined. The effects of the ice thickness and width of the lead
on the phase speeds are studied to determine critical speeds of a vehicle moving along
the channel. It is shown that wave modes have several critical speeds, which may merge
for some parameters of the channel. The presence of the lead significantly changes the
characteristics of waves in an ice channel. Short waves, which propagate in a channel fully
covered with ice, weakly depend on gravity and the presence of water in the channel.
However, short waves propagating in the same channel but with a lead of open water are
gravity-dominated waves localised in the lead. We conclude that flexural-gravity waves in
an ice channel with a lead are less pronounced than in the channel completely covered by
ice.

Key words: ice sheets, channel flow, wave-structure interactions

1. Introduction

Ice tanks and laboratory experiments in them are used to design ships and offshore
structures for polar regions and to study their performance in icy waters. In experiments
with a ship model, a model is towed in a lead of open water made in the ice cover of
the tank. The ship model experiments in an ice tank are more complicated and expensive
than experiments in a water tank. Such experiments should be carefully designed and
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prepared. Characteristics of the ice tank with a lead should be examined before the
experiments, in particular, in term of flexural-gravity waves propagating along the tank.
Dispersion relations of these waves, their phase and group speeds should be investigated
with particular focus on the so-called critical speeds of the waves, where the phase and
group speeds are equal to each other. If a ship moves in a lead at a critical speed then the
ice deflections and the ship resistance are extreme.

In the polar regions such leads can be natural caused by various natural forces including
wind, wave and current, etc. (Squire 2007) or can be made by an icebreaker. Leads are
important waterways in the polar regions. The leads may be found or can be made in some
northern rivers in springtime. Leads on the rivers can prevent floodings.

The problem of linear waves in the presence of an ice lead has received considerable
attention over the last decades (Squire 2007, 2011). Such waves can arrive at an ice
lead from any direction. For waves propagating perpendicular to the ice lead, Chung
& Linton (2005) studied the flexural-gravity waves in two-dimensional formulations
using the residue calculus technique. It was found that there was an infinite number of
frequencies at which the waves transmit without any loss from one side of the open water
lead to the other. Shi, Li & Wu (2019) investigated two-dimensional waves scattering by
multiple polynyas using a wide spacing approximation method. For waves propagating
into the ice lead obliquely, Williams & Squire (2006) considered a more general case of
flexural-gravity waves propagating into three floating Euler–Bernoulli thin elastic plates
with different thicknesses. There were no gaps between the plates and the edges of the
plates were free of bending stresses and shear forces. The thickness of the central plate can
be reduced to zero, so waves propagating through an ice lead can be dealt with directly.
Porter (2018) focused on the same problem but for an infinite water depth. He confirmed
existence of edge waves, which are localized near the ice edges and do not penetrate the
ice sheet deeply. For waves propagating along an ice lead, Marchenko (1997) obtained
the dispersion relations within the shallow water approximation, where the ice cover was
modelled as either rigid plates or as thin semi-infinite elastic plates.

The problems of wave/ice sheet interaction in confined regions, such as rivers and
channels, also received attention. In hydraulic engineering the problems of waves
propagating in ice-covered channels are usually considered as one dimensional without
account for conditions of the ice cover connection with the channel walls. Daly (1993)
studied an unsteady flow in a rectangular ice-covered channel by using three linearised
governing equations. These equations described the mass and momentum conservation
and the motion of the ice cover. Daly (1993) found that for waves longer than 20
characteristic lengths of the ice, the wave propagation is not affected by the presence
of the ice cover. Daly (1995) further investigated the bending stresses in the ice cover
and found that the bending stresses are maximum for flexural-gravity waves, the length
of which is close to 2πl, where l is the characteristic length of the ice cover. Xia &
Shen (2002) derived a one-dimensional weakly nonlinear fifth-order KdV equation for
shallow water wave propagation in a uniform channel with a floating ice cover. They
proved that the cnoidal waves could generate sufficient stresses to fracture the ice cover.
Beltaos (2004) studied one-dimensional long waves of small amplitudes propagating along
an ice channel with transverse cracks and intervals of open water. He concluded that
‘a truncated low-amplitude wave, which is a wave propagating past an edge (or crack)
into an undisturbed region, produces generally higher bending stresses than does an
infinitely long wave propagating under an edgeless cover. However, the maximum possible
stress is the same for both cases, and occurs at the same dimensionless wavenumber
of 1, or where the wavelength is equal to about six times the characteristic length of
the ice cover’. A numerical model was derived by Nzokou et al. (2011) to simulate the
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interaction between dam break waves and ice-covered channel using the one-dimensional
Saint-Venant equations representing mass and momentum conservation for water flowing
in an ice-covered channel and the one-dimensional ‘elastic foundation beam equation of
a floating ice sheet including the terms representing vertical acceleration and longitudinal
shear stress applied to the bottom of the ice sheet by the water flowing under it’. They
found that, for the conditions of their calculations, ice stiffness had no significant effect
on the celerity of waves and their attenuation for waves longer than 400 m. For short
waves (50 m), the decrease in celerity due to stiffness was found to be 6 % and the
additional attenuation as high as 20 %. Fuamba, Bouaanani & Marche (2007) studied dam
break wave propagation in a channel partially covered with ice between two consecutive
dams. One-dimensional flow in the open water part of the channel and under the rigid
ice cover were calculated numerically without account for the ice deflection. Then the
one-dimensional pressure wave under the rigid cover was applied to a finite element model
of flexible ice clamped to the channel side walls. The numerical results were in good
agreement with the results of laboratory tests, which confirmed the approximation of the
rigid ice and the pressure wave propagating under the ice cover. The bending stresses were
found to be maximum at the walls of the channel. It was argued that the connection of
the ice with the walls was important for the stress distribution in the ice cover. Nzokou,
Morse & Quach-Thanh (2009) numerically studied a given incoming one-dimensional
water wave propagating in an ice-covered channel, where the ice cover was modelled as a
two-dimensional ice sheet. The ice sheet was assumed to be clamped to or detached from
the channel walls. It was found that there was a high stress concentration near the walls
due to the fixed boundary conditions. However, close to the central axis of the channel,
the calculated stresses turned out to be similar in value with those obtained using the
one-dimensional approximation, that is, without connections of ice cover with the channel
walls being considered. Guyenne & Parau (2017) performed two-dimensional numerical
simulations of long nonlinear waves propagating in fragmented sea ice featuring floes and
leads. It was observed that gravity-dominated short waves are widespread in areas of open
water between floes.

Three-dimensional flexural-gravity waves propagating in the ice-covered channel
attracted researchers’ attention only recently. Korobkin, Khabakhpasheva & Papin (2014)
investigated hydroelastic waves propagating along a rectangular frozen channel and their
dispersion relations for the continuous ice sheet clamped to the walls of the channel. The
linear theory of hydroelasticity and the normal mode method were used. The wave profiles
across the channel and the strain distributions in the ice sheet were analysed. It was found
that the maximum strains were achieved at the walls for longer waves, and at the centreline
of the channel for shorter waves. Batyaev & Khabakhpasheva (2015) studied a similar
problem but with free edge conditions between the ice cover and the channel walls. Ren,
Wu & Li (2020) developed an efficient procedure to the problem of waves propagating in
a rectangular channel fully covered by the ice sheet with or without a longitudinal crack
in the ice cover. Various edge conditions between the ice sheet and the channel walls were
considered. It was shown that the first natural frequency of waves propagating in a channel
covered by continuous ice sheet, corresponding to different edge conditions between the
ice cover and the channel walls, were very close to each other. For waves propagating in
a fully ice-covered channel with an infinite longitudinal crack in the ice cover, the effects
of the position of the crack on dispersion relations, wave profiles and strain distributions
were investigated. It was found that when the crack approaches a channel wall, the results
tend to those for the continuous ice sheet with a free edge between the channel wall and
ice sheet.
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In the present work we focus on waves propagating along an ice channel with a lead of
open water in the ice cover. The presence of a lead significantly changes the characteristics
of the propagating waves. The lead is symmetric about the centreline of the ice channel.
The identical ice sheets on both sides of the lead are clamped to the walls of the channel.
The ice sheets are modelled as either thin elastic plates of constant thickness or as rigid
plates. The deflection of the ice sheet is described by the elastic plate equation.

The paper is organized as follows. The formulation of the problem is given in § 2. The
normal mode method is applied to solve the problem in § 3. The coupled problem of
hydroelastic waves is reduced to a linear system of algebraic equations. The same problem
but within the rigid ice model is studied in § 4. Numerical algorithms and their validations
are presented in § 5. Numerical results are provided in § 6 for the dispersion relations of
the hydroelastic waves, their phase speeds and critical speeds, as well as the profiles of
these waves across the channel. Conclusions are drawn and future work is discussed in
§ 7.

2. Formulation of the problem

Linear sinusoidal waves propagating along an ice channel with an open water lead in the
ice cover are studied. The configuration of the ice tank is shown in figure 1. The channel,
in the Cartesian coordinate system Oxyz, is of rectangular cross-section with width 2L,
−L < y < L, depth H, −H < z < 0 and infinite extent in the x-direction. The ice cover
floating on the water surface is with an open water lead which corresponds to the interval
b < y < a. The ice is modelled as a thin elastic plate of constant thickness h. The mass
of the ice per unit area is m and the ice rigidity is D = Eh3/[12(1 − ν2)], with E and ν
being the Young’s modulus and Poisson’s ratio of the ice sheet. Within the linear theory
of hydroelasticity, the elevation of the upper boundary of the flow region, z = w(x, y, t), is
governed by the equations,

mwtt + D∇4w = p(x, y, 0, t) (−L < y < b, a < y < L,−∞ < x < ∞),

p(x, y, 0, t) = 0 (b < y < a,−∞ < x < ∞),

}
(2.1)

where p(x, y, 0, t) = −ρϕt(x, y, 0, t)− ρgw(x, y, t) is the hydrodynamic pressure on the
upper boundary of the flow region, ρ is the water density, g is the gravitational acceleration
and ϕ(x, y, z, t) is the velocity potential of the flow. Note that w(x, y, t) is not continuous at
y = b and y = a. The elevation of the free surface and the deflection of the ice cover are,
in general, different at the ice edges. The ice edges are free of stresses and shear forces,

∂2w
∂y2 + ν

∂2w
∂x2 = 0,

∂3w
∂y3 + (2 − ν)

∂3w
∂x2∂y

= 0 ( y = b−, a+,−∞ < x < ∞),

(2.2a,b)
where y = b− and y = a+ imply that we approach the edges from the ice. The other edges
of the ice plates, y = ±L, are clamped (frozen) to the vertical walls of the channel,

w = 0,
∂w
∂y

= 0 ( y = ±L). (2.3a,b)

The velocity potential ϕ(x, y, z, t) satisfies the Laplace equation in the flow region,

∇2ϕ = 0 (|x| < ∞, |y| < L, −H < z < 0), (2.4)

and the boundary conditions,
∂ϕ

∂y
= 0 ( y = ±L),

∂ϕ

∂z
= 0 (z = −H),

∂ϕ

∂z
= ∂w
∂t

(z = 0), (2.5a–c)
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Figure 1. (a) The front view of the channel with the ice sheets and the open water lead. (b) The top view of
the channel.

where the third equation is linearised. The waves propagating along the ice channel
correspond to the solutions of the problem (2.1)–(2.5a–c) in the form

w = F( y) cos(kx − ωt), ϕ = ωΦ( y, z) sin(kx − ωt), (2.6a,b)

where k is the wavenumber and ω is the wave frequency, the function F( y) describes
the wave profile across the channel. Along the channel the wave is sinusoidal. We shall
determine the dispersion relations between the wavenumber k and the wave frequencies
ωn(k), and the corresponding wave profiles Fn( y), where ωn+1(k) > ωn(k) and n ≥ 1.

Substituting (2.6a,b) in (2.1)–(2.5a–c), we arrive at the boundary value problem with
respect to the function F( y),

D[Fiv − 2k2F′′ + k4F] − mω2F + ρgF = ρω2Φ( y, 0) (−L < y < b, a < y < L),

ρgF = ρω2Φ( y, 0) (b < y < a),

}
(2.7)

F = F′ = 0 ( y = ±L), F′′ − νk2F = 0, F′′′ − (2 − ν)k2F′ = 0 ( y = b, y = a).
(2.8a–c)

The first equation in (2.7) is the fourth-order ordinary differential equation for F( y)
in the intervals −L < y < b and a < y < L with four boundary conditions (2.8a–c) in
each interval. The potential Φ( y, z) on the right-hand side of (2.7) is the solution of the
boundary problem, which follows from (2.4) and (2.5a–c),

Φyy +Φzz − k2Φ = 0 (|y| < L, −H < z < 0), (2.9)

Φy = 0 ( y = ±L), Φz = 0 (z = −H), Φz = F( y) (z = 0). (2.10a–c)

On the upper boundary of the channel, the pressure caused by the wave (2.6a,b) is given
by

p(x, y, 0, t) = −ρϕt − ρgw(x, y, t) = P( y) cos(kx − ωt),

P( y) = ρω2Φ( y, 0)− ρgF( y).

}
(2.11)

We shall determine non-trivial solutions of the homogeneous boundary problems
(2.7)–(2.10a–c) and the corresponding frequencies ωn(k) within the model of elastic ice
(2.7), (2.8a–c) and the model of rigid ice, where F( y) = 0 in −L < y < b and a < y < L.
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3. Waves within the elastic ice model

The ice deflection is presented by superposition,

F( y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∞∑
n=1

Gnχn( y) (−L < y < b),

∞∑
n=1

Fnψn( y) (a < y < L).

(3.1)

Substituting (3.1) in the first equation of (2.7) without the inhomogeneous term and using
the boundary conditions (2.8a–c), we arrive at the eigenvalue problem of the modes χn( y)
and ψn( y), (

d2

dy2 − k2
)2

χn = β4
nχn (−L < y < b),

χ ′′
n (b) = νk2χn(b), χn(−L) = 0,

χ ′′′
n (b) = (2 − ν)k2χ ′

n(b), χ ′
n(−L) = 0,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.2a)

(
d2

dy2 − k2
)2

ψn = λ4
nψn (a < y < L),

ψ ′′
n (a) = νk2ψn(a), ψn(L) = 0,

ψ ′′′
n (a) = (2 − ν)k2ψ ′

n(a), ψ ′
n(L) = 0,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.2b)

with the corresponding eigenvalues βn and λn, which are obtained in Appendix A. The
modes χn( y) and ψn( y) are orthogonal and normalised,∫ b

−L
χn( y)χm( y) dy = δnm,

∫ L

a
ψn( y)ψm( y) dy = δnm, (3.3a,b)

where δnn = 1 and δnm = 0 for n /= m. The coefficients Gn and Fn in (3.1) are unknown in
advance and should be determined using (2.7)–(2.10a–c).

Equations (2.7), (2.11) and (3.2) provide the pressure P( y) on the ice–water interface,

P( y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∞∑
n=1

Gnχn( y)[−mω2 + Dβ4
n ] (−L < y < b),

∞∑
n=1

Fnψn( y)[−mω2 + Dλ4
n] (a < y < L).

(3.4)

In the lead, b < y < a, the pressure is zero, P( y) = 0. The kinematic condition,
Φz( y, 0) = F( y), makes it possible to transform (2.7) to the following boundary condition
on the upper boundary z = 0:

∂Φ

∂z
− ω2

g
Φ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞∑
n=1

Gnχn( y)
[

mω2

ρg
− Dβ4

n

ρg

]
(−L < y < b),

0 (b < y < a),
∞∑

n=1

Fnψn( y)
[

mω2

ρg
− Dλ4

n

ρg

]
(a < y < L).

(3.5)
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The solution of the problem (2.9)–(2.10a–c), where the condition at z = 0 is changed to
(3.5), can be written as

Φ( y, z) =
∞∑

n=1

Φn( y, z), (3.6)

where the potentials Φn( y, z), n ≥ 1, are the solutions of the following boundary value
problem:

Φn,yy +Φn,zz − k2Φn = 0 (|y| < L, −H < z < 0), (3.7)

Φn,y = 0 ( y = ±L), Φn,z = 0 (z = −H), (3.8a,b)

∂Φn

∂z
− ω2

g
Φn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Gnχ( y)

mω2 − Dβ4
n

ρg
(z = 0,−L < y < b),

0 (z = 0, b < y < a),

Fnψn( y)
mω2 − Dλ4

n

ρg
(z = 0, a < y < L).

(3.9)

The kinematic condition, Φz( y, 0) = F( y), where −L < y < L, (3.1) and (3.6) provide
the equation

∞∑
n=1

∂Φn

∂z
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∞∑
n=1

Gnχ( y) (−L < y < b),

∞∑
n=1

Fnψn( y) (a < y < L),

(3.10)

which leads to the infinite linear system of equations for the coefficients Gn and Fn,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∞∑
n=1

∫ b

−L

∂Φn

∂z
χk( y) dy = Gnδkn (−L < y < b),

∞∑
n=1

∫ L

a

∂Φn

∂z
ψk( y) dy = Fnδkn (a < y < L),

(3.11)

using the orthogonality relation (3.3a,b). Finally, we solve the homogeneous equation
(3.11) to determine the coefficients Gn and Fn.

In the present study we limit ourselves to the open water leads which are symmetric with
respect to the central line of the channel, −b = a, and symmetric waves, w(x,−y, t) =
w(x, y, t). Then, we have Gn = Fn, βn = λn and χ(−y) = ψ( y). Therefore, the solution
of the problem (2.9)–(2.10a–c) can be thought as

Φ( y, z) =
∞∑

n=1

Fn

[
mω2

ρg
− Dλ4

n

ρg

]
Φn( y, z), (3.12)

where the condition at z = 0 for the potential Φn( y, z) can be rewritten as

∂Φn

∂z
− ω2

g
Φn =

{
ψn(|y|) (z = 0, a < |y| < L),
0 (z = 0,−a < y < a).

(3.13)
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The kinematic condition, Φz( y, 0) = F( y), where −L < y < L, the second equation of
(3.1) and (3.12) provide the equation

∞∑
n=1

Fn

[
mω2

ρg
− Dλ4

n

ρg

]
∂Φn

∂z
( y, 0) =

∞∑
n=1

Fnψn( y) (a < y < L). (3.14)

Multiplying both sides of (3.14) by ψk( y) and integrating the results in y from a to L using
the second equation of (3.3a,b), we find that

∞∑
n=1

Fn
mω2 − Dλ4

n

ρg

∫ L

a

∂Φn

∂z
( y, 0)ψk( y) dy = Fnδkn. (3.15)

Equations (3.13) and the second equation of (3.3a,b) provide∫ L

a

∂Φn

∂z
( y, 0)ψk( y) dy = δkn + ω2

g
Ãkn, (3.16)

where

Ãkn = Ãnk =
∫ L

a
Φn( y, 0)ψk( y) dy. (3.17)

It is convenient to denote |mω2 − Dλ4
n|/(ρg) by Bn and introduce new unknown

coefficients F̃n = en
√

BnFn, where en = 1 for (mω2 − Dλ4
n) > 0 and en = −1 for (mω2 −

Dλ4
n) < 0. Then (3.15) provides the symmetric system

∞∑
n=1

CknF̃n = ekF̃k, (3.18)

where

Ckn = Cnk = Bkδkn + ω2

g

√
BnBkÃkn. (3.19)

To avoid the problem with large coefficients of the system (3.18), we define B̃n =
ρgBn/(Dλ4

n), which are finite for large n, and new unknowns F̂n = Dλ2
nF̃n/(ρg). Equation

(3.18) yields

A∗F̂ = 0, (3.20)

where A∗
kn = (ω2/g)

√
B̃nB̃kÃkn + (B̃n − (ρg/Dλ4

n)en)δkn and F̂ = (F̂1, F̂2, F̂3, . . .)
T. The

matrix A∗ is symmetric.
The determinant of the system (3.20) depends on ω and k. For each wavenumber k we

can calculate the determinant as a function of ω and find roots of this function. The roots
provide the dispersion relations ω = ωn(k), where ωn+1(k) > ωn(k) and n ≥ 1. Finally,
we solve the homogeneous system (3.20) to determine F̂n and finally Fn. The integrals
Ãkn(k, ω) are evaluated in Appendix B.

Note that the roots ωn(k), which are the frequencies of waves propagating in
the channel partly covered with ice, cannot be equal to the frequencies ω( f )

m (k) =√
g
√

k2 + μ2
m tanh[

√
k2 + μ2

mH], where μm = π(m − 1)/L and m ≥ 1, of waves in the
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same channel but without ice in it. Therefore, we do not need to calculate the determinant
of the system (3.20) for ω in vicinities of ω( f )

m (k); see Appendix B.
The deflection of ice is given by (3.1). The wave profile in the lead follows from the

kinematic condition, F( y) = Φz( y, 0), where Φz( y, 0) is provided by (3.12) and (3.13).
The velocity potentials Φn( y, z) are evaluated in Appendix B. Finally, the deflection of
the whole upper surface, F( y), where −L < y < L, is normalised by the condition that the
maximum deflection is equal to 1.

4. Symmetric waves within rigid ice model

The problem (2.6a,b)–(2.11) in the symmetric case for the rigid ice model reads as

Φyy +Φzz − k2Φ = 0 (|y| < L, −H < z < 0), (4.1)

Φy = 0 ( y = ±L, −H < z < 0), (4.2)

Φz = 0 (z = −H, |y| < L), (4.3)

Φz = 0 (z = 0, a < |y| < L), (4.4)

Φz = F( y), F( y) = ω2

g
Φ( y, 0) (z = 0, |y| < a), (4.5a,b)

where F( y) describes now the wave profile across the open water part of the ice channel.
The conditions (4.5a,b) are the kinematic and dynamic, P( y) = 0, conditions in the
region of open water. We shall determine the wave profiles Fn( y) and the corresponding
frequencies ωn(k), where ωn+1(k) ≥ ωn(k), for k ≥ 0. In this section we consider only
symmetric profiles with F(−y) = F( y).

The method of separating variables applied to (4.1)–(4.4) provides

Φ( y, z) =
∞∑

n=0

Cn cosh[æn(z + H)] cos(λny), (4.6)

where λn = nπ/L and æn = √
λ2

n + k2 for n ≥ 0. The coefficients are related to the
function F( y) by the kinematic condition at z = 0,

Φz( y, 0) = 0 (a < |y| < L), Φz( y, 0) = F( y) (|y| < a). (4.7a,b)

The functions {cos(λny)}∞n=0 are orthogonal in the interval −L < y < L,∫ L

−L
cos(λny) cos(λmy) dy = Lεmδnm, (4.8)

where ε0 = 2 and εm = 1 for m ≥ 1, δnm = 1 for n = m, δnm = 0 for n /= m.
Multiplying both sides of (4.7a,b) by cos(λmy) and integrating in y from −L to L using

(4.6) and (4.8), we find that

Cmæm sinh(æmH)εmL =
∫ a

−a
F( y) cos(λmy) dy. (4.9)

Any even function in the symmetric interval (−a, a) can be presented by its Fourier
series,

F( y) =
∞∑

k=0

Fk cos
(

kπ
a

y
)
. (4.10)
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Substituting (4.10) in (4.9) and denoting the integrals (1/L)
∫ a
−a cos((kπ/a)y)

cos((mπ/L)y) dy by Skm, we find that

Cm = 1
æmεm sinh(æmH)

∞∑
k=0

FkSkm. (4.11)

The dynamic condition (4.5a,b) together with (4.6), (4.10) and (4.11) provides the equality
∞∑

k=0

Fk cos
(

kπ
a

y
)

= ω2

g

∞∑
m=0

Fm

∞∑
n=0

Smn cos(λny)
ænεn tanh(ænH)

, (4.12)

where −a < y < a. Multiplying both parts of (4.12) by cos((qπ/a)y) and integrating in y
from −a to a using (4.8), where L is changed to a, we obtain

εqaFq = ω2L
g

∞∑
m=0

Fm

∞∑
n=0

SmnSqn

ænεn tanh(ænH)
. (4.13)

Introducing a symmetric matrix A with the dimensionless elements

Amq =
∞∑

n=0

SmnSqn

εn
√
εmεqæna tanh(ænH)

, (4.14)

and the dimensionless spectral parameter Ω = ω2L/g, the system (4.13) can be written in
the matrix form

(I −ΩA)F = 0, (4.15)

where the coefficients F = {√2F0,F1,F2, . . .}.
The dispersion relation of the waves propagating between two rigid ice plates are

obtained as the roots of the equation

det |I −ΩA| = 0. (4.16)

Then we calculate the corresponding eigenvectors F of system (4.15) and normalise
them in such a way that the function F( y) given by (4.10) in the interval (−a, a) has its
absolute maximum value, max−a≤y≤a |F( y)|, equal to one.

The elements Amq of the matrix A, which are given by (4.14), depend on the aspect
ratios a/L = σ , H/L = δ and the dimensionless wavenumber kH = æ. The integrals Skm
are evaluated under the assumption that a/L = σ is not a rational number. This means
there are no such integer k and m that σ = k/m. We have S00 = 2a/L, where both k = 0
and m = 0, and Sk0 = 0. In other cases,

Skm = 1
2L

∫ a

−a

{
cos

[(
k
a

+ m
L

)
πy

]
+ cos

[(
k
a

− m
L

)
πy

]}
dy, (4.17)

where (k/a + m/L) > 0 and (k/a − m/L) /= 0. Then

Skm = 2σ
π
(−1)k+1 sin(mπσ)

mσ
k2 − (mσ)2

. (4.18)

Note that there is zero contribution from n = 0 in (4.14) because of Sk0 = 0, and εn = 1
for n ≥ 1. Substituting (4.18) in (4.14), we find that

Amq = 4
π2
(−1)m+q

√
εmεq

σ

δ

∞∑
n=1

n2 sin2(nπσ)

[n2 − m2/σ 2][n2 − q2/σ 2]
1

æ̃n tanh æ̃n
, (4.19)
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where æ̃n = ænH = √
λ2

nH2 + k2H2 = √
n2π2δ2 + æ2. For large n,

1
æ̃n tanh(æ̃n)

= 1
nπδ

+ 1
πδ
κn, (4.20)

where κn = O(n−3) as n → ∞. Equations (4.19) and (4.20) provide

Amq = 2
π3
(−1)m+q

√
εmεq

σ

δ2

{ ∞∑
n=1

n2κn(1 − cos(2nπσ))

[n2 − m2/σ 2][n2 − q2/σ 2]

+
∞∑

n=1

n(1 − cos(2nπσ))

[n2 − m2/σ 2][n2 − q2/σ 2]

}
. (4.21)

The elements of the first series decay as n−5 as n → ∞. Both the first and second series
are calculated numerically.

Equations (4.15) and (4.10) provide the dispersion relations and the profiles of waves
propagating in the open water lead. The numerical algorithm is the same as for (3.20),
which is for the elastic ice model. The frequencies of the waves propagating along the
channel within the rigid ice model are denoted by ω(r)n (k), where ω(r)n (k) < ω

(r)
n+1(k) for

n ≥ 1.

5. Numerical algorithms and their validation

5.1. Numerical algorithms
Within the elastic ice model, see § 3, we should find the non-trivial solutions of the
infinite algebraic system (3.20), F̂ n(k) = (F̂n,1(k), F̂n,2(k), . . .)T, and the corresponding
frequencies ωn(k) for wavenumbers k from an interval (0, k∗). Here ωn+1(k) > ωn(k),
where 0 < k < k∗ and n ≥ 1. We limit ourselves to the five lowest modes, n = 1, 2, 3, 4, 5,
and long waves with k∗ = 2 m−1, which includes waves longer than 3 m. The frequencies
ωn(k) are roots of the determinant |A∗(k, ω)|. This determinant is approximated by the
determinant |A∗

N(k, ω)| of the truncated matrix A∗
N , where the first N rows and columns of

matrix A∗(k, ω) are retained. For each k from an interval (0, k∗)with step�k = 0.02 m−1,
the determinant |A∗

N(k, ω)| is calculated for frequencies starting from zero with the step
0.02 s−1 until the intervals of the five roots of the determinant are determined. Then the
roots ω(N)n (k) of the equation |A∗

N(k, ω)| = 0 are calculated by the bisection method, which
narrows an interval that contains a root down to 1 × 10−5 s−1. The convergence analysis
of the roots ω(N)n (k) with respect to the truncation size N was investigated for n = 1 and
n = 2, as shown in figure 2. We can find that the difference of ω(N)n (k) becomes smaller as
N increases for n = 1 and n = 2. In particular, it was shown that (ω(500)

1 (k)− ω
(400)
1 (k)) is

less than 10−3 s−1, where 0 < k < 0.8 m−1. Below, ωn(k) are approximated by ω(500)
n (k)

for elastic ice, n = 1, 2, 3, 4, 5 and 0 < k < k∗. For each k, n and correspondingly ωn(k),
the truncated system (3.20) with the matrix A∗

N(k, ωn(k)) is solved with respect to the

vector F̂
(N)
n (k) = (F̂(N)n,1 (k), F̂(N)n,2 (k), . . .)

T, which provides the wave profile across the
channel using (3.1). To calculate the non-trivial solutions of the truncated system with
zero determinant, we find an ith column of A∗

N(k, ωn(k)) with the largest
∑N

j=1(A
∗
N)

2
ij, set

F̂(N)i = 1 and move this column to the right-hand side of the system. Next we delete the
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ω2
(300)(k)-ω2
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Figure 2. Convergence analysis of the roots ω(N)n (k) with respect to N for a = 1.1 m, L = 12 m, H = 5 m,
h = 0.05 m, n = 1 (a) and n = 2 (b).

ith row from the system to keep the resulting non-homogeneous system symmetric. Note
that the obtained vector solution with F̂(N)i = 1 being multiplied by any constant is also a
solution of the truncated system. A constant is selected for each k and n in such a way that
the maximum magnitude of the nth wave elevation across the channel including the lead
is equal to 1. The wave amplitude is not determined in the present problem.

For the model of rigid ice, see § 4, the system (4.16) is solved using the algorithm
described above for elastic ice with the only difference that the truncation of the matrix in
(4.16) with N = 150 provides the same accuracy of the results as N = 500 in the model of
elastic ice.

5.2. Validation of the algorithm
For a shrinking lead, a → 0, the present problem describes waves propagating in the
frozen channel with the longitudinal crack at the centre of the ice cover. The latter problem
was studied by Ren et al. (2020) for the following conditions: H = 5 m, L = 10 m,
h = 0.1 m, ρi = 917 kg m−3, E = 4.2 × 109 N m−2, ν = 0.3, ρ = 1000 kg m−3, g =
9.81 m s−2. Dispersion relations for these conditions of symmetric waves with n = 1 and
n = 2, which are obtained by the present algorithm with a = 0, are shown in figure 3
together with the dispersion relations for the same waves computed by Ren et al. (2020),
where ω∗ = ω/

√
g/H. It is seen that the results are in a very good agreement.

6. Numerical results

The results of the present study are presented in terms of dispersion relations, phase and
critical speeds, profiles and strains of the symmetric waves propagating along the channel
with a lead. Numerical calculations are performed for a freshwater ice with density ρi =
917 kg m−3, Young’s modulus E = 4.2 × 109 N m−2 and Poisson’s ratio ν = 0.3. The
thickness h of the ice sheet is varied from 0.5 mm to 2 m. The half-width L of the channel is
12 m and the water depth H is 5 m. The half-width a of the lead is varied from 0 m (a crack)
to 6 m. Water density is ρ = 1000 kg m−3 and the gravity acceleration is g = 9.8 m s−2.
Dimensions of the channel, L and H, and the ice characteristics, ρi, E and ν are constant
in this analysis. Dimensionless variables and parameters are used below. They are denoted
by an asterisk, k∗ = kH, ω∗ = ω/

√
g/H, h∗ = h/H, a∗ = a/H, L∗ = L/H, c∗ = c/

√
gH,

λ∗ = λ/H, Φ∗ = Φ/H2.
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0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
kH

2

4

6

8

10

12

ω∗

Ren et al. (2020) 
Present algorithm

Figure 3. Dispersion relations for the first two symmetric hydroelastic waves by Ren et al. (2020) (circle
markers) and by the present algorithm (solid lines).

6.1. Dispersion relations
The dispersion relations, ω∗ = ω∗

n(k
∗), of hydroelastic waves in an ice channel with a lead

are expected to converge to the corresponding dispersion relations of waves in the same
channel without ice, ω∗( f )

n (k∗), which are defined in § 3, as the ice thickness decreases,
and to the dispersion relations of waves in the same channel with rigid ice, ω∗(r)

n (k∗),
which are defined in § 4, as the ice thickness increases. Figure 4 shows dispersion relations
of waves with n = 1, 2, 3, 4, 5 for h∗ = 4 × 10−3, 1 × 10−3, 1 × 10−4 and for the same
channel without ice. The half-width of the lead is a∗ = 0.22 in this figure. It is seen that the
wave frequencies ω∗

n(k
∗) increase with increasing ice thickness for given n and k∗. Higher

wave frequencies are more sensitive to the ice thickness than the low frequencies with
n = 1 and 2; see figure 4(b). The dispersion relations of hydroelastic waves for h∗ = 1 ×
10−4 are close to the corresponding dispersion relations without ice; see figure 4(a,b). The
relative differences between the corresponding frequencies, |ω∗

n(k
∗)− ω

∗( f )
n (k∗)|/ω∗

n(k
∗),

where ω∗
n(k

∗) are for h∗ = 1 × 10−4, are shown in figure 5. It is seen that the relative
differences for n ≤ 5 are small. The corresponding wave profiles are different near the
walls of the channel, see figure 15, where the amplitudes of the hydroelastic waves are
zero because of the ice clamped conditions on the vertical walls. Figure 5 shows that
the relative differences decay with k∗. However, the absolute differences increase with
k∗, which corresponds to our expectation that a small ice thickness is still important for
relatively short waves.

The frequencies of the hydroelastic waves ω∗
n(k

∗), see § 3, are expected to converge to
the wave frequencies calculated by the rigid ice model, see § 4, where the ice thickness
increases. The dispersion relations of hydroelastic waves are shown in figure 6(a–e) for
n = 1, 2, 3, 4, 5 and an ice thickness of h∗ = 0.2, 0.3 and 0.4. The frequencies of waves
propagating in the channel with rigid ice plates are also shown there. The half-width of
the lead is a∗ = 0.22 in figure 6. Note different ranges for the frequencies ω∗

n(k
∗). The first

frequency, ω∗
1(k

∗), is weakly dependent on the ice thickness and is well approximated by
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Figure 4. Dispersion relations for hydroelastic waves in the ice channel with the lead of half-width a∗ = 0.22
and ice thickness h∗ = 1 × 10−4 (solid lines), 1 × 10−3 (dashed lines) and 4 × 10−3 (dotted lines) for (a)
n = 1 and n = 2, (b) n = 3, 4, 5. Dispersion relations for the channel without ice cover are shown by rhombus
markers.

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.10

0.15

0.20

0.25

0.30

0.35

R
el

at
iv

e 
di

ff
er

en
ce

 (d
eg

.)

n = 1

n = 2

n = 3

n = 4

n = 5

k∗

Figure 5. Relative differences between the frequencies ω∗
n(k

∗) of hydroelastic waves for h∗ = 1 × 10−4, a∗ =
0.22 and the corresponding frequencies ω∗( f )

n (k) of the water waves in the same channel without ice for n =
1, 2, 3, 4, 5.

the rigid ice model, see figure 6(a), ω∗
1(k

∗) ≈ ω
∗(r)
1 (k∗), where h∗ ≥ 0.2. The frequencies

ω∗
n(k

∗) calculated with h∗ = 0.2, 0.3 and 0.4 for n = 2, 3, 4, 5, see figure 6(b–e), are close
to each other and to the corresponding frequencies ω∗(r)

n (k∗) by the rigid ice model for
short waves, where k∗ > 1. For long waves, 0 < k∗ < 1, the ice thickness of h∗ = 0.2 is
not large enough for the rigid ice model. However, the frequencies ω∗

n(k
∗) for h∗ = 0.4 are

well approximated by ω∗(r)
n (k∗), where n = 2, 3, 4, 5. Hydroelastic waves in the ice cover

can be modelled within the thin elastic plate approximation (2.1) if the ice thickness h∗
is much smaller than the wavelength λ∗ = 2π/k∗, say h∗/λ∗ < 0.1. This inequality gives
k∗ < π/(5h∗) and k∗ < 1.57 for h∗ = 0.4. For shorter waves, the thin-plate approximation
is not applicable but then the ice cover can be modelled as a rigid plate; see figure 6.
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Figure 6. Dispersion relations for the first five hydroelastic waves, ω∗ = ω∗
n(k

∗), and ice thickness h∗ = 0.2
(thin solid lines), h∗ = 0.3 (dashed lines) and h∗ = 0.4 (thick solid lines). The corresponding frequencies by
the rigid ice model are shown by circle markers.

The relative differences between the corresponding frequencies |ω∗
n(k

∗)− ω
∗(r)
n (k∗)|/

ω∗
n(k

∗), where ω∗
n(k

∗) are calculated for h∗ = 0.4, are shown in figure 7 for n =
1, 2, 3, 4, 5. Only for long waves with k∗ < 0.25, the relative difference for the lowest
frequency ω∗

1(k
∗) is greater than 1 %. Therefore, it is reasonable to conclude that the ice

elasticity is less important for short waves and thick ice. This is illustrated by figure 8,
where the k∗-h∗ plane (wavenumber k∗ and ice thickness h∗), 0.2 < h∗ < 0.4, is divided
for each mode ω∗

n(k
∗) by a corresponding line into two parts. The relative difference for

ω∗
n(k

∗) is less than 1 % above the corresponding line, see the legend in figure 8, where the
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Figure 7. Relative differences between the frequencies ω∗
n(k

∗) of hydroelastic waves for h∗ = 0.4 and the
corresponding frequencies ω∗(r)

n (k∗) of water waves in the same channel with the lead a∗ = 0.22 and rigid ice
cover for n = 1, 2, 3, 4, 5.
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Figure 8. The k∗-h∗ plane with the regions, where ice elasticity can be neglected for waves with numbers
n = 1, 2, 3, 4, 5 with a relative difference less than 1 % in terms of the corresponding dispersion relation.

ice elasticity can be neglected. The figure shows that the ice cover can be approximated
as rigid for the first five modes if the wave is short enough, k∗ > b∗ − d∗ · h∗, where
b∗ = 1.2, d∗ = 2.5 and 0.2 < h∗ < 0.4.

The dispersion relations of the first five hydroelastic waves are shown in figure 9(a) for
ice thickness h∗ = 0.01 in both elastic and rigid ice models. It is seen that the ice flexibility
is important for long waves, k∗ < 6. For short waves with k∗ > 6, the ice cover with
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Figure 9. (a) Dispersion relations for the first five waves, n = 1, 2, 3, 4, 5, a∗ = 0.22, calculated within the
elastic ice model with an ice thickness of h∗ = 0.01 (solid lines) and within the rigid ice model (dashed lines).
(b) Dispersion relations for waves propagating in open water, infinite ice sheet and for the first hydroelastic
wave in an ice channel with a∗ = 0.22. (c) Group speeds for waves propagating in open water, infinite ice sheet
and for the first hydroelastic wave in an ice channel with a∗ = 0.22.

thickness h∗ = 0.01 behaves as a rigid plate. Figure 9(b) shows the dispersion relations for
waves propagating in the open water and in an infinite ice sheet together with the dispersion
relation of the first hydroelastic wave for the ice thickness h∗ = 0.01 and the dimensionless
width of the lead a∗ = 0.22. The dispersion relations of flexural-gravity waves and gravity
waves divide the quarter plane , k∗ > 0 and ω∗ > 0, into three regions I, II and III. We
can see that the dispersion curve of the first hydroelastic wave starts in the region I
at k∗ = 0 and ω∗ = 0, where ω∗ > ω∗

FGW (here FGW denotes flexural-gravity waves),
intersects the flexural-gravity wave curve at k∗ = 2.44 and ω∗ = 1.73 which is shown
by the black point in figure 9(b), and then stays in region II as predicted by Marchenko
(1997). The first hydroelastic wave, the dispersion relation of which is shown by the
dotted line in figure 9(b), is strongly dependent on both the width of the channel and the
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width of the lead. However, in terms of interpretation of regions I and II, the hydroelastic
wave with a frequency ω∗(k∗) in region I, where k∗ < 2.44, can be considered as the
flexural-gravity wave propagating in the ice cover with the dimensionless wavenumber
k∗ in the x-direction along the channel and the dimensionless wavenumber k∗

y in the

y-direction across the channel, where ω∗(k∗) = ω∗
FGW(K

∗) and K∗ =
√
(k∗)2 + (k∗

y )
2.

This flexural-gravity wave in the ice plate has the same dimensionless wavenumber k∗
in the x-direction, as the hydroelastic wave in the channel with the lead, and the real
dimensionless wavenumber k∗

y in the y-direction. This flexural-gravity wave propagates
in the x-direction, which is along the channel, and in the y-direction, which is across the
channel. Therefore, we can conclude that the long hydroelastic waves in region I can be
detected far from the ice plate edge inside the ice sheet. The same arguments applied to
region II provides that k∗

y is imaginary here, which means that such short waves do not
penetrate deep in the ice sheet. The hydroelastic waves in region II decay exponentially in
the ice cover with the distance from the ice edge. Figure 9(b) shows that shorter waves
decay quicker with the distance. As to the comparison of our hydroelastic wave with
gravity waves in both regions I and II, see figure 9(b), the hydroelastic wave can travel both
along the channel with the wavenumber k∗ and across the lead with the real wavenumber
k∗

y . The waves from region II, where k∗ > 2.44, are localised in the lead.
The dispersion relation of the hydroelastic wave in the channel with the lead (dotted

line in figure 9b) and the dispersion relation of the flexural-gravity waves shown by
the solid line intersect each other at k∗ = 2.44; see the black point in figure 9(b). At
this point, the wavelength, wave frequency and the phase speed of the flexural-gravity
waves in the ice and of the first hydroelastic wave in the channel with the lead are equal.
However, their group speeds are not equal to each other; see figure 9(c). The group speed
of the hydroelastic waves in the channel is slightly higher than the group speed of the
flexural-gravity waves in the ice sheet for k∗ < 0.21 and 0.52 < k∗ < 1.86 and smaller
for 0.21 < k∗ < 0.52 and k∗ > 1.86. The intervals might be affected by accuracy of the
numerical calculations of the parameters of the hydroelastic wave. An asymptotic solution
of the present problem with a lead as k∗ → 0 would be helpful to clarify the difference of
the long hydroelastic wave from the flexural-gravity wave. Marchenko (1999) showed that
a similar situation occurs for linear hydroelastic waves propagating in a semi-infinite ice
sheet attached to a vertical wall. In the latter problem, the wave profile is given analytically,
which makes it possible to investigate the effect of the vertical wall on the propagating
hydroelastic waves in more details. The dispersion relation of the hydroelastic wave in the
semi-infinite ice sheet attached to a vertical wall also intersects the dispersion relation of
the flexural-gravity waves in the infinite ice sheet at a single point, where the wavelength,
wave frequency and both the phase and group speeds of the hydroelastic waves in infinite
and semi-infinite ice sheets are equal; see Marchenko (1999). This comparison shows that
the presence of a lead in the ice channel is important for characteristics of the hydroelastic
waves in the channel.

A gravity wave from the lead cannot enter the ice sheet if k∗
y is much smaller than k∗,

which implies that the angle between the wave propagation and the normal to the ice edge
is large. The corresponding analysis has not been done yet. This analysis is expected to
provide the conditions, where the ice strains in the hydroelastic waves are relatively large.

6.2. Phase speeds and critical speeds of hydroelastic waves in the ice channel
The phase speeds, c∗(n)(k∗) = ω∗

n(k
∗)/k∗, of the first five hydroelastic waves in the

ice channel with the lead, a∗ = 0.22, are shown in figure 10(a) for the ice thickness
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Figure 10. Phase speeds of hydroelastic waves with n = 1, 2, 3, 4, 5 as functions of the wavenumber. (a) Phase
speeds for ice thickness h∗ = 0.01, where c∗(n+1)(k∗) > c∗(n)(k∗) for n ≥ 1 and k∗ ≥ 0. (b–f ) Phase speeds
c∗(n)(k∗) of the hydroelastic waves for h∗ = 0.01 (solid lines, 1), waves within the rigid ice model (dashed
lines, 2), waves in the channel without ice (dashed–dotted lines, 3) and waves in the channel without ice with
the reduced width 2a∗ (dotted lines, 4).

h∗ = 0.01. The presence of the lead significantly changes the behaviour of the phase
speeds. The phase speeds in the ice channel without a lead decrease with an increase of
k∗ for small k∗, then take their minimum values, which are known as critical speeds, and
then increase with an increase of k∗ again; see Korobkin et al. (2014, figure 6(b)). A vessel
moving along an ice channel at a critical speed generates ice deflections, which cannot be
described within the linear wave theory; see Marchenko (1997). For a weakly nonlinear
regime and two-dimensional problems, Parau & Dias (2002) derived a forced nonlinear
Schrodinger equation for the envelope of ice sheet deflections caused by a load moving
at a critical speed. Dinvay, Kalisch & Parau (2019) developed a fully dispersive weakly
nonlinear model describing flexural-gravity waves in a floating elastic plate, excited by
a moving load. For larger amplitudes, both forced and free steady waves were computed
by Guyenne & Parau (2012) using direct numerical simulations with a boundary integral
method.

The presence of water in the channel is negligible for relatively short waves k∗ > 5
for h∗ = 0.01; see Shishmarev, Khabakhpasheva & Korobkin (2016, figure 15(a)). Such
waves are elastic but not hydroelastic. The presence of a lead makes the short waves
propagate mainly along the lead as water waves with the ice on the sides of the lead
much less involved in the wave motion. As a result, each wave mode for a channel with
a lead, except for the first mode, has at least two critical speeds, see figure 10(a), where
dc∗(n)/dk∗ = 0 and the phase speed is equal to the group speed, c∗(n)

g (k∗) = dω∗
n/dk∗. At

each corresponding wavenumber, we have d2ω∗
n/dk∗2 = k∗ d2c∗(n)/dk∗2, which is positive

if the phase speed is minimum at that k∗ and negative if the phase speed is maximum at
that k∗. Note that 1

2(ω
∗
n(k

∗))′′ is the coefficient of the dispersion term in the nonlinear
Schrodinger equation describing the weakly nonlinear wave propagating at the critical
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speed; see Guyenne & Parau (2012). Dispersion relations with several critical speeds for
a wave mode appear, for example, also in the problem of internal waves under ice ; see
Wang et al. (2014, figure 2(b)) for the internal (slow) wave mode.

Analysis of the phase speeds is presented in figure 10(b–f ). Figure 10(b) shows the
phase speed of the hydroelastic wave with the lowest frequency ω∗

1(k
∗); see line 1. This

phase speed decreases monotonically with an increase of the wavenumber. Therefore,
dc∗(1)/dk∗ < 0 for k∗ > 0 and dc∗(1)/dk∗ = 0 only at k∗ = 0. The critical speed of this
hydroelastic wave, c∗(1)(0), is equal to 1.1, which is slightly higher than the corresponding
critical speed of long water waves in the same channel but without ice, c∗(1)

f (0) = 1; see
line 3. Curve 4 is also for water waves but in the channel of reduced width equal to the
width of the lead 2a∗. Figure 10(b) shows that curve 3 and curve 4 are identical, because
the first phase speed of waves in the channel without ice, c∗(1)

f (k∗) = ω
∗( f )
1 (k∗)/k∗ =√

tanh(k∗)/k∗, depends only on the non-dimensional wavenumber k∗ but not on the
channel width. The phase speed by curve 2 is for the same channel and the lead but within
the rigid ice model. Figure 10(b) shows that the phase speed of the first hydroelastic wave
can be roughly approximated by the phase speed of the one-dimensional water wave. The
rigid ice model predicts much greater phase speed for long waves, k∗ < 3.5, where the flow
between the lead region, |y∗| < a∗, and the region under the rigid ice, a∗ < |y∗| < L∗, is
significant. For a shorter wave, the flow between these regions is weak and all four phase
speeds are close to each other.

For higher wave modes, n = 2, 3, 4, 5 in figure 10(c–f ), the presence of ice plates of
thickness h∗ = 0.01 in the channel is important, which can be concluded by comparing
the phase speeds presented by curves 1 and 3. Curves 1, 2 and 4 are very close to each
other for k∗ > 5, see figure 10(c–f ), which shows that the computed waves are gravity
waves confined to the lead region. However, the fluid under the ice sheets is not at rest
even for the rigid ice model. From (4.6) and (4.11), we find that

∂Φ

∂y
(a∗, z∗) =

∞∑
m=0

− cosh[(æmH)(z∗ + 1)](λmH)
(æmH) sinh(æmH)

sin((λmH)a∗)
∞∑

k=0

FkSkm, (6.1)

at the ice edge, y∗ = a∗ for the rigid ice model. The dimensionless numerical values of
(∂Φ∗/∂y∗)(a∗, z∗) at z∗ = 0 for k∗ = 1, 2, 3 are shown in table 1. We can find that the
values (∂Φ∗/∂y∗)(a∗, 0) are not equal to zero for different wave modes and wavenumbers,
which indicates that the rigid ice model is not equivalent to the channel without ice
with the reduced width 2a∗. However, it should be noted that the absolute values of
(∂Φ∗/∂y∗)(a∗, 0) decrease with the wavenumber increase. The most notable feature of
long waves in figure 10(c–f ) is the presence of several critical speeds for each mode. We
count two critical speeds for n = 2, 3 and four critical speeds for n = 4, 5.

To investigate the influence of ice thickness on the phase speeds, the first and second
phase speeds for different ice thicknesses are shown in figure 11. For a given wavenumber,
we find that the phase speeds increase with an increase of the ice thickness for c∗(1)(k∗)
and c∗(2)(k∗). We observe from figure 11(a) that there is no point with dc∗(1)/dk∗ = 0 for
k∗ > 0. We also observe from figure 11(b) that there are two points with dc∗(2)/dk∗ =
0 for h∗ = 0.01, h∗ = 0.02, h∗ = 0.03 and h∗ = 0.04. The critical speeds increase with
an increase of the ice thickness. However, for an ice thickness of h∗ = 0.06, there are
no critical speeds for the second hydroelastic wave. The critical speeds of the second
hydroelastic wave, c∗(2)

cr,1 and c∗(2)
cr,2 , as functions of the ice thickness h∗ for the ice channel

with the lead half-width a∗ = 0.22 are shown in figure 12. The first critical speed of the
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k∗ = 1 k∗ = 2 k∗ = 3

ω
∗(r)
1 −3.36 −3.13 −2.95
ω

∗(r)
2 1.63 1.60 1.59
ω

∗(r)
3 1.13 1.13 1.12
ω

∗(r)
4 0.83 0.83 0.83
ω

∗(r)
5 0.60 0.60 0.60

Table 1. The dimensionless velocity of the flow across the channel, (∂Φ∗/∂y∗)(a∗, z∗), at the ice edge,
z∗ = 0, for different wavenumbers and different wave modes within the rigid ice model.
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Figure 11. Phase speeds c∗(n)(k∗) for (a) n = 1 and (b) n = 2 as functions of the wavenumber for ice thickness
h∗ = 0.01 (thick solid lines), 0.02 (dashed lines), 0.03 (dotted lines), 0.04 (dashed-dotted lines) and 0.06 (thin
solid lines).

second hydroelastic wave, c∗(2)
cr,1 is always smaller than the second critical speed, c∗(2)

cr,2 ; see
also figure 11(b).

As to the influence of the width of the open water lead on the phase speeds, figure 13
shows the phase speeds of the first and second hydroelastic waves for h∗ = 0.01 and
different half-widths of the open water lead. It is seen that there is one critical speed for
each wave without the lead of open water, a∗ = 0. However, for a∗ = 0.11, 0.22, 0.44, 0.8
and 1.2, there are no critical speed for the first hydroelastic wave, and two critical speeds
for the second hydroelastic wave. It is worth further investigating the effect of the width
of the open water lead on critical speeds. Figure 14 shows the critical speeds as functions
of the half-width of the open water lead a∗ for the first and second hydroelastic waves
with an ice thickness of h∗ = 0.01. Note that we do not count here the critical speed of
the long first wave at k∗ = 0, which exists for any a∗. It is seen that there is no critical
speed for the first hydroelastic wave with a∗ > 0.1. For 0.02 ≤ a∗ < 0.1, there are two
critical speeds for the first hydroelastic wave. For the second hydroelastic wave, there is
one critical speed for 0 < a∗ < 0.04, there are two critical speeds for 0.04 ≤ a∗ < 0.46,
then the critical speeds merge at a∗ ≈ 0.46 and there are no critical speeds for a∗ > 0.46.
The critical speeds decrease with an increase of the width of the lead.
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Figure 12. Critical speeds of the second hydroelastic wave, c∗(2)
cr,1 (lines with asterisk markers) and c∗(2)

cr,2 (lines
with circle markers), as functions of the ice thickness for a∗ = 0.22.
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Figure 13. Phase speeds c∗(n)(k∗) for (a) n = 1, (b) n = 2 and ice thickness h∗ = 0.01 as functions of the
wavenumber without the lead (a∗ = 0, thick solid lines), and with the lead of half-width a∗ = 0.11 (thick
dashed lines), a∗ = 0.22 (dotted lines), a∗ = 0.44 (dashed–dotted lines), a∗ = 0.8 (thin solid lines) and a∗ =
1.2 (thin dashed lines).

6.3. Profiles of hydroelastic waves
Linear hydroelastic waves propagating in an ice channel with a lead are sinusoidal along
the channel, see (2.6a,b), with the wavelength 2π/k∗. For example, a wave with k∗ = 0.5
is of length λ∗ = 12.6, which is greater than the channel width, 2L∗ = 4.8, the channel
depth, H∗ = 1, and the width of the symmetric lead, 2a∗ = 0.44, in the main part of
our calculations. The profiles of the waves across the channel are more complicated. The
profile of the nth hydroelastic wave is described by the even function F∗

n( y∗), where |y∗| <
L∗, which is calculated as part of the solution. The functions F∗

n( y∗) are normalised in such
a way that their maximum magnitudes are equal to 1. The wave profiles F∗

n( y∗) depend on
the parameters of the channel and the ice plates, as well as on the wavenumber k∗. Only
waves symmetric with respect to the centreline of the channel are considered in this study.
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Figure 14. Critical speeds of the first and second hydroelastic waves as functions of the lead half-width a∗ for
ice thickness h∗ = 0.01.

The computed profiles F∗
n( y∗) of the hydroelastic waves across the channel are shown in

figure 15 for n = 1, 2, 3, 4, 5 and a small ice thickness of h∗ = 1 × 10−4. The half-width
of the open water lead is a∗ = 0.22 and k∗ = 0.5. The wave profiles for the same channel
without ice, F∗( f )

n ( y∗) = cos(((n − 1)π/L∗)y∗), are also presented for comparison. Only
half, 0 < y∗ < L∗, of the channel width is shown because of the symmetry of the computed
waves. One can see that the deflection of ice and elevation of the open water are close to
each other at the ice edge, y∗ = a∗, for n = 1, 2, 3, 4 and 5, but not equal even for this
small thickness of the ice. The wave profiles for the ice channel and the same channel
without ice are close to each other except near the wall, y∗ = L∗, where the ice plate is
clamped to the wall, F(L∗) = F′(L∗) = 0. Figure 15(a) shows that the lowest hydroelastic
wave is of constant elevation inside the channel but changes significantly near the wall.
This indicates high bending stresses near the wall for this wave.

The hydroelastic wave profiles F∗
n( y∗) for n = 1, 2, 3, 4, 5 and ice thickness h∗ = 0.4

are shown in figure 16. The computed deflections of the ice were multiplied by 100 in this
figure. It is seen that the ice deflection is very small compared with the water elevation in
the lead.

The wave profiles F∗
n( y∗) for n = 1, 2, 3, 4, 5 and ice thickness h∗ = 0.01 are shown

in figure 17. The functions F∗
n( y∗) are defined by the series (3.1) with respect to the

modes ψm( y∗), m ≥ 1, with the coefficients Fn,m computed as explained in § 5.1. The
non-dimensionalised modes are depicted in figure 21. Comparing figures 17 and 21, we
can conclude that the main contribution to the nth wave profile F∗

n( y∗) comes from the
mode ψm( y∗), where m ≤ n. In particular, the coefficients of the third wave profile, F3,m,
which are greater by module than 10−3 are shown in table 2. From the first equation of
(2.6a,b) we can easily obtain the three-dimensional wave, w∗

n = F∗
n( y∗) cos(kx − ωnt), of

waves propagating in the ice channel with a lead of open water. The three-dimensional
wave profiles for n = 3 and t = 0 are also shown in figure 18. We can clearly see the
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Figure 15. Profiles F∗
n( y∗) of the hydroelastic waves (solid lines) for k∗ = 0.5 in the ice channel with a lead.

Half-width of the lead a∗ = 0.22. Ice thickness is h∗ = 1 × 10−4. The corresponding water wave profiles for
the same channel without ice are shown by lines 3.

difference between ice deformation and water elevation, as shown in figure 17(c). The
wave changes periodically in the x-direction.

The strain distribution in the ice sheet is an important characteristic indicating potential
breaking of ice caused by ship or wind generated waves. The maximum strain at each point
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Figure 16. Profiles F∗
n( y∗) of the hydroelastic waves for k∗ = 0.5 in the ice channel with a lead. Half-width

of the lead a∗ = 0.22. Ice thickness is h∗ = 0.4. The deflections of ice were multiplied by 100.

of the ice surface can be obtained using the eigenvalues of the strain tensor,

ε = ±h
2

(
wxx wxy
wxy wyy

)
, (6.2)

where h/2 and −h/2 are for the lower and upper surface of the ice plate, respectively. To
determine the maximum strain as a function of y across the channel for each wave mode,
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Figure 17. Profiles F∗
n( y∗) of the hydroelastic waves for k∗ = 0.5, a∗ = 0.22 and ice thickness h∗ = 0.01.

F3,1 8.3910 F3,8 −0.0136
F3,2 −2.2179 F3,9 −0.0103
F3,3 −7.2201 F3,10 −0.0044
F3,4 −0.3904 F3,11 −0.0035
F3,5 −0.2600 F3,12 −0.0018
F3,6 −0.0570 F3,13 −0.0015
F3,7 −0.0401

Table 2. The values of F3,m greater than 10−3.
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Figure 18. Three-dimensional wave for the third mode with a∗ = 0.22 and ice thickness h∗ = 0.01.

we calculate four following functions of y (Batyaev & Khabakhpasheva 2015):

εmax,1( y) = h
2
|F′′( y)|, εmax,2( y) = h

2
k2|F( y)|,

εmax,3( y) = h
2

kF′( y)

√
4k2F′′( y)F( y)− 4k2F′( y)2

(F′′( y)+ k2F( y))2 − 4k2F′( y)2
,

εmax,4( y) = h
2

F′( y)
F′′( y)2 + k4F( y)2 − 2k2F′( y)2√

(F′′( y)F( y)− F′( y)2)[(F′′( y)+ k2F( y))2 − 4k2F′( y)2]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.3)

Here F( y) is the wave profile of a wave across the channel with the maximum magnitude
1 m; see § 5.1. Note that εmax,3( y) and εmax,4( y) exist only where [(F′′( y)+ k2F( y))2 −
4k2F′( y)2]2 ≥ (F′′( y)2 − k4F( y)2)2. The maximum strain εmax( y) at each y is the
maximum of the following four values εmax,1( y), εmax,2( y), εmax,3( y) and εmax,4( y). In
figure 19, εmax( y) is shown for the first five hydroelastic waves where k∗ = 0.5, a∗ = 0.22
and h∗ = 0.01. It is seen that the distributions εmax( y) peak at the walls, y∗ = 2.4, for
n = 1, 2, 3, 4, 5. The strains near the free edge of the ice sheet are small, compare with
figure 17. For the conditions of the hydroelastic waves in this figure, cracks are expected
along the walls if the strain is greater than the so-called yield strain εY . The yield strain for
ice is estimated as 8 × 10−5 (Brocklehurst, Korobkin & Parau 2011). Figure 19(a) shows
that the strains in the ice plate caused by the lowest hydroelastic wave are below the yield
strain for ice if the magnitude of this wave is smaller than 8 mm. These cracks along the
walls may break the connection between the ice sheet and the walls without breaking the
ice sheet into pieces.
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Figure 19. Distributions of the strains εmax( y) across the channel, a∗ = 0.22, h∗ = 0.01 in the hydroelastic
waves with k∗ = 0.5.

7. Conclusions

The effect of a lead of open water on the hydroelastic waves propagating in an ice channel
was studied within the linear theory of hydroelasticity. The normal mode method and
the eigenfunction expansion method were used to determine the dispersion relations and
the profiles of these waves for elastic ice and rigid ice models, respectively. Only waves
symmetric with respect to the centreplane of the channel were considered. It was shown
that the presence of a lead significantly changes the waves propagating along the ice
channel. In a channel completely covered with an ice plate, short waves propagate through
the ice with water in the channel being less involved in the motion. These waves are
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elastic waves. Very long waves in an ice channel depend on the presence of ice only in
a closed proximity of the walls of the channel, where the ice plate is clamped to the walls.
However, the dispersion relations are affected by the ice cover even for very long waves, if
the ice thickness is moderate. Hydroelastic waves are in between very long waves, which
are gravity dominated, and short waves, which are dominated by the ice elasticity. The
interplay between gravity and elastic effects makes these waves particular with the most
prominent feature being the existence of a single so-called critical speed for each mode of
the waves in the ice channel.

The presence of a lead in the ice channel changes the short waves. They are gravity
waves now. They are confined to the part of the channel under the lead with ice deflections
being negligible. Moreover, the flow between the region under the ice and the region
under the lead becomes negligible for higher modes of the waves. The lead also modifies
the hydroelastic waves, which are long enough for both gravity and elastic effects being
equally important. The most important modification is related to the critical speeds of
these waves. Each wave mode starting from the lowest one can have zero, one, two or
even more critical speeds depending on the relative width of the lead. At some particular
conditions two critical speeds may merge providing a point on the dispersion curve, where
both the first and second derivatives of the phase speed with respect to the wavenumber are
zero. At that point, the phase speed is equal to the group speed and the second derivative
of the wave frequency as a function of the wavenumber is zero. Waves propagating at a
critical speeds cannot be linear. They are described by the nonlinear Schrodinger equation
for small amplitudes and can be computed for moderate wave amplitudes. The second
derivative of the wave frequency, 1

2 (ω
∗
n(k

∗))′′, appears as the coefficient of the dispersion
term in the nonlinear Schrodinger equation. If two critical speeds merge, this coefficient
becomes zero, which would require revision of the weakly nonlinear hydroelastic waves
in such special conditions. In our analysis, we did not find conditions where three or more
critical speeds merge; however, potentially this is possible making the theory of weakly
nonlinear hydroelastic waves even more challenging.

The present study can be easily extended to cases involving free or simply supported
edges at the lateral ends of the channel, through modifying the boundary conditions at ỹ =
0 in (A2) to free or simply supported boundary conditions, and solving the corresponding
eigenfunctions ψ̃n(ỹ). The present study is also planned to be extended further including
asymmetric waves for different positions of a lead in the ice channel, and to be applied to
the problem of a load moving along an ice channel either in the lead or on the ice cover
near the lead. Motions of loads at critical speeds and generated stresses in the ice cover
will receive special attention. We are unaware of results for the conditions, where two or
more critical speeds merge. It would be challenging to describe the ice response to a load
moving at such a special speed.

Acknowledgements. This research was started when the first author was visiting the School of Mathematics,
University of East Anglia as an academic visitor in the period from December 2019 to May 2020. The authors
are thankful to Prof. E.I. Parau for fruitful discussions of nonlinear hydroelastic waves and to anonymous
referees for their valuable suggestions on the interpretation of the obtained results and their presentations.

Funding. This work is supported by National Key R&D Program of China (No. 2017YFE0111400) and by
National Natural Science Foundation of China (Nos. 51979051, 51979056 and 51639004).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
L.D. Zeng http://orcid.org/0000-0002-6390-0052.

921 A10-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

33
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0002-6390-0052
http://orcid.org/0000-0002-6390-0052
https://doi.org/10.1017/jfm.2021.335


L.D. Zeng, A.A. Korobkin, B.Y. Ni and Y.Z. Xue

Appendix A. Elastic modes ψn( y)

Here we take the second equation of (3.2) as an example to illustrate how to solve
the eigenvalue problem in dimensionless variables. It is convenient to write the second
equation of (3.2) in dimensionless variables, ỹ = ( y − L)/�, ψ̃n(ỹ) = √

�ψn(ỹ�+ L),
denoted by tilde. Here � = L − a is the width of each ice plate. The dimensionless problem
reads as (

d2

dỹ2 − k̃2
)2

ψ̃n = λ̃4
nψ̃n (−1 < ỹ < 0), (A1)

ψ̃n(0) = ψ̃ ′
n(0) = 0, ψ̃ ′′

n (−1) = νk̃2ψn(−1), ψ̃ ′′′
n (−1) = (2 − ν)k̃2ψ̃ ′

n(−1),
(A2a–c)

where k̃ = k� and λ̃n = λn�. For k̃ = 0, this problem provides the shape functions of eigen
vibrations of a cantilever beam, which is clamped at ỹ = 0 and free-free at ỹ = −1; see
Timoshenko & Young (1955). The non-zero solutions of the problem (A1), (A2) for k̃ = 0
exist for λn, which satisfy the equation cos λ̃n · cosh λ̃n = −1.

For k̃ > 0, the non-zero solutions of (A1), (A2) are given by (Eastham (1970))

ψ̃n(ỹ) = An

[
sin qỹ

q
− sinh pỹ

p
+ Q(λ̃n) cos qỹ − Q(λ̃n) cosh pỹ

]
, (A3)

where p =
√
λ̃2

n + k̃2, q =
√
λ̃2

n − k̃2,

Q(λ̃n) =
[λ̃2

n + (1 − ν)k̃2]
sinh p

p
+ [λ̃2

n − (1 − ν)k̃2]
sin q

q
[λ̃2

n + (1 − ν)k̃2] cosh p + [λ̃2
n − (1 − ν)k̃2] cos q

, (A4)

and the coefficients An are determined by the second equation of (3.3a,b),

1
A2

n
= −2Q

[
sin2 q
2q2 + sinh2 p

2p2 − sinh p sin q
pq

]

+ Q2
[

1 + sin q cos q
2q

+ sinh p cosh p
2p

− 2
q cosh p sin q + p sinh p cos q

p2 + q2

]
+

[
p2 − q2

2p2q2 + sinh p cosh p
2p3 − sin q cos q

2q3 − 2
p cosh p sin q − q sinh p cos q

pq( p2 + q2)

]
.

(A5)

These non-zero solutions exist for λ̃n which are real and positive roots of the equation

λ̃4
n − (1 − ν)2k̃4

λ̃4
n + (1 − ν)2k̃4

+ cosh p cos q =
[

k̃2 − 2λ̃4
n(1 − ν)k̃2

λ̃4
n + (1 − ν)2k̃4

]
sinh p

p
sin q

q
. (A6)

Equations (A3)–(A6) are written for λ̃n > k̃. For λ̃n = k̃, one needs to change

cos (
√
λ̃2

n − k̃2) and sin (
√
λ̃2

n − k̃2)/(

√
λ̃2

n − k̃2) to 1. For λ̃n < k̃, one needs to change

cos (
√
λ̃2

n − k̃2) to cosh (
√

k̃2 − λ̃2
n) and sin (

√
λ̃2

n − k̃2)/(

√
λ̃2

n − k̃2) to
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Figure 20. The dimensionless spectral parameters λ̃n as functions of the dimensionless wavenumber k̃ for
ν = 0.3 and n = 1, 2, 3, 4, 5.

sinh (
√

k̃2 − λ̃2
n)/(

√
k̃2 − λ̃2

n). The roots of (A6), λ̃n(k̃), n = 1, 2, 3, 4, 5, are shown in

figure 20 as functions of the dimensionless wavenumber k̃ for ν = 0.3. Note that λ̃n+1(k̃) >
λ̃n(k̃) for k̃ ≥ 0 and n ≥ 1. In particular, λ̃1(k̃) = k̃ ≈ 23.413 for ν = 0.3.

The shape functions ψ̃n(ỹ) defined by (A3)–(A6) are shown in figure 21 for k̃ = 1, ν =
0.3 and n = 1, 2, 3, 4, 5. These shape functions, ψ̃n(ỹ), have n − 1 zeros inside the interval
(−1, 0), where ỹ = 0 corresponds to the clamped edge of the ice plate.

Appendix B. The integrals Ãnr from § 3

The method of separating variables applied to the boundary problem (3.7) and (3.8a,b)
provides

Φn( y, z) =
∞∑

m=1

Dnm
cosh[

√
k2 + μ2

m(z + H)]

cosh[
√

k2 + μ2
mH]

cos(μmy), (B1)

where μm = π(m − 1)/L, the coefficients Dnm are determined using the boundary
condition (3.13),

∞∑
m=1

Dnm

(√
k2 + μ2

m tanh[
√

k2 + μ2
mH] − ω2

g

)
cos(μmy) = ψn(|y|)H( y2 − a2). (B2)
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Figure 21. The dimensionless normalised shape functions ψ̃n(ỹ) for k̃ = 1, ν = 0.3 and n = 1, 2, 3, 4, 5.

Here H(x) is the Heaviside function, which is equal to zero for negative x and one for
positive x. The functions cos(μmy), m ≥ 1, are orthogonal in the interval −L < y < L,

∫ L

−L
cos(μmy) cos(μry) dy =

⎧⎪⎨⎪⎩
0, r /= m,
L, r = m /= 1,
2L, r = m = 1.

(B3)

Multiplying both sides of (B2) by cos(μry) and integrating the result in y from −L to L
using the relations (B3), we find that

Dnm = εm

L
[√

k2 + μ2
m tanh[

√
k2 + μ2

mH] − ω2/g
] ∫ L

a
ψn( y) cos(μmy) dy, (B4)

where ε1 = 1 and εm = 2 for m ≥ 2. The denominators in (B4) are not equal to zero in
our computations for a channel with ice cover and a lead because we do not consider

the frequencies ω = ω
( f )
m (k) =

√
g
√

k2 + μ2
m tanh[

√
k2 + μ2

mH], which correspond to the
frequencies of water waves in the channel without ice.

Denote the integrals in (B4) by Snm. Then (B1) and (B4) give the integrals from § 3,

Ãnr =
∫ L

a
Φn( y, 0)ψr( y) dy =

∞∑
m=1

εmSnmSrm

L
[√

k2 + μ2
m tanh[

√
k2 + μ2

mH] − ω2/g
] . (B5)

With the help of integration by parts one can show that Snm ∼ −ψn(a) sin(μma)/μm as
m → ∞. Therefore, the terms in the series (B5) decay as m−3 for m → ∞. The integrals
Snm are evaluated by multiplying both sides of the second equation of (3.2) by cos(μmy)
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Flexural-gravity waves in ice channel with a lead

and integrating the result in y from a to L by parts using the edge conditions from the
second equation of (3.2), which gives∫ L

a

(
d2

dy2 − k2
)2

ψn cos(μmy) dy =
∫ L

a
λ4

nψn cos(μmy) dy, (B6)

and

Snm = (−1)mψ ′′′
n (L)+(μ2

m + νk2) cos(μma)ψ ′
n(a)+μm[(2 − ν)k2+μ2

m] sin(μma)ψn(a)
λ4

n − (k2+μ2
m)

2 .

(B7)
Using the dimensionless variable from Appendix A, y = ỹ�+ L, where � = L − a,
multiplying (B7) by �4 in the numerator and denominator, and denoting μm� = π(m −
1)(1 − a/L) by μ̃m, we find that

Snm =
√
�

λ̃4
n − (k̃2 + μ̃2

m)
2

[(−1)mψ̃ ′′′
n (0) +μ̃m[(2 − ν)k̃2 + μ̃2

m] sin(μma)ψ̃n(−1)

+ (μ̃2
m + νk̃2) cos(μma)ψ̃ ′

n(−1)], (B8)

where the modes ψ̃n( y) and the eigenvalues λ̃n are defined in Appendix A.
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