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Abstract

We introduce novel mathematical models and algorithms to generate (shortest or k different)

explanations for biomedical queries, using answer set programming. We implement these

algorithms and integrate them in BioQuery-ASP. We illustrate the usefulness of these

methods with some complex biomedical queries related to drug discovery, over the biomedical

knowledge resources PharmGKB, DrugBank, BioGRID, CTD, SIDER, Disease Ontology,

and Orphadata.
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1 Introduction

Recent advances in health and life sciences have led to generation of a large amount

of biomedical data, represented in various biomedical databases or ontologies.

That these databases and ontologies are represented in different formats and

constructed/maintained independently from each other at different locations, have

brought about many challenges for answering complex biomedical queries that

require integration of knowledge represented in these ontologies and databases. One

of the challenges for the users is to be able to represent such a biomedical query in a

natural language, and get its answers in an understandable form. Another challenge

is to extract relevant knowledge from different knowledge resources, and integrate

them appropriately using also definitions, such as, chains of gene–gene interactions,

cliques of genes based on gene–gene relations, or similarity/diversity of genes/drugs.

Furthermore, once an answer is found for a complex query, the experts may need

further explanations about the answer.

Table 1 displays a list of complex biomedical queries that are important from

the point of view of drug discovery. In the queries, drug–drug interactions present

negative interactions among drugs, and gene–gene interactions present both negative

and positive interactions among genes. Consider, for instance, the query Q6. New

molecule synthesis by changing substitutes of parent compound may lead to different

biochemical and physiological effects; and each trial may lead to different indications.

Such studies are important for fast inventions of new molecules. For example, while
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Table 1. A list of complex biomedical queries

Q1 What are the drugs that treat the disease Asthma and that target the gene ADRB1?

Q2 What are the side effects of the drugs that treat the disease Asthma and that target

the gene ADRB1?

Q3 What are the genes that are targeted by the drug Epinephrine and that interact

with the gene DLG4?

Q4 What are the genes that interact with at least three genes and that are targeted by

the drug Epinephrine?

Q5 What are the drugs that treat the disease Asthma or that react with the drug

Epinephrine?

Q6 What are the genes that are targeted by all the drugs that belong to the category

Hmg-coa reductase inhibitors?

Q7 What are the cliques of five genes, that contain the gene DLG4?

Q8 What are the genes that are related to the gene ADRB1 via a gene–gene interaction

chain of length at most 3?

Q9 What are the three most similar genes that are targeted by the drug Epinephrine?

Q10 What are the genes that are related to the gene DLG4 via a gene–gene interaction

chain of length at most 3 and that are targeted by the drugs that belong to the

category Hmg-coa reductase inhibitors?

Q11 What are the drugs that treat the disease Depression and that do not target

the gene ACYP1?

Q12 What are the symptoms of diseases that are treated by the drug Triadimefon?

Q13 What are the three most similar drugs that target the gene DLG4?

Q14 What are the three closest drugs to the drug Epinephrine?

developing the drug Lovastatin (a member of the drug class of Hmg-coa reductase

inhibitors, used for lowering cholesterol) from Aspergillus terreus (a sort of fungus)

in 1979, scientists at Merck derived a new molecule named Simvastatin that also

belongs to the same drug category (a hypolipidemic drug used to control elevated

cholesterol) targeting the same gene. Therefore, identifying genes targeted by a group

of drugs automatically by means of queries like Q6 may be useful for experts.

Once an answer to a query is found, the experts may ask for an explanation to

have a better understanding. For instance, an answer for the query Q3 in Table 1 is

“ADRB1.” A shortest explanation for this answer is as follows:

The drug Epinephrine targets the gene ADRB1 according to CTD.

The gene DLG4 interacts with the gene ADRB1 according to BioGRID.

An answer for the query Q8 is “CASK.” A shortest explanation for this answer is

as follows:

The distance of the gene CASK from the start gene is 2.

The gene CASK interacts with the gene DLG4 according to BioGRID.

The distance of the gene DLG4 from the start gene is 1.

The gene DLG4 interacts with the gene ADRB1 according to BioGRID.

ADRB1 is the start gene.

(Statements with more indentations provide explanations for statements with less

indentations.)
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To address the first two challenges described above (i.e., representing complex

queries in natural language and finding answers to queries efficiently), novel methods

and a software system, called BioQuery-ASP (Erdem et al. 2011) (Fig. 1), have been

developed using answer set programming (ASP) (Marek and Truszczyński 1999;

Niemelä 1999; Lifschitz 2002; Baral 2003; Lifschitz 2008; Brewka et al. 2011):

• Erdem and Yeniterzi (2009) developed a controlled natural language,

BioQuery-CNL, for expressing biomedical queries related to drug discovery.

For instance, queries Q1–Q10 in Table 1 are in this language. Recently, this

language has been extended (called BioQuery-CNL*) to cover queries Q11–

Q13 (Oztok 2012). Some algorithms have been introduced to translate a given

query in BioQuery-CNL (respectively BioQuery-CNL*) to a program in ASP

as well.

• Bodenreider et al. (2008) introduced methods to extract biomedical information

from various knowledge resources and integrate them by a rule layer. This

rule layer not only integrates those knowledge resources but also provides

definitions of auxiliary concepts.

• Erdem et al. (2011) have introduced an algorithm for query answering by

identifying the relevant parts of the rule layer and the knowledge resources

with respect to a given query.

The details of representing biomedical queries in natural language and answering

them using ASP are explained in a companion article. The focus of this article is

the last challenge: generating explanations for biomedical queries.

Most of the existing biomedical querying systems (e.g., web services built over

the available knowledge resources) support keyword search but not complex queries

like the queries in Table 1. None of the existing systems can provide informative

explanations about the answers, but point to related web pages of the knowledge

resources available online.

The contributions of this article can be summarized as follows.

• We have formally defined “explanations” in ASP, utilizing properties of

programs and graphs. We have also defined variations of explanations, such

as “shortest explanations” and “k different explanations.”

• We have introduced novel generic algorithms to generate explanations for

biomedical queries. These algorithms can compute shortest or k different

explanations. We have analyzed the termination, soundness, and complexity

of those algorithms.

• We have developed a computational tool, called ExpGen-ASP, that implements

these explanation generation algorithms.

• We have showed the applicability of our methods to generate explanations for

answers of complex biomedical queries related to drug discovery.

• We have embedded ExpGen-ASP into BioQuery-ASP so that the experts can

obtain explanations regarding the answers of biomedical queries, in a natural

language.

The rest of the article is organized as follows. In Section 2, we provide a summary

of ASP. Next, in Section 3, we give an overview of BioQuery-ASP, in particular
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the earlier work done on answering biomedical queries in ASP. Then, in Sections 4–

6, we provide some definitions and algorithms related to generating shortest or

k different explanations for an answer, also in ASP. Next, Section 7 illustrates

the usefulness of these algorithms on some complex queries over the biomedical

knowledge resources PharmGKB (McDonagh et al. 2011)1, DrugBank (Knox et al.

2010)2, BioGRID (Stark et al. 2006)3, CTD (Davis et al. 2011)4, SIDER (Kuhn et al.

2010)5, Disease Ontology (Schriml et al. 2012)6, and Orphadata
7. In Sections 8

and 9, we discuss how to present explanations to the user in a natural language,

and embedding of these algorithms in BioQuery-ASP. In Section 10, we provide

a detailed analysis of the related work on “justifications” (Pontelli et al. 2009) in

comparison to explanations; and in Section 11, we briefly discuss other related work.

We conclude in Section 12 by summarizing our contributions and pointing out some

possible future work. Proofs are provided in the online Appendix of the article.

2 Answer set programming

ASP (Marek and Truszczyński 1999; Niemelä 1999; Lifschitz 2002; Baral 2003;

Lifschitz 2008; Brewka et al. 2011) is a form of declarative programming paradigm

oriented towards solving combinatorial search problems as well as knowledge-

intensive problems. The idea is to represent a problem as a “program” whose

models (called “answer sets” (Gelfond and Lifschitz 1988; Gelfond and Lifschitz

1991)) correspond to the solutions. The answer sets for the given program can then

be computed by special implemented systems called answer set solvers. ASP has

a high-level representation language that allows recursive definitions, aggregates,

weight constraints, optimization statements, and default negation.

ASP also provides efficient solvers, such as clasp (Gebser et al. 2007). Due to the

continuous improvement of the ASP solvers and highly expressive representation

language of ASP that is supported by a strong theoretical background that results

from years of intensive research, ASP has been applied fruitfully to a wide range of

areas. Here are, for instance, three applications of ASP used in industry:

• Decision Support Systems: An ASP-based system was developed to help flight

controllers of space shuttle solve some planning and diagnostic tasks (Nogueira

et al. 2001) (used by United Space Alliance).

• Automated Product Configuration: A web-based commercial system uses an

ASP-based product configuration technology (Tiihonen et al. 2003) (used by

Variantum Oy).

1 http://www.pharmgkb.org/
2 http://www.drugbank.ca/
3 http://thebiogrid.org/
4 http://ctd.mdibl.org/
5 http://sideeffects.embl.de/
6 http://disease-ontology.org
7 http://www.orphadata.org
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• Workforce Management: An ASP-based system is developed to build teams

of employees to handle incoming ships by taking into account a variety of

requirements, e.g., skills, fairness, regulations (Ricca et al. 2012) (used by Gioia

Tauro seaport).

Let us briefly explain the syntax and semantics of ASP programs and describe

how a computational problem can be solved in ASP.

2.1 Programs

Syntax The input language of ASP programs is composed of three sets namely

constant symbols, predicate symbols, and variable symbols, where intersection of

constant symbols and variable symbols is empty. The basic elements of the ASP

programs are atoms. An atom p(�t) is composed of a predicate symbol p and terms
�t = t1, . . . , tk where each ti (1 � i � k) is either a constant or a variable. A literal is

either an atom p(�t) or its negated form not p(�t).

An ASP program is a finite set of rules of the form:

A← A1, . . . , Ak, not Ak+1, . . . , not Am (1)

where m � k � 0 and each Ai is an atom, whereas A is an atom or ⊥.

For a rule r of the form (1), A is called the head of the rule and denoted by H(r).

The conjunction of the literals A1, . . . , Ak, not Ak+1, . . . , not Am is called the body of

r. The set {A1, ..., Ak} of atoms (called the positive part of the body) is denoted

by B+(r), and the set {Ak+1, ..., Am} of atoms (called the negative part of the body) is

denoted by B−(r), and all the atoms in the body are denoted by B(r) = B+(r)∪B−(r).

We say that a rule r is a fact if B(r) = ∅, and we usually omit the ← sign.

Furthermore, we say that a rule r is a constraint if the head of r is ⊥, and we usually

omit the ⊥ sign.

Semantics (Answer Sets) Answer sets of a program are defined over ground programs.

We call an atom, rule, or program ground, if it does not contain any variables. Given a

program Π, the setUΠ represents all the constants in Π, and the setBΠ represents all

the ground atoms that can be constructed from atoms in Π with constants in UΠ.

Also, Ground(Π) denotes the set of all the ground rules that are obtained by

substituting all variables in rules with the set of all possible constants in UΠ.

A subset I of BΠ is called an interpretation for Π. A ground atom p is true

with respect to an interpretation I if p ∈ I; otherwise, it is false. Similarly, a set S

of atoms is true (respectively, false) with respect to I if each atom p ∈ S is true

(respectively, false) with respect to I . An interpretation I satisfies a ground rule r, if

H(r) is true with respect to I whenever B+(r) is true and B−(r) is false with respect

to I . An interpretation I is called a model of a program Π if it satisfies all the rules

in Π.

The reduct ΠI of a program Π with respect to an interpretation I is defined as

follows:

ΠI = {H(r)← B+(r) | r ∈ Ground(Π) s.t. I ∩ B−(r) = ∅}.

https://doi.org/10.1017/S1471068413000598 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000598


40 E. Erdem and U. Oztok

An interpretation I is an answer set for a program Π, if it is a subset-minimal

model for ΠI , and AS(Π) denotes the set of all the answer sets of a program Π.

For example, consider the following program Π1:

p← not q (2)

and take an interpretation I = {p}. The reduct ΠI
1 is as follows:

p. (3)

The interpretation I is a model of the reduct (3). Let us take a strict subset I ′ of I ,

which is ∅. Then, the reduct ΠI ′

1 is again equal to (3); however, I ′ does not satisfy (3).

Therefore, I = {p} is a subset-minimal model; hence an answer set of Π1. Note also

that {p} is the only answer set of Π.

2.2 Generate-and-test representation methodology with special ASP constructs

The idea of ASP (Lifschitz 2008) is to represent a computational problem as a

program whose answer sets correspond to the solutions of the problem, and to find

the answer sets for that program using an answer set solver.

When we represent a problem in ASP, two kinds of rules play an important role:

those that “generate” many answer sets corresponding to “possible solutions,” and

those that can be used to “eliminate” the answer sets that do not correspond to

solutions. The rules

p← not q

q ← not p
(4)

are of the former kind: they generate the answer sets {p} and {q}. Constraints are

of the latter kind. For instance, adding the constraint

← p

to program (4) eliminates the answer sets for the program that contain p.

In ASP, we use special constructs of the form

{A1, . . . , An}c (5)

(called choice expressions), and of the form

l � {A1, . . . , Am} � u (6)

(called cardinality expressions) where each Ai is an atom and l and u are nonnegative

integers denoting the “lower bound” and the “upper bound” (Simons et al. 2002).

Programs using these constructs can be viewed as abbreviations for normal nested

programs defined in Ferraris and Lifschitz (2005). Expression (5) describes subsets

of {A1, . . . , An}. Such expressions can be used in heads of rules to generate many

answer sets. For instance, the answer sets for the program

{p, q, r}c ← (7)

are arbitrary subsets of {p, q, r}. Expression (6) describes the subsets of the set

{A1, . . . , Am} whose cardinalities are at least l and at most u. Such expressions can be

used in constraints to eliminate some answer sets. For instance, adding the constraint
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← 2 � {p, q, r}
to program (7) eliminates the answer sets for (7) whose cardinalities are at least 2.

We abbreviate the rules

{A1, . . . , Am}c ← Body

← not (l � {A1, . . . , Am})
← not ({A1, . . . , Am} � u)

by the rule

l � {A1, . . . , Am}c � u← Body .

In ASP, there are also special constructs that are useful for optimization problems.

For instance, to compute answer sets that contain the maximum number of elements

from the set {A1, . . . , Am}, we can use the following optimization statement:

maximize〈{A1, . . . , Am}〉.

2.3 Presenting programs to answer set solvers

Once we represent a computational problem as a program whose answer sets

correspond to the solutions of the problem, we can use an answer set solver to

compute the solutions of the problem. To present a program to an answer set solver,

like clasp, we need to make some syntactic modifications.

Recall that answer sets for a program are defined over ground programs.

Thus, the input of ASP solvers should be ground instantiations of the programs.

For that, programs go through a “grounding” phase in which variables in the

program (if exists) are substituted by constants. For clasp, we use the “grounder”

gringo (Gebser et al. 2011).

Although the syntax of the input language of gringo is somewhat more restricted

than the class of programs defined above, it provides a number of useful special

constructs. For instance, the head of a rule can be an expression of one of the forms

{A1, . . . , An}c
l � {A1, . . . , An}c
{A1, . . . , An}c � u

l � {A1, . . . , An}c � u

but the superscript c and the sign � are dropped. The body can also contain

cardinality expressions but the sign � is dropped. In the input language of gringo,

:- stands for ←, and each rule is followed by a period. For facts ← is dropped. For

instance, the rule

1 � {p, q, r}c � 1←
can be presented to gringo as follows:

1{p,q,r}1.

Variables in a program are represented by strings whose initial letters are

capitalized. The constants and predicate symbols, on the other hand, start with
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a lowercase letter. For instance, the program Πn

pi ← not pi+1 (1 � i � n)

can be presented to gringo as follows:

index(1..n).

p(I) :- not p(I+1), index(I).

Here, the auxiliary predicate index is a “domain predicate” used to describe the

ranges of variables. Variables can be also used “locally” to describe the list of

formulas. For instance, the rule

1 � {p1, . . . , pn} � 1

can be expressed in gringo as follows

index(1..n).

1{p(I) : index(I)}1.

3 Answering biomedical queries

We have earlier developed the software system BioQuery-ASP (Erdem et al. 2011)

(see Fig. 1) to answer complex queries that require appropriate integration of

relevant knowledge from different knowledge resources and auxiliary definitions

such as chains of drug–drug interactions, cliques of genes based on gene–gene

relations, or similar/diverse genes. As depicted in Figure 1, BioQuery-ASP takes a

query in a controlled natural language and transforms it into ASP. Meanwhile, it

extracts knowledge from biomedical databases and ontologies, and integrates them

in ASP. Afterwards, it computes an answer to the given query using an ASP solver.

Let us give an example to illustrate these stages; the details of representing

biomedical queries in natural language and answering them using ASP are explained

in a companion article though.

First of all, let us mention that knowledge related to drug discovery is extracted

from the biomedical databases/ontologies and represented in ASP. If the biomedical

ontology is in RDF(S)/OWL, then we can extract such knowledge using the ASP

solver dlvhex (Eiter et al. 2006) by making use of external predicates. For instance,

consider as an external theory a Drug Ontology described in RDF. All triples from

this theory can be exported using the external predicate &rdf:

triple_drug(X,Y,Z) :- &rdf["URI for Drug Ontology"](X,Y,Z).

Then the names of drugs can be extracted by dlvhex using the rule:

drug_name(A) :- triple_drug(_,"drugproperties:name",A).

Some knowledge resources are provided as relational databases, or more often as

a set of triples (probably extracted from ontologies in RDF). In such cases, we use

short scripts to transform the relations into ASP.

To relate the knowledge extracted from the biomedical databases or ontologies

and also provide auxiliary definitions, a rule layer is constructed in ASP. For instance,
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Fig. 1. System overview of BioQuery-ASP.

drugs targeting genes are described by the relation drug gene defined in the rule

layer as follows:

drug_gene(D,G) :- drug_gene_pharmgkb(D,G).

drug_gene(D,G) :- drug_gene_ctd(D,G).

where drug gene pharmgkb and drug gene ctd are relations for extracting knowl-

edge from relevant knowledge resources. The auxiliary concept of reachability of a

gene from another gene by means of a chain of gene–gene interactions is defined in

the rule layer as well:

gene_reachable_from(X,1) :- gene_gene(X,Y), start_gene(Y).

gene_reachable_from(X,N+1) :- gene_gene(X,Z),

gene_reachable_from(Z,N), 0 < N, N < L,

max_chain_length(L).

Now, consider, for instance, the query Q11 from Table 1.
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Q11 What are the drugs that treat the disease Depression and that do not target

the gene ACYP1?

This type of queries might be important in terms of drug repurposing (Chong

and Sullivan 2007) that has achieved a number of successes in drug development,

including the famous example of Pfizer’s Viagra (Gower 2009).

This query is then translated into the following program in the language of

gringo:

what_be_drugs(DRG) :- cond1(DRG), cond2(DRG).

cond1(DRG) :- drug_disease(DRG,"Depression").

cond2(DRG) :- drug_name(DRG), not drug_gene(DRG,"ACYP1").

answer_exists :- what_be_drugs(DRG).

:- not answer_exists.

where cond1 and cond2 are invented relations, and drug name, drug disease, and

drug gene are defined in the rule layer.

Once the query and the rule layer are in ASP, the parts of the rule layer that are

relevant to the given query are identified by an algorithm (Erdem et al. 2011). For

some queries, the relevant part of the program is almost 100 times smaller than the

whole program (considering the number of ground rules).

Then, given the query as an ASP program and the relevant knowledge as an ASP

program, we can find answers to the query by computing an answer set for the

union of these two programs using clasp. For the query above an answer computed

in this way is “Fluoxetine.”

4 Explaining an answer for a query

Once an answer is found for a complex biomedical query, the experts may need

informative explanations about the answer, as discussed in the Introduction. With

this motivation, we study generating explanations for complex biomedical queries.

Since the queries, knowledge extracted from databases and ontologies, and the rule

layer are in ASP, our studies focus on explanation generation within the context of

ASP.

Before we introduce our methods to generate explanations for a given query, let

us introduce some definitions regarding explanations in ASP.

Let Π be the relevant part of a ground ASP program with respect to a given

biomedical query Q (also a ground ASP program) that contains rules describing

the knowledge extracted from biomedical ontologies and databases, the knowledge

integrating them, and the background knowledge. Rules in Π ∪ Q generally do not

contain cardinality/choice expressions in the head; therefore, we assume that in

Π ∪ Q only bodies of rules contain cardinality expressions. Let X be an answer set

for Π ∪ Q. Let p be an atom that characterizes an answer to the query Q. The goal

is to find an “explanation” as to why p is computed as an answer to the query Q,

i.e., why is p in X? Before we introduce a definition of an explanation, we need the

following notations and definitions.
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We say that a set X of atoms satisfies a cardinality expression C of the form

l � {A1, . . . , Am} � u

if the cardinality of X ∩{A1, . . . , Am} is within the lower bound l and upper bound u.

Also X satisfies a set SC of cardinality expressions (denoted by X |= SC), if X

satisfies every element of SC .

Let Π be a ground ASP program, r be a rule in Π, p be an atom in Π, and Y

and Z be two sets of atoms. Let Bcard(r) denote the set of cardinality expressions

that appear in the body of r. We say that r supports an atom p using atoms in Y

but not in Z (or with respect to Y but Z), if the following hold:

H(r) = p,

B+(r) ⊆ Y \Z,

B−(r) ∩ Y = ∅,
Y |= Bcard(r).

(8)

We denote the set of rules in Π that support p with respect to Y but Z , by ΠY ,Z (p).

We now introduce definitions about explanations in ASP. We first define a generic

tree whose vertices are labeled by either atoms or rules.

Definition 1 (Vertex-labeled tree)

A vertex-labeled tree 〈V , E, l,Π, X〉 for a program Π and a set X of atoms is a tree

〈V , E〉 whose vertices are labeled by a function l that maps V to Π ∪ X. In this

tree, the vertices labeled by an atom (respectively, a rule) are called atom vertices

(respectively, rule vertices).

For a vertex-labeled tree T = 〈V , E, l,Π, X〉 and a vertex v in V , we introduce the

following notations:

• ancT (v) denotes the set of atoms that are labels of ancestors of v.

• desT (v) denotes the set of rule vertices that are descendants of v.

• childE(v) denotes the set of children of v.

• siblingE(v) denotes the set of siblings of v.

• outE(v) denotes the set of out-going edges of v.

• degE(v) denotes the degree of v and equals to |outE(v)|.
• If degE(v) = 0, then v is a leaf vertex.

• leaf (T ) denotes the set of leaves of T .

• The root of T is the root of 〈V , E〉.
• T is empty if 〈V , E〉 = 〈∅, ∅〉.

We now define a specific class of vertex-labeled trees that contains all possible

“explanations” for an atom.

Definition 2 (And-or explanation tree)

Let Π be a ground ASP program, X be an answer set for Π, and p be an atom in X.

The and-or explanation tree for p with respect to Π and X is a vertex-labeled tree

T = 〈V , E, l,Π, X〉 that satisfies the following:

(i) for the root v ∈ V of the tree, l(v) = p;

https://doi.org/10.1017/S1471068413000598 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000598


46 E. Erdem and U. Oztok

(ii) for every atom vertex v ∈ V ,

outE(v) = {(v, v′) | (v, v′) ∈ E, l(v′) ∈ ΠX,ancT (v′)(l(v))};

(iii) for every rule vertex v ∈ V ,

outE(v) = {(v, v′) | (v, v′) ∈ E, l(v′) ∈ B+(l(v))};

(iv) each leaf vertex is a rule vertex.

Let us explain Conditions (i)− (iv) in Definition 2 in detail.

(i) The root of the and-or explanation tree T is labeled by the atom p. Intuitively,

T contains all possible explanations for p.

(ii) For every atom vertex v ∈ V , there is an out-going edge (v, v′) to a rule vertex

v′ ∈ V under the following conditions: the rule that labels v′ supports the

atom that labels v, using atoms in X but not any atom that labels an ancestor

of v′. We want to exclude the atoms labeling ancestors of v′ to ensure that

the height of the and-or explanation tree is finite (e.g., otherwise, due to cyclic

dependencies the tree may be infinite).

(iii) For every rule vertex v ∈ V , there is an out-going edge (v, v′) to an atom vertex

if the atom that labels v′ is in the positive body of the rule that labels v. In

this way, we make sure that every atom in the positive body of the rule that

labels v takes part in explaining the head of the rule that labels v.

(iv) Together with Conditions (ii) and (iii) above, this condition guarantees that the

leaves of the and-or explanation tree are rule vertices that are labeled by facts

in the reduct of the given ASP program Π with respect to the given answer

set X. Intuitively, this condition expresses that the leaves are self-explanatory.

Example 1

Let Π be the program

a← b, c

a← d

d←
b← c

c←
and X = {a, b, c, d}. The and-or explanation tree for a with respect to Π and X

is shown in Figure 2. Intuitively, the and-or explanation tree includes all possible

“explanations” for an atom. For instance, according to Figure 2, the atom a has two

explanations:

• One explanation is characterized by the rules that label the vertices in the left

subtree of the root: a is in X because the rule

a← b, c

supports a. Moreover, this rule can be “applied to generate a” because b and c,

the atoms in its positive body, are in X. Further, b is in X because the rule

b← c
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a

a ← b, c

b

b ← c

c

c ←

c

c ←

a ← d

d

d ←

Fig. 2. The and-or explanation tree for Example 1.

supports b. Further, c is in X because c is supported by the rule

c←

that is self-explanatory.

• The other explanation is characterized by the rules that label the vertices in

the right subtree of the root: a is in X because the rule

a← d

supports a. Further, this rule can be “applied to generate a” because d is in X.

In addition, d is in X because d is supported by the rule

d←

that is self-explanatory.

Proposition 1

Let Π be a ground ASP program and X be an answer set for Π. For every p in X,

the and-or explanation tree for p with respect to Π and X is not empty.

Note that in the and-or explanation tree, atom vertices are the “or” vertices, and

rule vertices are the “and” vertices. Then, we can obtain a subtree of the and-or

explanation tree that contains an explanation, by visiting only one child of every

atom vertex and every child of every rule vertex, starting from the root of the and-or

explanation tree. Here is precise definition of such a subtree, called an explanation

tree.

Definition 3 (Explanation tree)

Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X, and

T = 〈V , E, l,Π, X〉 be the and-or explanation tree for p with respect to Π and X.

An explanation tree in T is a vertex-labeled tree T ′ = 〈V ′, E ′, l,Π, X〉 such that

(i) 〈V ′, E ′〉 is a subtree of 〈V , E〉;
(ii) the root of 〈V ′, E ′〉 is the root of 〈V , E〉;
(iii) for every atom vertex v′ ∈ V ′, degE ′(v

′) = 1;

(iv) for every rule vertex v′ ∈ V ′, outE(v′) ⊆ E ′.
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a

a ← b, c

b

b ← c

c

c ←

c

c ←

a

a ← d

d

d ←

Fig. 3. Explanation trees for Example 2.

a ← b, c

b ← c

c ←

c ←

(a)

a ← d

d ←
(b)

Fig. 4. Explanations for Example 3.

Example 2

Let T be the and-or explanation tree in Figure 2. Then, Figure 3 illustrates the

explanation trees in T . These explanation trees characterize the two explanations

for a explained in Example 1.

After having defined the and-or explanation tree and an explanation tree for an

atom, let us now define an explanation for an atom.

Definition 4 (Explanation)

Let Π be a ground ASP program, X be an answer set for Π, and p be an atom

in X. A vertex-labeled tree 〈V ′, E ′, l,Π, X〉 is an explanation for p with respect to Π

and X if there exists an explanation tree 〈V , E, l,Π, X〉 in the and-or explanation

tree for p with respect to Π and X such that

(i) V ′ = {v | v is a rule vertex inV };
(ii) E ′ = {(v1, v2) | (v1, v), (v, v2) ∈ E, for some atom vertex v ∈ V }.

Intuitively, an explanation can be obtained from an explanation tree by “ignoring”

its atom vertices.

Example 3

Let Π and X be defined as in Example 1. Then, Figure 4 depicts two explanations

for a with respect to Π and X, described in Example 1.

So far, we have considered only positive programs in the examples. Our definitions

can also be used in programs that contain negation and aggregates in the bodies of

rules.
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a

a ← b, c, not e

b

b ← c

c

c ←

c

c ←

a ← d, 1 ≤ {b, c} ≤ 2

d

d ←

(a)

a ← d, 1 ≤ {b, c} ≤ 2

d ←
(b)

Fig. 5. (a) The and-or explanation tree for a and (b) an explanation for a.

Example 4

Let Π be the program

a← b, c, not e

a← d, not b

a← d, 1 � {b, c} � 2

d←
b← c

c←
and X = {a, b, c, d}. The and-or explanation tree for a with respect to Π and X is

shown in Figure 5(a). Here, the rule a← d, not b is not included in the tree as b is in X,

whereas the rule a← b, c, not e is in the tree as e is not in X and b and c are in X.

Also, the rule a ← d, 1 � {b, c} � 2 is in the tree as d is in X and the cardinality

expression 1 � {b, c} � 2 is satisfied by X. An explanation for a with respect to Π

and X is shown in Figure 5(b).

Note that our definition of an and-or explanation tree considers positive body parts

of the rules only to provide explanations. Therefore, explanation trees do not provide

further explanations for negated literals (e.g., why an atom is not included in the

answer set), or aggregates (e.g., why a cardinality constraint is satisfied) as seen in

the example above.

5 Generating shortest explanations

As can be seen in Figure 4, there might be more than one explanation for a

given atom. Hence, it is not surprising that one may prefer some explanations to

others. Consider biomedical queries about chains of gene–gene interactions like

the query Q8 in Table 1. Answers of such queries may contain chains of gene–

gene interactions with different lengths. For instance, an answer for this query

is “CASK.” Figure 6 shows an explanation for this answer. Here, “CASK” is

related to “ADRB1” via a gene–gene chain interaction of length 2 (the chain
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what_be_genes("CASK") ← gene_reachable_from("CASK",2)

gene_reachable_from("CASK",2) ←
gene_gene("CASK","DLG4"),
gene_reachable_from("DLG4",1), . . .

gene_gene("CASK","DLG4") ←
gene_gene_biogrid("CASK","DLG4")

gene_gene_biogrid("CASK","DLG4")
dummy

gene_reachable_from("DLG4",1) ←
gene_gene("DLG4","ADRB1"),
start_gene("ADRB1")

gene_gene("DLG4","ADRB1") ←
gene_gene_biogrid("DLG4","ADRB1")

gene_gene_biogrid("DLG4","ADRB1")

start_gene("ADRB1")
dummy

Fig. 6. Another explanation for Q8.

“CASK”–“DLG4”–“ADRB1”). Another explanation is partly shown in Figure 7.

Now, “CASK” is related to “ADRB1” via a gene–gene chain interaction of

length 3 (the chain “CASK”–“DLG1”–“DLG4”–“ADRB1”). Since gene–gene inter-

actions are important for drug discovery, it may be more desirable for the experts

to reason about chains with shortest lengths.

With this motivation, we consider generating shortest explanations. Intuitively, an

explanation S is shorter than another explanation S ′ if the number of rule vertices

involved in S is less than the number of rule vertices involved in S ′. Then we can

define shortest explanations as follows.

Definition 5 (Shortest explanation)

Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X, and

S be an explanation (with vertices V ) for p with respect to Π and X. Then, S is a

shortest explanation for p with respect to Π and X if there exists no explanation S ′

(with vertices V ′) for p with respect to Π and X such that |V ′| < |V |.

Example 5

Let Π and X be defined as in Example 1. Then, Figure 4(b) is the shortest explanation

for a with respect to Π and X.

To compute shortest explanations, we define a weight function that assigns weights

to the vertices of the and-or explanation tree. Basically, the weight of an atom vertex

(“or” vertex) is equal to the minimum weight among weights of its children and the

weight of a rule vertex (“and” vertex) is equal to sum of weights of its children plus 1.

Then the idea is to extract a shortest explanation by propagating the weights of the

leaves up and then traversing the vertices that contribute to the weight of the root.

Let us define the weight of vertices in the and-or explanation tree.
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what_be_genes("CASK") ← gene_reachable_from("CASK",3)

gene_reachable_from("CASK",3) ←
gene_gene("CASK","DLG1"),
gene_reachable_from("DLG1",2), . . .

gene_gene("CASK","DLG1") ←
gene_gene_biogrid("CASK","DLG1")

...

gene_reachable_from("DLG1",2) ←
gene_gene("DLG1","DLG4"),
gene_reachable_from("DLG4",1), . . .

gene_gene("DLG1","DLG4") ← . . .

...

gene_reachable_from("DLG4",1) ← . . .

...

Fig. 7. A shortest explanation for Q8.

Definition 6 (Weight function)

Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X, and

T = 〈V , E, l,Π, X〉 be the and-or explanation tree for p with respect to Π and X.

The weight function WT for T maps vertices in V to a positive integer and it is

defined as follows.

WT (v) =

{
min{WT (c) | c ∈ childE(v)} if v is an atom vertex in V ;

1 +
∑

c ∈ childE (v) WT (c) otherwise.

Input: Π : ground ASP program, X : answer set for Π, p : atom in X.

Output: a shortest explanation for p w.r.t Π and X, or an empty vertex-labeled

tree.

〈V , E, l,Π, X〉 := createTree(Π, X, p, {});
if 〈V , E〉 is not empty then

v ← root of 〈V , E〉;
calculateWeight(Π, X, V , l, v, E,WT );

〈V ′, E ′, l,Π, X〉 := extractExp(Π, X, V , l, v, E,WT , ∅,min);

return 〈V ′, E ′, l,Π, X〉;
end

else

return 〈∅, ∅, l,Π, X〉;
end

Algorithm 1: Generating Shortest Explanations

Using this weight function, we develop Algorithm 1 to generate shortest ex-

planations. Let us describe this algorithm. Algorithm 1 starts by creating the
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and-or explanation tree T for p with respect to Π and X (Line 1); for that it

uses Algorithm 2. If T is not empty, then Algorithm 1 assigns weights to the

vertices of T (Line 4), using Algorithm 3. As the final step, Algorithm 1 extracts

a shortest explanation from T (Line 5), using Algorithm 4. The idea is to traverse

an explanation tree of T , by the help of the weight function, and construct an

explanation, which would be a shortest one, by contemplating only the rule vertices

in the traversed explanation tree. If T is empty, Algorithm 1 returns an empty

vertex-labeled tree.

Algorithm 2 (with the call createTree(Π, X, p, {})) creates the and-or explanation

tree for p with respect to Π and X recursively. With a call createTree(Π, X, d, L),

where L intuitively denotes the atoms labeling the atom vertices created so far, the

algorithm considers two cases: d being an atom or a rule. In the former case, (1) the

algorithm creates an atom vertex v for d, (2) it identifies the rules that support d,

(3) for each such rule, it creates a vertex labeled tree (i.e., a subtree of the resulting

and-or explanation tree), and (4) it connects these trees to the atom vertex v. In

the latter case, if d is a rule in Π, (1) the algorithm creates a rule vertex v for d,

(2) it identifies the atoms in the positive part of the rule, (3) it creates the and-or

explanation tree for each such atom, and (4) it connects these trees to the rule

vertex v.

Once the and-or explanation tree is created, Algorithm 3 assigns weights to

all vertices in the tree by propagating the weights of the leaves (i.e., 1) up

to the root in a bottom-up fashion using the weight function definition (i.e.,

Definition 6).

After that, Algorithm 1 (with the call extractExp(Π, X, V , l, v, E,WT , ∅,min))

extracts a shortest explanation in a top-down fashion starting from the root by

examining the weights of the vertices. In particular, if a visited vertex v is an atom

vertex then the algorithm proceeds with the child of v with the minimum weight;

otherwise, it considers all the children of v.

The execution of Algorithm 1 is also illustrated in Figure 8. First, the and-or

explanation tree is generated, which has a generic structure as in Figure 8(a). Here,

yellow vertices denote atom vertices and blue vertices denote rule vertices. Then,

this tree is weighted as in Figure 8(b). Then, starting from the root, a subtree of the

and-or explanation tree is traversed by visiting minimum weighted child of every

atom vertex and every child of every rule vertex. This process is shown in Figure 8(c),

where red vertices form the traversed subtree. From this subtree, an explanation is

extracted by ignoring atom vertices and keeping the parent–child relationship of the

tree as it is. The resulting explanation is depicted in Figure 8(d).

Proposition 2

Given a ground ASP program Π, an answer set X for Π, and an atom p in X,

Algorithm 1 terminates.

Proposition 3

Given a ground ASP program Π, an answer set X for Π, and an atom p in X,

Algorithm 1 either finds a shortest explanation for p with respect to Π and X or

returns an empty vertex-labeled tree.
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a

R 1 R 2

a11 a12 a21

R 3 R 4 R 5 R 6

a31

R 7

(a)

a

R 1 R 2

a11 a12 a21

R 3 R 4 R 5 R 6

a31

R 71

1 1 1

1

1 1

2

2

1

3

2

(b)

a

R 1 R 2

a11 a12 a21

R 3 R 4 R 5 R 6

a31

R 71

1 1 1

1

1 1

2

2

1

3

2

(c)

R 2

R 6

(d)

Fig. 8. A generic execution of Algorithm 1.

Proposition 4

Given a ground ASP program Π, an answer set X for Π, and an atom p in X, the

time complexity of Algorithm 1 is O(|Π||X| × |BΠ|).

We generate the complete and-or explanation tree while finding a shortest

explanation. In fact, we can find a shortest explanation by creating a partial and-

or explanation tree using a branch-and-bound idea. In particular, the idea is to

compute the weights of vertices during the creation of the and-or explanation tree

and, in case there exists a branch of the and-or explanation tree that exceeds the

weight of a vertex computed so far, to stop branching on unnecessary parts of the

and-or explanation tree. Then, a shortest explanation can be extracted by the same

method used previously, i.e., by traversing a subtree of the and-or explanation tree

and ignoring the atom vertices in this subtree. For instance, consider Figure 8(b).

Assume that we first create the right branch of the root. Since the weight of an atom

vertex is equal to the minimum weight among its children weights, we know that
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Input: Π : ground ASP program, X : answer set for Π, d : an atom in X or a

rule in Π, L : set of atoms in X.

Output: A vertex-labeled tree.

V := ∅, E := ∅ ;

if d ∈ X\L then

v ← Create an atom vertex s.t. l(v) = d ;

L := L ∪ {d}, V := V ∪ {v} ;

foreach r ∈ ΠX,L(d) do

〈V ′, E ′, l,Π, X〉 := createTree(Π, X, r, L);

if 〈V ′, E ′〉 
= 〈∅, ∅〉 then

v′ ← root of 〈V ′, E ′〉 s.t. l(v′) = r;

V := V ∪ V ′, E := E ∪ {(v, v′)} ∪ E ′ ;

end

end

if E = ∅ then return 〈∅, ∅, l,Π, X〉;
end

else if d ∈ Π then

v ← Create a rule vertex s.t. l(v) = d ;

foreach a ∈ B+(d) do

〈V ′, E ′, l,Π, X〉 := createTree(Π, X, a, L);

if 〈V ′, E ′〉 = 〈∅, ∅〉 then return 〈∅, ∅, l,Π, X〉;
v′ ← root of 〈V ′, E ′〉 s.t. l(v′) = a;

V := V ∪ V ′, E := E ∪ {(v, v′)} ∪ E ′;

end

end

return 〈V , E, l,Π, X〉;
Algorithm 2: createTree

the weight of the root is at most 2. Now, we check whether it is necessary to branch

on the left child of the root. Note that the weight of a rule vertex is equal to 1

plus the sum of its children weights. As R1 has two children, its weight is at least 3.

Therefore, it is redundant to branch on the left child of the root. This improvement

is not implemented and is a future work.

6 Generating k different explanations

When there is more than one explanation for an answer of a query, it might be

useful to provide the experts with several more explanations that are different from

each other. For instance, consider the query Q5 in Table 1.

Q5 What are the drugs that treat the disease Asthma or that react with the drug

Epinephrine?

An answer for this query is “Doxepin.” According to one explanation, “Doxepin”

reacts with “Epinephrine” with respect to DrugBank. At this point, the expert may
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Input: Π : ground ASP program, X : answer set for Π, V : set of vertices,

l : V → Π ∪X, v : vertex in V , E : set of edges, WT : candidate weight

function.

Output: Weight of v.

if l(v) ∈ X then

foreach c ∈ childE(v) do WT (c) := calculateWeight(Π, X, V , l, c, E,WT );

WT (v) := min{WT (c) | c ∈ childE(v)};
end

else if l(v) ∈ Π then

WT (v) := 1;

foreach c ∈ childE(v) do

WT (v) := WT (v) + calculateWeight(Π, X, V , l, c, E,WT );

end

return WT (v);
Algorithm 3: calculateWeight

Input: Π : ground ASP program, X : answer set for Π, Vt : set of vertices,

l : Vt → Π ∪X, v : vertex in Vt, Et : set of edges, WT : weight function

of T , r : rule vertex in Vt or ∅, op: string min or max .

Output: A vertex-labeled tree 〈V , E, l,Π, X〉.
V := ∅, E := ∅;
if l(v) ∈ X then

c← Pick op weighted child of v ;

if r 
= ∅ then E := E ∪ {(r, c)};
〈V ′, E ′, l,Π, X〉 := extractExp(Π, X, Vt, l, c, Et,WT , r, op);

V := V ∪ V ′, E := E ∪ E ′;

end

else if l(v) ∈ Π then

V := V ∪ {v};
foreach c ∈ childEt

(v) do

〈V ′, E ′, l,Π, X〉 := extractExp(Π, X, Vt, l, c, Et,WT , v, op);

V := V ∪ V ′, E := E ∪ E ′;

end

end

return 〈V , E, l,Π, X〉;
Algorithm 4: extractExp

not be convinced and ask for a different explanation. Another explanation for this

answer is that “Doxepin” treats “Asthma” according to CTD. Motivated by this

example, we study generating different explanations.

We introduce an algorithm (Algorithm 5) to compute k different explanations for

an atom p in X with respect to Π and X. For that, we define a distance measure ΔD

between a set Z of (previously computed) explanations, and an (to be computed)

explanation S . We consider the rule vertices RZ and RS contained in Z and S ,
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Input: Π: ground ASP program, X: answer set for Π, p: atom in X, k : a

positive integer. Assume there are n different explanations for p w.r.t Π

and X.

Output: min{n, k} different explanations for p with respect to Π and X.

K := ∅, R0 := ∅;
〈V , E, l,Π, X〉 := createTree(Π, X, p, {});
v ← root of 〈V , E〉;
for i = 1, 2, . . . k do

calculateDifference(Π, X, V , l, v, E, Ri−1,WT,Ri−1
);

if WT,Ri−1
(v) = 0 then return K;

〈V ′, E ′, l,Π, X〉 := extractExp(Π, X, V , l, v, E,WT,Ri−1
, ∅,max );

Ki ← 〈V ′, E ′, l,Π, X〉;
K := K ∪ {Ki};
Ri := Ri−1 ∪ {v | rule vertex v ∈ V ′};

end

return K;
Algorithm 5: Generating k Different Explanations

respectively. Then, we define the function ΔD that measures the distance between Z

and S as follows:

ΔD(Z, S) = |RS\RZ |.
In the following, we sometimes use RZ and RS instead of Z and S in ΔD . Also, we

denote by RVertices(S) the set of rule vertices of a vertex-labeled tree S .

Let us now explain Algorithm 5. It computes a set K of k different explanations

iteratively. Initially, K = ∅. First, we compute the and-or explanation tree T (Line 2).

Then, we enter into a loop that iterates at most k times (Line 4). At each iteration i,

an explanation Ki that is most distant from the previously computed i− 1 explana-

tions is extracted from T . Let us denote the rule vertices included in the previously

computed i− 1 explanations by Ri−1. Then, essentially, at each iteration we pick an

explanation Ki such that ΔD(Ri−1,RVertices(Ki)) is maximum. To be able to find

such a Ki, we need to define the “contribution” of each vertex v in T to the distance

measure ΔD(Ri−1,RVertices(Ki)) if v is included in explanation Ki:

WT,Ri−1
(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max{WT,Ri−1
(v′) | v′ ∈ childE(v)} if v is an atom vertex;∑

v′∈child E (v)
WT,Ri−1

(v′) if v is a rule vertex and

v ∈ Ri−1;

1 +
∑

v′∈child E (v)
WT,Ri−1

(v′) otherwise.

Note that this function is different from WT . Intuitively, v contributes to the

distance measure if it is not included in Ri−1. The contributions of vertices in T

are computed by Algorithm 6 (Line 5) by propagating the contributions up in the

spirit of Algorithm 3. Then, Ki is extracted from weighted-T by using Algorithm 4

(Line 7).

The execution of Algorithm 5 is also illustrated in Figure 9. Similar to Algorithm 1,

which generates shortest explanations, first the and-or explanation tree is created,
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Fig. 9. A generic execution of Algorithm 5.

which has a generic structure as shown in Figure 9(a). Recall that yellow vertices

denote atom vertices and blue vertices denote rule vertices. For the sake of example,

assume that R = {R2, R6}. Then, the goal is to generate an explanation that contains

different rule vertices from the rule vertices in R as much as possible. For that, the

weights of vertices are assigned according to the weight function WT,R as depicted in

Figure 9(b). Here, the weight of the root implies that there exists an explanation that

contains four different rule vertices from the rule vertices in R and this explanation

is the most different one. Then, starting from the root, a subtree of the and-or

explanation tree is traversed by visiting maximum weighted child of every atom

vertex, and every child of every rule vertex. This subtree is shown in Figure 9(c) by

red vertices. Finally, an explanation is extracted by ignoring the atom vertices and

keeping the parent–child relationship as it is, from this subtree. This explanation is

illustrated in Figure 9(d).

Proposition 5

Given a ground ASP program Π, an answer set X for Π, an atom p in X, and a

positive integer k, Algorithm 5 terminates.
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Input: Π : ground ASP program, X : answer set for Π, V : set of vertices,

l : V → Π ∪X, v : vertex in V , E : set of edges, R : set of rule vertices in

V , DR : candidate distance function.

Output: distance of v.

if l(v) ∈ X then

foreach c ∈ childE(v) do

DR(c) := calculateDifference(Π, X, V , l, c, E, R, DR);

end

DR(v) := max{DR(c) | c ∈ childE(v)};
end

else if l(v) ∈ Π then

if v /∈ R then DR(v) := 1;

else DR(v) := 0;

foreach c ∈ childE(v) do

DR(v) := DR(v) + calculateDifference(Π, X, V , l, c, E, R, DR);

end

end

return DR(v);
Algorithm 6: calculateDifference

Proposition 6

Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X,

and k be a positive integer. Let n be the number of different explanations for p with

respect to Π and X. Then, Algorithm 5 returns min{n, k} different explanations for p

with respect to Π and X.

Furthermore, at each iteration i of the loop in Algorithm 5 the distance ΔD(Ri−1, Ki)

is maximized.

Proposition 7

Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X, and

k be a positive integer. Let n be the number of explanations for p with respect to Π

and X. Then, at the end of each iteration i (1 � i � min{n, k}) of the loop in Algo-

rithm 5, ΔD(Ri−1,RVertices(Ki)) is maximized, i.e., there is no other explanation K ′

such that ΔD(Ri−1,RVertices(Ki)) < ΔD(Ri−1,RVertices(K ′)).

This result leads us to some useful consequences. First, Algorithm 5 computes

“longest” explanations if k = 1. The following corollary shows how to compute

longest explanations.

Corollary 1

Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X,

and k = 1. Then, Algorithm 5 computes a longest explanation for p with respect to

Π and X.

Next, we show that Algorithm 5 computes k different explanations such that for

every i (1 � i � k) the ith explanation is the most distant explanation from the

previously computed i− 1 explanations.
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Table 2. Experimental results for generating shortest explanations for some biomedical

queries, using Algorithm 1

Explanation Answer set And-Or tree gringo calls

Query CPU time size size size

Q1 52.78s 5 1.964.429 16 0

Q2 67.54s 7 2.087.219 233 1

Q3 31.15s 6 1.567.652 15 0

Q4 1245.83s 6 19.476.119 6690 4

Q5 41.75s 3 1.465.817 16 0

Q8 40.96s 14 1.060.288 28 4

Q10 1601.37s 14 1.612.128 3419 193

Q11 113.40s 6 2.158.684 5528 5

Q12 327.22s 5 10.338.474 10 1

Corollary 2

Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X,

and k be a positive integer. Let n be the number of explanations for p with

respect to Π and X. Then, Algorithm 5 computes min{n, k} different explanations

K1, . . . , Kmin{n,k} for p with respect to Π and X such that for every j (2 � j �

min{n, k}) ΔD(
⋃j−1

z=1 RVertices(Kz), Kj) is maximized.

The following proposition shows that the time complexity of Algorithm 5 is

exponential in the size of the given answer set.

Proposition 8

Given a ground ASP program Π, an answer set X for Π, an atom p in X, and a

positive integer k, the time complexity of Algorithm 5 is O(k × |Π||X|+1 × |BΠ|).

7 Experiments with biomedical queries

Our algorithms for generating explanations are applicable to the queries Q1, Q2,

Q3, Q4, Q5, Q8, Q10, Q11, and Q12 in Table 1. The ASP programs for the other

queries involve choice expressions. For instance, the query Q7 asks for cliques of five

genes. We use the following rule to generate a possible set of five genes that might

form a clique.

5{clique(GEN):gene_name(GEN)}5.

Our algorithms apply to ASP programs that contain a single atom in the heads

of the rules, and negation and cardinality expressions in the bodies of the rules.

Therefore, our methods are not applicable to the queries that are presented by ASP

programs that include choice expressions.

In Table 2, we present the results for generating shortest explanations for the

queries Q1, Q2, Q3, Q4, Q5, Q8, Q10, Q11, and Q12. In this table, the second

column denotes the CPU timings to generate shortest explanations in seconds. The

third column consists of the sizes of explanations, i.e., the number of rule vertices
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in an explanation. In the fourth column, the sizes of answer sets, i.e., the number of

atoms in an answer set, are given. The fifth column presents the sizes of the and-or

explanation trees, i.e., the number of vertices in the tree.

Before telling what the last column presents, let us clarify an issue regarding

the computation of explanations. Since answer sets contain millions of atoms, the

relevant ground programs are also huge. Thus, first grounding the programs and

then generating explanations over those grounded programs is an overkill in terms

of computational efficiency. To this end, we apply another method and do grounding

when it is necessary. To better explain the idea, let us present our method by an

example. At the beginning, we have a ground atom for which we are looking for

shortest explanations. Assume that this atom is what be genes(”ADRB1”). Then, we

find the rules whose heads are of the form what be genes(GN), and instantiate GN

with “ADRB1.” For instance, assume that the following rule exists in the program:

what be genes(GN)← drug gene(DRG,GN).

Then, by such an instantiation, we obtain the following instance of this rule:

what be genes(”ADRB1”)← drug gene(DRG,”ADRB1”).

Next, if the rules that we obtain by instantiating their heads are not ground, we

ground them using the grounder gringo considering the answer set. We apply the

same method for the atoms that are now ground, to find the relevant rules and

ground them if necessary. This allows us to deal with a relevant subset of the rules

while generating explanations. The last column of Table 2 presents the number of

times gringo is called for such incremental grounding. For instance, for the queries

Q1, Q3, and Q5, gringo is never called. However, gringo is called 193 times during

the computation of a shortest explanation for the query Q10.

As seen from the results presented in Table 2, the computation time is not very

much related to the size of the explanation. As also suggested by the complexity

results of Algorithm 1 (i.e., O(|Π||X| × |BΠ)|), the computation time for generating

shortest explanations greatly depends on the sizes of the answer set and the and-or

explanation tree. For instance, for the query Q4, the answer set contains approxi-

mately 19 million atoms, the size of the and-or explanation tree is 6,690, and it takes

1,245 CPU seconds to compute a shortest explanation, whereas for the query Q8,

the answer set approximately contains 1 million atoms, the and-or explanation tree

has 28 vertices, and it takes 40 CPU seconds to compute a shortest explanation.

Also, the number of times gringo is called during the computation affects the

computation time. For instance, for the query Q10 the answer set approximately

contains 1.6 million atoms, the and-or explanation tree has 3,419 vertices, and it

takes 1,600 CPU seconds to compute a shortest explanation.

Table 3 shows the computation times for generating different explanations for

the answers of the same queries, if exists. As seen from these results, the time for

computing two and four different explanations is slightly different than the time for

computing shortest explanations.
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Table 3. Experimental results for generating different explanations for some biomedical

queries, using Algorithm 5

CPU time

Query 2 different 4 different Shortest

Q1 53.73s . . . 52.78s

Q2 66.88s 67.15s 67.54s

Q3 31.22s . . . 31.15s

Q4 1248.15s 1251.13s 1245.83s

Q5 . . . . . . 41.75s

Q8 . . . . . . 40.96s

Q10 1600.49s 1602.16s 1601.37s

Q11 113.25s 112.83s 113.40s

Q12 . . . . . . 327.22s

8 Presenting explanations in a natural language

An explanation for an answer of a biomedical query may not be easy to understand,

since the user may not know the syntax of ASP rules neither the meanings of

predicates. To this end, it is better to present explanations to the experts in a natural

language.

Observe that leaves of an explanation denote facts extracted from the biomedical

resources. Also some internal vertices contain informative explanations such as

the position of a drug in a chain of drug–drug interactions. Therefore, there is a

corresponding natural language explanation for some vertices in the tree. Such a

correspondence can be stored in a predicate look-up table, like Table 4. Given such

a look-up table, a pre-order depth-first traversal of an explanation and generating

natural language expressions corresponding to vertices of the explanation lead to an

explanation in natural language (Oztok 2012).

For instance, the explanation in Figure 6 is expressed in natural language as

illustrated in the introduction.

9 Implementation of explanation generation algorithms

Based on the algorithms introduced above, we have developed a computational tool

called ExpGen-ASP (Oztok 2012), using the programming language C++. Given

an ASP program and its answer set, ExpGen-ASP generates shortest explanations

as well as k different explanations.

The input of ExpGen-ASP are

• an ASP program Π,

• an answer set X for Π,

• an atom p in X,

• an option that is used to generate either a shortest explanation or k different

explanations, and

• a predicate look-up table,
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Table 4. Predicate look-up table used while expressing explanations in natural language

Predicate Expression in natural language

gene gene biogrid(x,y) The gene x interacts with the gene y according to BioGRID.

drug disease ctd(x,y) The disease y is treated by the drug x according to CTD.

drug gene ctd(x,y) The drug x targets the gene y according to CTD.

gene disease ctd(x,y) The disease y is related to the gene x according to CTD.

disease symptom do(x,y) The disease x has the symptom y according to Disease

Ontology.

drug category drugbank(x,y) The drug x belongs to the category y according to

DrugBank.

drug drug drugbank(x,y) The drug x reacts with the drug y according to DrugBank.

drug sideeffect sider(x,y) The drug x has the side effect y according to SIDER.

disease gene orphadata(x,y) The disease x is related to the gene y according to

Orphadata.

drug disease pharmgkb(x,y) The disease y is treated by the drug x according to

PharmGKB.

drug gene pharmgkb(x,y) The drug x targets the gene y according to PharmGKB.

disease gene pharmgkb(x,y) The disease x is related to the gene y according to

PharmGKB.

start drug(x) The drug x is the start drug.

start gene(x) The gene x is the start gene.

drug reachable from(x, l) The distance of the drug x from the start drug is l.

gene reachable from(x, l) The distance of the gene x from the start gene is l.

and the output are

• a shortest explanation for p with respect to Π and X in a natural language (if

shortest explanation option is chosen), and

• k different explanations for p with respect to Π and X in a natural language

(if k different explanations option is chosen).

For generating shortest explanations (respectively, k different explanations), ExpGen-

ASP utilizes Algorithm 1 (respectively, Algorithm 5).

To provide experts with further informative explanations about the answers

of biomedical queries, we have embedded ExpGen-ASP into BioQuery-ASP by

utilizing Table 4 as the predicate look-up table of the system. Figure 10 shows a

snapshot of the explanation generation mechanism of BioQuery-ASP.

10 Relating explanations to justifications

The most similar work to ours is Pontelli et al. (2009) that study the question “why

is an atom p in an answer set X for an ASP program Π.” As an answer to this

question, Pontelli et al. (2009) find a “justification”, which is a labeled graph that

provides an explanation for the truth values of atoms with respect to an answer set.
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Fig. 10. A snapshot of BioQuery-ASP showing its explanation generation facility.

Example 6

Let Π be the program presented in Example 1:

a← b, c

a← d

d←
b← c

c←

and X = {a, b, c, d}. Figure 11 is an offline justification of a+ with respect to X and ∅.
Intuitively, a is in X since b and c are also in X and there is a rule in Π that supports

a using the atoms b and c. Furthermore, b is in X since c is in X and there is a rule

in Π that supports b using the atom c. Finally, c is in X as it is a fact in Π.
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Fig. 11. An offline justification for Example 6.

To relate offline justifications and explanations, we need to introduce the following

definitions and notations about justifications defined in Pontelli et al. (2009).

10.1 Offline justifications

First, let us introduce notations related to ASP programs used in Pontelli et al. (2009).

The class of ASP programs studied is normal programs, i.e., programs that consist

of the rules of the form

A← A1, . . . , Ak, not Ak+1, . . . , not Am

where m � k � 0 and A and each Ai is an atom. Therefore, the programs we consider

are more general. Let Π be a normal ASP program. Then, AΠ is the Herbrand

base of Π. An interpretation I for a program Π is defined as a pair 〈I+, I−〉, where

I+ ∪ I− ⊆ AΠ and I+ ∩ I− = ∅. Intuitively, I+ denotes the set of atoms that are

true, while I− denotes the set of atoms that are false. I is a complete interpretation

if I+ ∪ I− =AΠ. The reduct ΠI of Π with respect to I is defined as

ΠI = {H(r)← B+(r) | r ∈ Π, B−(r) ∩ I+ = ∅}

A complete interpretation M for a program Π is an answer set for Π if M+ is an

answer set for ΠM . Also, a literal is either an atom or a formula of the form not a

where a is an atom. The set of atoms that appears as negated literals in Π is denoted

by NANT (Π). For an atom a, a+ denotes that the atom a is true and a− denotes

that a− is false. Then, a+ and a− are called the annotated versions of a. Moreover, it

is defined that atom(a+) = a and atom(a−) = a. For a set S of atoms, the following

sets of annotated atoms are defined:

• Sp = {a+ | a ∈ S}
• Sn = {a− | a ∈ S}.

Finally, the set not S is defined as not S = {not a | a ∈ S}.
Apart from the answer set semantics, there is another important semantics of logic

programs, called the well-founded semantics (Gelder et al. 1991). Since this semantics

is important to build the notion of a justification, we now briefly describe the well-

founded semantics. We consider the definition proposed in Apt and Bol (1994),

instead of the original definition proposed in Gelder et al. (1991), as considered by

Pontelli et al. (2009).
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Definition 7 (Immediate consequence)

Let Π be a normal ASP program, and S and V be two sets of atoms from AΠ.

Then, the immediate consequence of S with respect to Π and V , denoted by TΠ,V (S),

is the set defined as follows:

TΠ,V (S) = {a | ∃ r ∈ Π, H(r) = a, B+(r) ⊆ S, B−(r) ∩ V = ∅}.

We denote by lfp(TΠ,V ) the least fixpoint of TΠ,V when V is fixed.

Definition 8 (The well-founded model )

Let Π be a normal ASP program, Π+ = {r | r ∈ Π, B−(r) = ∅}. The sequence

〈Ki,Ui〉i�0 is defined as follows:

K0 = lfp(TΠ+), U0 = lfp(TΠ,K0
),

Ki = lfp(TΠ,Ui−1
), Ui = lfp(TΠ,Ki

).

Let j be the first index of the computation such that 〈Kj,Uj〉 = 〈Kj+1, Uj+1〉.
Then, the well-founded model of Π is WFΠ = 〈W+,W−〉 where W+ = Kj and

W− =AΠ\Uj .

Example 7

Let Π be the program

a← b, not d

d← b, not a

b← c

c←
Then, the well-founded model of Π is computed as follows:

K0 = {b, c},
U0 = {a, b, c, d},
K1 = {b, c},
U0 = {a, b, c, d}.

Thus, WFΠ = 〈{b, c}, ∅〉.

We now provide definitions regarding the notion of an offline justification. First,

we introduce the basic building of an offline justification, a labeled graph called as

e-graph.

Definition 9 (e-graph)

Let Π be a normal ASP program. An e-graph for Π is a labeled, directed graph

(N,E), where N ⊆ Ap
Π ∪ An

Π ∪ {assume,�,⊥} and E ⊆ N × N × {+,−}, which

satisfies following properties:

(i) the only sinks (i.e., nodes without out-going edges) in the graph are assume,�,⊥;

(ii) for every b ∈ N ∩Ap
Π, (b, assume,−) /∈ E and (b,⊥,−) /∈ E;

(iii) for every b ∈ N ∩An
Π, (b, assume,+) /∈ E and (b,�,+) /∈ E;

(iv) for every b ∈ N, if for some l ∈ {assume,�,⊥} and s ∈ {+,−}, (b, l, s) ∈ E,

then (b, l, s) is the only out-going edge originating from b.
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a+
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Fig. 12. An e-graph for Example 8.

According to this definition, an edge of an e-graph connects two annotated atoms

or an annotated atom with one of the nodes in {assume,�,⊥} and is marked by a

label from {+,−}. An edge is called as positive (respectively, negative) if it is labeled

by + (respectively, −). Also, a path in an e-graph is called as positive if it has only

positive edges, whereas it is called as negative if it has at least one negative edge. The

existence of a positive path between two nodes v1 and v2 is denoted by (v1, v2) ∈ E∗,+.

In the offline justification, � is used to explain facts, ⊥ to explain atoms that do not

have defining rules, and assume is for atoms for which explanations are not needed,

i.e., they are assumed to be true or false.

Example 8

Let Π be the program presented in Example 1, and X = {a, b, c, d}. Then,

Figure 12 is an e-graph for Π. Intuitively, the true state of a depends on the

true state of b and the false state of c, where b is assumed to be true and c is

assumed to be false.

In an e-graph, a set of elements that directly contributes to the truth value of an

atom can be obtained through the out-going edges of a corresponding node. This

set is defined as follows.

Definition 10 (support(b, G))

Let Π be a normal ASP program, G = (N,E) be an e-graph for Π and b ∈
N ∩ (Ap

Π ∪An
Π) be a node in G. Then, support(b, G) is defined as follows.

• support(b, G) = {l}, if for some l ∈ {assume,�,⊥} and s∈ {+,−}, (b, l, s) is in E;

• support(b, G) = {atom(c) | (b, c,+) ∈ E} ∪ {not atom(c) | (b, c,−) ∈ E}, otherwise.

Example 9

Let G be the e-graph in Figure 12. Then, support(a, G) = {b, not c}, support(b, G) =

{assume}, and support(c, G) = {assume}.

To define the notion of a justification, an e-graph should be enriched with

explanations of truth values of atoms that are derived from the rules of the program.

For that, the concept of one step justification of a literal is defined as follows.

Definition 11 (Local Consistent Explanation (LCE))

Let Π be a normal ASP program, b be an atom, J be a possible interpretation for Π,

U ⊆ AΠ be a set of atoms, and S ⊆ AΠ ∪ notAΠ ∪ {assume,�,⊥} be a set of

literals. We say that
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• S is an LCE of b+ with respect to (J,U), if b ∈ J+ and

- S = {assume} or

- S ∩AΠ ⊆ J+, {c | not c ∈ S} ⊆ J− ∪U, and there is a rule r ∈ Π such that

H(r) = b and B(r) = S . In case, B(r) = ∅, S is denoted by the set {�}.
• S is an LCE of b− with respect to (J,U), if b ∈ J− ∪U and

- S = {assume} or

- S ∩ A ⊆ J− ∪ U, {c | not c ∈ S} ⊆ J+, and S is a minimal set of literals

such that for every rule r ∈ Π if H(r) = b, then B+(r) ∩ S 
= ∅ or

B−(r) ∩ {c | not c ∈ S} 
= ∅. In case, S = ∅, S is denoted by the set {⊥}.

The set of all the LCEs of b+ with respect to (J,U) is denoted by LCEp
Π(b, J,U)

and the set of all the LCEs of b− with respect to (J,U) is denoted by LCEn
Π(b, J,U).

Here, a possible interpretation J denotes an answer set. The set U consists of atoms

that are assumed to be false (which will be called as Assumptions in the notion of

justification later on). The need for U comes from the fact that the truth value of

some atoms is first guessed while computing answer sets. Intuitively, if an atom a is

true, an LCE consists of the body of a rule that is satisfied by J and has a in its

head; if a is false, an LCE consists of a set of literals that are false in J and falsify

all rules whose head are a.

Example 10

Let Π and X be defined as in Example 8. Then, the LCEs of the atoms with respect

to (X, ∅) is as follows:

LCEp
Π(a,X, ∅) = {{b, c}, {d}, {assume}}

LCEp
Π(b,X, ∅) = {{c}, {assume}}

LCEp
Π(c, X, ∅) = {{�}, {assume}}

LCEp
Π(d,X, ∅) = {{�}, {assume}}.

Accordingly, a class of e-graphs where edges represent LCEs of the corresponding

nodes is defined as follows.

Definition 12 ((J,U)-based e-graph)

Let Π be a normal ASP program, J be a possible interpretation for Π, U ⊆ AΠ be

a set of atoms, and b be an element inAp
Π ∪An

Π. A (J,U)-based e-graph G = (N,E)

of b is an e-graph such that

(i) every node c ∈ N is reachable from b,

(ii) for every c ∈ N\{assume,�,⊥}, support(c, G) is an LCE of c with respect to

(J,U);

A (J,U)-based e-graph (N,E) is safe if for all b+ ∈ N, (b+, b+) /∈ E∗,+, i.e., there is

no positive cycle in the graph.

We now introduce a special class of (J,U)-based e-graphs where only false

elements can be assumed.
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Definition 13 (Offline e-graph)

Let Π be a normal ASP program, J be a partial interpretation for Π, U ⊆ AΠ be

a set of atoms, and b be an element in Ap ∪ An. An offline e-graph G = (N,E)

of b with respect to J and U is a (J,U)-based e-graph of b that satisfies following

properties:

(i) there exists no p+ ∈ N such that (p+, assume,+) ∈ E;

(ii) (p−, assume,−) ∈ E if and only if p ∈ U.

E(b, J,U) is the set of all offline e-graphs of b with respect to J and U.

Here, the roles of J and U are the same as their roles in Definition 11. Observe that

true atoms cannot be assumed due to the first condition and only elements in the

set U are assumed due to the second condition.

We said earlier that in a (J,U)-based e-graph J represents an answer set and U

consists of atoms that are assumed to be false. Here, U is chosen based on some

characteristics of J . In particular, we want U to be a set of atoms such that when

its elements are assumed to be false, the truth value of other atoms in the program

can be uniquely determined and leads to J . We now introduce relevant definitions

formally.

Definition 14 (Tentative Assumptions)

Let Π be a normal ASP program, M be an answer set for Π, and WFΠ =<

WF+
Π ,WF−Π > be the well-founded model of Π. The tentative assumptions TAΠ(M)

of Π with respect to M are defined as

TAΠ(M) = {a | a ∈ NANT (Π) ∧ a ∈M−, a /∈ (WF+
Π ∪WF−Π)}. (9)

Example 11

Let Π be the program:

c← a, not d

d← a, not c

a← b

b←
Then, X = {a, b, c} is an answer set for Π and 〈{a, b}, ∅〉 is the well-founded model

of Π. Given that, TAΠ(X) = {d} as d ∈ NANT (Π), d /∈ X and d /∈ (WF+
Π ∪WF−Π).

In fact, tentative assumptions is a set of atoms whose subsets might “potentially”

form U.

We provide a definition that would allow one to obtain a program from a given

program Π and a set V of atoms by assuming all the atoms in V as false.

Definition 15 (Negative Reduct)

Let Π be a normal ASP program, M be an answer set for Π, and U ⊆ TAΠ(M)

be a set of tentative assumption atoms. The negative reduct NR(Π, U) of Π with

respect to U is the set of rules defined as

NR(Π, U) = Π\{r |H(r) ∈ U}. (10)
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Finally, the concept of assumptions can be introduced formally.

Definition 16 (Assumption)

Let Π be a normal ASP program, and M be an answer set for Π. An assumption of Π

with respect to M is a set U of atoms that satisfies the following properties:

(i) U ⊆ TAΠ(M);

(ii) the well-founded model of NR(Π, U) is equal to M.

Assumptions(Π,M) is the set of all assumptions of Π with respect to M.

Example 12

Let Π and X be defined as in Example 11. Let U = {d}. Then, NR(Π, U) is:

c← a, not d

a← b

b←

and 〈{a, b, c}, ∅〉 is the well-founded model of NR(Π, U). Thus, U is an assumption

of Π with respect to X.

Note that assumptions are nothing but subsets of tentative assumptions that would

allow to obtain the answer set J .

At last, we are ready to define the notion of offline justification.

Definition 17 (Offline Justification)

Let Π be a normal ASP program, M be an answer set for Π, U be an assumption in

Assumptions(Π,M), and b be an annotated atom in Ap ∪An. An offline justification

of b with respect to M and U is an element (N,E) of E(b,M,U), which is safe.

According to the definition, a justification is a (J,U)-based e-graph where J is an

answer set and U is an assumption. Also, justifications do not allow the creation of

positive cycles in the justification of true atoms. For instance, for Π and X defined

as in Example 1, Figure 11 illustrates an offline justification of a+ with respect to X

and ∅.
Pontelli et al. (2009) prove the following proposition that shows that for every

atom in the program, there exists an offline justification.

Proposition 9

Let Π be a ground normal ASP program, and X be an answer for Π. Then, for

each atom a in Π, there is an offline justification with respect to X and X−\WF−Π
that does not contain negative cycles.

10.2 From justifications to explanations

We relate a justification to an explanation. In particular, given an offline justification,

we show that one can obtain an explanation tree whose atom vertices are formed

by utilizing the “annotated atoms” of the justification and rule vertices are formed

by utilizing the “support” of annotated atoms. To compute such explanation trees,

we develop Algorithm 7.
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Input: Π : ground normal ASP program, X : answer set for Π, p : atom in X,

(V , E) : justification of p+ w.r.t X and some U ∈ Assumptions(Π, X).

Output: A vertex-labeled tree 〈V ′, E ′, l,Π, X〉.
V ′ := ∅, E ′ := ∅;
v ← Create a vertex v s.t. l(v) = p;

Q← v;

while Q 
= ∅ do

v′ ← Dequeue an element from Q;

V ′ := V ′ ∪ {v′};
if l(v′) ∈ Π then // v′ is a rule vertex

foreach a ∈ B+(l(v′)) do

v′′ ← Create a vertex v′′ s.t. l(v′′) = a;

E ′ := E ′ ∪ {(v′, v′′)} // edge from rule vertex to atom vertex;

Enqueue v′′ to Q;

end

end

else if l(v′) ∈ X then // v′ is an atom vertex

r ← Create a rule r s.t. H(r) = l(v′) and B(r) = support(l(v′)+, G);

v′′ ← Create a vertex v′′ s.t. l(v′′) = r;

E ′ := E ′ ∪ {(v′, v′′)} // edge from atom vertex to rule vertex;

Enqueue v′′ to Q;

end

end

return 〈V ′, E ′, l,Π, X〉;
Algorithm 7: Justification to Explanation

Let us now explain the algorithm in detail. Algorithm 7 takes as input a ground

normal ASP program Π, an answer set X for Π, an atom p in X, and a justification

(V , E) of p+ with respect to X and some U ∈ Assumptions(Π, X). Our goal is to

obtain an explanation tree in the and-or explanation tree for p with respect to Π

and X from the justification (V , E). The algorithm starts by creating two sets V ′

and E ′ (Line 1). Here, V ′ and E ′ corresponds to the set of vertices and the set of

edges of the explanation tree, respectively. By Condition (ii) in Definition 3 and

Condition (i) in Definition 2, we know that the label of the root of an explanation

tree for p with respect to Π and X is p. Thus, a vertex v with label p is defined

(Line 2), and added into the queue Q (Line 3). Then, the algorithm enters into a

“while” loop that executes until Q becomes empty. At every iteration of the loop,

an element v from Q is first extracted (Line 5) and added into V ′ (Line 6). This

implies that every element added into Q is also added into V ′. For instance, the

vertex defined at Line 2 is the first vertex extracted from Q and also added into V ′,

which makes sense since we know that the root of an explanation tree is an atom

vertex with label v. Then, according to the type of the extracted vertex, its out-going

edges are defined. Let v′ be a vertex extracted from Q at Line 5 in some iteration of

the loop. Consider the following two cases.
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Case 1 Assume that v′ is an atom vertex. Then, the algorithm directly goes to

Line 13. By Condition (i) in Definition 3, we know that an explanation tree

is a subtree of the and-or explanation tree. Hence, we need to define out-

going edges of v′ by taking into account Condition (ii) in Definition 2, which

implies that a child of v′ must be a rule vertex v′′ such that the rule that

labels v′′ “supports” the atom that labels v′. Thus, a rule r that supports

the atom that labels v′ is created (Line 13). We ensure “supportedness”

property by utilizing the annotated atoms in the given offline justification

that supports the annotated version of the atom that labels v′. Then, a

vertex v′′ with label r is created (Line 14), and a corresponding child of

v′ is added into E ′ (Line 15). By Condition (iii) in Definition 3, we know

that every atom vertex of an explanation tree has a single child. Therefore,

another child of v′ is not created. Then, before finishing the iteration of the

loop, the child v′′ of v′ is added into Q so that its children can be formed in

the next iterations of the loop.

Case 2 Assume that v′ is a rule vertex. Then, the condition at Line 7 is satisfied

and the algorithm goes to Line 8. In this case, while forming the children

of v′, we should consider Condition (iii) in Definition 2, which implies that

a child v′′ of v′ must be an atom vertex such that the atom that labels v′′

is in the positive body of the rule that labels v′. Also, by Condition (iv) in

Definition 3, we should ensure that for every atom a in the positive body of

the rule that labels v′, there exists a child va of v′ such that the atom that

labels va is equal to a. Thus, the loop between Lines 8 and 11 iterates for

every atom a in the positive body of the label of v′ and a vertex v′′ with

label a is created (Line 9). Then, v′′ becomes a child of v′ (Line 10). To form

the children of v′′ in the next iterations of the “while” loop, the child v′′ of

v′ is added into Q (Line 11).

When the algorithm finishes processing the elements of Q, i.e., Q becomes empty,

the “while” loop terminates. Then, the algorithm returns a vertex-labeled tree

(Line 17). We now provide the proposition about the soundness of Algorithm 7.

Proposition 10

Given a ground normal ASP program Π, an answer set X for Π, an atom p in X,

an assumption U in Assumption(Π, X), and an offline justification G = (V , E) of p+

with respect to X and U, Algorithm 7 returns an explanation tree 〈V ′, E ′, l,Π, X〉 in

the and-or explanation tree for p with respect to Π and X.

Example 13

Let Π and X be defined as in Example 8. Figure 13(a) is an offline justification of

a+ with respect to X and ∅. Figure 13(b) shows a corresponding explanation tree in

the and-or explanation tree for a with respect to Π and X that is obtained by using

Algorithm 7.
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a+

b+

+

c+

�

+

+

+

(a)

a

a ← b, c

b

b ← c

c

c ←

c

c ←

(b)

Fig. 13. (a) An offline justification and (b) its corresponding explanation tree obtained by

using Algorithm 7.

Input: Π : ground normal ASP program, X : answer set for Π, p : atom in X,

〈V ′, E ′, l,Π, X〉 : an explanation tree in the and-or explanation tree for p

w.r.t Π and X.

Output: (V , E) : justification of p+ w.r.t X and ∅.
V := ∅, E := ∅;
Q← root of 〈V ′, E ′〉;
while Q 
= ∅ do

v ← Dequeue an element from Q;

V := V ∪ {l(v)+};
v′ ← child of v in 〈V ′, E ′〉;
if l(v′) is a fact in ΠX then

E := E ∪ {(l(v)+,�,+)};
end

foreach v′′ ∈ childE ′(v
′) do

E := E ∪ {(l(v)+, l(v′′)+,+)};
Enqueue v′′ to Q;

end

end

V := V ∪ {�};
return (V , E);

Algorithm 8: Explanation to Justification

10.3 From explanations to justifications

We relate an explanation to a justification. In particular, given an explanation

tree whose labels of vertices are unique, we show that one can obtain an offline

justification by utilizing the labels of atom vertices of the explanation tree. For that,

we design Algorithm 8.

Let us now describe the algorithm in detail. Algorithm 8 takes as input a ground

normal ASP program Π, an answer set X for Π, an atom p in X, and an explanation
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tree T ′ = 〈V ′, E ′, l,Π, X〉 in the and-or explanation tree for p with respect to Π and X.

Our goal is to obtain an offline justification (V , E) of p+ in ΠX with respect to X

and ∅. The reason to obtain the offline justification in the reduct of Π with respect

to X is that our definition of explanation is not defined for the atoms that are not in

the answer set. Algorithm 8 starts by creating two sets V and E that will correspond

to the set of nodes and the set of edges of the offline justification, respectively

(Line 1). Then, the root of 〈V ′, E ′〉 is added into the queue Q (Line 2) and we enter

into a “while” loop that iterates until Q becomes empty. At every iteration of the

loop, first an element v is extracted from Q (Line 4) and l(v)+ is added into V (Line 5).

Then, we form the out-going edges of l(v)+. Due to Condition (iii) in Definition 3,

every atom vertex in an explanation tree has a single child, which is a rule vertex

due to Condition (i) in Definition 3 and Condition (ii) in Definition 2. Then, we

extract the child v′ of v at Line 6 and consider two cases. Note that v′ is a rule

vertex.

Case 1 Assume that l(v′) is a fact in ΠX . Then, l(v′) satisfies the condition at Line 7

and we add (l(v)+,�,+) into E at Line 8. The key insight behind that is as

follows. Due to Condition (ii) in Definition 12, support(l(v)+, (V , E)) must

be an LCE of l(v)+. Due to Condition (i) in Definition 3 and Condition (ii)

in Definition 2, the head of l(v′) is l(v). As l(v′) is a fact in ΠX , i.e., its body

is empty in ΠX , {�} becomes an LCE of l(v)+ with respect to (X, ∅), due

to Definition 11. Thus, by adding (l(v)+,�,+) to E, support(l(v)+, (V , E))

becomes {�}.
Case 2 Assume that l(v′) is not a fact in ΠX . Then, for every child v′′ of v′, we

add (l(v)+, l(v′′)+,+) into E at Line 10. The intuition behind this is to make

sure that support(l(v)+, (V , E)) is an LCE of l(v)+. Due to Condition (i) in

Definition 3, an explanation tree is a subtree of the corresponding and-or

explanation tree. Then, due to Condition (ii) in Definition 2, for every atom

vertex v in an explanation tree, the atoms in the positive body of the rule

that labels the child v′ of v are in the given answer set X. Thus, due to

Definition 11, adding (l(v)+, l(v′′)+,+) into E for every child v′′ of v′ ensures

that support(l(v)+, (V , E)) is an LCE of l(v)+ with respect to (X, ∅). Also, we

add v′′ into V so that its children in V are formed in the next iterations of

the “while” loop.

Due to Line 8, there are incoming edges of �. But, � is not added into V inside

the “while” loop. Thus, when the “while” loop terminates, before returning (V , E)

at Line 13, we add � into V .

Algorithm 8 creates an offline justification of the given atom in the reduct of the

given ASP program with respect to the given answer set, provided that labels of the

vertices of the given explanation tree are unique.

Proposition 11

Given a ground normal ASP program Π, an answer set X for Π, an atom p in X,

and an explanation tree 〈V ′, E ′, l,Π, X〉 in the and-or explanation tree for p with

respect to Π and X such that for every v, v′ ∈ V ′, l(v) = l(v′) if and only if
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a

a ← b, c, not d

b

b ← not e

c

c ←
(a)

a+

b+

�

+

+

c+

�

+

+

(b)

Fig. 14. (a) An explanation tree and (b) its corresponding offline justification obtained by

using Algorithm 8.

v = v′, Algorithm 8 returns an offline justification of p+ in ΠX with respect to X

and ∅.

Example 14

Let Π be the program:

a← b, c, not d

b← not e

c←
and X = {a, b, c}. Figure 14(a) is an explanation tree T in the and-or explanation

tree for a with respect to Π and X. Then, given Π, X, a, and T , Algorithm 8 creates

an offline justification of a+ in ΠX with respect to Π and ∅ as in Figure 14(b).

11 Other related work

The most recent work related to explanation generation in ASP are Brain and Vos

(2005), Syrjanen (2006), Gebser et al. (2008), Pontelli et al. (2009), and Oetsch

et al. (2010; 2011), in the context of debugging ASP programs. Among those,

Syrjanen (2006) studies why a program does not have an answer set, and Gebser

et al. (2008) and Oetsch et al. (2010) study why a set of atoms is not an answer set.

As we study the problem of explaining the reasons why atoms are in the answer set,

our work differs from those two works.

In Brain and Vos (2005), similar to our work, the question “why is an atom p in

an answer set X for an ASP program Π” is studied. As an answer to this question,

Brain and Vos (2005) provide the rule in Π that supports X with respect to Π;

whereas we compute shortest or k different explanations (as a tree whose vertices

are labeled by rules).

Pontelli et al. (2009) also introduce the notion of an online justification that

aims to justify the truth values of atoms during the computation of an answer set.

In Oetsch et al. (2011), a framework where the users can construct interpretations

through an interactive stepping process is introduced. As a result, Pontelli et al.

(2009) and Oetsch et al. (2011) can be used together to provide the users with
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justifications of the truth values of atoms during the construction of interpretations

interactively through stepping.

12 Conclusion

We have formally defined explanations in the context of ASP. We have also

introduced variations of explanations, such as “shortest explanations” and “k

different explanations.”

We have proposed generic algorithms to generate explanations for biomedical

queries. In particular, we have presented algorithms to compute shortest or k

different explanations. We have analyzed termination, soundness, and complexity of

these algorithms. In particular, the complexity of generating a shortest explanation

for an answer (in an answer set X) is O(|Π||X|×|BΠ|) where |Π| is the number of ASP

rules representing the query, the knowledge extracted from biomedical resources, and

the rule layer, and |BΠ| is the number of atoms in Π. The complexity of generating k

different explanations is O(k×|Π||X|+1×|BΠ|). For k different explanations, we have

defined a distance measure based on the number of different ASP rules between

explanations.

We have developed a computational tool ExpGen-ASP that implements these

algorithms. We have embedded ExpGen-ASP into BioQuery-ASP to generate ex-

planations regarding the answers of complex biomedical queries. We have proposed

a method to present explanations in a natural language. No existing biomedical

query answering system is capable of generating explanations; our methods have

fulfilled this need in biomedical query answering.

We have illustrated the applicability of our methods to answer complex biomedical

queries over large biomedical knowledge resources about drugs, genes, and diseases,

such as PharmGKB, DrugBank, BioGRID, CTD, SIDER, Disease Ontology,

and Orphadata. The total number of the facts extracted from these resources to

answer queries is approximately 10.3 million.

It is important to emphasize here that our definitions and methods for explanation

generation are general, so they can be applied to other applications (e.g., debugging,

query answering in other domains).

One line of future work is to generalize the notion of an explanation to queries

(like Q7) that contain choice expressions.
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