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1Laboratoire de Mathématiques, CNRS UMR 6620, Université Blaise Pascal
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We study the two-scale homogenization of the diffraction interfacial condition for the diffusion

equation relevant to a composite medium which has a periodic structure. The results are

applied to the electric field potential within a dielectric composite body when there is a

difference in dielectric permittivity between the composite components in the presence of

interfacial static charges. The principal result is that the interfacial charge distribution is

equivalent to an apparent bulk charge which can be calculated starting from the composite

geometry. We perform the corrector analysis and establish that the corrector terms strongly

depend on the interfacial charge.
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1 Introduction

The goal of the present study is to apply the two-scale homogenization tool to a new

mathematical problem arising in composite electrets. Electrets are dielectric materials

capable of storing oriented dipoles or an electric surplus charge for a long period of time

without an external electric field. There are several ways to produce space-charge electrets.

For example, electret polymer foams store charges on the inner surfaces of the voids

after having been subjected to a corona discharge [14]. Another example of the electret

composite material is the polymer-ferroelectric ceramic composite which is produced

under the action of an electric discharge plasma and temperature. It is shown that this

process results in strong oxidation of polymer chains. Such an oxidation is accompanied by

an enhancement of interfacial interactions and an increase in the concentration of charge

localization centres in the quasi-band gap of the polymer phase which upon polarization

leads to an increase in interfacial charges [10]. Composite electrets find many applications

including electrostatic filters, electret microphones, radiation dosimeters, etc. [8].

We consider a dielectric composite with static charges concentrated at the interface.

Clearly, a body of such a composite, an electret, exhibits an electric field inside the body

and close to it. Even though one knows in full details the charge interfacial distribution, it

is almost impossible to calculate the resulting electric field due to the complex geometry

of the composite structure. Under the assumption that the composite has a periodic
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structure, we apply the two-scale homogenization technique to prove that the interfacial

charge distribution is equivalent to an “apparent” constant bulk charge. With such a

bulk charge to hand, it is simpler to identify the resulting electric field by solving the

homogenized charge conservation law for a homogeneous material.

We prove that the apparent bulk charge strongly depends not only on the interfacial

charge value but on the geometry of the composite interface inside the representative cell

of periodicity as well. To this end, we introduce a surface tortuosity coefficient and study

its role in the homogenization process. We establish that it is due to high tortuosity that

the apparent bulk charge can be strong even though the interfacial charge is weak.

We discover that besides the length l which characterizes the size of the representative

cell, there are two more intrinsic lengths lu and lσ which depend on the interfacial and

bulk charges. Hence, the homogenization strongly depends on the order relation between

the lengths l, lu, and lσ . It may occur that l � lu � lσ or l � lσ � lu, etc. We analyse

some order relations which are of interest in geophysics. We clarify that the lengths

lu and lσ characterize the electric field attenuation related to the interfacial and bulk

charges. The role of intrinsic lengths in the homogenization of the Maxwell equations

was highlighted in Amirat and Shelukhin [1]. Note that such a situation, when the

homogenization depends on the values of coefficients, is rather general and arises for

instance in poroelastic media [13].

Space-charge ionic electrets defy the conventional assumption in chemistry that the

bulk matter is electrically neutral and that ionic materials must have an equal number

of cationic and anionic charges [24]. Under the hypothesis of local neutrality of the

composite, we perform the homogenization and prove that such a composite does not

enjoy the electret property.

It is the essence of the homogenization method that the original heterogeneous problem

is replaced approximately by an averaged one. We improve such approximation by

constructing the so-called corrector terms which take into account the local fluctuations

in each periodicity cell. We prove that the corrector terms strongly depend on the interfacial

charge density.

Existence of interfacial charge implies that the normal component of the vector of

electrical induction has a jump across the interface, with this jump being equal to the

surface charge density. In terms of electric potential, such a jump condition is equivalent to

a diffraction condition for the potential which solves a diffusion equation. Mathematically,

we address the homogenization of the diffraction condition. Though such a condition is

a classic one in the theory of elliptic equations, it has never been studied from the

homogenization point of view. Note that the homogenization of elliptic equations with

various boundary conditions (Dirichlet, Neumann, mixed conditions, Robin condition,

Signorini condition, etc. . . ) have been considered in many papers, see for instance [5–7,

9, 19] and the references therein. Problems of stationary diffusion in composites with an

interface condition involving a jump of the temperature are considered in Auriault and

Ene, [3], Lipton [12] and Monsurro [16].

It is proved in Amirat and Shelukhin [2] and Shelukhin et al. [23] that interfacial

charges may appear due to ion transport in a fluid dielectric medium. The nature of this

charge is the Maxwell–Wagner polarization which appears due to a difference in dielectric

permittivities between the composite components. Contrary to the static electret interfacial
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charge, such a charge disappears as soon as the flow stops or an external electric field is

removed.

2 Problem formulation

We consider a composite body consisting of two components. For convenience, we call

them solid and fluid components. Let a solid domain Ωs lie in a domain Ω, with Ωf =

Ω\Ωs being the fluid domain. In what follows, we use the Gaussian system of units. Let

us consider the charge conservation law

div (εE) = 4πq, E ≡ −∇u, (2.1)

where E is the electric field, u is the electric potential, ε is the dielectric permittivity, and

q(x) is the bulk charge density. Here,

ε =

{
εf, x ∈ Ωf,
εs, x ∈ Ωs.

With qσ(x) standing for the surface charge density at the boundary Γ that separates the

solid and fluid domains, we have the boundary conditions

[u] = 0, [εE · n] = 4πqσ. (2.2)

Here, n is the unit normal vector to Γ , pointing from Ωs to Ωf , and the brackets [v] stand

for the jump of a function v(x) across Γ . More precisely, denoting by vf and vs the values

of v on either side of Γ , respectively, in the domains Ωf and Ωs, we set [v] = vf − vs. We

set the following boundary condition

u|∂Ω = 0. (2.3)

A function u is called a strong solution of problem (2.1)–(2.3) if

u ∈ C1
(
Ωi

)
∩ C2(Ωi), i = s, f,

u solves equation (2.1) in the domains Ωs and Ωf , and it satisfies conditions (2.2) and (2.3).

The weak formulation of problem (2.1)–(2.3) is the following. We look for a function

u ∈ H1
0 (Ω) such that.

∫
Ω

ε∇u · ∇ϕ− 4πqϕ dx−
∫
Γ

4πqσϕ ds = 0, ∀ϕ ∈ H1
0 (Ω). (2.4)

One can easily verify that any strong solution u of problem (2.1)–(2.3) belongs to the

Sobolev space H1
0 (Ω) and satisfies equality (2.4).

3 One-dimensional problem

Let us consider a sequence of fluid and solid layers separated by points xi (0 � i � 2N):

0 = x0 < x1 < x2 < · · · < x2N = L,
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where N is a large integer. The intervals (x2i, x2i+1) and (x2i+1, x2i+2) represent the fluid and

the solid parts respectively. With φ standing for the porosity (0 � φ � 1) and l = L/N,

we have

x2i+1 − x2i = φl, x2i+2 − x2i+1 = (1 − φ)l.

We define

ε(y) =

{
εf for 0 < y < φ,

εs for φ < y < 1,
1f(y) =

{
1 for 0 < y < φ,

0 for φ < y < 1,

and extend these functions periodically on �. Let us denote

εδ(x) = ε
(x
l

)
, 1δf(x) = 1f

(x
l

)
, δ =

l

L
.

The electric potential satisfies the boundary value problem posed in Ω = (0, L):

⎧⎪⎨
⎪⎩

− εδ(x)uxx = 4πq(x), xi < x < xi+1,

[u]|xi = 0, [εδ(x)ux]|xi = (−1)i4πqσ, 1 � i � 2N − 1,

u(0) = u(L) = 0.

(3.1)

Here, qσ is a given surface density constant.

Let us pass to dimensionless variables. Assume that the variables with the bar sign are

reference values, then the dimensionless variables, with the prime sign, are

x = Lx′, u = ūu′, ε = ε̄ε′, q = q̄q′, qσ = q̄σq
′
σ.

Observe that the parameters

lu =
ūε̄

q̄σ
, lσ =

q̄σ

q̄
, (3.2)

have the dimension of length. We discuss their meaning later in Appendix. Thus, the

above problem is characterized by four length scales l, L, lu, and lσ . We introduce the

dimensionless parameters

a1 =
ε̄ū

q̄σL
≡ lu

L
, a2 =

Lq̄

q̄σ
≡ L

lσ
.

In dimensionless variables, problem (3.1) becomes

⎧⎪⎪⎨
⎪⎪⎩

− a1ε
′(x′)u′x′x′ = 4πa2q

′(x′), x′i < x′ < x′i+1,

[u′]|x′i = 0, a1[ε
′u′x′ ]|x′i = (−1)i4πq′σ, 1 � i � 2N − 1,

u′|∂Ω = 0, Ω′ = {x′ : 0 < x′ < 1}.

For simplicity, we omit the prime sign in what follows. One can verify easily that the
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weak formulation of the above problem is the following:

⎧⎪⎪⎨
⎪⎪⎩

uδ ∈ H1
0 (Ω),

∫
Ω

a1ε
δ(x)uδxϕx − 4πa2qϕ dx+ 4πqσ

2N−1∑
1

(−1)iϕ(xi) = 0, ∀ϕ ∈ H1
0 (Ω).

Observe that in our notation the functions εδ(x) and 1δf(x) are periodic with period δ.

Simple calculations reveal that

2N−1∑
1=1

(−1)iϕ(xi) = −
∫ x1

0

ϕx dx−
∫ x3

x2

ϕx dx− · · · = −
∫
Ω

1δf(x)ϕx dx.

Hence, we arrive at the following weak formulation:

⎧⎨
⎩
uδ ∈ H1

0 (Ω),∫
Ω

a1ε
δ(x)uδxϕx − 4πqσ1

δ
f(x)ϕx − 4πa2qϕ dx = 0, ∀ϕ ∈ H1

0 (Ω).
(3.3)

Assuming that δ is a small number, we perform an asymptotic analysis, as δ → 0,

under the hypothesis that

l

L
= δ,

l

lu
=
δm1

ā1
,

l

lσ
= δm2 ā2. (3.4)

So,

a1 = δ1−m1 ā1, a2 = δm2−1ā2.

Here, we study the case m1 = m2 = 1. Other values of m1 and m2 are addressed when

we consider three-dimensional boundary value problems in the next sections. Assuming

that q ∈ L2(Ω) and setting ϕ = u in (3.3), one obtains that uδ satisfies the estimate

∫
Ω

|uδ |2 + |uδx|2 dx � c, (3.5)

uniformly in δ. Therefore, there is a subsequence of uδ (still denoted uδ) and a function

u ∈ H1
0 (Ω) such that uδ converges to u weakly in H1

0 (Ω).

To characterize the function u, we use the notion of two-scale convergence introduced

by G. Nguetseng [17]. Let Y denote the unit cell of periodicity, Y = {y : 0 < y < 1}.
A sequence vδ of functions in L2(Ω) is said to weakly two-scale convergent to a function

v(x, y), v ∈ L2(Ω × Y ), as δ → 0, if

lim
δ→0

∫
Ω

vδ(x)ϕ
(
x,
x

δ

)
dx =

1

|Y |

∫
Ω

∫
Y

v(x, y)ϕ(x, y) dxdy, ∀ϕ ∈ C(Ω; C∞
per(Y )).

Shortly, we write it as vδ
2s
⇀ v(x, y). We emphasize that for each x ∈ Ω, the test function

ϕ(x, ·) is Y -periodic in the variable y and belongs to C∞(Y ). It is a crucial property of the

two-scale convergence that for any sequence of functions vδ(x) bounded in L2(Ω) there
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is a subsequence (still denoted vδ(x)) and a function v(x, y), v ∈ L2(Ω × Y ), such that

vδ
2s
⇀ v(x, y) [17]. We also have the following result [17]. If vδ is bounded in H1(Ω), there

is a subsequence (still denoted vδ) and functions v ∈ L2(Ω), v1 ∈ L2(Ω;H1
per(Y )) such that

both vδ and vδx two-scale converge weakly to v(x) and vx(x) + v1y(x, y), respectively.

According to (3.5), there are functions u(x) ∈ H1
0 (Ω) and u1(x, y) ∈ L2(Ω;H1

per(Y )) such

that

uδ
2s
⇀ u, uδx

2s
⇀ ux + u1

y.

Setting

ϕ(x) = ϕ0(x) + δϕ1
(
x,
x

δ

)
, ϕ0 ∈ D(Ω), ϕ1 ∈ D

(
Ω; C∞

per(Y )
)
,

in (3.3) and passing to the limit, as δ → 0, we conclude that

∫
Ω

∫
Y

{
ā1ε(y)

[
ux(x) + u1

y(x, y)
]
− 4πqσ1f(y)

} (
ϕ0
x(x) + ϕ1

y(x, y)
)
dxdy

−
∫
Ω

∫
Y

4πā2q ϕ
0(x) dxdy = 0. (3.6)

Choosing ϕ0 = 0, ϕ1(x, y) = ψ(x)θ(y), ψ ∈ D(Ω), and θ ∈ C∞
per(Y ), we obtain

∫
Y

θy(y)
{
ā1ε(y)

[
ux(x) + u1

y(x, y)
]
− 4πqσ1f(y)

}
dy = 0.

We look for u1 in the form

u1(x, y) = ux(x)w
1(y) − 4πqσw

0(y). (3.7)

The functions w1 and w0 can be identified from the following cell problems:

⎧⎨
⎩
w1 ∈ H1

per(Y ),

d

dy

{
ε(y)

[
1 + w1

y(y)
]}

= 0,

∫
Y

w1 dy = 0,
(3.8)

and ⎧⎨
⎩
w0 ∈ H1

per(Y ),

d

dy

(
ā1ε(y)w

0
y(y) + 1f(y)

)
= 0,

∫
Y

w0 dy = 0.
(3.9)

Next, choosing ϕ1 = 0 in (3.6), we obtain

∫
Ω

∫
Y

ā1ε(y)
[
ux(x) + u1

y(x, y)
]
ϕ0
x(x) − 4πā2qϕ

0(x) dxdy = 0.

Using (3.7)–(3.9) we obtain the macro-equation

−ā1ε
huxx = 4πā2q in Ω, u(0) = u(1) = 0, (3.10)

with

εh = ε(y)(1 + w1
y) = constant =

1

φ/εf + (1 − φ)/εs
. (3.11)
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As an example, we consider the following data

εf = εs = ε, φ =
1

2
, q = 0.

In this case, the solution uδ of (3.3) is given by the formulas

uδ =

⎧⎪⎪⎨
⎪⎪⎩

−4πqσ
2ε

(x− x2i), x2i < x < x2i+1,

4πqσ
2ε

(x− x2i+2), x2i+1 < x < x2i+2,

uδx =

⎧⎪⎪⎨
⎪⎪⎩

−4πqσ
2ε

, x2i < x < x2i+1,

4πqσ
2ε

, x2i+1 < x < x2i+2.

One can verify easily that

max
0�x�1

uδ(x) = uδ(x2i) = 0, min
0�x�1

uδ(x) = −4πqσδ

2ε
.

It follows that uδ → 0 strongly in L2(Ω) and weakly in H1
0 (Ω). However, the convergence

of uδ does not occur in H1
0 (Ω) strongly since

∫
Ω

|uδx|2 dx =
4π2q2

σ

ε2
.

Observe that equation (3.10) does not depend on the surface charge density qσ . However,

qσ can manifest itself through a corrector.

To derive a corrector for the function uδ we argue by the formal expansion series

approach [4, 21] and look for uδ(x) in the form

uδ(x) =

∞∑
k=0

δkuk(x, y), (3.12)

where y = x/δ and the functions uk(x, y) are 1-periodic in the variable y. It is assumed

that u0 ≡ u is defined by (3.10), (3.11), and the function u1(x, y) is defined by (3.7)–(3.9).

Given a function uk(x, y), we introduce the derivative operator

Duk(x, y) = ukx(x, y) + δ−1uky(x, y).

Clearly,

d

dx
uk

(
x,
x

δ

)
= Duk(x, y)|y=x/δ.

Writing

Fk(x, y) = ā1ε(y)Du
k(x, y),

we find that
∞∑
k=0

δk
(
Fk(x, y) − ā1ε(y)Du

k(x, y)
)

= 0. (3.13)
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In terms of expansion series, one can write equation (3.3) as

∞∑
k=0

δkDFk(x, y) + 4πq(x)ā2 − 4πqσ(y)D1f(y) = 0, (3.14)

where y = x/δ. We write (3.13) in the form
∑∞

0 δk(· · · )k = 0, with the functions (· · · )k(x, y)
not depending on δ, and arrive at the equalities (· · · )k = 0 for any k. Setting k = 0 and

k = 1, we find that

F0(x, y) = ā1ε(y)
(
ux(x)

(
1 + w1

y(y)
)
− 4πqσw

0
y(y)

)
,

F1(x, y) = ā1ε(y)
(
uxx(x)w

1(y) + u2
y(x, y)

)
.

In finding the functions uk(x, y), k = 2, 3, . . ., we assume that equality (3.14) holds for any x

and y. Writing this equality in the form
∑∞

k=−1 δ
k(· · · )k = 0, with the functions (· · · )k(x, y)

not depending on δ, we arrive at the equalities (· · · )k = 0 for any k = −1, 0, 1, . . .. Setting

k = −1 and k = 0 and using the representation formulas for F0 and F1, we find that

∂

∂y

{
ā1ε(y)

(
ux(x)

(
1 + w1

y(y)
)
− 4πqσw

0
y(y)

)}
=

d

dy

(
4πqσ1f(y)

)
, (3.15)

uxx(x)ā1ε(y)
(
1 + w1

y(y)
)

+
∂

∂y

{
ā1ε(y)

(
uxxw1(y) + u2

y(x, y)
)}

= −4πā2q. (3.16)

We look for u2(x, y) by the method of separation of variables, assuming that there is a

function w2(y) such that u2(x, y) = uxx(x)w
2(y). Inserting this representation formula into

(3.16) and taking (3.10), (3.11) into account, we obtain that w2(y) should be a 1-periodic

solution of the equation

d

dy

{
ε(y)

(
w1(y) +

d

dy
w2(y)

)}
= 0. (3.17)

Clearly, this equation has a unique solution w2 ∈ H1
per(Y ) satisfying

∫ 1

0
w2dy = 0. We

easily deduce from (3.17) that

w2(y) = −
∫ y

0

w1(ξ) dξ, y ∈ Y . (3.18)

Let us now introduce the function

uc,δ(x) = uc
(
x,
x

δ

)
+ δuδb(x), (3.19)

where

uc(x, y) = u(x) + δ
(
ux(x)w

1(y) − 4πqσw
0(y)

)
+ δ2uxx(x)w

2(y), x ∈ Ω, y ∈ Y , (3.20)

and uδb(x) is defined as a solution of the problem

d

dx

(
εδ(x)

duδb
dx

)
= 0, uδb(0) = h0, u

δ
b(1) = h1, (3.21)
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with

h0 = −
(
ux(0)w1(0) − 4πqσw

0(0)
)
, h1 = −

(
ux(1)w1(1) − 4πqσw

0(1)
)
. (3.22)

The function uδb(x) is a boundary layer of the first-order. One can verify that

(uδb(x) − h0)

∫
Ω

1

εδ(x)
dx = (h1 − h0)

∫ x

0

1

εδ(z)
dz.

We establish the following result.

Theorem 1 Let uδ and u be the solutions of problem (3.3) and problem (3.10), (3.11), re-

spectively. Then, uδ converges to u in H1(Ω) weak. Moreover, if q ∈ H1(Ω), the function uc,δ

given by (3.19)–(3.22) is a second-order corrector satisfying

‖uδ − uc,δ‖H1(Ω) � cδ2, (3.23)

where c is a constant independent of δ.

Proof The weak convergence of uδ towards u results from the notion of two-scale

convergence. Let us prove (3.23). A straightforward calculation gives

− d

dx

(
ā1ε

δ(x)
duc,δ

dx

)
= −1

δ

{
∂

∂y

[
ā1ε(y)

(
ux(x)

(
1 + w1

y(y)
)
− 4πqσw

0
y(y)

)]}
|y= x

δ

− uxx(x) ā1ε(y)
(
1 + w1

y(y)
)
|y= x

δ

− uxx(x)

{
∂

∂y

[
ā1ε(y)

(
w1(y) + w2

y(y)
)]}

|y= x
δ

− δ uxxx(x) ā1ε(y)
(
w1(y) + w2

y(y)
)
|y= x

δ

− δ2 d

dx

(
ā1uxxx(x) ε

(x
δ

)
w2

(x
δ

))

≡
i=5∑
i=1

Ai, (3.24)

where the equality holds in the distributional sense. According to (3.15) we have

A1 = − d

dx

(
4πqσ1f

(x
δ

))
,

and according to (3.16) and (3.18) we have

A2 + A3 = 4πā2q, A4 = 0.

We also have, using (3.10),

A5 = δ2 d

dx

(
4π
ā2

εh
qx(x) ε

(x
δ

)
w2

(x
δ

))
.
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It follows that

− d

dx

(
ā1ε

δ(x)
duc,δ

dx

)
= − d

dx

(
4πqσ1f

(x
δ

))
+ 4πā2q

+ δ2 d

dx

(
4π
ā2

εh
qx(x) ε

(x
δ

)
w2

(x
δ

))
.

Then, the difference vδ = uδ − uc,δ solves the variational equation

∫
Ω

ā1ε
δ(x)vδx(x)ϕx(x) dx = −δ2

∫
Ω

(
4π
ā2

εh
qx(x) ε

(x
δ

)
w2

(x
δ

))
ϕx(x) dx, (3.25)

∀ϕ ∈ H1
0 (Ω). We have

vδ(0) = −δ2u2
xx(0)w2(0), vδ(1) = −δ2u2

xx(1)w2(1).

Since

|vδ(1) − vδ(0)| � Cδ2, (3.26)

introducing the function

vδ0 (x) = x
(
vδ(1) − vδ(0)

)
+ vδ(0),

we insert the function ϕ0 = vδ − vδ0 ∈ H1
0 (Ω) into (3.25) to obtain

∫
Ω

ā1ε
δ(x)|vδx |2 dx = −δ2

∫
Ω

4π
ā2

εh
qx(x) ε

(x
δ

)
w2

(x
δ

) [
vδx(x) − vδ0x(x)

]
dx

+

∫
Ω

ā1ε
δ(x)vδxv

δ
0x dx.

Using the Cauchy–Schwarz inequality and (3.26) we obtain (3.23). �

Remark 1 If q belongs only to L2(Ω) one can easily show that

∥∥∥uδ(x) − u(x) − δu1
(
x,
x

δ

)
− δuδb(x)

∥∥∥
H1(Ω)

� cδ,

where c is a constant independent of δ.

Remark 2 In electret theory, it is the limit function E = limδ→0 E
δ , Eδ ≡ −∂uδ/∂x, which

is of interest. Though the macro-equation (3.10) does not depend on the surface charge, this

charge, by Theorem 1, should be taken into account as far as the electric field is concerned.

Indeed,

∥∥∥uδ(x) − u(x) − δu1
(
x,
x

δ

)
− δuδb(x)

∥∥∥
H1(Ω)

=
∥∥∥uδ(x) − u(x) − δu1

(
x,
x

δ

)
− δuδb(x)

∥∥∥
L2(Ω)

+

∥∥∥∥Eδ(x) +
d

dx

(
u(x) + δu1

(
x,
x

δ

)
+ δuδb(x)

)∥∥∥∥
L2(Ω)

.
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Hence, ∥∥∥∥Eδ(x) − d

dx

(
−u(x) − δu1

(
x,
x

δ

)
− δuδb(x)

)∥∥∥∥
L2(Ω)

� cδ,

where c is a constant independent of δ.

4 Setting of the multi-dimensional problem

We return to the multi-dimensional problem (2.4) with periodic data ε(x) and qσ(x) given

in the representative cell

0 < xi < l, i = 1, 2, . . . n,

qσ(x) being a function defined on the solid-fluid interfaces. We assume that n = 2 or

n = 3. Let L stand for a characteristic size of the domain Ω. We rewrite problem (2.4) in

dimensionless variables

x′j =
xj

L
, u′ =

u

ū
, ε′ =

ε

ε̄
, q′ =

q

q̄
, q′σ =

qσ

q̄σ
.

Recall that l/L = δ and the parameters lu and lσ defined in (3.2) have the dimension

length. We assume that these lengths can be compared with l by hypothesis (3.4). Under

these assumptions, the function u′(x′), defined in the domain Ω′ = 1
L
Ω, belongs to H1

0 (Ω′)

and solves the variational equation

∫
Ω′
δ1−m1 ā1ε

′∇′u′ · ∇′ϕ− 4πδm2−1ā2q
′ϕdx′ =

∫
Γ ′δ

4πq′σϕ ds
′, ∀ϕ ∈ H1

0 (Ω′). (4.1)

Let us describe the fluid and solid domains in more details. We denote by Y the unit

cube of �n, Y = {y = (y1, . . . , yn) : 0 < yi < 1}. We assume that Y is decomposed as

Y = Ys ∪ Yf ∪ Γ ′, Γ ′ ≡ ∂Ys ∩ ∂Yf,

where Ys (the solid part) and Yf (the fluid part) are open subsets of Y and Γ ′ is a smooth

interface separating Ys and Yf . We assume that |Ys| > 0 and |Yf | > 0. Given k ∈ �n, we

define

Y k = {y ∈ �n : y − k ∈ Y }.

Similarly, we define

Γ
′k = Γ ′ + k, Y k

i = Yi + k (i = s, f).

As for the domain Ω, we assume, for simplicity, that its dimensionless replica Ω′ is the

unit cube of �n,

Ω′ = {x ∈ �n : 0 < xi < 1},

and δ = 1/N, N → ∞.
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We define

δY = {y = (y1, . . . , yn) : 0 < yi < δ},

and similarly, we define δYs, δYf , δY
k
s , δY k

f , and δΓ
′k . Let us write

Kδ = {k ∈ �n : δY k
f ∩ Ω′ �= �}, Γ

′δ = Ω′ ∩

⎛
⎝ ⋃
k∈Kδ

δΓ
′k

⎞
⎠ .

Finally, we set

Ω
′δ
s = Ω′ ∩

⎛
⎝ ⋃
k∈Kδ

δY k
s

⎞
⎠ , Ω

′δ
f = Ω′\Ω′δ

s .

We introduce the notation

ε′δ(x′) = ε′
(
x′

δ

)
, q′δσ (x′) = q′σ

(
x′

δ

)
.

Let u′δ ∈ H1
0 (Ω′) be a solution of the problem

∫
Ω′
δ1−m1 ā1ε

′δ(x′)∇′u′δ · ∇′ϕ− 4πδm2−1ā2q
′ϕ dx′ = 4π〈δΓ ′δ , q

′δ
σ ϕ〉, (4.2)

∀ϕ ∈ H1
0 (Ω′), where

〈δΓ ′δ , q
′δ
σ ϕ〉 =

∫
Γ

′δ
q′δσ (x′)ϕ(x′) dsx′ .

We are interested in the asymptotic behaviour of the solution u′δ of (4.2), as δ → 0. In

what follows, we omit the prime index.

5 Reformulation of the multi-dimensional problem

In order to study the asymptotic behaviour of the solution uδ of (4.2), as δ → 0, we

reformulate the surface integral term
∫
Γδ

qδσ(x)ϕ(x) dsx.

First, we assume that qσ is a given function defined on ∂Ys ∩ ∂Yf such that

qσ ∈ L2(∂Ys ∩ ∂Yf).

We extend qσ by periodicity to ∪k∈�n

(
∂Y k

s ∩ ∂Y k
f

)
where ∂Y k

i denotes the boundary of

Y k
i , i = s, f. Then, we write

qδσ(x) = qσ

(x
δ

)
, x ∈ Γδ.
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a b c

Figure 1. Cell solid domain: a - ball, b - S8 domain with r = 0.5, c - S9 domain (only sphere

centres).

We also introduce the notation

J̃σ =

∫
∂Ys∩∂Yf

|qσ(y)| dsy, iσ(y) =
qσ(y)

J̃σ
,

sσ = |∂Ys ∩ ∂Yf |−1

∫
∂Ys∩∂Yf

iσ(y) dsy, τ =
|∂Ys ∩ ∂Yf |

|Ys|
,

and τ is the surface tortuosity coefficient.

Condition S. We assume that Ys satisfies the following restriction. There is a periodic

function v(y) defined in the domain Ys such that it solves the boundary-value problem

⎧⎪⎪⎨
⎪⎪⎩
Δyv = τsσ in Ys,

∫
Ys

v dy = 0,

∇v · n = iσ on ∂Ys,

(5.1)

where n denotes the unit outward normal vector to ∂Ys.

Let us give some examples of the solid domain obeying condition S. Clearly, problem

(5.1) has a unique solution v ∈ H1(Ys) when the solid domain satisfies the following

S1-condition:

Ys ⊂ Y .

An example is given in Figure 1(a). Next we consider the solid domain as in Figure 1(b).

Here, Ys consists of eight components related to cell vertices and all the components are

identical up to rotation; each component can be represented as an intersection B ∩ Y ,

where B is a domain centred at the vertex and which has n planes of symmetry yi = const.

We call such a domain the S8-domain. The most simple case is that B is a ball of a

radius r such that 0 < r < rp, rp =
√

2/2. Observe that the pore space loses connectivity

if r � rp [22].

To prove solvability of the boundary value problem (5.1) in the case S8, one can argue

as shown in Figure 2. The solid domain consists of the domains 1–4. (For simplicity

of presentation, these domains do not intersect with each other). First, we solve the

problem for the domain B that consists of the domains 1, 2′, 3′, and 4′. Then, we define
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S S

S
S

f

S

1

2 3

4

2’3’
4’

Figure 2. The solid domain Ys of type S2 with symmetrical vortex components.

v(y)|k = v(y)|k′ , k� 1. In the case S8, the porosity can be calculated by the formula ( [20])

Φ(r) = 1 − π

6
− π

2

( r
2
− 1

)
+

π

4

( r
2
− 1

)2

+
π

3

( r
2
− 1

)3

,

The S8-solid domain retains essential features of many granular porous systems: (1) the

pore spaces and grains form interconnecting channels, (2) the grains are of comparable

size, and (3) the grains are joined at contacts that extend over a finite area.

To permit higher tortuosity, one can consider the S9- domain which is the S8- domain

with one more solid ball in the centre of the cube (Figure 1(c)). The balls are of the same

radius r, 0 < r < rp, rp = 3/
√

32. Observe that the fluid component becomes isolated

provided r � rp. When r =
√

3/4 the centre sphere touches the vertex spheres.

In what follows, we set v = 0 in Yf and then extend this new function periodically on

�n. In what follows, we keep the same notation v for the extended function.

Lemma 1 Let the solid domain Ys satisfy condition S. Then, for any ϕ ∈ H1
0 (Ω), we have

〈δΓδ , qδσ ϕ〉 = J̃σ

∫
Ω

1s(y)
(τsσ
δ
ϕ+ ∇ϕ · ∇yv(y)

) ∣∣∣
y=x/δ

dx. (5.2)

Proof Defining vδ(x) = v(x/δ), we have, for any multi-index j,

Δvδ(x)|Ωδ
sk

=
1

δ2
Δyv(y)|y=x/δ =

τsσ

δ2
,

where we have set Ωδ
sk = δY k

s .

First, we consider the case S1. Given ϕ ∈ H1
0 (Ω) we have

∫
Ωδ
sk

τsσϕ dx = δ2

∫
Ωδ
sk

ϕΔvδ dx = δ2

∫
Ωδ
sk

div
(
ϕ∇vδ

)
−∇ϕ · ∇vδ dx

= δ2

∫
∂Ωδ

sk

ϕ
(
∇vδ · n

)
dsx − δ2

∫
Ωδ
sk

∇ϕ · ∇vδ dx
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x x x x
0 1 32

y

y

y

y

0

1

2

3

1 2 3

4 5 6

7 8 9

Figure 3. An example of periodical structure satisfying Condition S in �2. The solid phase is

inside the circles.

= δ

∫
∂Ωδ

sk

ϕ
(
n(y) · ∇yv(y)

)
|y=x/δ dsx − δ

∫
Ωδ
sk

∇ϕ · ∇yv(y)|y=x/δ dx

= δ

∫
∂Ωδ

sk

ϕiσ dsx − δ

∫
Ωδ
sk

∇ϕ · ∇yv(y)|y=x/δ dx.

By summing over k we arrive at (5.2).

Let us consider the case S8. Arguing like in the case S1, we write

∫
Ωδ
sk

τsσϕ dx = δ2

∫
Ωδ
sk

ϕΔvδ dx = δ2

∫
Ωδ
sk

div
(
ϕ∇vδ

)
−∇ϕ · ∇vδ dx

= δ2

∫
∂Ωδ

sk∩∂Ωδ
fk

ϕ
(
∇vδ · n

)
dsx − δ2

∫
Ωδ
sk

∇ϕ · ∇vδ dx+ δ2

∫
∂Ωδ

sk∩∂Y δ
k

ϕ
(
∇vδ · n

)
dsx.

We claim that ∑
k

∫
∂Ωδ

sk∩∂Y δ
k

ϕ
(
∇vδ · n

)
dsx = 0. (5.3)

To give an idea of the proof, we consider Figure 3 which illustrates the case �2 and

δ = 1/3. In this case, the total number of δcells is equal to 9 and the cells are numbered

as shown in Figure 3. Let γij stand for the boundary between the cell i and the cell j, with

n pointing from the cell i to the cell j. Let γsij be the solid part of γij . Since ϕ ∈ H1
0 (Ω), we

have

∫
∂Ωδ

s1∩∂Y δ
1

ϕ
(
∇vδ · n

)
dsx +

∫
∂Ωδ

s2∩∂Y δ
2

ϕ
(
∇vδ · n

)
dsx

=

∫
γs12∪γs14

ϕ
(
∇vδ · n

)
dsx +

∫
γs21∪γs23∪γs25

ϕ
(
∇vδ · n

)
dsx

=

∫
γs14

ϕ
(
∇vδ · n

)
dsx +

∫
γs23∪γs25

ϕ
(
∇vδ · n

)
dsx.
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Here, we used the fact that
∫
γs12

= −
∫
γs21

. Now it is clear that the claim (5.3) is true and

(5.2) follows. The case S9 can be treated similarly. �

By Lemma 1, problem (4.2) becomes

∫
Ω

δ1−m1 ā1εδ(x)∇uδ · ∇ϕ− 4πδm2−1ā2qϕ dx

= 4πJ̃σ

∫
Ω

1s(y)
(τsσ
δ
ϕ+ ∇ϕ · ∇yv(y)

) ∣∣∣
y=x/δ

dx, ∀ϕ ∈ H1
0 (Ω). (5.4)

We assume that q ∈ L2(Ω). Then, problem (5.4) has a unique solution uδ ∈ H1
0 (Ω).

Depending on m1 and m2, we study different cases.

6 Both the bulk charge and the surface charge are strong

Let us consider the case when

lσ ∼ l and lu ∼
l

δ2
, i.e. m1 = 2 and m2 = 0.

Under such assumptions problem (5.4) becomes

∫
Ω

ā1εδ(x)∇uδ · ∇ϕ− 4πā2qϕ dx

= 4πJ̃σ

∫
Ω

1s(y)
(
τsσϕ+ δ∇ϕ · ∇yv(y)

) ∣∣∣
y=x/δ

dx, ∀ϕ ∈ H1
0 (Ω). (6.1)

Problem (6.1) has a unique solution satisfying the estimate

∫
Ω

|uδ |2 + |∇uδ |2 dx � c,

uniformly in δ. Clearly there is a subsequence, still denoted by uδ , and there are functions

u(x) ∈ H1
0 (Ω) and u1(x, y) ∈ L2(Ω;H1

per(Y )) such that

uδ
2s
⇀ u, ∇uδ(x) 2s

⇀ ∇u(x) + ∇yu
1(x, y).

Taking in (6.1)

ϕ(x) = ϕ0(x) + δϕ1
(
x,
x

δ

)
, ϕ0 ∈ D(Ω), ϕ1 ∈ D

(
Ω; C∞

per(Y )
)
,

and passing to the limit, as δ → 0, we obtain

∫
Ω

∫
Y

ā1ε(y)
(
∇u+ ∇yu

1
)
·
(
∇ϕ0 + ∇yϕ

1
)
− 4πā2qϕ

0 = 4πJ̃σ

∫
Ω

∫
Y

τsσ1s(y)ϕ
0 dxdy. (6.2)
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Choosing ϕ0 = 0, ϕ1(x, y) = ψ(x)θ(y), ψ ∈ D(Ω), and θ ∈ C∞
per(Y ), we obtain

∫
Y

ε(y)
(
∇u+ ∇yu

1
)
· ∇yθ dy = 0, a.e. in Ω.

We look for u1 in the form

u1(x, y) = wk(y)
∂u

∂xk
(x), wk ∈ H1

per(Y ), (6.3)

and find that the function wk(y) (k = 1, . . . , n) solves the micro-equation

∂

∂yi

(
ε(y)

(
δik +

∂wk

∂yi

))
= 0 in Y . (6.4)

Clearly, problem (6.4) has a unique solution wk ∈ H1
per(Y ) satisfying the condition∫

Y
wk dy = 0.

Taking ϕ1 = 0 in (6.2) we find that

∫
Ω

∫
Y

ā1ε(y)
(
∇u(x) + ∇yu

1
)
· ∇ϕ0 − 4πā2qϕ

0 − 4πJ̃στsσ1s(y)ϕ
0 dxdy = 0.

Next, using (6.3), we obtain that the function u solves the macro-equation

− ∂

∂xi

(
ā1ε

h
ij

∂u

∂xj

)
− 4πā2q = 4πJ̃στsσ(1 − φ), in Ω, u|∂Ω = 0, (6.5)

where

φ =

∫
Y

1f(y) dy, εhik =

∫
Y

ε(y)

(
δik +

∂wk

∂yi

)
dy, (6.6)

with φ being the porosity.

Let uδb be a boundary layer function of first order defined as a solution to the Dirichlet

problem

div
(
εδ(x)∇uδb

)
= 0 in Ω, uδb(x) = −u1

(
x,
x

δ

)
on ∂Ω. (6.7)

We have the following result.

Theorem 2 Let uδ and u be the unique solutions of problem (6.1) and problem (6.5), (6.6),

respectively. Then uδ converges to u in H1(Ω) weakly. Moreover, if u ∈W 2,∞(Ω), we have

∥∥∥uδ(x) − u(x) − δu1
(
x,
x

δ

)
− δuδb(x)

∥∥∥
H1(Ω)

� cδ, (6.8)

where u1(x, y) is defined by (6.3), (6.4), uδb(x) is defined by (6.7), and c is a constant inde-

pendent of δ.
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Proof The weak convergence of uδ towards u results from the notion of two-scale

convergence. Let us prove (6.12). Given the functions u(x) and u1(x, y), we define the

function u2(x, y) as a solution to the problem

−divx
(
ā1ε(y)

(
∇xu+ ∇yu

1
))

− divy
(
ā1ε(y)

(
∇xu

1 + ∇yu
2
))

= 4πā2q + 4πJ̃στsσ1s(y),

(6.9)

assuming that u2(x, y) is Y -periodic with respect to y and satisfies the condition∫
Y
u2(x, y) dy = 0.

Arguing like in Bensoussan et al. [4] and Moskow and Vogelius [15], one can verify

that

u2(x, y) = wkj(y)
∂2u

∂xk∂xj
(x) − 4πJ̃σw

0(y),

where wkj ∈ H1
per(Y ) is a periodic solution to the problem

−divy
(
ε(y)∇yw

kj
)

=ε(y)

(
δkj +

∂wk

∂yj

)
+

∂

∂yj

(
ε(y)wk(y)

)

−
∫
Y

ε(y)

(
δkj +

∂wk

∂yj

)
dy,

∫
Y

wkj dy = 0,

and w0(y) ∈ H1
per(Y ) is a periodic solution to the problem

−divy
(
ε(y)∇yw

0
)

= τsσ[(1 − φ) − 1s(y)],

∫
Y

w0 dy = 0.

We introduce the function

uc,δ(x) = uc
(
x,
x

δ

)
+ δuδb(x),

where

uc(x, y) = u(x) + δu1(x, y) + δ2u2(x, y), x ∈ Ω, y ∈ Y .

Taking into account the definition of the functions u1(x, y) and u2(x, y), we easily verify

that

−div
(
ā1εδ(x)∇uc,δ

)
= rδ,

with

rδ(x) = 4πā2q + 4πJ̃στsσ1
δ
s − δ

(
divx

{
ā1ε(y)

[
∇xu

1(x, y) + ∇yu
2(x, y)

]}) ∣∣∣
y= x

δ

− δ
{
divy

[
ā1ε(y)∇xu

2(x, y)
]} ∣∣∣

y= x
δ

− δ2
{
divx

[
ā1ε(y)∇xu

2(x, y)
]} ∣∣∣

y= x
δ

.
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We deduce that

−div
[
ā1εδ(x)∇(u+ δu1 + δuδb)

]
= 4πā2q(x) + 4πJ̃στsσ1

δ
s (x)

− δ
{
divx

[
ā1ε(y)∇xu

1(x, y)
]} ∣∣∣

y= x
δ

+ δdiv

(
ā1εδ(x)∇yu

2
∣∣∣
y= x

δ

)

− δ
{
divx

(
ā1ε(y)∇yu

2
)} ∣∣∣

y= x
δ

. (6.10)

Given a function ϕ ∈ H1
0 (Ω), we obtain from (6.10) that

∫
Ω

ā1εδ(x)∇(u+ δu1 + δuδb) · ∇ϕdx =

∫
Ω

(
4πā2q + 4πJ̃στsσ1

δ
s

)
ϕdx

− δ

∫
Ω

ϕ
[
divx

(
ā1ε(y)∇xu

1
)] ∣∣∣

y= x
δ

dx

− δ

∫
Ω

∇ϕ
(
ā1ε(y)∇yu

2
) ∣∣∣

y= x
δ

dx

− δ

∫
Ω

ϕ
[
divx

(
ā1ε(y)∇yu

2
)] ∣∣∣

y= x
δ

dx.

Setting vδ = uδ − (u+ δu1 + δuδb), we have that vδ ∈ H1
0 (Ω) and

∫
Ω

ā1εδ(x)∇vδ · ∇ϕdx =

∫
Ω

δ4πJ̃σ1
δ
s∇ϕ · ∇yv(y)|y= x

δ
dx

+ δ

∫
Ω

ϕ
[
divx

(
ā1ε(y)∇xu

1
)]

|y= x
δ
dx

+ δ

∫
Ω

∇ϕ
(
ā1ε(y)∇yu

2
)
|y= x

δ
dx

+ δ

∫
Ω

ϕ
[
divx

(
ā1ε(y)∇yu

2
)]

|y= x
δ
dx. (6.11)

In what follows we denote by c a generic constant that does not depend on δ. Using

the Poincaré inequality ‖ϕ‖2 � c‖∇ϕ‖2, ϕ ∈ H1
0 (Ω), and the regularity of u1 and u2, we

deduce from (6.11) that

∫
Ω

εδ(x)∇vδ · ∇ϕdx � cδ

(∫
Ω

|∇ϕ|2 dx
) 1

2

.

Hence, the inequality (6.8) follows. �

Corollary 1 Let the assumptions be as in Theorem 2. We have

∥∥∥uδ(x) − u(x) − δu1
(
x,
x

δ

)∥∥∥
H1(Ω)

� c
√
δ, (6.12)

where c is a constant independent of δ.
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Proof The estimate in H1(Ω) of the boundary layer uδb , defined by (6.7), is a classical

result, see refs. [11] and [18] for instance. It is proven that ‖uδb‖H1(Ω) � c/
√
δ. The latter

estimate, together with (6.8), gives estimate (6.12). �

Remark 3 As far as the electric field is concerned, it follows from Corollary 1 that

∥∥∥Eδ(x) + ∇
(
u(x) + δu1

(
x,
x

δ

))∥∥∥
L2(Ω)

� c
√
δ,

where c denotes a constant independent of δ. Thus, to find an approximate electric field, it

suffices to solve the micro-problems (6.4) and equation (6.5) with constant coefficients.

Remark 4 Since
∥∥u1

(
x, x

δ

)∥∥
L2(Ω)

� c, and
∥∥uδb∥∥L2(Ω)

� c, see refs. [11] and [18] for

instance, we deduce from (6.8) the following estimate

∥∥uδ − u
∥∥
L2(Ω)

� cδ,

where c denotes a constant independent of δ.

7 The surface charge with different strength

In what follows, we do not consider all the possible values of the powers m1 and m2

paying attention only to the most interesting cases. First, we assume that the surface

charge is weak in the sense that

lσ ∼ δl and lu ∼
l

δ3
, i.e. m1 = 3 and m2 = −1.

Under such assumptions problem (5.4) becomes

∫
Ω

ā1εδ(x)∇uδ · ∇ϕ− 4πā2qϕ dx

= δ24πJ̃σ

∫
Ω

1s(y)
(
τsσϕ+ δ∇ϕ · ∇yv(y)

) ∣∣∣
y=x/δ

dx, ∀ϕ ∈ H1
0 (Ω).

By the above arguments, we find that the weak limit u of uδ satisfies the macro-equation

− ∂

∂xi

(
ā1ε

h
ij

∂u

∂xj

)
− 4πā2q = 0 in Ω, u|∂Ω = 0,

where the constant matrix εhij is defined by (6.4) and (6.6).
Next, we consider the case when the surface charge is weak but the surface tortuosity

coefficient is great:

lσ ∼ δl, lu ∼
l

δ3
, τ ∼ 1

δ
, i.e. m1 = 3, m2 = −1, τ =

τ̄

δ
.

Clearly, the weak limit u of uδ satisfies the macro-equation

− ∂

∂xi

(
ā1ε

h
ij

∂u

∂xj

)
− 4πā2q = 4πJ̃στ̄sσ(1 − φ) in Ω, u|∂Ω = 0,
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Now, we consider the case when the bulk charge is weak and the surface charge is
strong in the following sense:

lσ ∼
l

δ
and lu ∼

l

δ2
, i.e. m1 = 2 and m2 = 1.

Then, the macro-equation becomes

− ∂

∂xi

(
ā1ε

h
ij

∂u

∂xj

)
= 4πJ̃στsσ(1 − φ) in Ω, u|∂Ω = 0.

8 Neutral dielectric composites

Let us consider a composite material with a periodic structure under the assumption that

both the interfacial charge density and the bulk charge density are periodic functions and

the total electric charge of the periodicity cell is equal to zero. In dimensional variables,

it implies that

q = qδ(x) ≡ q0

( x

δL

)
, q0 ∈ L2(Y ),

and ∫
δY k

qδ(x) dx+

∫
δΓ k

qδσ(x) dsx = 0, ∀k ∈ Kδ.

In dimensionless variables, this condition becomes

∫
Y

q0(y) dy +
lσ

l

∫
Γ

qσ(y) dsy = 0,

or equivalently, ∫
Y

q0(y) dy +
J̃στ̄sσ|Ys|
δm2+m3 ā2

= 0,

where τ = τ̄δ−m3 , m3 � 0. Let us pass to the limit, as δ → 0, in equation (5.4) which is

equivalent to

∫
Ω

δ2−m1+m3 ā1ε
δ(x)∇uδ · ∇ϕ− 4πδm2+m3 ā2q

δϕ dx

= 4πJ̃σ

∫
Ω

1s(y)
(
τ̄sσϕ+ δm3+1∇ϕ · ∇yv(y)

) ∣∣∣
y=x/δ

dx, ∀ϕ ∈ H1
0 (Ω). (8.1)

Equation (8.1) holds for arbitrary δ provided m2 +m3 = 0. Assuming that m1 +m2 = 2

and acting like in the case of equation (6.5), we derive that uδ converges weakly in H1(Ω)

to u and

∂

∂xi

(
ā1ε

h
ij

∂u

∂xj

)
= 0 in Ω, u|∂Ω = 0.

Hence, u = 0 and the neutral composite does not have the electret effect.
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9 Conclusions

The above analysis shows that the macro-equation strongly depends on the surface charge

value qσ . Such a charge manifests itself through an additional constant bulk charge. As

for the homogenized anisotropic dielectric permittivity matrix, it does not depend on the

surface charge and its value is defined by the geometry of the solid-fluid interface. By the

corrector technique, an algorithm is proposed for construction of an effective electric field;

such an algorithm is based on solving cell micro-equations and a macro-equation with

constant coefficients. One more conclusion is that the neutral composites do not have the

electrets property.
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Appendix A

Let us discuss the meaning of the length lu = ūε̄/q̄σ . To this end, we consider an electric

field in a homogeneous dielectric medium around a charged sphere of dimensional radius

L with a given constant surface charge density. In dimensionless variables, the potential

depends on the radial variable only and solves the boundary-value problem

r > 1 : Δu = 0, −a1ε
∂u

∂r

∣∣∣
r=1

= 4πqσ, a1 =
lu

L
.

One can verify that the dimensionless electric field E(r) ≡ −∂u/∂r is given by the formula

E =
1

r2
· 4πqσ
εlu/L

.

Thus, lu is a distance of attenuation of the electric field in the sense that

E|r=lu/L =
4πqσ
ε

·
(
lu

L

)−3

.

As for the length lσ , it works only in the presence of the bulk charge q. As above, we

consider an electric field in a homogeneous dielectric medium around a charged sphere

but in the presence of a bulk charge which decreases according to the law q = q0/r
2. In

this case, the electric field is given by the formula

E =
4πq0

ε
· 1

(lσ/L)(lu/L)

(
r − 1

r2

)
+

1

r2
· 4πqσ
εlu/L

.

Clearly, lσ characterizes the rate of attenuation of the electric field associated with the

bulk charge distribution.
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