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Existence of hypercylinder expanders of the
inverse mean curvature flow
Kin Ming Hui

Abstract. We will give a new proof of the existence of hypercylinder expander of the inverse mean
curvature flow which is a radially symmetric homothetic soliton of the inverse mean curvature flow
in R

n ×R, n ≥ 2, of the form (r, y(r)) or (r(y), y), where r = ∣x∣, x ∈ Rn , is the radially symmetric
coordinate and y ∈ R. More precisely, for any λ > 1

n−1 and μ > 0, we will give a new proof of the
existence of a unique even solution r(y) of the equation r′′(y)

1+r′(y)2 =
n−1
r(y) −

1+r′(y)2

λ(r(y)−yr′(y)) in R which
satisfies r(0) = μ, r′(0) = 0 and r(y) > yr′(y) > 0 for any y ∈ R. We will prove that limy→∞ r(y) =
∞ and a1 ∶= limy→∞ r′(y) exists with 0 ≤ a1 < ∞. We will also give a new proof of the existence of a
constant y1 > 0 such that r′′(y1) = 0, r′′(y) > 0 for any 0 < y < y1 , and r′′(y) < 0 for any y > y1 .

1 Introduction

Consider a family of immersions F ∶ Mn × [0, T) → R
n+1 of n-dimensional hypersur-

faces in R
n+1. We say that Mt = Ft(Mn), Ft(x) = F(x , t), moves by the inverse mean

curvature flow if
∂
∂t

F(x , t) = − ν
H
∀x ∈ Mn , 0 < t < T ,

where H(x , t) > 0 and ν are the mean curvature and unit interior normal of the
surface Ft at the point F(x , t). Recently, there are a lot of study on the inverse mean
curvature flow by Daskalopoulos, Gerhardt, Hui [H], Huisken, Ilmanen, Smoczyk,
Urbas, and others [DH, G, HI1, HI2, HI3, S, U]. Although there are a lot of study on
the inverse mean curvature flow on the compact case, there are not many results for
the noncompact case.

Recall that by [DLW] a n-dimensional submanifold Σ of Rn+1 with immersion X ∶
Σ → R

n+1 and nonvanishing mean curvature H is called a homothetic soliton for the
inverse mean curvature flow if there exists a constant λ ≠ 0 such that

− ν(p)
H(p) = λX(p)⊥ ∀p ∈ Σ,(1.1)

where X(p)⊥ is the component of X(p) that is normal to the tangent space
TX(p)(X(Σ)) at X(p). As proved by Drugan, Lee, and Wheeler in [DLW], (1.1) is
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equivalent to

− < Hν, X >= 1
λ
⇔ − < Δg X , X >= 1

λ
∀X ∈ Σ,(1.2)

where g is the induced metric of the immersion X ∶ Σ → R
n+1. If the homothetic

soliton of the inverse mean curvature flow is a radially symmetric solution in R
n ×

R, n ≥ 2, of the form (r, y(r)) or (r(y), y), where r = ∣x∣, x ∈ Rn , is the radially
symmetric coordinate, y ∈ R, then by (1.2) a direct computation r(y) satisfies the
equation

r′′(y)
1 + r′(y)2 =

n − 1
r(y) −

1 + r′(y)2

λ(r(y) − yr′(y)) , r(y) > 0,(1.3)

or equivalently, y(r) satisfies the equation

yrr +
n − 1

r
⋅ (1 + y2

r )yr −
(1 + y2

r )2

λ(r yr − y) = 0,

where r′(y) = dr
d y , r′′(y) = d2 r

d y2 and yr(r) = d y
dr , yrr(r) = d2 y

dr2 , and so on. In the paper
[DLW], Drugan, Lee, and Wheeler stated the existence and asymptotic behavior of
hypercylinder expanders which are homothetic soliton for the inverse mean curvature
flow with λ > 1/n. However, there is no proof of the existence result in that paper
except for the case λ = 1

n−1 and the proof of the asymptotic behavior of hypercylinder
expanders there are very sketchy. In this paper, I will give a new proof of the
existence of hypercylinder expanders for the inverse mean curvature flow with λ >

1
n−1 . We will also give a new proof of the asymptotic behavior of these hypercylinder
expanders.

More precisely, I will prove the following main results.

Theorem 1.1 For any n ≥ 2, λ > 1
n−1 , and μ > 0, there exists a unique even solution

r(y) ∈ C2(R) of the equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r′′(y)
1 + r′(y)2 =

n − 1
r(y) −

1 + r′(y)2

λ(r(y) − yr′(y)) , r(y) > 0, ∀y ∈ R,

r(0) = μ, r′(0) = 0,
(1.4)

which satisfies

r(y) > yr′(y) ∀y ∈ R(1.5)

and

r′′(0) = (n − 1 − 1
λ
) 1

μ
.(1.6)
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Theorem 1.2 (cf. Theorem 20 of [DLW]) Let n ≥ 2, λ > 1
n−1 , μ > 0, and r(y) ∈ C2(R)

be the unique solution of (1.4). Then,

r′(y) > 0 ∀y > 0,(1.7)

a1 ∶= lim
y→∞

r′(y) exists and 0 ≤ a1 < ∞,(1.8)

and

lim
y→±∞

r(y) = ∞.(1.9)

Moreover, there exists a constant y1 > 0 such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r′′(y) > 0 ∀0 < y < y1 ,
r′′(y) < 0 ∀y > y1 ,
r′′(y1) = 0.

(1.10)

Because (1.4) is invariant under reflection y → −y, by uniqueness of solution of
ODE, the solution of (1.4) is an even function, and Theorem 1.1 is equivalent to the
following theorem.

Theorem 1.3 For any n ≥ 2, λ > 1
n−1 , and μ > 0, there exists a unique solution r(y) ∈

C2([0,∞)) of the equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r′′

1 + r′2
= n − 1

r
− 1 + r′2

λ(r − yr′) , r(y) > 0, ∀y > 0,

r(0) = μ, r′(0) = 0,
(1.11)

which satisfies

r(y) > yr′(y) ∀y > 0(1.12)

and (1.6).

2 Existence and asymptotic behavior of solution

In this section, we will prove Theorems 1.2 and 1.3. We first start with two lemmas
which follow by standard ODE theory and Picard’s theorem.

Lemma 2.1 For any n ≥ 2, λ ≠ 0, and μ > 0, there exists a constant y0 > 0 such that
the equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r′′

1 + r′2
= n − 1

r
− 1 + r′2

λ(r − yr′) , r(y) > 0, in [0, y0)

r(0) = μ, r′(0) = 0
(2.1)
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has a unique solution r(y) ∈ C2([0, y0)) which satisfies

r(y) > yr′(y) in [0, y0).(2.2)

Moreover, (1.6) holds.

Lemma 2.2 For any n ≥ 2, λ ≠ 0, μ > 0, M1 > 0, δ0 > 0, r0 , r1 ∈ R, satisfying

δ0 ≤ r0 ≤ M1 , ∣r1∣ ≤ M1 , r0 − y1r1 ≥ δ0 ,

there exists a constant δ1 ∈ (0, y0/2) depending on λ, δ0, y0, and M1 such that, for any
y0/2 < y1 < y0, the equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r′′

1 + r′2
= n − 1

r
− 1 + r′2

λ(r − yr′) , r(y) > 0, in [y1 , y1 + δ1)

r(y1) = r0 , r′(y1) = r1

(2.3)

has a unique solution r(y) ∈ C2([y1 , y1 + δ1)) which satisfies

r(y) > yr′(y) in [y1 , y1 + δ1).(2.4)

Lemma 2.3 Let n ≥ 2, 0 < λ ≠ 1
n−1 , μ > 0, and y0 > 0. Suppose r(y) ∈ C2([0, y0)) is

the solution of (2.1) which satisfies (2.2). Then, the following holds.
(i) If λ > 1

n−1 , then

r′(y) > 0 ∀0 < y < y0 .

(ii) If 0 < λ < 1
n−1 , then

r′(y) < 0 ∀0 < y < y0 .

Proof By Lemma 2.1, (1.6) holds. We divide the proof into two cases:
Case 1: λ > 1

n−1 .
By (1.6), r′′(0) > 0. Hence, there exists a constant δ > 0 such that r′(s) > 0 for any

0 < s < δ. Let (0, a1), δ ≤ a1 ≤ y0, be the maximal interval such that

r′(s) > 0 ∀0 < s < a1 .

Suppose a1 < y0. Then, r′(a1) = 0 and hence r′′(a1) ≤ 0. On the other hand, by (2.1),

r′′(a1) = (n − 1 − 1
λ
) 1

r(a1)
> 0,

and contradiction arises. Hence, a1 = y0 and (i) follows.
Case 2: 0 < λ < 1

n−1 .
By (1.6), r′′(0) < 0. Hence, there exists a constant δ > 0 such that r′(s) < 0 for any

0 < s < δ. Let (0, a1), δ ≤ a1 ≤ y0, be the maximal interval such that

r′(s) < 0 ∀0 < s < a1 .
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Suppose a1 < y0. Then, r′(a1) = 0 and hence r′′(a1) ≥ 0. On the other hand, by (2.1),

r′′(a1) = (n − 1 − 1
λ
) 1

r(a1)
< 0,

and contradiction arises. Hence, a1 = y0 and (ii) follows. ∎

Remark 2.4 Note that if r(y) is the local solution of (2.1) in (0, y0), it is possible
that

lim
y→y0
(r(y) − yr′(y)) = 0

or

lim
y→y0

r′(y) = ∞

or

lim
y→y0

r(y) = ∞,

so that the local solution r(y) of (2.1) cannot be continued beyond y0 by standard
ODE technique. Hence, in order to proof the global existence of solution of (1.11), we
need the following two lemmas which show that this cannot happen.

Lemma 2.5 Let n ≥ 2, λ > 1
n−1 , μ > 0, and y0 > 0. Suppose r(y) ∈ C2([0, y0)) is the

solution of (2.1) which satisfies (2.2). Then, there exist a constant δ1 > 0 such that

r(y) − yr′(y) ≥ δ1 ∀0 < y < y0 .(2.5)

Proof Let w(y) = r(y) − yr′(y), a1 =min0≤y≤y0/2 w(y), a2 = μ
λ(n−1) , and a3 =

1
2 min(a1 , a2). Then, a1 > 0 and a3 > 0. By Lemma 2.3,

r(y) ≥ μ ∀0 < y < y0 .(2.6)

Suppose there exists y1 ∈ (y0/2, y0) such that w(y1) < a3. Let (a, b) be the maximal
interval containing y1 such that w(y) < a3 for any y ∈ (a, b). Then, a > y0/2, w(a) =
a3, and

w(y) < μ
2λ(n − 1) ∀a < y < b.(2.7)

By (2.1), (2.6), (2.7), and a direct computation,

w′(y) = y(1 + r′(y)2)( 1 + r′(y)2

λw(y) −
n − 1
r(y) ) ∀0 < y < y0

≥ y(1 + r′(y)2)( 1
2λw(y) + (

1
2λw(y) −

n − 1
μ
)) ∀a < y < b

≥ y0

4λw(y) > 0 ∀a < y < b.
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Hence,

w(y) > w(a) = a3 ∀a < y < b,

and contradiction arises. Hence, no such y1 exists, and w(y) ≥ a3 for any y ∈ (0, y0).
Thus, (2.5) holds with δ1 = a3. ∎

Lemma 2.6 Let n ≥ 2, λ > 1
n−1 , μ > 0, and y0 > 0. Suppose r(y) ∈ C2([0, y0)) is the

solution of (2.1) which satisfies (2.2). Then, there exists a constant M1 > 0 such that

0 < r′(y) ≤ M1 ∀0 < y < y0(2.8)

and

μ ≤ r(y) ≤ μ +M1 y0 ∀0 < y < y0 .(2.9)

Proof By (2.1), (2.2), and Lemma 2.3,

r′′

1 + r′2
≤ n − 1

r
≤ n − 1

μ
∀0 < y < y0 .(2.10)

Integrating (2.10) over (0, y0),

tan−1(r′(y)) ≤ (n − 1)y0

μ
∀0 < y < y0 .(2.11)

By Lemma 2.3 and (2.11), (2.8) holds with

M1 = tan((n − 1)y0

μ
) .

By (2.8), we get (2.9), and the lemma follows. ∎

Lemma 2.7 Let n ≥ 2, λ > 1
n−1 , μ > 0, and y0 > 0. Suppose r(y) ∈ C2([0, y0)) is the

solution of (2.1) which satisfies (2.2). Then, either

r′′(y) > 0 ∀0 < y < y0 ,(2.12)

or there exists a constant y1 ∈ (0, y0) such that r′′(y1) = 0 and

{
r′′(y) > 0 ∀0 < y < y1 ,
r′′(y) < 0 ∀y1 < y < y0 .

(2.13)

Proof We will use a modification of the proof of Lemma 15 of [DLW] to prove this
lemma. By (1.6), r′′(0) > 0. Hence, there exists a constant δ > 0 such that r′′(s) > 0
for any 0 < s < δ. Let (0, y1), δ ≤ y1 ≤ y0, be the maximal interval such that

r′′(s) > 0 ∀0 < s < y1 .
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If y1 = y0, then (2.12) holds. If y1 < y0, then r′′(y1) = 0. By Lemma 2.3 and (2.1),

r′′′(y)
1 + r′(y)2 =

2r′(y)r′′(y)2

(1 + r′(y)2)2 −
n − 1
r(y)2 r′(y) − 2r′(y)r′′(y)

λ(r(y) − yr′(y))

− y(1 + r′(y)2)r′′(y)
λ(r(y) − yr′(y))2 ∀0 < y < y0(2.14)

⇒ r′′′(y1)
1 + r′(y1)2 = − (n − 1) r′(y1)

r(y1)2 < 0.

Hence, there exists a constant 0 < δ′ < y0 − y1 such that r′′(y) < 0 for any y1 < y <
y1 + δ′. Let (y1 , z0) be the maximal interval such that

r′′(s) < 0 ∀y1 < s < z0 .

If z0 < y0, then r′′(z0) = 0 and r′′(z0) ≥ 0. On the other hand, by Lemma 2.3 and
(2.14),

r′′′(z0)
1 + r′(z0)2 = −(n − 1) r′(z0)

r(z0)2 < 0,

and contradiction arises. Hence, z0 = y0 and (2.13) follows. ∎

We are now ready to prove Theorem 1.3.

2.1 Proof of Theorem 1.3

By Lemma 2.1, there exists a constant y′0 > 0 such that (2.1) has a unique solution
r(y) ∈ C2([0, y′0))which satisfies (1.6) and (2.2) in (0, y′0). Let (0, y0) be the maximal
interval of existence of solution r(y) ∈ C2([0, y0)) of (2.1) which satisfies (2.2) and
(1.6). Suppose y0 < ∞. By Lemmas 2.2, 2.5, and 2.6, there exists a constant δ1 ∈ (0, y0)
such that, for any y0/2 < y1 < y0, there exists a unique solution r1(y) ∈ C2([y1 , y1 +
δ1))of (2.3) which satisfies (2.4) with r0 = r(y1) and r1 = r′(y1). Let y1 ∈ (y0 − δ1

2 , y0),
and let r1(y) ∈ C2([y1 , y1 + δ1)) be the unique solution of (2.3) given by Lemma 2.2
which satisfies (2.4) with r0 = r(y1) and r1 = r′(y1). We then extend r(y) to a solution
of (1.11) in (0, y1 + δ1) by setting r(y) = r1(y) for any y0 ≤ y < y1 + δ1. Because y1 +
δ1 > y0, this contradicts the maximality of the interval (0, y0). Hence, y0 = ∞, and
there exists a unique solution r(y) ∈ C2([0,∞)) of the equation (1.11) which satisfies
(1.12) and (1.6) and the theorem follows. ◻

2.2 Proof of Theorem 1.2

We will give a simple proof different from the sketchy proof of this result in [DLW]
here. By (i) of Lemma 2.3, (1.7) holds. By Lemma 2.7, either

r′′(y) > 0 ∀y > 0,(2.15)
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or there exists y1 > 0 such that (1.10) holds. Suppose (2.15) holds. Then,

a1 ∶= lim
y→∞

r′(y) exists,(2.16)

and a1 > 0. We now divide the proof into two cases.
Case 1: a1 = ∞.
Then, there exists y2 > 0 such that

r′(y) >
√

2(n − 1)λ ∀y > y2 .(2.17)

By (1.11) and (2.17),

r′′(y)
1 + r′(y)2 ≤

1
r(y) (n − 1 − 1 + r′(y)2

λ
) ∀y > 0

≤ 1
r(y) (n − 1 − 1 + 2(n − 1)λ

λ
) < 0 ∀y > y2 ,

which contradicts (2.15). Hence, a1 ≠ ∞.
Case 2: a1 < ∞.
By (1.12),

0 < yr′(y)
r(y) < 1 ∀y > 0.(2.18)

Now, by (2.16) and the l’Hosiptal rule,

lim
y→∞

r(y)
y
= lim

y→∞
r′(y) = a1 ⇒ lim

y→∞

yr′(y)
r(y) =

limy→∞ r′(y)
limy→∞ r(y)/y = 1.(2.19)

By (1.11), (2.16), (2.18), (2.19), and the l’Hosiptal rule,

lim
y→∞

r(y)r′′(y)
1 + a2

1
= lim

y→∞

r(y)r′′(y)
1 + r′(y)2

=n − 1 − 1 + a2
1

λ
⋅ 1

limy→∞ (1 − yr′(y)
r(y) )

= −∞,

which contradicts (2.15). Hence, a1 < ∞ does not hold. Thus, by Cases 1 and 2, (2.15)
cannot hold. Hence, there exists y1 > 0 such that (1.10) holds.

By (1.10) and Lemma 2.3, (1.8) holds. By (1.7),

a2 ∶= lim
y→∞

r(y) ∈ (μ,∞] exists.

Because by (1.10) (r(y) − yr′(y))′ = −yr′′(y) > 0 for any y > y1,

a3 ∶= lim
y→∞
(r(y) − yr′(y)) ∈ (r(y1) − y1r′(y1),∞] exists.(2.20)

Suppose

a2 ∈ (μ,∞).(2.21)
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Then,

a1 = 0.(2.22)

By (1.8), (2.20), and (2.21),

a4 ∶= lim
y→∞

yr′(y) = a2 − a3 ∈ [0, a2 − r(y1) + y1r′(y1)) exists.

Suppose a4 > 0. Then, there exists y2 > y1 such that

yr′(y) ≥a4/2 ∀y ≥ y2

⇒ r(y) ≥r(y2) +
a4

2
log(y/y2) ∀y ≥ y2

⇒ a2 =∞,

which contradicts (2.21). Hence,

a4 = 0.(2.23)

Letting y →∞ in (1.11), by (2.22) and (2.23),

lim
y→∞

r′′(y) = (n − 1 − 1
λ
) 1

a2
> 0,

which contradicts (1.10). Hence, (2.21) does not hold and a2 = ∞. Thus, (1.9) holds
and the theorem follows.
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