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Abstract
We consider a dynamic network cascade process developed by DuncanWatts applied to a class of random
networks, developed independently by Newman and Miller, which allows a specified amount of clustering
(short loops). We adapt existing methods for locally tree-like networks to formulate an appropriate two-
type branching process to describe the spread of a cascade started with a single active node and obtain a
fixed-point equation to implicitly express the extinction probability of such a cascade. In so doing, we also
recover a formula that has appeared in various forms in works by Hackett et al. and Miller which provides
a threshold condition for certain extinction of the cascade. We find that clustering impedes cascade prop-
agation for networks of low average degree by reducing the connectivity of the network, but for networks
with high average degree, the presence of small cycles makes cascades more likely.
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1. Introduction
1.1 Motivation
Duncan Watts (2002) describes a process that can be thought to model the spread of a trend on
a social network, wherein individuals will adopt a trend if a sufficiently high proportion of their
friends do. The interpretation of such dynamics has been carried over to other network settings—
spread of failures through a power grid (Dobson et al., 2005; Kosterev et al., 1999), cascading
failures of financial institutions (Hurd & Gleeson, 2011), adoption of new technology (Arthur,
1989), or even solutions of crossword puzzles (McSweeney, 2016). From these local contact rules,
we wish to answer global questions about the spread of a phenomenon on a network, especially: for
a given class of random networks, with what probability does a trend started with a small number
of adherents “explode” and propagate through a nontrivial proportion of the whole network?

1.2 Description of the model
In honor of Watts (2002), we shall refer to the following as Watts’ Cascade Process. Consider a
simple, undirected network (graph) G= (V, E) where V is the set of nodes (vertices) and E⊆
V ×V the set of edges (links). Assign a threshold ϕx ∈ [0, 1] to each node x ∈V, where the ϕx are
independent and identically distributed (i.i.d.) random variables which remain fixed throughout
the process; in particular, we do not allow the distribution of the threshold ϕx of a node x to depend
on its degree.We will often consider the case where all thresholds are equal, ϕx ≡ ϕ for all x, which
can be considered a random distribution consisting of a point mass at ϕ. At any time, each node
is either in state active (A) or inactive (I). The process is initially “seeded” with some nonempty
set of active nodes, and then any inactive node x becomes active if and only if the proportion of its
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neighbors in the network that are active reaches a level greater than or equal to ϕx. Once a node
becomes active, it is never allowed to deactivate; the order and/or rate at which these activations
are performed are irrelevant for our purposes.

The choice of a model which considers the proportion of active neighbors as the criterion for
activation, and where this proportion is determined independently of the degree of the node, is
a sensible modeling choice for scenarios where each agent (node) only has a finite capacity for
absorbing information, and the more relationships (edges) it has, the less significant each one is.
For example, in terms of adoption of a trend or new technology, a user for whom 4 out of 5 friends
have adopted a particular technology may be more likely to be swayed than one for whom 6 out
of 50 friends have.

Watts’ cascade process is a special case of a class of processes that are sometimes referred to
as (network) “diffusions” (Amini, 2010); it is similar to bootstrap percolation (Adler, 1991) but
differs in that here it is the proportion and not the absolute number of active neighbors that deter-
mines a node’s activation. Gleeson et al. (2010) discuss a large class of network-based dynamical
processes that includes Watts’ model but also other “monotone” processes (where the state of any
node may change at most once throughout the process) such site percolation, bond percolation,
and k-core sizes. More recently, Miller (2016a) shows how, if we allow each node to have its own
threshold (possibly as a function of its degree), then a large class of processes including the gen-
eralized epidemic process, site percolation, bond percolation, bootstrap percolation, and k-core
percolation can all be considered special cases of Watts’ cascade process.

The unifying quantity in these processes is what (Gleeson et al., 2010) call a response function
F(m, k): the probability that a node of degree k will be activated by m active neighbors. For the
narrow version of Watts’ model considered here, we have F(m, k)= C(m/k), where C is the com-
mon cumulative distribution function of the thresholds ϕx (a step function in the case of constant
ϕ). This formulation presents some unique challenges due to the interaction of the response func-
tion and the connectivity of the network—reflected in the fact that F(m, k) depends on k, which is
not the case for bootstrap percolation, for example. The relation between the connectivity of the
network and the propensity for cascade spread is very much nontrivial: on the one hand, more
edges means more opportunities for the cascade to spread; however, the presence of many edges
connected to a given node makes it more resistant to activation from a small number of active
neighbors. Indeed, the most highly connected nodes are, all else being equal, the most resistant to
activation.

For each instance of this process, we define the cascade to be the final set of active nodes once
there no more nodes can be activated. We say that a global cascade occurs if the cascade occupies
an asymptotically nonzero fraction of the whole network, in the limit as the network size n tends
to ∞. A natural question in such a scenario is: for a given class of random networks, what is the
probability of triggering a global cascade starting from a “small” set of randomly chosen initially
active seeds?

1.3 Previous work
Watts’ original work (2002) and many subsequent articles (Galstyan & Cohen, 2007; Gleeson &
Cahalane, 2007) considered cascades on classes of networks that were locally tree-like, in the sense
that, as n→ ∞, for all nodes x, with probability → 1, there is a function ω(n)→ ∞ such that the
induced subgraph consisting of all nodes at distance less than ω(n) from x is a tree. The Molloy–
Reed configuration model networks (Molloy & Reed, 1995), which are built from a specified degree
sequence, form such a class. The process considered in Watts (2002) on locally tree-like networks
involved a single active seed node, which was viewed as the root of its tree-like neighborhood
to determine whether the cascade “exploded” as it spreads down the tree. On the other hand,
Gleeson et al. (2007) considered networks that were still locally tree-like but posited a small but
nonzero fraction ρ0 of initially active nodes and then considered the tree-like neighborhood of
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an arbitrarily chosen node r. In this formulation, nodes at “level ∞” of the tree are indepen-
dently active with probability ρ0, and the probability of r getting activated is the expected cascade
size. Hackett et al. (2011) and Miller (2016b) also considered this process on a class of networks
described independently by Miller (2009) and Newman (2009) which extend the configuration
model to allow a prescribed distribution of triangles as well and thus are not locally tree-like.
Similar techniques are applicable to these “clustered” networks, but the tree-like configuration
must be amended to allow edges between siblings. One can then ask: how does the presence of
clustering (short loops) in the network affect the probability of a single seed triggering a global
cascade?

1.4 Focus of the current work
1.4.1 Single-seed cascades
We focus on the following question: if the cascade process is started with a single uniformly ran-
domly chosen initially active seed r, and we consider a network with a high density of triangles
(described below), what is the probability of triggering a global cascade? This differs from the
analysis in Hackett (2011) and Miller (2016b) in that we (as did Watts) consider the probability
of random extinction of the cascade even in an environment that may be nevertheless “supercrit-
ical” for the spread of a cascade (with a natural interpretation in the context of branching process
theory, which we shall quantify shortly). Previous analyses involved small relative numbers of
seed nodes but a large absolute number of them, for example, in Hackett (2011), their simula-
tions use 100 initially active seeds in a network of size 105, so that the initially active seed fraction
ρ0 = 102/105 = 10−3 is indeed quite small, while the absolute number of seeds is nevertheless
large. If the network is in any way in a “supercritical” state for the emergence of a global cascade,
then the probability that all 100 seeds will independently fail to generate one is essentially 0.

1.4.2 Clustered networks
The networks we consider here are a special case of so-called “stubs-and-corners” networks first
described independently by Miller (2009) and Newman (2009)—this class of networks will be
referred to hereafter asMiller–Newman networks. In this model, a given network with n nodes has
bivariate probability distribution {pst}s,t≥0, where each node is independently assigned s “stubs”
and t “corners” with probability pst . The network is then formed by, uniformly at random, (a)
pairing up the stubs to create single edges, and (b) grouping the corners by threes to create trian-
gles in the network. (One first has to condition on the total number of stubs being even and the
total number of corners being a multiple of three.) The case pst = δt,0ps with no “corners” reduces
to the well-known (locally tree-like) configuration model network of Molloy & Reed (1995); we
will refer to such networks as unclustered. In this paper, we we consider networks with triangles;
in the interest of simplicity, we shall make the same standing assumption as in Miller (2016b):
we only consider pst = δs,0 · pt for some probability distribution {pt}t≥0—that is, no edges that are
not part of a triangle are allowed. Our analysis should be extendable to the case where pst > 0 for
some s> 0, at the cost of making the formulas much messier. Thus, pt is the probability that a
randomly chosen node is part of t triangles, and in particular that it has degree 2t; we shall call
{pt} the triangle distribution of the network and refer to such networks as clustered. We may have
occasion to use the usual degree distribution, which we will denote p̃k := pk/2.

Such networks would be locally tree-like (in the sense defined in Section 1.3) if we were to
disregard the triangles that are inherent to the model, meaning that for any given node r, its
neighborhood can be viewed as a tree structure but where each node has an edge linking it to
one of its siblings (in addition to the edge linking it to its parent). We follow the terminology of
Ikeda et al. (2010) and call this the Random Cactus Layout of the network rooted at r. For the
cactus layout rooted at r, we refer to each linked sibling pair as a Node Pair (NP), and a NP that
consists of two linked children of some node zwill be called aChild Pair (CP) of z. The distribution

https://doi.org/10.1017/nws.2020.33 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2020.33


62 J. K. McSweeney

of the number of CPs of the root r is just the original triangle distribution {pt}, but for a non-root
node v, its CP count is distributed as qt+1 = (t + 1)pt+1/〈t〉, where {qt} := {tpt/〈t〉} is the size-
biased triangle distribution, in which 〈t〉 denotes the mean number of triangles incident to each
node (see Durrett, 2006, for example). The idea behind this size-biased distribution is that the fact
that a node is reached via an edge biases its distribution—higher-degree nodes are likelier to be
reached.

The seed node for the process is used as the root of the random cactus, and we allow the cascade
to percolate down the cactus. The probability that the cascade becomes global is the probability
that the total number of NPs that contain one or two active nodes diverges; in the next section,
we formulate the appropriate branching process so as to obtain a condition for this event. For a
node v in a network, define d(v) to be the degree (number of edges incident to) of v. For a locally
tree-like network with a single initially active seed r, it is clear that, initially, one need only focus
on the nodes which Watts refers to as vulnerable: nodes that can be activated by a single active
neighbor, that is, nodes v where ϕv ≤ 1/d(v). This is because a node can only get activated by a
single node—its parent—in the local tree rooted at r in the early phase of the process. However,
for the random cactus of a network with triangles, a node v where 1/d(v)< ϕv ≤ 2/d(v) might
also be deemed “vulnerable” in some sense: v’s parent may get activated, which may then activate
v’s sibling, and the combined effect of these two will then be enough to activate v. The effect of
such nodes will be illustrated in formulas such as (21) below.

1.5 Final cascade size
The focus of the current work is on the probability that a global cascade is triggered and not the
distribution of its resulting size; however, this quantity is certainly of interest and has been studied.
Miller (2016b) derives an implicit formula for the final cascade size in a tree-like configuration
model network; Hackett et al. (2011) derive a sequence of equations for determining the expected
cascade size in a general Newman–Miller network, both starting from a positive initial fraction of
active nodes ρ0. Their result should apply to the case of a single initially active node studied here
in the limit as ρ → 0, once we condition on the event that the cascade actually occurs; determining
the probability of this event is the focus of this paper.

Conditioned on the event that a global cascade is triggered, the following is a heuristic analysis
of the final cascade size. We expect that any cascade that becomes global will actually spread to
the entire network (or at least the connected component containing the initially active root node
r): nodes that were not initially part of the cascade may now have several neighbors which have
become activated through loops in the network that appear away from the cactus-like neighbor-
hood of r and can now become activated themselves in a “second wave” of activation. To obtain
a final cascade size that is a positive but not total fraction of the largest connected component,
one would likely need one of the following situations: a highly “modular” network, where there
are “bottlenecks” through which the cascade is unable to pass (see Galstyan & Cohen, 2007, for
instance), or for example, a strongly varying distribution of cascade thresholds ϕx, where nodes
with exceptionally high threshold values never activate, but where the network is sufficiently
connected that these “resistant” nodes do not prevent the cascade from spreading through the
lower-threshold nodes. Both of these obstacles to a total cascade are present inMcSweeney (2016),
where the cascade process with variable thresholds is used tomodel the progression of the solution
of a crossword puzzle.

1.6 Limitations of the model
As described in Miller (2016b), while the Miller–Newman networks allow for some prescribed
amount of clustering by introducing triangles, these triangles are not likely to overlap, which may
limit their use in modeling many real-world clustered networks.

https://doi.org/10.1017/nws.2020.33 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2020.33


Network Science 63

0.05 0.10 0.15 0.20 0.25

0.
0

0.
4

0.
8

Clustered vs Unclustered, z=1

Activation Threshold

C
as

ca
de

 P
ro

ba
bi

lit
y

clustered
unclustered

0.05 0.10 0.15 0.20 0.25

0.
0

0.
4

0.
8

Clustered vs Unclustered, z=2

Activation Threshold

C
as

ca
de

 P
ro

ba
bi

lit
y

clustered
unclustered

0.05 0.10 0.15 0.20 0.25

0.
0

0.
4

0.
8

Clustered vs Unclustered, z=3

Activation Threshold

C
as

ca
de

 P
ro

ba
bi

lit
y

clustered
unclustered

0.04 0.06 0.08 0.10 0.12

0.
0

0.
4

0.
8

Clustered vs Unclustered, z=8

Activation Threshold

C
as

ca
de

 P
ro

ba
bi

lit
y

clustered
unclustered

Figure 1. Cascade probability versus activation threshold ϕ for several randomly generated networks. Lines represent the
theoretical cascade probability for clustered networks with Poisson(z) triangle distribution obtained from (20) (solid line),
and configuration model locally tree-like networks with the same degree distribution obtained from (26) (dashed line).
Points are results of simulations on networks of size 10,000 with the given degree distribution, constructed in clustered
(triangles) or unclustered (diamonds) fashion.

Our analysis is also sensitive to finite-size effects. As pointed out byWhitney (2009), for the case
of locally tree-like networks, this tree- (or cactus-) based approach is only valid in the theoretical
n→ ∞ limit, and deviations from the asymptotic theory may appear even for large values of n.
Indeed, we expect the diameter of many random network models to be approximately logarithmic
in the size of the network, and thus for finite networks, loops will appear in a relatively small neigh-
borhood of the root, which may invalidate any analysis based on a tree or cactus approximation.
For example, in a tree-like network, even for seemingly very large networks (of size on the order
of 104), the presence of these loops may activate some nodes which require two active neighbors
to activate, leading to a wider parameter range where cascades may happen; this accounts for the
slight discrepancies between the numerics and the theory in Fig. 1 of Watts (2002), for example.

Gleeson and Cahalane (2007) and Miller (2016b) have also noted that the probability of a
global cascade is sensitively dependent on the initial seed fraction ρ0 near 0, with the second paper
explicitly exhibiting a hybrid phase transition for the final cascade size as a function of the initially
active fraction of nodes. The reason for this complex behavior is similar to that of the finite-size
effects noted by Whitney—some nodes v requiring two active neighbors to activate may acquire
two such neighbors (presumably from different seeds) and will then become active themselves;
this accounts for the presence of C2 in Equation (6) of Gleeson & Cahalane (2007).

2. Model analysis
2.1 Branching process formulation
Using the seed node r as the root of the random cactus, we set up a two-phase, two-type branching
process for the cascade process seeded at r as follows. The units in the branching process will be

https://doi.org/10.1017/nws.2020.33 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2020.33


64 J. K. McSweeney

NPs, that is, linked siblings in the cactus layout rooted at r, and each node has a set of CPs. We
define an NP to be of type i if and only if it consists of i active nodes, for i ∈ {0, 1, 2}; a global
cascade occurs if and only if the sum of the number of Type 1 and 2 NPs diverges, or equivalently,
the total size of the branching process restricted to nodes of Type 1 and 2 is not finite. We call
the branching process two-phase since the CP distribution for the root node is not the same as for
internal nodes in the cactus; this is a common theme in percolation-type analyses on configuration
model networks (see Durrett, 2006, Chapter 3, for instance). What follows is the derivation of the
offspring distributions for the branching process.

Let p1(k, l) denote the distribution of CPs of Types 1 and 2 of the root node,

p1(k, l)= P(root node has k Type-1 and l Type-2 CPs)

and qi(k, l) the distribution of CP types of a NP of type i from generation 1 or greater, for i= 1, 2:

qi(k, l)= P(a NP of type i has k Type-1 CPs and l Type-2 CPs) , i= 1, 2.

(We may safely ignore NPs of Type 0, since none of their descendants in the cactus can ever be
activated in the initial activation phase down the cactus.) Let P1(x, y),Q1(x, y), andQ2(x, y) be the
bivariate generating functions for p1, q1, and q2, respectively:

P1(x, y)=
∑
k,l

p1(k, l)xkyl, Qi(x, y)=
∑
k,l

qi(k, l)xkyl, i= 1, 2

and let Q(x, y)= (Q1(x, y),Q2(x, y)). Let hi(x, y), i= 1, 2 denote the generating function for the
final counts of Type 1 and 2 NPs for a cactus where every generation evolves according to (q1, q2)
(the homogeneous part), starting with a NP of type i:

hi(x, y)=
∑
k,l

P(Cactus seeded with a Type-iNP has k Type-1 and l Type-2 NPs) · xkyl

and letH(x, y) := (h1(x, y), h2(x, y)). We have the relations

h1(x, y)= x
∑
k,l

q1(k, l)h1(x, y)kh2(x, y)l (1)

h2(x, y)= y
∑
k,l

q2(k, l)h1(x, y)kh2(x, y)l (2)

where the factors of x and y in front of the summations are due to the fact that we’re counting the
root. This system (1)–(2) can be more succinctly written as

H(x, y)= (xQ1(H(x, y)), yQ2(H(x, y)))= (x, y)�Q(H(x, y)) (3)

where � denotes element-wise vector multiplication.
Let g1(x, y) denote the generating function for the counts of NPs of types 1 and 2 in the total cac-

tus, where in the first generation the CP counts are p1-distributed, and in subsequent generations
(q1, q2)-distributed—the two-phase branching process. We therefore have

g1(x, y)= x
∑
k,l

p1(k, l)h1(x, y)kh2(x, y)l = xP1(H(x, y)) (4)

The factor of x in front of the sum is due to the fact that we may treat the root node (the only node
in the cactus without a sibling) as a NP of Type 1. Ultimately, we are interested in v := g1(1, 1): the

https://doi.org/10.1017/nws.2020.33 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2020.33


Network Science 65

probability that the set of Type 1 and 2 NPs has finite size, which is the probability that a cascade
started at the root r will not become global. From (4), we have

v := g1(1, 1)= P1(w) (5)

where w :=H(1, 1) is found (in theory) by finding the fixed point of (3), that is, finding w such
that

w=Q(w) (6)

The Equation (6) always has the trivial solution w= (1, 1), sinceQ is a genuine bivariate probabil-
ity generating function; further, basic branching process theory (see e.g. Feller, 1950) tells us that
(6) has a nontrivial solution iff

μ11 ≥ 1, μ22 ≥ 1 or (1− μ11)(1− μ22)≤ μ12μ21 (7)

where

μi1 := ∂Qi(1, 1)
∂x

, μi2 := ∂Qi(1, 1)
∂y

, for i= 1, 2 (8)

We note that μij is the expected number of CPs of type j from a parent of type i. This generalizes
the well-known condition μ ≤ 1 for certain extinction of a 1-type branching process, where μ is
the expected offspring size of an individual. (We shall see in fact that (7) becomes much simplified
in the case we consider.) If a nontrivialw is found (or estimated), it can be plugged into (5) to find
v, yielding a nonzero survival probability for the branching process.

2.2 CP distributions by parent type
Finding formulas for p1(k, l) and qi(k, l) (and thus for their associated generating functions P1(x, y)
andQ(x, y)) is not straightforward, since the state of a node affects its CP distribution, for example,
the fact that a node has been activated indicates that it is likelier to have low degree. We note
here that this issue does not arise for processes such as bootstrap percolation, where the response
function F(m, k) does not depend on the degree k.

We first determine the distribution of the total number of CPs that an NP of a given type has,
regardless of the type of the CPs. Start with Zr , the number of CPs of the root with an active parent.
Since the root is automatically active, the fact that it is active does not affect the distribution of Zr
and so

P(Zr = t)= pt (9)

where {pt}t≥0 is the triangle distribution defined in Section 1.4.2. For further generations, let Ca
denote the number of CPs of a node a at a level n≥ 1 (without any conditioning on types); as
mentioned in Section 1.4.2, Ca has the size-biased distribution {qt},

P(Ca = t)= qt+1 = (t + 1)pt+1/〈t〉
Unless stated otherwise, from this point forward, we shall only consider uniform thresholds ϕx ≡
ϕ for all x; the randomness in the process is therefore entirely due to the network topology and
the choice of the seed node. Define Fm(t) := F(m, 2t) to be the probability that a node that is a
member of t triangles (i.e. has degree 2t) can be activated bym active neighbors. We define a node
x to be i-vulnerable if and only if i active neighbors are sufficient to activate it, that is, ϕx ≤ i/d(x).

Let α be the probability that a node a in the cactus is 1-vulnerable; β , the probability that it is
2- but not 1-vulnerable; and γ := 1− α − β the probability that it is not 2-vulnerable. Bearing in
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mind that a node a with Ca CPs in the cactus has total degree 2(Ca + 1) (two for each of its CPs,
one for its parent and one for its sibling), we have the following expressions for α, β , and γ :

α = P
(
Ca + 1≤ 1

2ϕ

)
= 1

〈t〉
1/(2ϕ)∑
t=1

tpt = 〈tF1〉/〈t〉 (10)

β = P
(

1
2ϕ

< Ca + 1≤ 1
ϕ

)
= 1

〈t〉
1/ϕ∑

t=1/(2ϕ)
tpt = 〈t(F2 − F1)〉/〈t〉 (11)

γ = P
(
1
ϕ

< Ca + 1
)

= 1
〈t〉

∞∑
t=1/ϕ

tpt = 〈(1− F2)〉/〈t〉 (12)

Note: To avoid ambiguities in the range of the above summations, we may assume throughout
that ϕ is irrational.

Let Z1 and Z2 denote the numbers of CPs of a Type 1 NP and a Type 2 NP, respectively which
have an active parent, for generations n≥ 1, and let r1(k) and r2(k) denote their distributions, that
is, P(Zi = k)= ri(k). Consider a Type 1 NP (a, b) where a is active and b is inactive; this implies
that awas activated from its parent only and is thus 1-vulnerable (i.e. ϕ < 1/d(a)), but b is not even
2-vulnerable (since the activation of its parent and its sibling a still are not sufficient to activate
it). In this case, {r1(t)}t≥0 is then just the distribution of the number of CPs of a under the above
condition,

r1(t)= P(Z1 = t)= P
(
Ca = t

∣∣a is active and b is inactive
)

= P
(
Ca = t

∣∣∣∣ 1
2(Ca + 1)

> ϕ

)

= P(Ca = t)
α

, t = 0, 1, 2, . . . , �1/(2ϕ)− 1

= (t + 1)pt+1
〈tF1〉 , t = 0, 1, 2, . . . , �1/(2ϕ)− 1 (13)

and the mean of Z1 is

E[Z1]= 〈(t − 1)tF1〉
〈tF1〉 (14)

For Z2, we must sum the CP counts of each active node in the pair, but these counts are depen-
dent. For both nodes (a, b) in an NP to be active, exactly one of the following (disjoint) events
must hold

1. a was 1-vulnerable and b was 2-vulnerable (in which case b may have needed both its
parent and a to activate);

2. b was 1-vulnerable and a was 2- but not 1-vulnerable.

Call these events

D1 := {Ca + 1< 1/(2ϕ)} ∩ {Cb + 1< 2/(2ϕ)},
D2 := {1/(2ϕ)< Ca + 1< 2/(2ϕ)} ∩ {Cb + 1< 1/(2ϕ)} (15)
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and let D :=D1 ∪D2. Note that P(D1)= α2 + αβ and P(D2)= αβ . We have

r2(t)= P(Ca +Cb = t|D1 ∪D2)= 1
P(D)

(P(Ca + Cb = t,D1)+ P(Ca + Cb = t,D2))

= 1
α2 + 2αβ

⎛
⎜⎜⎜⎜⎝

∑
t1,t2:t1+t2=t,
t1<1/(2ϕ)−1
t2<1/ϕ−1

qt1+1qt2+1 +
∑

t1,t2:t1+t2=t,
1/(2ϕ)<t1<1/ϕ−1

t2<1/(2ϕ)−1

qt1+1qt2+1

⎞
⎟⎟⎟⎟⎠ (16)

and
E[Z2]= E[Ca + Cb|D1 ∪D2]

= 1
P(D)

[
E[Ca + Cb|D1]P(D1)+ E[Ca + Cb|D2]P(D2)

]

= 1
P(D)

[
E[Ca|D1]P(D1)+ E[Cb|D1]P(D1)+ E[Ca|D2]P(D2)+ E[Cb|D2]P(D2)

]
Let

ε1 := E[C | 2(C + 1)≥ 1/ϕ] and ε2 := E[C | 1/ϕ < 2(C + 1)≤ 2/ϕ]
that is, εi is the expected number of CPs of a node that is i- but not (i− 1)-vulnerable. This reduces
the above to

E[Z2]= 1
α2 + 2αβ

[(2ε1 + ε2)(α2 + αβ)+ αβ(ε1 + ε2)]

which can be expressed in terms of the triangle distribution {pt} as

E[Z2]= 2〈tF1〉
〈t〉2

[
〈t(t − 1)F1〉 + 〈t(F2 − F1)〉

( 〈t(t − 1)F1〉
〈tF1〉 + 〈t(t − 1)F2〉

〈tF2〉
)]

(17)

2.3 Transitional distributions
Let πi, i= 0, 1, 2, denote the probability that a CP of an active node is of type i (i.e. has i active
children); once we condition on the state of the parent being active (whether it is the root, in an
active/inactive or an active/active pair), the states of its CPs are independent. In particular, the
active-parent CP counts of an NP of type i, (Yi0, Yi1, Yi2), conditioned on its total number of CPs
Zi, are multinomially distributed with parameters (Zi, π0, π1, π2), for i= r, 1, 2.

To find πi, let Ca and Cb be independent random variables with the size-biased triangle distri-
bution {qt} and recall that a node inside the tree with C CPs has degree 2C + 2 (since the parent
and the linked sibling also count toward the degree). Recalling the definitions of α and β from
(10) and (11), and noting that π2 is just P(D) for the event D defined in (15), we have

π1 = 2α(1− α − β), π2 = α2 + 2αβ , π0 = 1− π1 − π2

or

π1 = 2
〈t〉2

⎛
⎝1/(2ϕ)∑

tpt

⎞
⎠

⎛
⎝∑

1/ϕ
tpt

⎞
⎠ = 2〈tF1〉〈t(1− F2)〉

〈t〉2 (18)

π2 = 1
〈t〉2

⎡
⎣( 1/(2ϕ)∑

tpt
)2

+ 2
( 1/(2ϕ)∑

tpt
)( 1/ϕ∑

1/(2ϕ)
tpt

)⎤
⎦ = 〈tF1〉2 + 2〈tF − 1〉〈t(F2 − F1)〉

〈t〉2 (19)
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Using the distributions pt , r1(t), r2(t) for Zr , Z1, Z2 (found above in (9), (13), and (16)), we have
the following:

• Distribution by type of CPs in generation 1 (the root is generation 0)

p1(k, l)=
∑
t

pt
(

t
k, l, t − k− l

)
πk
1π

l
2(1− π1 − π2)t−k−l

• Distribution by type of active-parent CPs of an i-type pair (i= 1, 2) in generation 2 and above

qi(k, l)=
∑
t

ri(t)
(

t
k, l, t − k− l

)
πk
1π l

2(1− π1 − π2)t−k−l

where each of these sums implicitly includes the restriction k+ l ≤ t.
Defining Ri(z) := ∑

t ri(t)zt to be the generating functions for ri(t) defined in (13) and (16), we
have

Qi(x, y)=
∑
k,l

qi(k, l)xkyl

=
∑
k,l

∑
t

ri(t)
(

t
k, l, t − k− l

)
πk
1π

l
2(1− π1 − π2)t−k−lxkyl

=
∑
t

ri(t)
∑
k,l

(
t

k, l, t − k− l

)
(xπ1)k(yπ2)l(1− π1 − π2)t−k−l

=
∑
t

ri(t)(xπ1 + yπ2 + 1− π1 − π2)t

= Ri((x − 1)π1 + (y− 1)π2 + 1)
and similarly

P1(x, y)= �((x − 1)π1 + (y− 1)π2 + 1)
where �(x)= ∑

ptxt is the generating function for the triangle distribution {pt}. Recall that the
expressions for the πi are given in (18) and (19). As noted in (5) and (6), the probability of a global
cascade will be

1− P1(w) where w satisfies w=Qw (20)

2.4 Global cascade threshold
To determine whether a global cascade happens with positive probability from a single active seed,
without having to explicitly calculate the probability via (20), wemay refer back to (8), which yields

μij = πjR′
i(1)= πjE[Zi]

This allows us to recast the cascade condition (7) in the simpler form
π1E[Z1]+ π2E[Z2]> 1

In Section 2.5, we use the formulas for E[Zi] and πi in (14), (17), (18), and (19) to show that this
condition simplifies to

2
〈t〉

[
1− 〈tF1〉

〈t〉
][

〈t(t − 1)F1〉 + 〈t(t − 1)F2〉〈tF1〉
〈t〉 − 〈tF1〉

]
> 1 (21)

This recovers (in a totally different manner) the global cascade condition (13) from Hackett
et al. (2011), our special case where all edges in the network are members of triangles; networks
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with single edges as well as triangles were considered in Hackett et al. (2011). This condition is
also equivalent to one found in Miller (2016b) who, as we did here, only considered networks
with triangles but over a more general class of processes than just the Watts cascade process
considered here.

Even though the results in Hackett et al. (2011) and Miller (2016b) are applied to the case of
“vanishingly small” initial seed proportion ρ0, they are not directly applicable to the case where
there is a single (or uniformly bounded) number of seeds: an expected cascade proportion of 1,
such as in Fig. 4 of Hackett et al. (2011), for instance, is clearly not realistic—even in a regime that
is supercritical for the spread of cascades, there will be some that die out quickly by chance (for
instance, if the seed node is not even in the giant component) and drive the expected cascade size
down below 1. Rather, a sufficiently large absolute number of seeds will almost certainly ensure
that a cascade will occur in environments that are supercritical for the spread of cascades (and even
in some environments that are not—this is the thrust of the analysis is Section II B. of Hackett et al.
2011).

To explicitly check (21) for a specific case, consider a network whose triangle distribution {pt}
is Poisson with mean λ = 3, that is, pt = e−33t/t!, and hence the average degree of the network
is 6. To illustrate the effect of the clustering, we shall consider threshold values of ϕ = 0.19 and
ϕ = 0.21, which yield the following values for the left-hand side of (21):

ϕ = 0.19:
2
〈t〉

[
1− 〈tF1〉

〈t〉
][

〈t(t − 1)F1〉 + 〈t(t − 1)F2〉〈tF1〉
〈t〉 − 〈tF1〉

]
= 6e−3 + 288e−6 ·= 1.013> 1

(22)

ϕ = 0.21:
2
〈t〉

[
1− 〈tF1〉

〈t〉
][

〈t(t − 1)F1〉 + 〈t(t − 1)F2〉〈tF1〉
〈t〉 − 〈tF1〉

]
= 6e−3 + 276e−6 ·= 0.983< 1

(23)
Therefore, for this class of random networks, global cascades are possible when ϕ = 0.19 but not
when ϕ = 0.21. Since all of the nodes in the networks we consider necessarily have even degree,
the qualitative change across the threshold ϕ∗ = 1

5 cannot be due to the presence of nodes of
degree 5 that are being activated by one active neighbor (there are no nodes of degree 5); rather,
the differencemust involve nodes of degree 10 being activated by two active neighbors (the parent
and the sibling in the cactus). In a locally tree-like network with all edges of even degree, we would
not see any change across threshold values of 1/k for k odd—this distinction is discussed further
in Section 2.6.

2.5 Agreement with the condition from Hackett et al.
In this section, we flesh out the details of how our cascade condition (21) is equivalent to the
condition in Equation (13) of Hackett et al. (2011).

Recall the definitions of πj and Zi from Sections 2.2 and 2.3, respectively. μij = πjE[Zi] means
that the condition (7) becomes the much simpler

(1− π1E[Z1])(1− π2E[Z2])< π1E[Z2]π2E[Z1] ⇔ π1E[Z1]+ π2E[Z2]> 1 (24)

We have

E[Z1]= ε1, E[Z2]= 2α
α2 + 2αβ

[ε1(α + β)+ ε2β]

where εi is the expected number of CPs of an i-vulnerable node; in particular,

ε1 = 〈t(t − 1)F1〉
〈tF1〉 , and ε2 = 〈t(t − 1)(F2 − F1)〉

〈t(F2 − F1)〉
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Combined with the previously found expressions for πi, we have

π1E[Z1]+ π2E[Z2]= 2α(1− α − β)ε1 + 2α(ε1(α + β)+ ε2β)= 2α(ε1 + ε2β)

which, using the expressions for α, β , ε1, ε2 simplifies to

π1E[Z1]+ π2E[Z2]= 2
〈t〉 [〈t〉〈t(t − 1)F1〉 + 〈t(t − 1)(F2 − F1)〉] (25)

In light of (25), our condition (24) is thus equivalent to Equation (13) in Hackett et al. (2011),
suitably modified to the case of pst = δs,0pt .

2.6 Comparison with unclustered networks, simulations
Watts (2002) defines the extended vulnerable cluster for locally tree-like networks to be the set
of nodes that are adjacent to a large connected component of vulnerable nodes. The nodes in
the extended vulnerable cluster are therefore nodes that, if chosen as the activated seed node,
would trigger a global cascade; thus, the relative size of this extended vulnerable cluster is the
same as the probability that a single, uniformly randomly chosen seed will trigger a global
cascade. In Appendix A of Gleeson (2008), Gleeson determines analytically the relative size
of the extended vulnerable cluster via the following (in Watts, 2002, this quantity was found
numerically). Equation (A5) from Gleeson (2008) is

Se =
∞∑
k=0

p̃k[1− (1− q∞)k] (26)

where Se is the relative size of the extended vulnerable c luster, and q∞ is the probability that a
node reached via an edge in the network is vulnerable. q∞ is found as the steady-state value of the
recursion

qn+1 =
∞∑
k=1

k
z
p̃k[1− (1− qn)k−1]F(1, k)

where z = 〈k〉 is the mean of the network’s degree distribution.
In Figure 1, we display the cascade probability as a function of the (constant) threshold

values for two networks with the same degree distributions, but where one is clustered and
has Poisson(z) triangle distribution pt = e−zzt/t!, t = 0, 1, 2, . . . , and the other is a classical
Molloy–Reed configuration model network (thus is locally tree-like) with the same degree dis-
tribution p̃k = e−zzk/2/(k/2)!, k= 0, 2, 4, . . . . We shall refer to these networks as “clustered” and
“unclustered”, respectively; we perform this comparison for the values of z = 1, 2, 3, and 8.

The lines represent numerical evaluation of the cascade probabilities for the clustered network
(solid line) using (20) and for the unclustered network (dashed line) using (26). Symbols repre-
sent proportions of cascades that become global, based on 200 simulations on networks of 104
nodes with independently chosen seeds, for clustered (triangle) and unclustered (diamond) net-
works. Note that the agreement between the simulation results and the theoretical prediction is
not always sharp, but this is to be expected: as discussed in Whitney (2009), simulation results
regularly overestimate the cascade probability, since for large but finite networks, the tree or cactus
approximation ceases to be valid in a relatively small neighborhood of the root, and the result-
ing loops allow cascades to take hold where they otherwise might not in a “pure” tree or cactus
structure.

Note that when the threshold ϕ is low, the only impediment to a global cascade is the event that
the seed is not in the graph’s giant component; the case of z = 1 illustrates that the unclustered net-
work has a slightly larger giant component, presumably due to the absence of “redundant” edges
that form triangles in the clustered network. However, for larger threshold values, cascades tend
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to be likelier in the clustered network, due to the involvement of 2-vulnerable nodes. In the case
z = 3, note the transition from nonzero to zero cascade probability around the threshold value
ϕ = 0.20 for the clustered network, which is consistent with the conclusions from (22) and (23).
We also note that the jumps in the graph for the unclustered network are only at reciprocals of
even integers, 1/(2k), k= 1, 2, . . . , since these are the thresholds at which a new group of nodes
becomes 1-vulnerable (recall that all degrees in both networks are even). For the clustered net-
work, since 2-vulnerability is important even in the initial spread of the cascade, we expect values
of the form 2/(2k)= 1/k to be important thresholds for ϕ as well; this is why we observe jumps
at values of 1/k for k odd in the clustered network but not in the unclustered one. These results
are also consistent with the evidence from Ikeda et al. (2010)—there, the authors found a window
where cascades are rare in the clustered networks but nonexistent in unclustered networks.

3. Extensions and conclusions
We analyzedWatts’ cascade process started with a single active seed on configuration model-type
networks with a high density of triangles. Extending Watts’ (2002) work, we formulated a two-
type branching process to describe the initial spread of the cascade in the limit as the network
size n→ ∞ and provided a fixed-point equation whose solution leads to the extinction proba-
bility. By numerically comparing the survival probabilities for these networks versus those for
an unclustered network with the same degree distribution, we find that (i) for smaller values of
the activation threshold ϕ, the clustering decreases the global cascade probability since the clus-
tered network is likely to have a smaller giant component, but (ii) for larger values of ϕ, clustering
increases this probability, since the presence of triangles allows the involvement of more “resis-
tant” nodes—ones that may require two active neighbors to activate. These nodes will in turn have
higher degree than those that require only one neighbor to activate, which compounds the effects
of the triangles.

The formulas obtained here will still be valid in the case where the thresholds ϕ are not all equal
but instead have a nondegenerate random distribution with cumulative distribution function F:
instead of truncating sums at 1

2ϕ or 1
ϕ
, we merely multiply terms by Fi(t), for i= 1, 2. For the

full range of Miller–Newman networks (which allow single edges that are not part of triangles), it
would be feasible in principle to perform a similar analysis. It would however require considering
a 3-type branching process (CPs in states active/active, active/inactive, but also single active chil-
dren); in the interest of clarity of presentation, we have not analyzed this case. It might however be
instructive to do so, in order to be able to interpolate smoothly between locally tree-like networks
and the highly clustered networks considered here.
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