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ABSTRACT

In this paper we construct an action of the affine Hecke category (in its ‘Soergel
bimodules’ incarnation) on the principal block of representations of a simply connected
semisimple algebraic group over an algebraically closed field of characteristic bigger
than the Coxeter number. This confirms a conjecture of G. Williamson and the sec-
ond author, and provides a new proof of the tilting character formula in terms of
antispherical p-Kazhdan—Lusztig polynomials.
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1. Introduction

1.1 Representation theory of reductive algebraic groups and the Hecke category
Let G be a connected reductive algebraic group over an algebraically closed field k of characteris-
tic p (assumed to be strictly bigger than the Coxeter number of GG), and let W,g be the associated
affine Weyl group. A choice of a Borel subgroup B in G determines a subset S,g C Wag of ‘sim-
ple reflections’ such that (Wag, Sag) is a Coxeter system. It has long been expected (following
ideas of Verma [Ver75], later expanded by Lusztig [Lus80] in particular) that the combina-
torics of the category Rep(G) of finite-dimensional algebraic G-modules should be expressible in
terms of the Kazhdan—Lusztig combinatorics of (W,g, Sag). This expectation is now known to
be exact if p is large (thanks to work of Kazhdan and Lusztig, Kashiwara and Tanisaki, and
Andersen, Jantzen and Soergel, or a later version of Fiebig), but not for some smaller values of p
(as shown by Williamson); see [RW18] for details and references.

In [RW18], G. Williamson and the second author of the present paper started advocat-
ing the idea that the combinatorics of Rep(G) should rather be expressed in terms of the
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p-Kazhdan—Lusztig combinatorics, introduced a few years before by G. Williamson (partly in
collaboration; see [JMW14, JW17]) as some ‘combinatorial shadow’ of the Hecke category Dpg
over k attached to (Wa,g, Sag). (Here by ‘Hecke category’ we mean the diagrammatic category
introduced by Elias and Williamson in [EW16]; this category is closely related to those of Soergel
bimodules and parity complexes on flag varieties.) In that paper it was observed in particular
that a concrete incarnation of this idea (a character formula for indecomposable tilting modules
in the principal block, in terms of antispherical p-Kazhdan—Lusztig polynomials) was a conse-
quence of the following conjecture, where for s € S,g we denote by B, the object of Dpg naturally
associated with s.

CONJECTURE 1.1 [RW18]. There exists a (k-linear) right action of the monoidal category Dps
on the principal block Repy(G) of Rep(G) such that for any s € S,g the object Bs acts via a
functor isomorphic to the wall-crossing functor associated with s.

The formulation of Conjecture 1.1 was motivated in particular by the philosophy of cate-
gorical actions of Lie algebras; it was proved in [RW18, Part II] (and independently by Elias
and Losev [EL17]) in the special case when G = GL, (k) for some n, using the machinery of
2-Kac-Moody algebras [Rou08].

Later the ‘combinatorial’ consequence of Conjecture 1.1 (the tilting character formula) was
proved for general G (in fact, in two very different ways; see [AMRW19, RW20]), but these proofs
use other tools, and none of them implies the original categorical conjecture. The main result of
the present paper is a proof of Conjecture 1.1 (which, as explained above, provides in particular
a third general proof of the tilting character formula). In contrast to the other approaches to
such questions, our proof does not involve constructible sheaves in any way; it uses coherent
sheaves, but mostly over affine schemes, and hence can be considered essentially algebraic.

1.2 Localization for Harish-Chandra bimodules
The action from Conjecture 1.1 will be constructed from the natural action of Harish-Chandra
Ug-bimodules (where Ug is the enveloping algebra of the Lie algebra g of G), that is,
G-equivariant finitely generated Ug-bimodules on which the diagonal action of Ug is the dif-
ferential of the G-action (see §3.4 for details). Namely, the category Rep(G) can be naturally
seen as a full subcategory of the category of G-equivariant U g-modules via differentiation. Thus
it admits an action of the monoidal category of Harish-Chandra bimodules; moreover, wall-
crossing functors (and, more generally, translation functors) can be described as the action of
certain specific completed Harish-Chandra bimodules.

More specifically, recall that (under suitable assumptions on p) the center of Ug identifies
with functions on the fiber product

" Xy €/ (W, 0)

where the superscript (1) denotes Frobenius twist, t is the Lie algebra of a maximal torus T'
contained in B, and W is the Weyl group of (G,T), acting on t* via the ‘dot action’ e. The
subalgebra @(g*(!)) is realized as the ‘Frobenius center’ and the subalgebra @(t*/(W, e)) as the
‘Harish-Chandra center’. For A\, u € X*(T), in §§3.5-3.7 we will construct a certain monoidal
category

HCM
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of ‘completed Harish-Chandra bimodules’, which are certain G-equivariant finitely generated
modules over

(L{g ®ﬁ(g*(1)) L{gop) ®ﬁ(**/(W,°)Xt*(l)/wt*/(W@)) ﬁ(t*/(w .) Xt*(l)/W t*/(W, o))/\,ﬂ7

where O(t*/(W, ®) X .y jyy £/ (W, e))M is the completion of O(t*/ (W, e) X gy £/ (W, @) with
respect to the maximal ideal determined by (A, ). Once this definition is in place, to construct
the desired action it therefore suffices to construct a monoidal functor from the Hecke category
Dgs to the category HC?? sending each By to an object isomorphic to the completed bimodule
realizing the corresponding wall-crossing functor. This will be realized in Theorem 6.3.

The main tool we will use for this construction is a localization theory for Harish-Chandra
bimodules. Even though in the end we are interested in G-modules, which when seen as
Ug-modules have a trivial Frobenius central character, we will localize our bimodules on the
regular part of €(g*1)), and more precisely on a Kostant section 8* C g*(!) to the (co)adjoint
quotient. We will therefore set Usg := Ug ® o(g*M) 0(S*), and consider a certain group scheme
over t*/(W, ) X wa) y t* /(W, ) constructed out of the universal centralizer group scheme Jg

over $* = t*() /W, For \, u € X*(T), we will define a certain monoidal category HCé’ﬂ of finitely
generated equivariant modules over
U™ = (Usg @ p(s+) Usg?) Do (o) ¢/ (Way) O/ (W, 0) X ety jyyy £/ (W, @) M

X (1) yw

see § 3.9 for the precise definition. By construction we have a natural monoidal functor
HCM — HCY,

and the main result of §3 (Proposition 3.7) states that this functor is fully faithful on a cer-

tain subcategory HCgi’ﬁ;‘g of ‘diagonally induced’ bimodules which contains the objects realizing

translation and wall-crossing functors.

It is a classical observation that Usg is an Azumaya algebra over its center (see Proposition 4.1
for details and references); as a consequence, the category of (finitely generated) bimodules over
this algebra such that the left and right actions of its center coincide is equivalent to the category
of (finitely generated) modules over this center (see § 4.1 for details and references). This property
is not directly applicable to our problem, since the two actions of this center on Harish-Chandra
bimodules do not coincide in general; however, by using bimodules realizing translation to and
from the ‘most singular’ Harish-Chandra character (namely, the opposite of the half-sum of the

positive roots), we construct in §4 an equivariant splitting bundle for L{é‘  in the case where A
and u belong to the lower closure of the fundamental alcove. As a consequence, for such A, u we

obtain an equivalence of categories between HC’S\’[L and the category of coherent representations

of the pullback of J§ to the spectrum of &(t*/(W, ®) X p.q) jyy t*/(W, )M see Corollary 4.8.

A general theory of localization for modules over Ug has been developed by the first author
with Mirkovi¢ and Rumynin; see [BMR06, BMRO08, BM13]. The localization that we require here
is, however, slightly different, and the present paper does not formally rely on any substantial
result from [BMR06, BMR08, BM13]. One difference is that we are interested not in modules
but in bimodules, which are equivariant for the diagonal G-action. Some of the constructions
in [BMR06, BMRO0O8, BM13] (in particular, the non-canonicity of the choice of splitting bun-
dle) make this theory difficult to use in an equivariant setting, and our construction is slightly
different. Finally, as explained above, we only need to consider the reqular part of the Frobenius
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center, which simplifies the situation a lot, and in particular allows us to work completely at the
level of abelian categories, without having to consider the more involved derived categories.

1.3 The Hecke category and representations of the universal centralizer
The other crucial ingredient of our proof is a new incarnation of the Hecke category (for any
Coxeter system (W, S)) recently found by Abe [Abe21].

The Hecke category is a categorification of the Hecke algebra of (W,S), depending on a
choice of extra data (comprising a representation V' of W), which admits several different incar-
nations. An early definition of this category in terms of Soergel bimodules [Soe07] applies to
‘reflection faithful’ representations of Coxeter systems, which include natural examples of repre-
sentations over fields of characteristic 0 (e.g. geometric representations of finite Coxeter systems
and representations appearing in the theory of Kac-Moody Lie algebras for crystallographic
Coxeter systems), but does not include important examples over fields of positive characteristic
(e.g. some natural representations of affine Weyl groups of reductive groups). Under this assump-
tion Soergel bimodules can be defined as a full subcategory of the category of graded bimodules
over the polynomial algebra & (V). More recently Elias and Williamson [EW16] have proposed a
definition of the Hecke category in terms of generators and relations which applies (and behaves
as one might expect) in a much greater generality, encompassing the representation of the affine
Weyl group that we require. It is in terms of this construction that Conjecture 1.1 was stated.
(For more on the Hecke category, see also [JW17, Wil18].)

The main drawback of the construction in [EW16], however, is that it is much less concrete
than Soergel’s original definition, and does not involve &'(V')-bimodules. This drawback is exactly
compensated by Abe’s work; under minor technical assumptions he proves in [Abe21] that the
category of Elias and Williamson identifies with a category of ‘enhanced Soergel bimodules’,
which are certain graded bimodules over &/(V) endowed with a decomposition of its tensor
product with Frac(&'(V')) (on the right) parametrized by W.

Based on Abe’s work, in the case of the affine Weyl group acting on X*(7T') ®z k through
the natural action of W, we realize the Hecke category as a full subcategory in (Gy-equivariant)
coherent representations of the pullback of J§ to (1) X (1) t*(1); see Theorem 2.10. This
construction allows us to define a monoidal functor from the Hecke category to the category of
representations considered in § 1.2, and then (using our localization theorem) a monoidal functor

Dpg — HC%(J (11)

(This construction applies more generally for the category HC%’)‘ when A belongs to the funda-
mental alcove; in this case natural étale maps allow us to identify the completions of the schemes
t/(W, 8) Xy t*/(W, @) and (D) X (1) t*(1) at the images of (A, \).)

Remark 1.2. Although the concrete incarnation of this idea that is relevant in the present paper
is new, the fact that affine Soergel bimodules are closely related to representations of the uni-
versal centralizer was already known: it dates back (at least) to [Dod11]; see also [MR18] for an
adaptation of these ideas to positive characteristic coefficients.

At this point, to conclude our proof it only remains to show that our functor (1.1) sends the

objects of the Hecke category labeled by simple reflections to the images in HC%0 of the bimodules
realizing the wall-crossing functors. (In fact, this property will also ensure that the functor takes

values in the essential image of our fully faithful functor HCG, — HC3®, which will imply that

it ‘lifts’ to a functor from Dgpg to HCO’O.) In the case when the simple reflection belongs to the
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finite Weyl group W, this can be checked explicitly, using localization at a character involving
a weight on the corresponding wall of the fundamental alcove; see Proposition 6.6. The general
case is reduced to this one using a standard trick (used, for example, in [Ric10, BM13]), based
on the observation that in the extended affine Weyl group each simple reflection is conjugate to
a simple reflection which belongs to W. The concrete proof involves the study of an analogue
of the affine braid group action from [BR12] in our present context; in this case the situation
simplifies, however (once again because we work over the regular part of the Frobenius center),
and this action in fact factors through an action of the extended affine Weyl group.

Remark 1.3. One of the motivations for Abe’s work [Abe2l] was an attempt to prove
Conjecture 1.1. What Abe was actually able to construct is rather an action on the principal
block of the category of GiT-modules (where G; is the first Frobenius kernel of G), which is
interesting but less applicable to character computations; see [Abel9].

1.4 Towards a coherent realization of the Hecke category

Thanks to work of Kazhdan and Lusztig [KL87] and Ginzburg [CG97], it is known that the
Hecke algebra of (Wag, Sag) identifies with the Grothendieck group of the category of equivariant
coherent sheaves on the Steinberg variety of triples St.! The fiber product t*(1) X (1) yy (1)
considered in § 1.3 identifies with the preimage of the Kostant section S* in the Frobenius twist
of St, and the construction of § 1.3 can be seen to provide a fully faithful monoidal functor from
the Hecke category to the category of equivariant coherent sheaves on the regular part of St. In
future work we will upgrade this construction to a fully faithful monoidal functor to the category
of equivariant coherent sheaves on the whole Steinberg variety.? This construction will be part of
our project (in part jointly with L. Rider) of constructing a ‘modular’ version of the equivalence
constructed by the first author in [Bez16]; see [BRR20] for a first step towards this goal.

1.5 Contents

In §2 we recall Abe’s results, and use them to construct our monoidal functor from the Hecke
category to the appropriate category of representations of the universal centralizer. In §3 we
introduce the categories of completed Harish-Chandra bimodules we will work with, and prove
that restriction to a Kostant section is fully faithful on diagonally induced bimodules. In §4
we develop our localization theory for Harish-Chandra bimodules. In § 5 we prove (for later use)
some technical results using the relation between g and differential operators on the flag variety
of G. In §6 we prove the main result of the paper, that is, we construct the Hecke action on the
principal block and prove that objects associated with simple reflections act via wall-crossing
functors. Finally, Appendix A contains an index of the main notation used in the paper.

2. The affine Hecke category and representations of the regular centralizer

In this section we explain that the affine Hecke category attached to a connected reductive
algebraic group G can be described as a category of representations of (a pullback of) the
universal centralizer attached to G. Our main tool will be a description of the Hecke as a category
of ‘enhanced Soergel bimodules’ recently obtained by Abe [Abe21]. In later sections the group G

! Here, by Steinberg variety of triples we mean the fiber product of two copies of the Grothendieck resolution over
the dual of the Lie algebra, and not the version involving the Springer resolution. This distinction is not important
for the results of [KL87, CG97], but it is for our considerations here.

2 We understand that Ivan Losev has found a different proof of this statement, also based on the results of the
present paper.
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will be chosen as the Frobenius twist of the group G appearing in Conjecture 1.1; however, this
construction applies in a slightly more general context, and might be of independent interest.

2.1 The affine Weyl group and the associated Hecke category

We let k be an algebraically closed field of characteristic p (possibly equal to 0), and G be a
connected reductive algebraic group over k. We fix a Borel subgroup B C G and a maximal
torus T C B. The Lie algebras of G, B, T will be denoted g, b and t respectively. We set
X := X*(T) (respectively, XV := X,(T)), and denote by ® C X (respectively, ® C XV) the
root system (respectively, coroot system) of (G,T). The canonical bijection ® = ®V will be
denoted a — aV. The choice of B determines a subset ® C ® of positive roots, consisting of
the T-weights in g/b; the corresponding basis of ® will be denoted ®*. In this section we will
make the following assumptions.

(i) pis good for G.
(i) Neither X/Z® nor XV /Z®" has p-torsion.
(iii) There exists a G-equivariant isomorphism g — g*.

For simplicity we will fix once and for all a G-equivariant isomorphism x : g — g*. By equiv-
ariance this also provides an identification of t and t* (where t* is identified with the subspace
in g* consisting of linear forms that vanish on all root subspaces).

Let W = Ng(T)/T be the Weyl group of (G, T). The associated affine Weyl group is the
semi-direct product

Wag = W x Z®

where Z® C X is the lattice generated by the roots. For A € Z® we will denote by ¢, the image
of X in Wg. It is well known that W,g is generated by the subset S, consisting of the reflections
Sq With o € ®%, together with the products tgsg where 5 € ® is such that 8 is a maximal coroot.
Moreover, the pair (W,g, Sag) is a Coxeter system; see [Jan03, §11.6.3]. We will sometimes need
to ‘enlarge’ this group by considering translations by all elements of X. Namely, the extended
affine Weyl group is the semi-direct product

Wext =W x X.

Then W,g is a normal subgroup in Weyt.
We will consider the balanced ‘realization’ of W,g over k (in the sense of [EW16]) defined as
follows.

— The underlying k-vector space is t*.

— If @ € ®° and s = s,, then the ‘root’ o € t (respectively, ‘coroot’ Y € t*) associated with s
is the differential of o (respectively, of a).

— If B € &% is such that 3¥ is a maximal coroot and s = tgss then the ‘root’ a; (respectively,
‘coroot’ a)) associated with s is the differential of —3Y (respectively, of —/3).

This realization is an example of a Cartan realization in the sense of [AMRW17, §10.1].
Our assumption (ii) implies that this realization satisfies the ‘Demazure surjectivity’ condition
of [EW16]. There is an associated action of W,g on t*, which is simply the natural action of W,
seen as an action of Wg via the projection Wog — W.

We will denote by Dpg the diagrammatic Hecke category defined by Elias—Williamson [EW16]
for the Coxeter system (Wag,Sag) and this choice of realization. (For a discussion of this
definition, see also [AMRW17, Chap. 2].) The technical conditions necessary for this category
to be defined (and well behaved) are somewhat subtle, and not all of them are made explicit
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in [EW16]; see [EW20, §5] for a detailed discussion of this question. As explained in [EW20,
§5.1], a sufficient condition (in addition to the fact that the data define a realization satisfying
Demazure surjectivity) that ensures that all the results of [EW16] are applicable is that for any
pair of distinct simple reflections s, ¢ such that st has finite order, the restriction of the action
to the subgroup generated by s and ¢ is faithful. It follows from [AMRW17, Lemma 8.1.1] that
this condition is satisfied in our context, except possibly if p = 2 and st = ts. (The assumptions
of [AMRW17, Lemma 8.1.1] are easily checked by hand for Cartan realizations in good charac-
teristic.) However, in this case s and t act non-trivially by Demazure surjectivity, and st acts
non-trivially since o) and o’ are not collinear thanks to assumption (ii).

The category Dpg is a k-linear (non-additive) monoidal category. By definition its objects
are pairs (w,n) where w is a word in S,g and n € Z; the product is given by concatenation of
words and addition of integers, and for any words w,w’ the direct sum of morphism spaces

(D Homoys (w,0), (w',n)

nez
is a graded bimodule over R := &(t*) = Sym(t) (where the grading is such that elements in t
have degree 2). Following usual conventions, the object (w, n) will rather be denoted By, (n). Then
there exists a natural ‘grading shift’ autoequivalence of Dpg such that (By(n))(1) = By(n + 1)
for any w and any n € Z.

Remark 2.1. The Hecke category Dpg (as, more generally, Hecke categories attached to
Cartan realizations of crystallographic Coxeter systems) admits an incarnation in terms of parity
complexes on a flag variety; see [RW18, Part III]. Although important for some other purposes,
this realization of the Hecke category will not play any role in the present paper. (The relation
between Soergel bimodules and constructible sheaves on flag varieties was first obtained, in a
characteristic-0 context, by Soergel [Soe01] in the case of finite crystallographic groups (using the
earlier definition of Soergel bimodules in this case in [Soe92]) and by Hérterich for Kac-Moody
groups [Har99].)

2.2 Abe’s incarnation of the Hecke category

For our present purposes we will need a description of Dgg in terms of R-bimodules due to
Abe [Abe21], which is close to the definition of Soergel bimodules [Soe07], and which we now
recall. Once again, in order to apply these results one needs some technical assumptions. A suffi-
cient condition (in terms of vanishing of quantum binomial coefficients) for the results of [Abe21]
to be applicable is given in [Abe20]. One can check by explicit computation that this condition
is automatically satisfied for Cartan realizations.

We will denote by @ the fraction field of R. Following [Abe21], we denote by C’ the category
defined as follows. Objects are pairs consisting of a graded R-bimodule M together with a
decomposition

MeorQ= P My (2.1)
wEW, g

as (R, @)-bimodules such that:

— there exist only finitely many elements w such that Mg # 0;
— for any w € Wyg, r € R and m € Mg we have

m-r =w(r)- m. (2.2)

Morphisms in C’ are defined in the obvious way, as morphisms of graded bimodules compatible
with the decompositions (2.1). We also denote by C the full subcategory of C' whose objects are
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those whose underlying graded R-bimodule M is finitely generated as an R-bimodule and flat
as a right R-module. As explained in [Abe21, Lemma 2.6], the underlying R-bimodule of any
object in C is in fact finitely generated as a left and as a right R-module; this property shows
that the tensor product over R induces in a natural way a monoidal product on C. We also have
a ‘grading shift’ autoequivalence of C, which only changes the grading of the underlying graded
R-bimodule in such a way that M (1) = Mi*1,

For s € S, we consider the s-invariants R® C R, and the graded R-bimodule BP™ := R @ps
R(1). This object has a natural ‘lift’ as an object in C, which will also be denoted by BE™
(see [Abe21, §2.4]).

The following result is a special case of [Abe21, Theorem 5.9]; see also [Abe20, Theorem 1.3].

THEOREM 2.2. There exists a canonical fully faithful monoidal functor
Dps — C
sending By to BE™ for any s € S,g and intertwining the grading shifts (1).

It will be convenient to consider also a slight extension of the category C, adapted to the
group Weyt. Namely, the action of Wog on t* extends in a natural way to Wext (using now the
projection Weyy — W). We will denote by CL,, the category whose objects are pairs consisting
a graded R-bimodule M together with a decomposition

MerQ= P My
weWext

as (R, @)-bimodules such that:

— there exist only finitely many elements w such that Mg #0;
— for any w € Weyy, r € Rand m € Mj we have m - r = w(r) - m,

and where morphisms are defined in the obvious way. We will also denote by Cey the full
subcategory of CL,; whose objects are those whose underlying graded R-bimodule M is finitely
generated as an R-bimodule and flat as a right R-module. It is clear that C" is a full subcategory
in Cl,;, that C is a full subcategory in Cey, and that the tensor product ® g defines a monoidal
structure on Ceyt.

Remark 2.3. Some adaptations of the ‘Soergel calculus’ of [EW16] to extended affine Weyl groups
have been discussed in work of Mackaay and Thiel [MT17] and Elias [Eli18, § 3]. The analogue
of Theorem 2.2 in this context is most likely true, but since it is not needed in this paper we will
not investigate this question further.

In addition to the objects BB™ considered above, the category Ceys possesses ‘standard’
objects (A : x € Wey) defined as follows. For any x € Wy, A, is isomorphic to R as a graded
vector space, and the R-bimodule structure is given by

r-m~r’:rmx(r')

for r,v’ € R and m € A,. The decomposition of A, ®r Q is defined so that this object is
concentrated in degree x. For any z,y € Wt we have a canonical isomorphism

A, QR Ay = A:py (23)

in Cext, defined by m @ m’ — ma(m/).
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LEMMA 2.4. Let s,t € Sug and x € Wy be such that s = xtz~!. Then there exists a canonical
isomorphism

B?im =2 A, ®Rr BPim Qr Ay-1.
Proof. The isomorphism of R-bimodules
A, ®r BP™ @r A,-1 = BBm
is defined by
r @ (r2®@r3) @ ra — (r1z(r2)) @ (z(r3)z(ra)).

We leave it to the reader to check that this morphism is well defined, and indeed defines an
isomorphism in Ceyt. O
In §6 we will also need the following standard claim, for which we refer to [EW16, § 3.4].
LEMMA 2.5. For any s € S,g, there exist exact sequences of R-bimodules

As — RQps R — A, A, — R®ps R — Ag.

2.3 Universal centralizer and Kostant section
We will denote by ges C g the open subset consisting of regular elements, that is, elements
whose centralizer has dimension dim(7’). The ‘regular universal centralizer’ is the affine group
scheme
Jreg ‘= Breg Xgreg XEreg (G X greg)

over greg, Where the morphism greg — greg X reg is the diagonal embedding, and the map G X
8reg — Lreg Sends (g,x) to (g-x,x). For any x € geg, the fiber of Jyeg over z is the scheme-
theoretic centralizer of x for the adjoint G-action. By construction J.e is a closed subgroup
scheme in G X greg, and as explained in [Ricl7, Corollary 3.3.6] it is smooth over gre,. We will
also denote by g, the image of greg under x, and by Ji., the smooth affine group scheme over
8reg Obtained by pushforward from Jyeg. (It is easily seen that these objects do not depend on
the choice of &.)

There exists a canonical morphism

t* ><t*/VV J;keg - (t* ><t:*/W g;keg) x T (24)

of group schemes over t* X« /w goy, Whose construction we now explain. Let n be the Lie algebra
of the unipotent radical U of B. Recall that the Grothendieck resolution is the G-equivariant
vector bundle over G/B given by

g:={({9B) €g" x G/B | {,n =0}
We have natural maps
T:g—g, J:g—t"
(The morphism 7 is induced by the first projection. The morphism ¥ sends a pair (£, gB) to
§g-b> Seen as an element in (g-b/g-n)* = (b/n)* = t*, where the first isomorphism is induced

by conjugation by the inverse of any representative for the coset gB.) If we denote by g the
preimage of 8reg 1N g, then these maps induce an isomorphism of schemes

greg = g:eg Xt /W t*; (25)
see [Ricl7, Lemma 3.5.3]. Moreover, under this identification, by [Ric17, Proposition 3.5.6] the

group scheme t* X ¢ jw Jio, identifies with the universal stabilizer associated with the action
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of G on e, (defined by the same procedure as for Je; above), which is such that the fiber
over (£, gB) is the scheme-theoretic stabilizer of ¢ for the action of gBg~!. Now as above in the
definition of 1, there exists for any g € G a canonical isomorphism gBg~!/gUg~! = T, which
allows us to define the wished-for morphism (2.4).

Let g,s C g denote the open subset of semisimple regular elements, and set g, := k(gs). We
will denote by Jys (respectively, Jy,) the restriction of Jyeg (respectively, Jy,,) to grs (respectively,
g’ ). Recall that the adjoint quotient g/G identifies canonically with t/W (see [BC19, §4.1]); as
a consequence, under our assumptions the coadjoint quotient g*/G identifies canonically with

t*/W.

LEMMA 2.6. The morphism (2.4) restricts to an isomorphism
J;ks Xt /W t* = T x (grs Xt /W t*)

of group schemes over gi; X ¢« jw t*.

Proof. 1t is sufficient to prove the analogous statement for g in place of g*. If we denote by g5 the
inverse image of g5 under 7, then by [Jan04, Lemma 13.4] there exists a canonical isomorphism

T, ~ -
G X7ty — 8rs;

where t;s := t N gs. From the comments above and the compatibility of universal stabilizers with
open embeddings, t X w Jys identifies with the universal stabilizer associated with the action of
G on g. Since the latter scheme identifies with G xT t,, = G /T X tys, the universal stabilizer
identifies with T X g5, as desired. O

Let us choose a Kostant section to the adjoint quotient, that is, a closed subscheme S C g
contained in gyee and such that the composition S — g — g/G (where the second map is the
adjoint quotient morphism) is an isomorphism. (For a construction of such a section in
the present generality, see [Ricl7, §3].) We will denote by S* the image of S under s, so that
the composition 8* — g* — g*/G is an isomorphism, and by Jg the restriction of Jj,, to S* (a
closed subgroup scheme of G x S*, smooth over S*).

As explained in [MR18, §4.4], for example, there exists a natural action of the multiplicative
group Gy, on S* such that the isomorphism S* = g*/G is Gp-equivariant, where ¢ € k* acts
on g* by multiplication by =2, and on g*/G by the induced action. The isomorphism t*/W —
g*/G is also Gy -equivariant, where the action on t*/W is induced by the action on t* where
t € k* acts by multiplication by t~2. As explained in [MR18, § 4.5, p. 2302] there exists a natural
Gm-action on J§ such that the structure morphism J§ — S*, the multiplication map Jg§ xg-
J§ — J§ and the inversion morphism J§ — J§ are Gy,-equivariant.

*
reg

2.4 Representations of the universal centralizer and Abe’s category
The actions of Gy, on t* and t*/W considered in §2.3 provide an action on the fiber product
t* X ¢« yw t*. Let us now consider the category

Rep® (t* X g+ jw J§ Xgyw %)

of G-equivariant coherent representations of the smooth affine group scheme

over t* X« w t* (where the morphism Jg — t*/W is obtained via the identification S* =
t*/W), that is, t* X )w J§ X¢+/w t*-modules equipped with a structure of Gp-equivariant
coherent sheaf on t* x ¢« yw t*, such that the action map is Gy-equivariant. Since R is finite over
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RW, this category admits a natural convolution product %, such that the &/(t* x- /w t*)-module
underlying the product M x N is the tensor product M @ N (where R = 0(t*) acts on M via
the second projection t* X« /w t* — t* and on N via the first projection t* x¢« jy t* — t*). In
this way, (Rep®m (t* X yw Jg X¢+yw t7), %) is a monoidal category. We will denote by

Rep((ﬂ;m (t* X¢oyw Jg X2 yw t7)

the full subcategory of Rep®m(t* x - yw Jg X¢+yw t*) whose objects are the representations
whose underlying coherent sheaves are flat with respect to the second projection t* x¢/w
t* — t*. It is not difficult to check that this subcategory is stable under x, hence also admits a
canonical monoidal category structure.

PROPOSITION 2.7. There exists a canonical fully faithful monoidal functor
(Repg™ (t* g jw J§ X+ jw t7), %) — (Cext, OR)-
Proof. We start by constructing a functor
Rep®m (t" X yw J5 X2 yw t7) — Cl- (2.6)

By definition, any object in Rep®m (t" Xg«yw J§ X+ yw t7) is in particular a Gy-equivariant
coherent sheaf on t* X« w t*, hence can be seen as a graded R-bimodule. To equip this graded
bimodule with the structure of an object in CL,;, we must provide a decomposition of its tensor
product with @ parametrized by Weyt. In fact, we will provide such a decomposition for its tensor
product with O(t},), where t} := t* N g}, (which is sufficient since @ is a further localization of
)

First, the open subset t;, C t* is the complement of the kernels of the differentials of the
coroots. This open subset is stable under the action of W, and the restriction of this action is free;
see [Ricl7, Lemma 2.3.3]. In particular, we have an open subset t’,/W C t*/W, the morphism
ti, — ti,/W is étale, and the map (w,x) — (z,w(x)) induces an isomorphism of schemes

W x trs — t;ks ><t;‘s/W trs;
see [SGAL, Exp. V, §2]. As a consequence, for any coherent sheaf .# on t* X« yw t*, the tensor

product
L(t" x¢yw t7, F) @ O(t])

admits a canonical decomposition (as an €(t},)-bimodule) parametrized by W, such that the
action on the factor corresponding to w € W factors through the quotient

Oty X tys) = O(Gr(w, )

VTS

(where on the right-hand side Gr(w, t};) denotes the graph of w acting on t), that is, satisfies
the condition in (2.2).

Next, let us explain how this decomposition can be refined if .7 belongs to Rep(t* x4« /w
J§ X+ yw t*). For this, we consider the restriction My, of t* X« /w J§ X+ yw t* to Gr(w, t)y).

Identifying the latter subscheme with t}, via the first projection and using Lemma 2.6, we obtain
a canonical isomorphism of group schemes

M, — ti x T.

This means that the category of representations of M, on coherent sheaves on Gr(w, t;) is canon-

ically equivalent to the category of X-graded coherent sheaves on t},. Starting with an object .# in
Rep(t™ X ¢« )w Jg X¢+/w t*), we therefore obtain a decomposition of I'(t* X ¢« jw t*, ) @r O(t];)
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parametrized by Wext by defining, for A € X and w € W, the summand associated with tyw as
the A-graded part in the summand associated with w (which is a representation of M,,). This
finishes the description of the functor (2.6).

It is clear from construction that this functor sends objects in Repgm (t" X yw I X e )W
t*) to objects in Ceyt, which therefore provides the functor of the statement. This functor is
also easily seen to be monoidal. Let us now explain why it is fully faithful. Consider .#,¥¢
in RepﬁGm (t* ¢+ yw Jg X¢+yw t*), and denote their images by M, N—so that the underlying
graded bimodule of M (respectively, N) is T'(t* x ¢« jw t*, %) (respectively, I'(t* x ¢ jw t*,9)).
By construction, morphisms in Ceyt from M to N are morphisms of graded bimodules from
L(t" Xge o £, F) to T(t* X« o t7,9) whose restriction to t* x {n} (where 7 is the generic
point of t*) commutes with the action of the restriction of t* x¢. jw Jg X ¢+ /w t*. Now, since by
assumption I'(t* x .y t*,9) is flat as a right R-module and O(t* X ¢« jw Jg X¢+yw t*) is flat
over O(t* X¢« )w t*), such a morphism is automatically a morphism of &(t* X« w Jg X ¢+ /w
t*)-comodules. This proves the desired full faithfulness. O

LEMMA 2.8. For any w € Wy, the object A,, belongs to the essential image of the functor of
Proposition 2.7.

Proof. The isomorphism (2.3) reduces the proof to the case where w belongs to either W or X.
The case w € W is obvious: in this case A,, is the image of its underlying graded R-bimodule,
endowed with the trivial structure as a representation. For the case w € X, in view of the con-
struction of the functor in Proposition 2.7, the claim follows from the fact that the isomorphism
of Lemma 2.6 is the restriction of the morphism (2.4). O

For w € Wexs, we will denote by AJ the unique object in Rep((ﬂ;’m (t* X yw J§ X+ yw t*) which
is sent to Ay,.

2.5 Representations of the universal centralizer and the Hecke category

By Proposition 2.7 the category RepﬁGrm (t* X+ yw Jg X+ /w t*) can be seen as a full monoidal
subcategory in Abe’s category Cext, and by Theorem 2.2 the same is true for the Hecke category
Dgs. We now investigate the relation between these two subcategories.

LEMMA 2.9. The essential image of the functor of Theorem 2.2 is contained in the essential
image of the functor of Proposition 2.7.

Proof. By definition, the category Dgg is generated under convolution and grading shift by the
objects (Bs : s € Sag). Hence, to prove the lemma it suffices to prove each B2™ belongs to the
essential image of the functor of Proposition 2.7.

If s = s, for some a € ®°, then BP™ is the image of the appropriate shift of &'(t* X+ /{e,s} t*),
endowed with the trivial structure as a representation of t* X« jw Jg X« /w t*. If s € Sag is not
of this form, then there exist x € Wy and ¢t € S,g such that ¢ = s, for some a € ®° and s =
xtz~!. (In fact, such a statement is even true in the braid group associated with Wey; see [Ric10,
Lemma 6.1.2] or [BM13, Lemma 2.1.1] for the proof in the setting where G is semisimple and
simply connected, from which one can deduce the general case using restriction to the derived
subgroup.) By Lemma 2.4 we then have BE™ =~ A, @ g BP™ @ A, 1; since BP™ is now known
to belong to the essential image of our functor, and since A, also satisfies this property by
Lemma 2.8, this finishes the proof. O

From this lemma we deduce the following claim, which will be crucial for our constructions
in §6.

965

https://doi.org/10.1112/S0010437X22007436 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X22007436

R. BEZRUKAVNIKOV AND S. RICHE

THEOREM 2.10. There exists a canonical fully faithful monoidal functor

3. Some categories of equivariant U g-bimodules

3.1 Weights
From now on we assume that p > 0. We consider a simply connected semisimple algebraic group
G over k, and its category

Rep(G)
of finite-dimensional algebraic representations.

For a k-scheme X we will denote by X() the associated Frobenius twist, defined as the
fiber product X := X Xspec(k) Spec(k), where the morphism Spec(k) — Spec(k) is associated
with the map = — zP. (The projection X (1) - X is an isomorphism of [Fp-schemes, but not of
k-schemes.) We will assume that

p is very good for G.

Then the group G := G satisfies the assumptions of §2. We will denote by Fr: G — G the
Frobenius morphism of G, and will use the same notation for its restriction to the various
subgroups considered below.

The subgroups B, T, U of G, when seen as subschemes in GG, determine subgroups B, T', U
whose Frobenius twists are B, T, U, respectively. We will denote by g, b, t, n the respective Lie
algebras of G, B, T, U (so that g = g, and similarly for B, U, T), and by W the Weyl group
of (G,T). We set X := X*(T), and denote by R C X the root system of (G,T"). The choice of B
determines a system of positive roots R C R, chosen as the T-weights in g/b. We will denote by
RS C SR the corresponding subset of simple roots, and by p € X the half-sum of the positive roots.
We also set XV := X,(T), and denote by R C XV the coroot system. The canonical bijection
R = RY will be denoted as usual o — aV.

The Frobenius morphism Fr induces an isomorphism

Ne(T)/T = N (T)/T,
which allows us to identify the Weyl group W of G with W. It is a standard fact that the mor-
phism from X = X*(T™M) to X induced by Fr: T — T is injective, and that its image is p - X,
which allows us to identify X with p - X. The identification X = p - X is W-equivariant, and the
root system ® of (G, T) is ® = {p-a: a € R}; similarly, we have & = pRRT and ®* = pR®.
In particular, the affine Weyl group W,g of §2.1 identifies with W x (pZfR), and the extended
affine Weyl group Wy identifies with W x (p - X). Recall also our subset of Coxeter genera-
tors Sy C Wag. The subgroup W C Wyog is a parabolic subgroup; its longest element will be

denoted (as usual) by wg. We will consider the ‘dot” action of Wey (or its subgroup W,g) on X
defined by

(tyw) e A =w(A+p) —p+p
for p € pX, w € W and A € X.
Given a character A € X, we will denote by A € t* the differential of A\. We set

tr, ={\: eX}cCt.
In this way, the map A — X induces an isomorphism of abelian groups
X/pX =t .

(In particular, tfgp is finite.)
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The group W naturally acts on t*. We also have a ‘dot’ action of W on t*, defined by
we &= w(E+7p)—p
With this definition the map X — t* sending A to A is Weyi-equivariant, where Wey; acts on X
via the dot action and on t* via the projection Weyy — W and the dot action of W on t*. This

observation legitimates the use of the same notation for these actions. It also shows that the
subset t; C t* is stable under the dot action of W. Below we will consider the quotient t*/(W, o)

of the dot action of W on t*. For A € X, we will denote by A the image of X in t*/(WV, e).
As mentioned above, our assumption that p is very good for G implies in particular that the
quotient X/ZMR has no p-torsion, or in other words that
ZR N pX = pZR. (3.1)
This equality has the following consequences.

LEMMA 3.1. Let A € X.

(i) We have
Wats @ A = (Wext @ A) N (X + ZR).
(ii) The stabilizer of X for the dot action of W on t* is the image under the natural surjection
Wag — W of the stabilizer of A for the dot action of Wyg on X.
Proof. (i) Since W e A C A + ZR, we have
(Wext @A) N(A+ZR) = (W e A+ pX) N (A +ZR) =W e XA+ (ZR N pX).
In view of (3.1), the right-hand side equals W e A + pZR = W,z @ A, as desired.
(ii) For w € W we have
wel=we,
so that w e A = X if and only if w e A € A + pX. Since w @ A\ € A\ + ZR, as above this condition

is equivalent to w e A € X\ + pZMR, that is, to the existence of u € pZR such that t,w € Wy
stabilizes . O

For any subset I C R®, we will denote by W; C W the subgroup generated by the reflections
{sa : @ € I}. Recall that an element of X is called regular if its stabilizer in Wag (for the dot
action) is trivial. As a consequence of Lemma 3.1, we obtain, in particular, the following claim.

LEMMA 3.2. Let A\ € X, and assume that the stabilizer of \ for the dot action of Wyg is W7.
Then the morphism

/(Wi e) = t7/(W, )
induced by the quotient morphism t* — t*/(W, e) is étale at the image of \. In particular, if \
is regular then the quotient morphism t* — t*/(W, e) is étale at \.

Proof. By Lemma 3.1(ii), the stabilizer of A for the dot action of W on t* is W;. Hence, the
claim follows from the general criterion [SGA1, Exp. V, Proposition 2.2]. O

3.2 The center of the enveloping algebra
Consider the universal enveloping algebra Ug of g. Its center Z(Ug) can be described as follows.
We set

Znc = (Ug)C.
(Here, the subscript ‘HC’ stands for Harish-Chandra.) Next, as the Lie algebra of an algebraic
group over a field of characteristic p, g admits a ‘restricted pth power’ operation z — =P, which

967

https://doi.org/10.1112/S0010437X22007436 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X22007436

R. BEZRUKAVNIKOV AND S. RICHE

stabilizes the Lie algebra of any algebraic subgroup of G. We will denote by
ZFr

the k-subalgebra of g generated by the elements of the form 2? — zP! for 2 € g. Then by [MR99,
Theorem 2] multiplication induces an isomorphism

Z¥r @ 21 Zne Zuc — Z(Ug).

It is well known that Ug is finite as a Zp-algebra (hence a fortiori as a Z(Ug)-algebra).
These central subalgebras can be described geometrically as follows. It is well known that
the map z — P — P induces a k-algebra isomorphism

ﬁ(g*(l)) = ZFr~ (3.2)

We also have Zp N Zyc = (ZFr)G, and the G-action on g*(l) factors through the Frobenius
morphism Fr, so that we obtain an isomorphism

o(g*M/GW) 5 Z N Zne.
On the other hand, the ‘Harish-Chandra isomorphism’ provides a k-algebra isomorphism
O(t"/(W,e)) = Zuc, (3.3)

see [MR99, Theorem 1(2)].
The Artin—Schreier morphism

AS: t — (D)

is the morphism associated with the algebra map @(t"")) — @(t*) defined by h +— h? — hlP) for
h € t. It is well known that AS is a Galois covering with Galois group t}p (acting on t* via
addition). The morphism AS is W-equivariant, where W acts on t* via the dot action and on
() via the natural action. It therefore induces a morphism

e/(W,0) — /W (3.4)
Recall the Chevalley isomorphism
t*(l)/W ~ g*(l)/G(l)

already encountered in §2.3. Under this identification, the embedding Zw N Zyc — Zpc is
induced by (3.4).
Combining all these descriptions, and setting

€= g )y /(W)
we therefore obtain a k-algebra isomorphism
0(€) = Z(Uy),

see [MR99, Corollary 3].

Using this identification one can consider Ug as an ¢ (€)-algebra. The G-action on € induced
by the adjoint G-action on Ug is the action obtained by pullback via the Frobenius morphism
Fr of the GM-action on € induced by the coadjoint GM-action on g*("). Using this action, one
can therefore see Ug as a G-equivariant ¢'(€)-algebra.
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3.3 Central reductions
In view of (3.2), the maximal ideals in Zp, are in a canonical bijection with elements in g*(*).
Given n € g*V), we will denote by m, C Zp the corresponding maximal ideal, and set

Ung == Ug/m,, - Ug.

Similarly, in view of (3.3) the maximal ideals in Zyc are in a canonical bijection with closed
points in t*/(WW,e), that is, with (¥, e)-orbits in t*. Given a closed point £ € t*/(W, ), we will
denote by m¢ C Zuc the corresponding maximal ideal, and set

Uty :=Ug/m® - Ug.

If  and ¢ have the same image in t*) /I, then m, - Z(Ug) + m¢ - Z(Ug) is a maximal ideal in
Z(Ug), and we can also set

Usg :=Ug/(m, - Ug +m* - Ug).

In the cases we will encounter more specifically below, the point £ will often be the image A
of the differential of a character A € X. In this setting we will write m*, U*g and L{ﬁ\g instead of

m;\, I/I;\g and L{ég. The image of any element of tf;p under the Artin—Schreier map is 0; therefore,
if we denote by

N*cCg*

the preimage under the coadjoint morphism g* — t*/W of the image of 0, then, given any A € X,
the elements n € g*(!) whose image in t*(1) /W coincides with that of A are exactly those in N’ *(1),

3.4 Harish-Chandra bimodules
We will denote by HC the category whose objects are the Ug-bimodules V' endowed with an
(algebraic) action of G which satisfy the following conditions.

(i) The action morphisms Ug®V — V and V ® Ug — V are G-equivariant (for the diagonal
actions on Ug ® V and V @ Ug).
(ii) The g-action on V obtained by differentiating the G-action is given by (z,v) — z-v —v - z.
(iii) V is finitely generated both as a left and as a right ¢/ g-module.

Morphisms in the category HC are morphisms of bimodules which also commute with the
G-actions. Objects in this category are called Harish-Chandra bimodules. It is easily seen that
the tensor product ®iy of bimodules endows HC with the structure of a monoidal category,
where the G-action on the tensor product is the diagonal action.

If M belongs to HC, the Ug-action obtained by differentiating the G-action must vanish on
Zp N (g-Ug). In view of condition (ii) above, this implies that the two actions of Zgp on M
obtained by restriction of the left and right U/ g-actions coincide; in other words, the action of
Ug @k Ug°? on M must factor through an action of Ug ®z, Ug®®. However, the two actions of
Zuc on a Harish-Chandra bimodule might differ. Note that g ®z, Ug°P is in a natural way a
finite algebra over the commutative ring

2 :=Z(Ug) @z, Z(UY) = ZHC @ 250 Zuc LFr @ 250 Zne ZHC = O(€ X ) €).

Note also that since Ug @z, Ug°P is finitely generated both as a left and as a right ¢/g-module,
condition (iii) above can be equivalently replaced by the condition that the object is finitely
generated as a Ug-bimodule (or as a left e/g-module, or as a right U/g-module). It is easily seen
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that forgetting the right (respectively, left) action of Ug defines an equivalence of categories
HC = Modg(Z/{g) (respectively, HC = Modng(L{QOP)), (3.5)

where MOdfC;(Z/{ g) is the category of G-equivariant finitely generated U g-modules, and similarly
for Modfcé(l/{ g°P). For instance, for the first functor, one can reconstruct the right action of Ug on
a G-equivariant Ug-module M by setting m -z := x - m — g(x)(m) for m € M and x € g, where
o denotes the differential of the G-action.

We will also denote by Modg(u g ® 7z, Ug°P) the category of G-equivariant finitely generated
(left) modules over Ug ®z, UGP. As above, since Ug @z, Ug® is finitely generated both as a
left and as a right U/g-module, the tensor product ®y endows this category with a monoidal
structure, and as explained above we have a fully faithful monoidal functor

HC — Modf} (Ug @z, Ug®P). (3.6)

If M belongs to Modg(Z/lg ® 2z UG°P), then one obtains an extra Upg-action on M by setting
r-m=(x®1—1®ax)m for x € g and m € M. Since Upg identifies canonically with the distri-
bution algebra Dist(G1) of the kernel G of Fr, M becomes in this way a G x Gi-equivariant
Ug @z, Ug°P-module, where the action of G'x Gi on Ug Rz, UG® is obtained from the
G-action by composition with the product morphism G x G — G. As for (3.5), forgetting
the right (respectively, left) action of Ug defines an equivalence of categories

Mod; (Ug ® z,, Ug™) = Mod(Z*“* (Ug)  (respectively, Modf (Ug @z, Ug™) = Mod{’™“* (Ug®P)).

From the point of view of these equivalences and those in (3.5), the essential image of (3.6)
consists of equivariant modules on which the action of G x G factors through the product
morphism G x G — G.

One can construct interesting objects in HC from G-modules as follows. Given V' in Rep(G),
we consider the Harish-Chandra bimodule

VeuUg,

where the left U g-action is diagonal (with respect to the action on V obtained by differentiation,
and the action on Ug by left multiplication), the right ¢/g-action is induced by right multiplication
on Ug, and the G-action is diagonal (with respect to the given action on V and the adjoint action
on Ug). In particular, for x,y,z € Ug and v € V' we have

- (v®2) -y =(rq) v)®(@@22y),

where we use Sweedler’s notation for the comultiplication in the Hopf algebra Ug. It is easily
seen that the map (z®y) ® v+ (7(y) - v) ® (2(2)y) induces an isomorphism of G-equivariant
Ug-bimodules

Ug @UG®) Qug V =V @ Ug,

where the tensor product over Ug on the left-hand side is taken with respect to the morphism
Ug — Ug @UGP defined by x — z(y) ®S($(2)), where S is the antipode. In particular, the
modules V ®@ Ug are ‘induced from the diagonal’. For V,V’ in Rep(G), we have a canonical
isomorphism of Harish-Chandra bimodules

(V@Ug) @ug (V' @Ug) = (Vo V') eUg. (3.7)
One can similarly consider, again for V' in Rep(G), the Harish-Chandra bimodule

UgRV
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where now the actions of Ug are defined by

r-(2®@v) Yy = (rzy01)) @ (S(Y2)) - v)

for x,y,z € Ug and v € V (and the G-action is still diagonal). As above, we have an isomorphism
of G-equivariant U g-bimodules

(Ug @ UG™) Rug V — UG DV,
now given by (z ®y) @ v+ (zy1)) @ (S(y()) - v) for x,y € Ug and v € V. In particular, the
objects V ® Ug and Ug ® V are isomorphic; explicitly, the isomorphism is given by
vz —z®(S(x)-v)
forx eUgand v € V.

3.5 Completed Harish-Chandra bimodules
We now need to adapt the considerations of §3.4 to the setting of completed Harish-Chandra
characters.

Let us set

D= SpeC(ZHC R ZucNZe, ZHC) = f*/(W, 0) Xt*(l)/W f*/(VV, 0),
so that Z = 0(g*(!) X () D). For \, u € X, we will also set
I)\”u = m)\ ®ZHCQZFr ZHC + ZHC ®ZHCQZFr mu : ZHC7

and will denote by DM the spectrum of the completion of &(®) with respect to the maximal
ideal ZM*. Finally, we set

UM = (Ug @ 7, UG™) @2 06"V X ) iy DM 2 (UG @ 2, UT) D () O (D),

(Note that UM is not the completion of Ug ®z, UG’® with respect to the ideal generated by
TN since Ug @z, Ug®P is not of finite type as an &(D)-module.)

The algebra &(D*") is Noetherian (see [Sta20, Tag 05GH]), hence ¢(g*() X () yw ’)3;\’/1) is
Noetherian too, being finitely generated over & (@A“) (see [Sta20, Tag 00FN]). Finally, since
UM is finitely generated as an &(g*(1) X)) DM)-module it is left and right Noetherian (as
a non-commutative ring), and a L{’\’ﬂ—module is finitely generated if and only if it is finitely
generated as an &(g*(!) X (1) yw DMA)-module.

The G-action on Ug ®z, Ug°® induces an algebraic G-module structure on ;\’ﬂ, and we can
consider the category of G-equivariant finitely generated modules over this algebra; this (abelian)

category will be denoted by Modg(uj"ﬂ). The full subcategory whose objects are the modules
M such that the differential of the G-action coincides with the action given by x - m = zm — mx

for z € g and m € M will be denoted HCS"’}; its objects will be called completed Harish-Chandra
bimodules.
Given A, p € X, we have a natural exact functor

CM: Modf (Ug ®z,, Ug®) — Mod (UM),
defined by
CM(M) = O(DM) @ () M,
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which restricts to a functor HC — HCME, (Exactness of this functor follows from the fact that
O(DM) is flat over 0(D); see [Sta20, Tag 00MB].) We will denote by

A
HCdigg
the full additive subcategory of HCM whose objects are direct summands of objects of the
form CM(V ® Ug) with V in Rep(G). (In view of the comments at the end of §3.4, objects
in this category will sometimes be referred to as completed diagonally induced Harish-Chandra
bimodules.) In the case where A = p, we will set

U = C(k @ Ug),

where k is the trivial G-module.

For later use, we also introduce some completed bimodules which are closely related to the
translation functors for G-modules (see §6.3 below for details). Recall that a weight A € X is
said to belong to the fundamental alcove (respectively, to the closure of the fundamental alcove)
if it satisfies

0<{A+p,a’)y<p (respectively, 0 < (A +p,a’) <p),

for any positive root aw. With this notation, the set of weights which belong to the closure of the
fundamental alcove is a fundamental domain for the (Weg, e)-action on X. Moreover, if A\ € X
belongs to the closure of the fundamental alcove, then its stabilizer in Wyg is the parabolic
subgroup generated by the elements s € S,g such that s @ A = \; see [Jan03, §I1.6.3].

Remark 3.3. The weight lattice X contains weights which belong to the fundamental alcove if and
only if p > h, where h is the Coxeter number of Gj; see [Jan03, §6.2]. Even though this condition
will be imposed only in §6, some of our statements in §5 involve weights in the fundamental
alcove; these statements will simply be empty in the case where p < h.

Let X* C X be the subset of dominant weights determined by R*. For any v € X*, we will
denote by L(v) the simple G-module with highest weight v, that is, the unique simple submodule
in Indg(y). Given two weights A, i € X which belong to the closure of the fundamental alcove,
we set

P i CMI(L(v) @ Ug) € HCYE, .

where v is the unique dominant W-translate of A — pu.

3.6 Comparison of completions

For notational simplicity, let us now fix a subset A C X such that the map A — ) restricts to a
bijection A = e /(W,e). (In other words, A is a set of representatives for the e-action of Wy
on X.)

We will denote by Z C 0(t*(V/W) = Zyc N Zp, the maximal ideal corresponding to the
image of 0 € t*(1). Then, in the notation of §3.2, 7 - Zp is the ideal of definition of A*(1) ¢ g*(1)
and each ideal ZM* contains Z - (D). We will denote by D" the spectrum of the completion of
0(D) with respect to the ideal Z - 0(®). Note that since &(D) is finite as an ¢ (t*() /W )-module
(because the morphisms t* — t*(1) and t*(V) — ¢*(1) /I are finite), if we denote by @(t*(1) /WA
the completion of &(t*(1) /W) with respect to Z we have a canonical isomorphism

oW /W) @ g (e ) 0(D) = 6(D); (3.8)
see [Sta20, Tag 00MA].
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LEMMA 3.4. The natural morphism

o@") — [ o@"
A

SHEA
is a ring isomorphism.

Proof. The lemma will basically follow from the observation that the closed points in the fiber
of the morphism (3.4) over the (closed) point corresponding to Z are those corresponding to the
ideals m* with X\ € X, which itself follows from the fact that the fiber of AS: t* — (1) over 0
is tp .

More precisely, the morphism considered in this statement is the product of the morphisms
O(®") — O(DM) induced by the natural morphisms ¢(D)/(I" - 0(D)) — O(D)/(Z**)". This
morphism is clearly a ring morphism; to prove that it is invertible we will construct its inverse.

Let us fix some n > 1, and consider the quotient 0(®)/(Z"™ - 0(D)). Here, as explained
above, 0(D) = Znc @ zycnzp, ZHC is a finite ﬁ(t*(l)/W)—module; therefore, this algebra is finite-
dimensional. Its maximal ideals are in bijection with the maximal ideals of ¢(®) containing
T-0(D), hence with A x A through (A, u) — ZM/I" - (D). In view of the general theory of
Artin rings (see, for example, [AM69, Chap. 8|), for any A, u € A the quotient

O(D)/(T" 0(D)+ (T )™)

does not depend on m for m > 0, and the natural morphism from &(®)/(Z" - (D)) to the
product of these rings (over A x A) is an isomorphism.
We are now ready to define the wished-for inverse morphism

[ @) — o@").
A UEA
For this it suffices to define, for any n > 1, a ring morphism
[ ¢@*) — o@)/@"- 6(9)). (3.9)
A REA
We fix m such that the natural morphism
0D)/(T"-0D) - ] 0®)/@"- 6®)+T*)™) (3.10)
A UEA
is an isomorphism. Then we have natural ring morphisms
[ @)~ ] e@y@m - ] 0@)/@ - 0@+ @)™
AHEA A EA A pEA

Composing with the inverse of (3.10), we deduce the desired map (3.9).
It is easy (and left to the reader) to check that the two morphisms considered above are
inverse to each other. O

Remark 3.5. If we denote by Z{j the completion of Zyc with respect to the ideal 7 - Zgc, then
we have as in (3.8) a canonical isomorphism &'(*(1) /I¥)" g ywy ZHC = Z{i¢, and therefore
a canonical isomorphism

O(D") = Ziic ® o(e-) jwyr Ziic-
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Denoting by Zéc the completion of Zyc with respect to the ideal m?, for A € X, the same
considerations as for Lemma 3.4 show that we have a canonical isomorphism

A~ )
Zhe = |1 Zite
AEA

from which we obtain a decomposition

0@ 5 ] Zic @ wy Zhc:
A HEN

This decomposition is in fact ‘the same’ as the decomposition of Lemma 3.4, in the sense that
for any A, p € A we have an identification

ﬁ(i)/\’ﬂ) L ZI/‘\IC ®ﬁ(t*(1)/w)/\ ZI[;C (311)
We will also set
Ut = (Ug @z, UGP) Qe (D) ﬁ(’DA) = (Ug ®z,, UGP) Qg () )W) ﬁ(f*(l)/W)/\,

where the isomorphism uses (3.8). Then, as in §3.5, U” is a left and right Noetherian ring,
endowed with a structure of an algebraic G-module, and Lemma 3.4 implies that the natural
morphism

~ T uM (3.12)

A,peA

is an algebra isomorphism. Below we will consider various categories of U-modules; in fact we
have

A~ x(1) A
U= Ug Q) /W) ot ( /W) )®ZFr®ﬁ(t*(1)/W)
« (Ug ® e+ ) ﬁ(t*(l)/W)/\)op

a U -module is therefore the same as a (Ug ® 5p) /1) o (¢ JW)")-bimodule on which the left
and right actions of Zp ® (1) /) Ot /WM coincide.

We will denote by Modg(u/\) the abelian category of G-equivariant finitely generated
U -modules. In view of (3.12), we have a canonical equivalence of categories

Mod; =~ P Modf U™, (3.13)
A,peA
We also have a canonical exact functor
C" : Modf (Ug ®z,, Ug™) — Modg (U") (3.14)

defined by CNM) = 0(D") ®gp) M. For the same reasons as above, for any M in
I\/Iodg(u g @z, Ug°?) we have a canonical isomorphism

NM) = @ )
A LEA

An object M in Modg(u/\) will be called a completed Harish-Chandra bimodule if the differential
of the G-action coincides with the action given by x - m = xm — mx for x € gand m € M, and we
will denote by HC” the full subcategory of Modg(u ) consisting of such objects; this terminology
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is compatible with that of §3.5 in the sense that (3.13) restricts to an equivalence of categories
HCM = @) HCM.
A REA

We will denote by HCQiag the full additive subcategory of Mod%(u M) whose objects are the direct
summands of objects of the form CN(V ® Ug) with V in Rep(G). With this definition, (3.13)
restricts further to an equivalence of categories

AN A
H Cdiag - @ H Cdiag '
A LEA

3.7 Monoidal structure
We now want to define some analogue of the monoidal structure on Modg(u g @z, UgP) for

the categories Modfg(l/{j"ﬂ). More specifically, given A, u, v in X, we want to define a canonical
bifunctor

(=) Bug (=) : ModS UM x ModE (U™") — Mod§ (M) (3.15)
right exact on both sides, which restricts to a bifunctor
HCM x HCM? — HCM,
these bifunctors satisfying natural unit and associativity axioms. Explicitly, we require that:
— if 4 = A we have a canonical isomorphism of functors
U Guq (—) 2 id,
and if ¥ = p we have a canonical isomorphism
(=) Bug U = id;
— for four weights A, u, v, € X we have an isomorphism
() Bug () Bug (=) = (=) Bug ((—) Bug ()
of functors from
G (7 M0 G (7 fiD G (70,7
Modg, (U™H) x Modg (U"") x Modg (U”")
to Mod{} (UM).
In particular, in the case where A = p = v, this construction will equip Modfcé(lxlj“:\) with the
structure of a monoidal category.
For this we can assume that all the weights involved belong to the subset A chosen

in §3.6. It therefore suffices to construct a monoidal structure of the category Mod%(UA), with
monoidal unit C"(k ® Ug); the bifunctor (3.15) will then be deduced by restriction to the factor

Modg(uﬁ’ﬂ) X Mod%(uﬂ’f’) in the decomposition (3.13).
Recall that we have
L{A = (Ug ®ZFr UgOP) ®ﬁ(t*(1)/W) ﬁ(t*(l)/W)/\
Given M, N in Modf; ("), we set

M ®ug N == M ®Z//El®ﬁ(t*(1)/W)ﬁ(t*(l)/W)A N,

where the right action of Ug D (e W) ﬁ(t*(l)/W)/\ on M is induced by the action of the second
copy of Ug, and the left action on N is induced by the action of the first copy of Ug. This tensor
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product admits compatible actions of Ug @z, Ug (induced by the action of the first copy of
Ug on M, and of the second copy of Ug on N) and of & (t*1) /W)", hence of U”. This module is,
moreover, finitely generated, since it is finitely generated over &(g*(V)) @ o wy O (e /A,
and it admits a canonical (diagonal) G-module structure. In this way we obtain a bifunctor

Mod(; (L") x Modf (") — Modf; ("),

which is easily seen to provide a monoidal structure with monoidal unit C"(k ® Ug). It is easily
seen also that the functor (3.14) has a canonical monoidal structure; using (3.7), we deduce that
the full subcategory HCdAiag is a monoidal subcategory.

If A\, u,v € X and if M belongs to Modg(ux’ﬂ) and N belongs to Mod%(uﬂ’ﬁ), then seeing M
and N as objects in Modng(L{A) via (3.13), the product M &N belongs to the factor Modng(U)‘”j),
which provides the desired bifunctor (3.15). (In fact, the action of the left copy of Zuc factors
through an action of ZI’}C, and that of the right copy factors through an action of Z{’IC, which
justifies the claim in view of (3.11).) From the corresponding property for Modf(é(u/\) we deduce
that the subcategories HCM and HCA

diag Ar€ stable (in the obvious sense) under this bifunctor.
In this setting the functor CM satisfies

CM(M g N) = @D CV (M) By CH(N)
veA

for any M, N in Mod%(Ug ® 7 UGP).

3.8 Restriction to the Kostant section
Recall the constructions of § 2.3 applied to the group G = GV In particular, we have a Kostant

*

section S* C g* = g*("), and group schemes Jreg OVer g}kégl) and Jg over S*.

We also set

I§ := (G x S*) Xga)xg+ J8»

where the map G x S* — G x S* is the product of the Frobenius morphism of G and the
identity of S*. Since G is smooth its Frobenius morphism is flat (see, for example, [BK05, § 1.1]),
and therefore I3 is a flat affine group scheme over S*. By construction I contains Gy x S* as a
normal subgroup, and the quotient identifies with J§. Note also that the morphism (2.4) induces
(after restriction to S and composition with the projection I§ — J§) a group-scheme morphism

0 i I — (€W X gy 87) x T (3.16)

Finally, we set
Usg :=Ug Rz, O(S"),

where 0(S*) is seen as a Zp-algebra via the identification (3.2). If we set
Cs := 8" Xy t7/(W,e),

then the projection €g — t*/(1¥,e) is an isomorphism, and Ugg is an O(Cg)-algebra. Recall
that the algebra Ug can be seen as a G-equivariant ¢(¢)-algebra (see §3.2). Using the general
construction recalled in [MR18, §2.2], from this we deduce on Usg a natural module structure
for the flat affine group scheme €g xg+ I§ over €g, such that the multiplication morphism is
equivariant.

976

https://doi.org/10.1112/S0010437X22007436 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X22007436

HECKE ACTION ON THE PRINCIPAL BLOCK

3.9 (Completed) Harish-Chandra bimodules for Usg

We now want to define, given A\, u € X categories analogous to Modg(uA’ﬂ) and HCM but for
the algebra Usg in place of Ug. We start with the non-completed version.

Let us consider the category Mod%g(usg ®g(s+) Usg®®) of finitely generated Usg ®q(s+)
Usg°P-modules endowed with a compatible [g-module structure. Since I3 is flat over S*, this
category is abelian. Here Usg ®4(s+) (Usg)°P is an algebra over

Zg = O0(t/(W,0)) Qe w) O(87) (e yry O£/ (W, 0)),
which identifies with () via the composition of natural algebra morphisms
0() = O(g"" Xy D) = Z — Zs.
As in § 3.4, the tensor product ®y 4 defines a monoidal structure on this category, and, using the

construction of [MR18, §2.2] considered above, the functor &(S*) ®z, (—) defines a monoidal
functor

Modf (Ug @z, Ug®?) — Mody, (Usg ®g(s-) Usg™). (3.17)

An object M in Mod%g(usg ®e(s+) Usg®P) will be called a Harish-Chandra Usg-bimodule if the
restriction of the action of I§ to G x S*, seen as an action of the algebra Dist(G1) = Upg,
coincides with the action determined by the rule z -m = xm — mx for x € g and m € M. We
will denote by HCg the full subcategory of Mod]}g (Usg ®p(s+) Usg®P) consisting of such objects;
then the functor (3.17) restricts to a functor

HC — HCs.

As in §3.4, for any M in I\/Iod]%g(usg ®e(s+) Usg®P) the action of Ig on M extends to an action
of the semi-direct product

I x G =15 xg (G1 x S);

the Harish-Chandra Usg-bimodules are those objects on which this action factors through the
multiplication morphism I[g x G7 — Ig.

Now we add completions to the picture. Given A, u € X, we will denote by Zé\’ﬂ the com-
pletion of Zg with respect to the maximal ideal Ié"“ = IM* . Zg, so that we have a canonical

isomorphism & (@5"[‘) = Zg"’l . We also set
M M
Ug" = 23" @z4 (Usg @p(s+) Usg™P).

In this setting Usg ®g(s+) Usg®® is finitely generated as a Zg-module, so that Z/Ié"ﬂ identifies
with the completion of Usg ®g(g-) Usg°P with respect to the ideal TV . (Usg ®g(s+) UsgP). If
we denote by ]I’S\’ﬂ the pullback of Ig under the natural morphism Spec(Zg’ﬂ ) — S*, then I[’S\’ﬂ
is a flat group scheme over Spec(Zé"ﬂ ), and the Ig-module structure on Usg induces a natural
]I/S\’ﬂ -module structure on Z/@ a5

The algebra Z/{é\ # is left and right Noetherian, and we will denote by Mod%g(lxlé‘ o ) the abelian
category of ]I/S\’ﬂ -equivariant finitely generated Llé\’ﬂ -modules. Note that we have

U™ = UM @z, O(S");

in particular, the functor €(S*) ®z, (—) defines a natural functor

ModZ U*) — Mod, (Ug™). (3.18)
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(Standard arguments show that this functor is exact, but this will not play any role below.) If
A, 1 € X belong to the closure of the fundamental alcove, we will also set

A, * R
PS* i= O(S*) @ gy PM.
One defines the notion of completed Harish-Chandra Usg-bimodules by imposing the same con-
dition as for HCg. The full subcategory of Mod%g(ug‘ o ) consisting of such objects will be denoted
by HCg’ﬂ; it is clear that the functor (3.18) restricts to a functor
HCM — HC.

Using considerations similar to those of §3.7, one constructs, again for A, u, v € X, a canonical
bifunctor

~ bWy 1,0 pw7
(_) ®Usg (_) : MOd]%g(uS 'u) X MOd%g(“S ) - MOd%g(uS ) (319)
which factors through a bifunctor
HCY" x HCE? — HCY”,
this construction being unital, associative and compatible in the natural way with the bifunctors
—)®uq(—) via the functors (3.18). More explicitly, one remarks that if Z4 is the completion of
g S
Zg with respect to the ideal 7 - Zg, then if we set
U = 2§ ©z¢ (Usg Dp (s Usg™) = O(8"M) ® pgeiny U,
as in (3.12) we have a canonical algebra isomorphism
~ 5
Z/{S — H US M.
A pUEA
If we denote by I the pullback of I to Spec(Z{), then we can consider the abelian category
I\/Iod]%g (U§) of finitely generated I§-equivariant U§-modules, and the bifunctor
(=) Busg (=) = Modi, (Ug) x Modi, (U§) — Modi, (US) (3.20)
defined by
M ®u59 N=M Dus g

R N
@‘>(¢*(1>/W)ﬁ(t w/wyn

defines a monoidal structure on this category. Note that any finitely generated U§-module M is
also finitely generated as a Z§-module, so that the natural morphism M — @n M/ZI™ - M is an
isomorphism (see [Sta20, Tag 00MA]); the monoidal product considered above therefore satisfies

M Sygg N = lim (M/Z" - M) ®ugg (N/I" - N)

n>1
as U§-modules, for any M, N in Mod]}g (UE). The functor O(S*) @z, (—) also induces a functor
Mod (") — Modi, (US) (3.21)

which admits a canonical monoidal structure. The composition of this functor with the functor
C" of (3.14) will be denoted by C§.
As in (3.13), we have

Mod, =~ B Mod; usv“ , (3.22)
A pEA
and the bifunctor (3.19) is then obtained by restriction of (3.20) to the appropriate summands. In

the case where A = u = v, this bifunctor equips Mod]}g (L{é‘ ’A) with a monoidal category structure,
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with unit object

U = 0(8°) ® gy U
It is clear that the functor (3.18) is compatible with the bifunctors (—)&yg(—) and (—)®@gg(—)
in the obvious way.

LEMMA 3.6. For any A, u € X which belong to the closure of the fundamental alcove and any
v € X, the functor

PN .0 Ao
PSM ®USQ (_) : MOd]%g(ug ) - MOd%g(“S )
is both left and right adjoint to the functor
A S Ao 1,0
Pg ®USQ (_) : MOd]%g(uS ) - MOd%g(ug )
. = A, = A
A similar property holds for the functors (—)®ysgPg" and (—)®usgPs "
Proof. We prove the case of convolution on the left; convolution on the right can be treated
similarly. We remark that for any V' € Rep(G), the functor
C8(V @ Ug) Bugg () : Modg, (Us') — Mody, (Us)
is both left and right adjoint to the functor
C5(V* @ Ug) Bugg (—) : Modi, (US) — Mody, (UE).

(In fact, these functors can be realized more concretely as tensor product with V and V*
respectively.) On the other hand, the inclusion functor

Modl, (U3™) — Modl, (U3)
(see (3.22)) is both left and right adjoint to the corresponding projection functor
A0
Modp, (Ug) — Mody, (Ug™),

and similarly for p in place of A. The desired claim follows, since the functors Pg’“ Buga(—)
and P’SM(%L{S g(—) are isomorphic to compositions of functors of this form. (More specifically, if
v € X is the only dominant W-translate of p — A, the functor P’S\’” @)Ms ¢(—) involves the module

L(v), and the functor P‘S"/\(X\)usg(—) involves the module L(—wg(v)); here we fix an isomorphism
L(v)* = L(—wo(v)).) O

3.10 Restriction to the Kostant section for diagonally induced bimodules
In this subsection we aim to prove the following claim.

PROPOSITION 3.7. For any A\, u € X, the functor (3.18) is fully faithful on the subcategory
HCM |

diag

The proof of this proposition will use some standard properties stated in the following lemma.
Here, k is a commutative ring, A is a left Noetherian k-algebra, and H is an affine k-group scheme.
For any commutative k-algebra k" we set Hys := Spec(k’) Xspec(k) H- If A admits an action of H
by algebra automorphisms, we denote by Mod® (A) the category of H-equivariant A-modules.
(This category is abelian if H is flat over k.)
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LEMMA 3.8.

(i) If M, N are A-modules with M finitely generated, for any flat k-module V we have a
canonical isomorphism

Hom (M, N ®; V) = Homu(M,N) ®; V

where N ®j, V is regarded as an A-module for the action on the first factor.

(ii) If H is flat over k, and if M, N are H-equivariant A-modules, with M finitely generated
as an A-module, then the k-module Hom (M, N) admits a canonical H-module structure,
and we have a canonical isomorphism

Homyyogr (1) (M, N) = (Hom 4 (M, N))*".
(iii) If k' is a flat commutative k-algebra, for any H-module we have a canonical isomorphism
(K @, M) =5 K @), MY,
Proof. (i) We consider a presentation A®" — A®™ — M — 0; we then have exact sequences
0 — Homu (M, N ®;, V) — Homa(A®™ N @4 V) — Homa(A®", N @ V)

and

0 — Homa (M, N) ®;, V — Homy (A®™ N) @, V — Homa (A", N) @, V,

where we use the flatness of V. It is clear that the second and third terms in these exact sequences
identify, and we deduce an identification of the first terms.
(ii) We consider the morphism

Homa(M,N) — Homa(M,N ® O(H))
which sends a morphism ¢ : M — N to the composition

p®id

(DR, M @y 0(H) T2 N @y, 6(H) — N 0, 0(H)

M

where the third morphism sends n®g to n) ® f2)g in Sweedler’s notation. By (i) we
have Hom g (M, N ®j, O(H)) = Homy (M, N) ® O(H), so that this morphism can be seen as
a morphism Homa (M, N) — Homa(M,N)®, €(H), which can be checked to provide an
O(H)-comodule structure (i.e. an H-module structure) on Homy (M, N). The isomorphism

Homyoqrr 4y (M, N) = (Homa (M, N

is then clear from definitions.
(iii) See [Jan03, §1.2.10, equation (3)]. O

With these tools we can give the proof of the proposition.

Proof of Proposition 3.7. To prove the proposition, it suffices to prove that the functor (3.21)
is fully faithful on the subcategory HCé\iag, which will follow if we prove that it induces an
isomorphism

HomModg(uA)(CA(M), NV ®@Ug)) = HomModgg(usA)(Cg(M), C5(V @ Uyg))

for any M in Modf;(Ug ®z,, Ug®®) and V € Rep(G).
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For N in Modg(Ug ® 2z, UGP), we have
Homyygc 1) (C (M), CM(N)) 22 (Homyn (C* (M), C(N)))“

G

I

(Homug@)ZFrugop (M, C/\ (N)))

G
(Homug®ZFrugop (M, N) ®ﬁ(©) ﬁ(’D/\)) )

where the first isomorphism uses Lemma 3.8(ii), and the third one uses Lemma 3.8(i). Using
Lemma 3.8(iii), we deduce isomorphisms

Y G
HomModf(é(uA)(CA(M)v C(N)) = (HOmug®zFrug°P(M> N)) Qo (D) o(@")

I

o HomModG(ugé@zFrUgOP)(M’ N) ®¢(o) oDM).

Assuming now that N =V @ Ug, we claim that the functor €(S*) ®z, (—) induces an
isomorphism

Homyio46 g2 4, tgor) (M,V ®Ug)

i) HomMOd]tl-g(Usg®g(s*>uSgop)(ﬁ(s*) ®ZFr M7 V ® usg) (323)

In fact, the algebra g @z, Ug®P is a G-equivariant finite & (g*(l))—algebra. Therefore, it identifies

with the global sections of a G-equivariant coherent sheaf of ﬁg*u)—algebras % on g*(). Moreover,

the restriction %s of % to S* is an I§-equivariant sheaf of Og«-algebras on S*, whose global

sections are Usg ®g s+ (Usg)°P. Consider the open embedding j : g;%) — g*(M) and set Ureg =

(% ). Let us denote by QCth(gféé), U:eq) the category of G-equivariant quasi-coherent sheaves
(1)

on gfeé equipped with a %;eg-module structure, compatible with the G-equivariant structure in

the natural way, and by Cth(g}kégl)

restriction functor

, %eg) the subcategory of coherent modules. Then we have a

5"+ Mod® (Ug © 2z, Ug™) — QCoh%(g}), Zreg)
which admits a right adjoint
Ju : QCoh%(grsy), Zeg) — Mod® (Ug 7, Ug™)
coinciding with the usual pushforward functor at the level of quasi-coherent sheaves on gfégl)

(1)

g*(M. Since the complement of gfeé has codimension at least 2, the natural morphism ﬁg*m —
s j*ﬁg*u) is an isomorphism. Since Ug is free over Zg, it follows that the morphism V ® Ug —
7«75 (V ® Ug) is also an isomorphism, and then that the functor j* induces an isomorphism

("M, j*(V @ Ug)).

and

HomModg(quaZFrqup)(M, VeUug) — HomCth(g;‘égl),o/reg)

It is a standard observation (see [Ricl7, Proposition 3.3.11]) that restriction to S* induces an
equivalence of abelian categories

Coh®" (g2()) = Rep(J3),

reg

where the right-hand side denotes the category of representations of the affine group scheme Jg

(see § 3.8) on coherent Og+-modules. The same considerations provide an equivalence of categories
Coh(g7dg)) = Rep(I§).

(Here we use the fact that the Frobenius morphism of G is flat and surjective, hence faith-
fully flat.) This equivalence is monoidal with respect to the natural tensor product on each
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side, and the image of the algebra %es is %s; therefore, it induces an equivalence of abelian
categories

Coh® (g1l Zeg) = Modl, (Usg ©p(s+) Usa®P).

From this we finally obtain that (3.23) is an isomorphism.
Combining (3.23) with the preceding isomorphisms, we obtain a canonical isomorphism

% HomMOd]%g(uSg(X)@(s*)ungP)(ﬁ(s*) ®ZFr M? V ® L{Sg) ®ﬁ(©> ﬁ(g/\)

Considerations similar to those of the beginning of the proof allow us to identify the right-hand
side with

HomModgg(usA)(C/s\(M), Cs(V @ Ug)),

which finishes the proof. U

4. Localization for Harish-Chandra bimodules

4.1 Azumaya algebras
We start by recalling the basic theory of Azumaya algebras.

Let R be a commutative ring. Recall that an R-module P is called faithfully projective if it is
projective of finite type and if, moreover, the only R-module M such that P ®r M = 0is M = 0.
By [KOT74, Chap. I, Lemme 6.2] this condition is equivalent to requiring that P is projective of
finite type and faithful (i.e. its annihilator in R is trivial). An R-module P is finitely generated
and projective if and only if it is finitely presented and, moreover, the localization P, is free over
R, for any p € Spec(R); see [KOT4, Chap. I, Lemme 5.2] or [Sta20, Tag 00NX]. In this setting,
P is faithful if and only if the rank of P, is positive for any p; see [KO74, Chap. I, Lemme 6.1].
This notion is important in Morita theory since if P is a faithfully projective R-module, then we
obtain quasi-inverse equivalences of categories

Mod(R) = Mod(Endp(P))

given by M — P ®@g M and N +— Hompg(P, R) ®gnd,p) N where Mod(A) is the category of left
A-modules for any ring A; see [KO74, Chap. I, Lemme 7.2]. In the case where R is Noetherian,
the ring End g (P) is left Noetherian (as a non-commutative ring), and these equivalences restrict
to equivalences

Modg,(R) === Modg, (Endg(P)) (4.1)

between subcategories of finitely generated modules. (Here, a left Endg(P)-module is finitely
generated if and only if it is finitely generated as an R-module.)

Let A be an R-algebra.® Recall (see [KOT74, §1I1.5]) that A is called an Azumaya R-algebra
if it satisfies one of the following equivalent conditions.

— A s faithfully projective as an R-module, and the morphism sending a ® b to the map x — axb
is an isomorphism of R-algebras

A®p AP = EndR(A).

3 Let us insist that by an R-algebra we mean a (not necessarily commutative) ring A endowed with a ring morphism
from R to the center of A.
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— A is finite as an R-module, the ring morphism R — A is injective, and for any maximal ideal
m C R the finite-dimensional R/m-algebra A/mA is a central simple algebra.

In particular, the first characterization and the facts recalled above show that in this case we
have canonical equivalences of categories

Mod(R) ——= Mod(A ®p A°P).

4.2 Azumaya property of Usg
The following property is standard (see [BG97, BGO1]); we recall its proof for the reader’s
convenience.

PROPOSITION 4.1. The 0(C€g)-algebra Usg is Azumaya.

Proof. We will use the second characterization of Azumaya algebras recalled in §4.1. Since Ug is
finite over Z(Ug) = O(€), Usg is finite over 0(C€g). To prove that the morphism 0 (€g) — Usg
is injective, we consider the composition

Gx8 =G x8 — gl — gt
Here the first morphism is flat since G is smooth (see §3.8), the second morphism is smooth
by [Ricl7, Lemma 3.3.1], and the third one is an open embedding; this composition is therefore
flat. The algebras Z(Ug) and Ug can be considered as G-equivariant coherent sheaves on gD,
and the induced morphism & (€g) — Ugg is obtained from the embedding Z(Ug) — Ug by the
pullback functor
Coh%(g*) — Coh%(G x §*)
associated with the flat morphism considered above, followed by the obvious equivalences
Coh%(G x S*) = Coh(S*) = Mod,(0(S*));

it is therefore injective.
What is left to prove is that if m C Z(Ug) is a maximal ideal which belongs to €g =
s*(1) X (1) yw t*/(W,e), then Ug/mlg is a central simple algebra. In fact, this property holds

more generally if m belongs to €,y 1= g;‘égl) X t°/(W, o). Indeed, let N be the maximal
dimension of a simple Ug-module. By [BG97, Proposition 3.1], if m C Z(Ug) is a maximal
ideal such that Ug/midg admits a simple module V of dimension N, then Ug/mlg is a
central simple algebra; more specifically, the algebra morphism Ug/midg — Endg (V) is an iso-
morphism. Now by [PS99, Theorem 4.4] we have N = p#gﬁ. And by [PS99, Theorem 5.6], if m
belongs to €,cs then any simple ¢/g/mi/g-module has dimension divisible by p#m+, hence equal
to N. O

It follows in particular from Proposition 4.1 that Ugg is faithfully projective as an
0 (Cg)-module.

Below we will use a slightly more concrete version of Proposition 4.1, as follows. First we
need to recall the definition of baby Verma modules. Consider some element 1 € g and some
Borel subgroup B’ C G with unipotent radical U’ such that 1 vanishes on Lie(U”)"). (Such
a Borel subgroup exists for any 7; see [Jan98, Lemma 6.6].) Then 7 defines an element 7’ in
(Lie(B')/Lie(U"))*(M). Let € € t* be an element whose image under the map

t* = (Lie(B)/Lie(U))* = (Lie(B')/Lie(U"))* — (Lie(B')/Lie(U"))*™")

is 7/, where the second map is induced by conjugation by an element g € G such that gBg~! = B’
(it is well known that the isomorphism does not depend on the choice of g), and the second one
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is the Artin—Schreier map associated with the torus B’/U’. Then we can consider the associated
baby Verma module

Z, g (§) = Uyg Oy, Lie(B") ke

where U, Lie(B’) is the central reduction (with respect to the Frobenius center) of the enveloping
algebra of Lie(B’) at the image of 1) in Lie(B')*(!); and k¢ is its one-dimensional module defined
by the image of ¢ in (Lie(B’)/Lie(U’))*. This module has dimension p#®"; furthermore, if we
assume that n € g:éé), then the considerations in the proof of Proposition 4.1 imply that this
module is simple, and that the algebra morphism

US'g — Endy(Z,,p(€)) (4.2)

is an isomorphism, where we denote by ¢ the image of £ in t*/(W, o).

4.3 Splitting bundles for the algebras L{SA’[L
Our goal in this section is to construct some tools that will allow us to study the categories
Mod%(u)"ﬂ) and HCM via geometric methods. First we introduce the categories of modules

that will be involved in these constructions. Our model will be the category Cth(C X ge(1) @) of
G-equivariant coherent sheaves on € x g &, or in other words of G-equivariant finitely generated
Z-modules, which is a monoidal category for the operation sending a pair (M, N) to

M ®zwug) N,

where in the tensor product Z(Ug) acts on M via the right action and on N via the left action.
The Z-action on M ®y(q) N comes from the left action of Z(Ug) on M and the right action
on N. In practice, however, we will have to restrict to S*, and add generalized characters to
this picture.

First, recall the group scheme I over Spec(Z{) introduced in §3.9. We consider the abelian
category Mod%g(Zé\) of representations of the flat affine group scheme I§ on finitely generated
Z{-modules. Here a Z{-module is a Zyc Do) /W) o () /W) -bimodule on which the left and
right actions of &(t*() /)" coincide; the category of such modules therefore admits a canonical
tensor product, which preserves finitely generated modules, and induces a monoidal product

(=) *s (=) : Mod, (2§) x Mod, (2§) — Modg,(2§)

with unit object Zuc ®g(¢1) /w) oM /WA with diagonal Z§-module structure and trivial
action of Ig. If we set

J§ = Spec(Zé\) xs Jg,

then we can also consider the abelian category l\/Iode]g(ZSA) of representations of J§ on finitely
generated Z{-modules; the quotient morphism I§ — J§ induces an exact and fully faithful
functor

Mod;, (24) — Mod, (24)

whose image is stabilized by the convolution product *g.

Next, for A, u € X we have the affine group scheme I[’S\”l over Spec(Zg”2 ) also introduced

in §3.9, and we can consider the abelian category Mod]flg(Zé\”1 ) of representations of this affine
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group scheme on finitely generated Zé\’ﬂ -modules. As in (3.22), we have a decomposition

Modg, (28) = €D Mody,
Ap€EA
Given M in Mod]%g(Zsj"ﬂ) and N in Mod]%g(Z’Sl’[')7 seen as objects in Mod%g(Zé\), the object M *g N

belongs to Mod%g(Zé\’ﬁ); in other words, the bifunctor xg restricts to a bifunctor
X7 7 A7A X7 %
Mod, (25™") x Modg, (Z5") — Modp,(25™) (4.3)

for any A, pu, v € X. In particular, each category Mod]flg(Zé")‘) admits a monoidal structure; the

unit object Zé‘ for this structure is ZIS‘{C, endowed with the natural structure of a Zg"/\—module
(induced by the product morphism Zyc ®zyonzs ZHc — Zuc) and the trivial structure as a

. A
representation of ]IS .
We can also play the same game Starting with Jg in place of Ig§; we obtain in this way affine

group schemes J/S\ , categories ModJ ( S’” ) and exact fully faithful functors

Modf, (23%) — Mod}, (23)
whose essential images are stabilized by the bifunctor (4.3) in the obvious sense.
Remark 4.2. In view of (3.11), for any A, u we have an algebra isomorphism

Nt~ X 7

Z" = Zic @p wyn Zac-
From this point of view, the bifunctor (4.3) is induced by the tensor product (=) ®,: (—).
HC

Recall that a weight A € X is said to belong to the lower closure of the fundamental alcove
if it satisfies

0<A+pa’)y<p

for any positive root a. Recall also the completed bimodules introduced in §3.5. In particular,
given A, u € X which belong to the lower closure of the fundamental alcove, we have the objects

pA—p — CN*P( (A +p)@Ug) € Hcdlag )

PPl = CPH(L(—wop + p) @ Ug) € Hcdlag ‘
We set

At . pA=P S —p,it A
M =P ®Z/{g P S HCdiag.

We also set Mg’“ = 0(S*) O g(g+ (1)) MM so that

M’\’“ p/\ p®Z/{sgP Pt

where we use the notation of §3.9.
The main technical result of this section is the following theorem. Its proof will be given
in §4.5, after some preliminaries treated in §4.4.
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THEOREM 4.3. For any A, u € X in the lower closure of the fundamental alcove, the Zé\’ﬂ—module
Mg’“ is faithfully projective, and the natural algebra morphism

A ) A
Ug™ — End 5, (Mg")
S
is an isomorphism.

4.4 Study of some stalks
Recall that Spec(Zg) identifies naturally with
D =t"/(W,e) xpq)w t'/ (W, e);
see §3.9. We also set
D=t X (1) t".
Since the Artin-Schreier map t* — t*(1) is a Galois covering with Galois group tfg-p, we have a
canonical isomorphism
th Xt 5D
defined by (n,£) — (n+¢&,§). For A € X we will denote by D(\) the image of {\ + p} x t* in D;
if A C X is a subset of representatives for the quotient tf;p = X/pX, we then have

D=|]20).
YN

Recall that if A is a finitely generated k-algebra, then by [Sta20, Tag 02J6] Spec(A) is a Jacobson
space in the sense of [Sta20, Tag 005T]; in other words, closed points are dense in any closed
subset of Spec(A). Here we have a natural finite morphism

DD, (4.4)

and it is easily seen that the image of this morphism contains all the closed points of ®; this
morphism is therefore surjective. For any A € X we denote by D(A) the scheme-theoretic image
of D(A) in ®; in other words, (D (A)) is the image of the composition

O(D) — 0(D) — O(D(N));

see [Sta20, Tag 056A]. The morphism (4.4) then factors through a finite morphism D (\) — D(N),
which is surjective since its image is closed and dense; see [Sta20, Tag 01RS8]. Since ®(\) is
integral, so is ® (). Moreover, we can check that

D(\) =D(p) if and only if X = 7,

where the operation A — A is as in §3.1. If A C X is (as in §3.6) a subset of representatives for
tr, /(W, @), we therefore have

2= ]2,

AEA

and this constitutes the decomposition of ® into its irreducible components.
Let us consider the open subset

to={et |[VweW wel—{¢ty ~{0}} Ct"

Then t}, is stable under the (W, e)-action, and is in fact the pullback of an open subset of t* /(1) e),
which therefore identifies with the quotient t}/(W, ).
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Recall the Grothendieck resolution g* (for the reductive group G = G(l)) and the morphism
¥ g — t*1); see §2.3 and §3.8. If we denote by S* the (scheme-theoretic) preimage of S* in g,
then by [Ricl7, Proposition 3.5.5] the morphism 9 restricts to an isomorphism S* = ¢ In
concrete terms, this means that, given ¢ € t(1) /W identified with an element in S*, the datum
of a preimage of ¢ in ") is equivalent to the datum of a Borel subgroup B’ C G such that
(Lieurym = 0, where U’ is the unipotent radical of B’.

ProproOSITION 4.4. Let A € X be a weight which belongs to the lower closure of the fundamental
alcove. Consider some element ¢ € t%, and denote by ((1,(2) € D(A) the image of (€ + X + p,§) €
’}5()\) in ® and by 1 € S* the element corresponding to the images of ¢; and (y in t*0) /W, As
explained above, the image of ¢ in t*1) determines a Borel subgroup B' C G with unipotent
radical U’ such that MLie(wy® = 0.

If we denote by i : Spec(k) — © the morphism defined by ({1, (2), there exists an isomorphism
of US' g ® (U5 g)°P-modules

Z*(L()‘ + p) ® Z/{Sg) = Zn,B’(g + A+ P) ® Zn,B’(g)*'
Proof. By definition we have
(LN + p) @ Usg) Z ke, @740 (LN + p) @US9).

By construction, the image of ¢ in t*(!) corresponds to the element in (Lie(B’)/Lie(U’))*(")
defined by n; by (4.2), we therefore have a canonical isomorphism

Usrg = Endy(Z,,5/(€)) = Zy 5 (€) ® Zy pr(§)*,

under which the action of U g induced by left multiplication on the left-hand side corresponds to
the natural action on Z,, p/(§). We deduce an isomorphism

Z*(L()‘ + P) ® Z/{sg) = kﬁ ® Zuc (L(A + P) ® Zn,B’(g)) ® Zn,B’ (5)*)
which shows that to conclude the proof it suffices to construct an isomorphism of Ugl—modules
ke, © 200 (LA + ) © 2y 50(6)) = Zy (6 + 3T p). (4.5)
As above, we have a canonical isomorphism

Ugtg = Endi(Z, p/(§ + A+ p));

therefore, any Ugl g-module is isomorphic to a direct sum of copies of Z,, g/ (§{ + A + p). To analyze
how many copies we have for the specific module in the left-hand side of (4.5), we observe
that

Hom, ¢, (ke ®z40 (LA +p) ® Zy,p:(€)), Zy,pr (€ + A+ p))
= Homyy,o(L(A +p) ® 2y (), Zy, 3 (€ + A+ p))
= Homyy, o(Zy, 5/ (£), L(—wod + p) @ Z, g1 (£ + A+ p)).

We now consider the U, g-module L(—woA + p) ® Z,, p/({ + X + p), and more specifically the
direct summand on which Zpc acts with a generalized character corresponding to (2. We have
a canonical isomorphism of U, g-modules

L(—woA + p) @ Zy pr(§ + A+ p) = Ung @y, Lie(nr) (L(—wod + p) 5 @ ke x77)-

4 Of course, g is the Frobenius twist of the Grothendieck resolution attached to the group G.
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The B’-module L(—woA + p)|p admits a filtration
0cC M1 c-.---C Mn = L(—wo)\+p)|B/

where each M;/M;_; is one-dimensional; moreover, these modules are associated with the char-
acters of B'/U' = B/U 2T corresponding to the T-weights of L(—wo) + p), counted with
multiplicities. This filtration induces a filtration of L(—woA + p)pr ® k¢, 57,, and then of
L(—woA + p) ® Z,, /(€ + X + p), whose subquotients are of the form Z, p/(§ + X + p + 1), where
w runs over the T-weights of L(—woA + p), counted with multiplicities.

We claim that there exists exactly one subquotient in this filtration on which Zyc acts via
the character (3, corresponding to the multiplicity-1 weight —X — p of L(—woA + p). Indeed,
assume that Zyc acts with character (2 on Z, p/(§ + A + p+ ). Then there exists w € W such
that €+ A+ p+ = w e & Since £ belongs to t}, this condition implies that € + A+ p+ pu =&,
hence that A 4+ p + p € pX. On the other hand, p is a weight of L(—wgA + p), hence it belongs to
—woA+ p+ ZR = =X — p+ ZR. In view of (3.1) these conditions imply that A\ + p + u € pZR,
that is, that A + pu € —p + pZR = Weg @ (—p). By [Jan03, Lemma I1.7.7] (applied to the pair of
elements (A, —p)), there must then exist w € W,g such that we A=\ and A+ p =w e (—p).
Here, since A belongs to the lower closure of the fundamental alcove, the first condition implies
that w € W (see §3.5); it follows that w e (—p) = —p, hence that A + u = —p, which finishes the
proof of our claim.

This claim implies that the direct summand of L(—woX + p) ® Z,, /(€ + A + p) corresponding
to the generalized character of Zyc given by (3 is isomorphic to Z, p/(£); it follows that

Homuf]lg(kg‘l ®ZHC (L(A + :0) ® Zn,B’ (f))y Zn,B’ (f + A+ p))

is one-dimensional, which finally proves (4.5). O

The statement of Proposition 4.4 is not symmetric, in that the conditions we impose imply
that (o necessarily belongs to t}/(WW, e), whereas (; might not. Below we will also need the other
variant of this statement, in which the first component has to belong to t5/(W,e). Its proof is
analogous to that of Proposition 4.4. (More precisely, in this case the counterpart of (4.5) can be
obtained directly, without recourse to the computation in the paragraph following this equation.)

ProprosiTION 4.5. Let 1 € X be a weight which belongs to the lower closure of the fundamental
alcove. Consider some element & € t5, and denote by ((1,(2) € D(—wop) the image of (£,€ +
uw+p) € @(—wo,u) in ® and by n € S* the element corresponding to the images of (; and (3 in
t*(l)/W. As explained above Proposition 4.4, the image of ¢ in t*(1) determines a Borel subgroup
B’ c G with unipotent radical U’ such that NLie(wny® = 0.

If we denote by i : Spec(k) — © the morphism defined by ({1, (2), there exists an isomorphism
ofuglg ® (UgQQ)OP—modules

i*(L(—wop + p) @ Usg) = Z,5(§) ®Zyp(§+ 1+ p)*.

4.5 Proof of Theorem 4.3
The proof of Theorem 4.3 will require two more preliminary lemmas.

LEMMA 4.6. Let X be a reduced scheme locally of finite type over k, and let .% be a coherent
sheaf on X. Assume that there exists d > 0 such that for any morphism i : Spec(k) — X the
pullback i*(.#) € Coh(Spec(k)) = Vecty has dimension d. Then .# is a locally free Ox-module
of rank d.
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Proof. Of course we can assume that X is also affine and of finite type, that is, that X = Spec(A)
for some finitely generated reduced k-algebra A. With this notation, recall that closed points are
dense in any closed subset of Spec(A); see §4.4.

Let us denote by M the A-module corresponding to .%. In this setting the datum of a
morphism i : Spec(k) — X is equivalent to the datum of a maximal ideal m C A, and we have
i*(F)=M/m- M. In view of [Sta20, Tag 0FWG], to show that M is locally free of rank d it
suffices to prove that for any p € Spec(A) we have

dim g, jpa, (Mp/pMy) = d.

Now by [Pes96, Theorem 7.33], the function
p — dimy, /pa, (My/pMy)

is upper semi-continuous. By assumption, this function is constant (equal to d) on the subset of
Spec(A) consisting of maximal ideals, that is, of closed points. Hence, the open subset

{p € Spec(A) | dimy, jpa, (Mp/pMy) < d}
contains all closed points, hence is the whole of Spec(A4). On the other hand, the open subset

{p € Spec(A4) | dimy, jpa, (Myp/pM,) < d — 1}
does not contain any closed point, hence is empty. O
LEMMA 4.7. The morphism
/(W 0) Xpyyw €/ (W, 0) Xy jyy 7/ (W, 0) = D

induced by projection on the first and third factors is étale at any point of the form (X, —p, i)
with A\, pu € X.

Proof. To prove this claim it suffices to prove that the morphism t*/(W, e) — t*() /W is étale
at —p. The dot action of W and the natural action of tfgp on t* combine to provide an action of
the semi-direct product tﬂép x W (where W acts on t}p through the natural, unshifted, action)
defined by (Aw) e & =w(é+p) —p+ A for A € tz and w € W. Moreover, the composition t* —
t*/(W, ®) — t*() /W is the quotient morphism for this action. Since —p is stabilized by W, the
claim then follows from [SGA1, Exp. V, Proposition 2.2]. O

For A € X, whose image in t; /(W,e) is that of N e A, we set

Do() 1= (€ /(W 8) Xy €/(W, 0)) ~ ( U ©<u>).

HEAS{N}

Then D,(\) is an open subset of ©, contained in ®(A). We will denote by jx : ®o(A) — D the
embedding. Continuing with the same notation, we also set

0L = (6/07.0) %y /)~ (U 90).
HEAN}
and we denote by j§ : D(A) — D the open embedding.

Proof of Theorem 4.3. Let A\, u € X belong to the lower closure of the fundamental alcove. The
vector —p belongs to t§ since this point is stable under the dot action of W. On the other
hand, if v € X is such that (/\ —p) € D(v), then there exists £ € t* such that the point (£ +
v+ p,€) €D has image (A, —p) in D; we then have € We—p={—p}and E+vFpe W e,
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so that A = 0. We have finally checked that (A, —p) € Do()\); similar considerations show that
(—p, 1) € D (—wop).
By construction, Do(A) X ¢ /(w,e) Do (—wop) is an open subscheme in the fiber product
/(W 0) Xy £/ (W, ) Xo0) yyy £/ (W, 0).
Consider the morphism
F1Do(A) Xy (w,0) Do (—wop) — t°/(W, o)
induced by projection on the middle factor. The algebra Usg is an O(t*/(WW,e))-algebra; it
therefore defines a coherent sheaf of O (y.)-algebras </ on t*/(W,e). Consider also the
projections
b ©0<)‘) X/ (W,0) @é(—woﬂ) - QO()‘)v
4 Do(N) X j(w,e) Do (—wop) — Dy (—wop).
The sheaves p*j{(L(A + p) ® Usg) and ¢*(j_,,,,)" (L(—wop + p) ® Usg) are naturally sheaves of
(right and left, respectively) modules for f*<, so that we can consider the tensor product
P LA+ p) @ Usg) @+ 4" (Fingps) " (L(—wop + p) @ Usg). (4.6)

We claim that this sheaf is a locally free O (y) —wop)-module, of rank PR

X/ (W, 0) Do (
In fact, by Lemma 4.6, to prove this it suffices to prove that for any closed point ((1,(2,(3) €
Do(A) X ¢ /(w,e) D5 (—wop), denoting by i : Spec(k) — Do(A) X /(w,e) D6 (—wop) the correspond-
ing morphism, the vector space

(P AL+ p) @USE) @ @ (i) (L(—wop + p) ® Usg)) (4.7)
has dimension p?#%" . If we denote by i : Spec(k) — © and iy : Spec(k) — © the embeddings
of the points ({1, (2) and ({2, (3) respectively, then this vector space can be written as

G(LA+p) @ Usg) @yer B (L(—wop + p) © Usg),

where n € S* is the image of the elements (;. Let & € t* be such that ({j,(2) is the image
of (£+X+p,&), and let B’ C G be the Borel subgroup with unipotent radical U’ such that
NLiery» = 0 determined by the image of { in t*(1) (see the comments above Proposition 4.4).
By Proposition 4.4 we have

ZT(L()‘ + P) ® uSg) = Zn,B’(§ + A+ p) ® Zn,B’(S)*'

Similarly, if & € t* is such that ({2, (3) is the image of (¢, &' + u + p), and if B” C G is the Borel
subgroup with unipotent radical U” such that NLie(uym = 0 determined by the image of & in

() then by Proposition 4.5 we have
i5(L(—wopt + p) & Usg) = Zy pr(€) @ Zy o (€ + T F 5)"

Here Z, /(&) and Z, pr(€') are two simple modules over the matrix algebra L[,%bg, see §4.2;
they must therefore be isomorphic. Fixing an isomorphism ¢ : Z, p/(§) = Z, (&), we obtain
a pairing

Z,5(§)" @Zypr(¢) —k
defined by f ® v — f(p~1(v)), which induces an isomorphism
Zyp ()" ®yeag Z,p (&) = k.

990

https://doi.org/10.1112/S0010437X22007436 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X22007436

HECKE ACTION ON THE PRINCIPAL BLOCK

Combining these observations, we obtain that the vector space in (4.7) is isomorphic to
Zyp(§+A+p) @ Zypr(§ + 1),

. . + .
hence has dimension p?#™M" | as desired.
We now consider the morphism

Do(A) X /w0y Do (—wop) — D
obtained from that of Lemma 4.7 by restriction to the open subset
Do(A) Xy (w,e) Do (—wop) C /(W 0) Xy jyyy £/ (W, ) X ey /(W 0).
This lemma ensures that this morpNhiirP is étale at (5\, =, f1); it therefore identifies the completion
of Do(A) X/ (w,e) D6 (—wop) at (A, —p, 1) with the completion of ® at (X, i), that is, with the
spectrum of Zé’ﬂ . By construction the completion of the sheaf (4.6) at (X, —p, i) is Mg’“ : sir{ce

this sheaf is locally free this proves that I\/Ig’“ is faithfully projective. In fact, since the ring Zé\’“
is local, this module is even free (of rank p*#®") by [Sta20, Tag 00NZ).
Finally, we consider the natural morphism

Ut — Endzévﬂ(M’s\’“).

Here, both sides are finite free as modules over Zé\’ﬂ . In fact, for the right-hand side this follows

from the same property for the module M’S\’” , which we have seen above. For the left-hand
side, we observe that Ugg is finite projective over & (€g) by Proposition 4.1; it follows that

Usg ®p(s+) Usg® is finite projective over Zg, and finally that Z/[é\”& is finite projective, hence

finite free (again by [Sta20, Tag 00NZ]), over the local ring Zé"ﬂ . Given this property, to prove
that our morphism is an isomorphism it suffices to prove that it is invertible after application of
the functor k ® _; , (—). Now if we denote by x € g*(!) the point corresponding to the image of

Zyh
0 in (/W uner the identification S* = t*() /W, we have
® 3 U™ =g ® (ULg)™.
On the other hand, since Mg’“ is a free module we have
k@, Endzsm(Mg’“) = Endy(k @ 5. M3*),
and, applying the considerations above with £ = ¢’ = —p, we have

k® s M3* = Z, (N @ Zy 5 (f1)*, (4.8)

where B’ C G is the unique Borel subgroup with unipotent radical U’ such that X|Lie(wy® = 0.
By (4.2) our morphism is indeed an isomorphism, which finishes the proof. ([l

4.6 Localization for Harish-Chandra bimodules
The main consequence of Theorem 4.3 that will be used below is the following statement.
(See §3.9 for the definition of Z/IS, and §4.3 for that of ZS )

COROLLARY 4.8. For any A\, € X in the lower closure of the fundamental alcove, the functor
M/\’“ ® 2 (—) induces an equivalence of abelian categories

iy~ A
Ly - Mod, (25") = Mody, (Ug™)
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which restricts to an equivalence of abelian subcategories
Mod, (Za") = HCS".
Moreover, in the case where \ = u, there exists a canonical isomorphism
LA(23) = U (4.9)
Proof. The properties stated in Theorem 4.3 ensure that the functor
M/S\M ®ZSX;1 (-)
induces an equivalence of abelian categories
Modfg(Zé’[‘) = MOdfg(Z/{é’ﬂ);
see (4.1). Adding the ]Ié’ﬂ -actions in the picture, we obtain the desired equivalence
Modl, (Z23™) = Modl, Ud™).

Let us now identify the subcategory corresponding to completed Harish-Chandra Usg-bimodules

under this equivalence. Recall that any object in I\/Iod]I (Ué\ 2 ) has a canonical action of ]I)"ﬂ x G,
and that such an object is a Harish-Chandra blmodule if and only if this action factors through

the product morphism Ig M Gy — ]I)‘“ that is, if and only if the action of the kernel K’\’“
of this map is trivial. Now if V is in Modfg( ), the action of Ig M G1 on M F® i V is

diagonal, mduced by the actlon on M’\ and the action on V' obtained by pullback under the

morphism Ig Ao x G — ]I " given by projection on the first factor. By construction the module
I\/I/S\’“ isa completed Harlsh—Chandra Usg-bimodule, so that the action on this factor does factor

though the product morphism Hg’“ x G — Hg’“ , and, moreover, Mg’“ is free over Z;"” . Hence,

MaH ® 5.2 V is a completed Harish-Chandra bimodule if and only if the action of K% on V is
S ZS’“ S

trivial, or in other words if and only if the action of the subgroup scheme G X Spec(Zg"ﬂ ) on

V' is trivial, or finally if and only if the action of Ig A factors through the quotlent morphism

]I’\’“ — Js’“ This proves that our equivalence restricts to an equivalence ModJ ( S D HC’\’“

Finally, we consider the special case A = p, and construct a canonical 1som0rphlsm
.,?)\7)\(2%‘) = Z/[é‘.
Adjunction (see Lemma 3.6) provides a canonical morphism
A—p 3 —pA A
P ™" Quse Ps"" — Us,
which factors through a morphism

L2y Ul

) A
£ (28) = Mg Dzpn

Here, by the same considerations as in the proof of Theorem 4.3, both sides are finite free modules
over the local ring Zé‘; to prove that this morphism is an isomorphism it therefore suffices to
check that the induced morphism

A 2 ) A )
(MS ® 5 ZS) © k= U5k
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is invertible. The right-hand side identifies with L[Qg, where y is as at the end of the proof of

Theorem 4.3, and by (4.8) the left-hand side identifies with Z, p/(\) ® Z, p/(\)*, where B’ C G
is the unique Borel subgroup with unipotent radical U’ such that X[Lie(UH)(1) = 0; the desired
claim is therefore clear from the isomorphism (4.2). O

Remark 4.9. We will prove later (at least in the special case when p belongs to the fundamental
alcove; see §5.5) that for any A, u,v € X in the lower closure of the fundamental alcove the
equivalences of Corollary 4.8 intertwine the bifunctors

R A 1,0 A

Qg g : Modlgg(us ") x I\/IodIf[g(Z/{é‘ ) — I\/Iod]%g(us )
(see §3.9) and

%s - Modf,(23) x Modl, (2£7) — Modl, (237

(see §4.3).

5. Ug and differential operators on the flag variety

In this section we study the equivalences %) ,, of Corollary 4.8 further, using the relation between
the algebra Ug and differential operators on the flag variety of G.

5.1 Universal twisted differential operators
Set B := G/B, and consider the natural projection morphism

w:G/U — B.

Here G/U admits a natural action of 7" induced by multiplication on the right on G, and w is
a (Zariski locally trivial) T-torsor. The sheaf of universal twisted differential operators on B is
the quasi-coherent sheaf of algebras

9 = w( D)’

where the exponent means T-invariants. The actions of G and T on G/U induce a canonical
algebra morphism

Ug @z, O(t) — T(B, D), (5.1)

see [BMROS8, Lemma 3.1.5].

Recall the Grothendieck resolution g for the group G = G and the morphism ¥ : g — t*(1);
see §§2.3 and 3.8. Consider the Frobenius morphism Frg : B — BM) and the natural morphism
fig8 Xp " — BM . As explained in [BMROS, §2.3], there exists a canonical algebra morphism

f+ ﬁgxt*(l) o (FYB)*@

which takes values in the center of (Frz), 2, and which makes (Frg), 2 a locally finitely generated
I+ ﬁgxt* (1) t--module. Since all the morphisms involved in this construction are affine, using this

morphism one can consider Z as a coherent sheaf of ﬁgxt* ,,--algebras on g X ) t. (We will

(
not introduce a different notation for this sheaf of algebras.)
Recall also (see §4.4) that we denote by S* the preimage of S* under the natural morphism

7:g — gV, and that the morphism ¥ restricts to an isomorphism S* = *(1); in particular,
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S* is an affine scheme. We set

We will also set
Usg = Usg @z, O(t).
LEMMA 5.1. The morphism (5.1) induces an algebra isomorphism
Usg = T(S* xpa) t, D).
Proof. Consider the natural morphism
h: S Xew £ = 8" Xy £/ (W, 0).
If we still denote by Usg the sheaf of ﬁS*Xt*(l)/

O(8* Xy t7/(W, o))-algebra Usg, then as in [BMRO8, Proposition 5.2.1] the morphism (5.1)
induces a canonical isomorphism of sheaves of algebras

h*(Usg) = s.

ot /(w,e)-algebras associated with the

Now h induces an isomorphism
S* X t*— (S X sy €/ (W, @) X jwe) £

(in fact, both sides identify canonically with t*) so that the claim follows by taking global
sections. 0

Remark 5.2. One can give a different proof of Lemma 5.1 as follows. By [BMROS,
Proposition 3.4.1], the morphism (5.1) is an isomorphism; in other words, identifying
quasi-coherent sheaves on g*() and ﬁ’(g*(l))—modules7 we have a canonical isomorphism of
sheaves of ﬁg*u)—algebras

9.9 =~ Ug ®zue O(F),
where ¢:g Xpua) t* — gV X 1)y t* is the morphism induced by w. Restricting this iso-
morphism first to gfégl) X 0) t* and then to S* x.q) W t* we deduce the isomorphism of

the lemma, since g restricts to an isomorphism on the preimage of grégl;) X (1) /7 t* (see (2.5)).

5.2 Study of some equivariant Ugg-bimodules

Given any A € X, we have a line bundle &3(\) on B attached naturally to A. (Our normalization
is that of [Jan03], so that line bundles attached to dominant weights are ample.) This line bundle
identifies with the direct summand of w. 0/ consisting of sections which have weight A for the
T-action induced by right multiplication on G} it therefore admits a natural action of the sheaf
of algebras 2. Using this action and the natural action on 2, we obtain a left action of Z on
the tensor product

OB(N) ®e, 2.

As for 2 itself, this module can be also considered as a sheaf of modules on g X 1) t*. We can
therefore consider the k-vector space

(8" xew £, (08(N) @05 Dges , e); (5.2)

which in view of Lemma 5.1 admits a natural left action of Usg. The tensor product O5(\) @, 2
also admits a natural right action of %, induced by right multiplication on the second
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on (Frp)«(0p(A) ®g, Z) coincide, and the space (5.2) therefore also admits a right action of Usg;
moreover, these actions combine to provide an action of Usg ® g(s+) (Usg)°P. By construction the
action of the central subalgebra

ﬁ(f*) ®ﬁ(S*) ﬁ(t*) = ﬁ(t* xt*(l)/W t*)
factors through an action of the image of the closed embedding t* — t* X .1 W t* given by
§— (E+A,9).

The object O()\) gy 2 also admits a natural G-equivariant quasi-coherent sheaf structure,
compatible with the actions considered above. The module (5.2) therefore also admits a natural
and compatible module structure for the group scheme

factor. The action of m.0g on (Frp).0p(A) being trivial, the two actions of this subalgebra

Xy Is X e 5
see §§3.8-3.9.
For A, p € X, we will denote by

wyr
S
the completion of the O(t* X)) t*)-algebra Usg @ (s*) (Usg)°P at the ideal corresponding

to the point (), fi) € t* X () t°. Copying the constructions in §3.9 (replacing Ug’ﬂ by Z/Nlé‘“
and t*/(W, e) X yw 1§ X e t*/(W,e) by t* X gy I§ X pet) iy t*), we define the category

I\/Iod]}g (Z/N{g‘ a ). Copying the definition of ®Us g» We obtain, for A, u,v € X, a bifunctor
S ~X? 1 y A7A ~X7 %
(=) Bpgq (=) : Modgy (Ug™) x Modg, (Us™) — Mody, (Ug™).
For any A, u € X we have a natural ‘forgetful” functor
i M
Modp, (Ug™") — Mody, (Ug™),
which we will usually omit from the notation. In the case where A and p are regular, this

functor is an equivalence by Lemma 3.2. In the case where p is regular, for M € Mod%g(l;lé"ﬂ )

and N € Mod%g(ljlg ’9) we also have a canonical identification
M ®ygg N = M &g N-
For A, u € X, we will denote by Q) , the completion of the module
F(S* Xt*(l) t*7 (ﬁB()\ - M) ®[}>B @)‘S*Xt*(l)t*)

at the ideal of O(t* X (1) W t*) corresponding to the element (X, 7). In view of the remarks above,
this object can equivalently be obtained by completing this module at the ideal of O(t*) corre-
sponding to A for the left action, or at the ideal of & (t*) corresponding to f for the right action.

This construction provides an object in Mod%g (Z;{é\“ ), hence a fortiori an object in Mod%g (Ué\’ﬂ )

LEMMA 5.3. For A\, u,v € X, there exists a canonical isomorphism
Q)\“u &x\)l;{sg QM,V = Q)\,u

in Mod%g (Z;Ié V) In particular, in the case where p is regular there exists a canonical isomorphism
Qi Pusg Qi — Qv

in Modl, (37).
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Proof. There exist canonical isomorphisms

(OB(A — 1) @z D) @5 (OB(1 — V) ®py )
5 O\ — 1) ®ay Op(p— 1) @py D = O\ —v) Rpy 2.
The desired isomorphism follows by restriction to S* X o1y t* and then completion at (A, 7). O

If A € X is regular, Lemmas 3.2 and 5.1 imply that we have

A~
Us = Qxx,

where the left-hand side is as in § 3.9. Hence, the functor of convolution on the left (respectively,

right) with Q) » is isomorphic to the identity functor of Modgg(l/{é‘ ) (respectively, Mod]flg (Z/{g ”\)),
for any p € X. Combining this observation with Lemma 5.3, we see that if A € X belongs to
the fundamental alcove, then for any w € Wey the object Qe is invertible in the monoidal

category l\/Iod]fIg(Z/lé\’A), with inverse Quex -
Recall from (3.16) that we have a canonical morphism of group schemes

€0 e T — €0 70,
Taking the fiber product with the morphism t* X . W ¢ 25, (D) (where the first
morphism is the first projection), we obtain a morphism of group schemes

Xy Is X ey 7 = (8 Xy ) X T,
Using this morphism, for any character n of T(}) we obtain a structure of representation
of t* Xy Ig Xy t* om ot X (1) t*) defined by this character. Tensoring with this

representation we obtain an autoequivalence of l\/lod]gg (L?é‘ A ), which we denote by M — M (n).
Recall from §3.1 that we identify the lattice of characters of T with p - X.

LEMMA 5.4. For any \,v € X, there exists a canonical isomorphism
Qagprr = Qu(pv)
in Modf, (Ug™).

Proof. By definition, Qxtpy,x is the completion at the ideal corresponding to (A, A) of the
Usg @ (s+) (Usg)°P-module

F(S* Xt*(l) t*y (ﬁB(pV) ®ﬁB 9)‘S*Xt*<1)t*)'

If we denote by U™ the unipotent radical of the Borel subgroup opposite to B, then U *B/BCB
Is an open subvariety isomorphic to U™, and the projection S* — B factors through a morphism
S* — UtB/B; see [MR18, Lemma 4.8]. As a consequence, the sheaf (05(pr) ®¢, 2)

can be obtained as a further restriction of (O5(pv) ®ey 2)v+B/B-

‘S* Xt*(l) t

Since Z acts on Op(pr), we have an action of the algebra Ug @z, O(t*) on the space
[(U*TB/B, Op(pv)), see (5.1). We have
T(UTB/B,0s(pv)) = {f :U'B -k |Vbe B, Ve € UTB, f(xb™') = (pv)(d) - f(x)}.

In this space we have a canonical vector, namely the function f : Ut B — k defined by f(ujtus) =
(pv)~L(t) for all uy € Ut, t € T and uy € U. This section does not vanish on U™ B/B, hence
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induces an isomorphism of line bundles &+ g/ = 05 (pv) |+ B/p- We claim, furthermore, that
it is annihilated by the action of g C Ug and t C &(t*). In fact, the second case is clear. For
the action of g, in the case where v € XT the claim follows from the fact that our vector is the
restriction of the unique (up to scalar) vector of weight pv in I'(B, Op(pv)) (see [Jan03, proof of
Proposition I1.2.6]), and that this vector belongs to the G-submodule L(pr), on which the action
of g is well known to vanish. From this we deduce the general case by using the Leibniz rule for
the action on tensor products of line bundles.

Tensoring this section with the unit in &, we obtain a section of (F5(pr) @, @)‘Uﬂg/g.
The right action on this section provides an isomorphism

9|U+B/B — (OB(pv) @y 9)\U+B/B,

which commutes with the natural left and right actions of Ug ®z,, € (t*). Restricting further,
we obtain an isomorphism

QIS*XL*(l)t* — (ﬁB(py) ®ﬁB -@)lé*xt*(l)ﬁ;

and then, taking global sections and completing, an isomorphism of Z;Ié\’)‘—modules Qx =
Qx+4pr,n- Taking the action of t* x.q) W I Xy £ into account, this provides the desired
isomorphism Q) (pv) — Qxr+pr - -
5.3 Relation with translation bimodules

Recall from §3.5 the notation © = t*/(W, @) x )y t*/(W, @). In our constructions below we

will also have to work with variants of this scheme where one of the two copies of t*/(W, e) is
replaced by t*. We therefore introduce the notation

¢ .=t Xt*(l)/W f*/(VV, 0), ¢ = f*/(I/V, 0) Xt*(l)/W t*.

We now explain the relation between the objects Qj, u and the ‘translation bimodules’ introduced
in §3.5.

LEMMA 5.5. Let A\, u € X in the closure of the fundamental alcove, with one of them in the
fundamental alcove itself. Then for any w € Wey we have

lu‘z)‘ Y
PS = Qwop,,woA

in Modl, (UE™).

Proof. To fix notation we assume that A is in the fundamental alcove; the other case can be
obtained similarly. It is clear that we can assume that w € W. Let v € X be the unique dominant
weight which belongs to W (u — A). Then by definition, P‘S")‘ is the completion of the module

L(v) ® Usg

at the ideal corresponding to the point (i, A) € t*/(W, e) X.q1) jy, t*/(W, ®). Now by Lemma 3.2

the quotient morphism t* — t*/(W, e) is étale at w e . Tt follows that Pg”\ can also be obtained
as the completion of the Usg ®4(s+) (Usg)°P-module

L(v)® Z;{sg

with respect to the ideal of &(€’) corresponding to (fi,w e \).
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By Lemma 5.1 we have canonical isomorphisms
L(v) ®Z/~{gg 2Llv)® F(S* X (1) t*, .@s) = F(S* X L) ® .@s)

It is a classical fact that the coherent sheaf L(v) ® &g on B admits a filtration whose subquotients
have the form Op(n), where n runs over the weights of L(v) (counted with multiplicities). We
deduce a similar filtration for the sheaf L(v) ® 2, and then for its restriction to S* x () t*. (Here
we use the fact that restriction along the closed embedding S* — g is exact on the category
QCth(g)7 which follows from the same arguments as those used at the beginning of the proof of
Proposition 4.1.) In other words, we have obtained a filtration of L(v) ® Ugg with subquotients

F(S* X (1) t*, (ﬁ@(’r]) ®6’B 9)‘S*X‘*(1)t*)’ (53)

where 7 runs over the weights of L(v) (counted with multiplicities). This filtration is clearly
compatible with the action of Usg ®g(g+) (Z;{Sg)‘)p and the natural module structure over the
group scheme t* /(W) o) X )y 1§ X ety £

Let us denote by w : t* — t*/(W, e) the quotient morphism. The irreducible components of
¢ are parametrized by tﬁf-p, with the component corresponding to 4 being the image of the closed
embedding t* — & given by £ — (w(& +7), ). The components containing the point (fi,w e \)
correspond to the elements 7 € tfgp such that w e A +75 € W e [i, that is, A\ + w™'5 € W e fi. On
the other hand, the module (5.3) is supported on the component corresponding to 7. Hence,
after completion at (i, w e A), the only subquotients that survive are those corresponding to the
weights 7 such that A4+ w ™' € W e i, namely, A +w ™ 'n € Wy ® p. Since w™'n is a weight
of L(v), it belongs to pu — A+ ZR, so that A +w 1n € p+ ZR. By Lemma 3.1(i) the condi-
tion that A\ +w ™19 € Wy @ p is therefore equivalent to A +w™'n € Wog e . Now by [Jan03,
Lemma I1.7.7] this condition is satisfied only when A\ +w™'n = p, that is, n = w(u — \). We
deduce the desired isomorphism, since w e p — w @ A = w(u — A). O

Remark 5.6. Let A\, u € X belonging to the closure of the fundamental alcove, and assume that
the stabilizer of A for the dot action of W is contained in the stabilizer of u. Then, if we denote
by ¢(&)M the completion of @(€) at the ideal corresponding to (X, fi), the same considerations
as in the proof of Lemma 5.5 show that there exists an isomorphism

Quu = O(@M e, Py

o
Recall that, given a simple reflection s € S,g, a weight A € X belonging to the closure of the
fundamental alcove is said to be on the wall corresponding to s if se A = A.

LEMMA 5.7. Let A\, p € X, with A belonging to the fundamental alcove and pu on exactly one
wall of the fundamental alcove, attached to the simple reflection s. Let also w € W.

(i) If ws e X\ > w e\, then there exists an exact sequence
Ap S A
Qwok,wo)\ — I:)S'u ®L{Sg Pg - Qwso/\,woA

in Modf, (Ug™).
(ii) If ws e A < we A\, then there exists an exact sequence

Ap S HyA
Qwso)\,wo)\ — PS . Quisg PS - Qwo)\,wo/\

in Mod, (U™).
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Proof. By Lemma 5.5 we have
A S A~ DM S
PS’M Qusg Pg’ = PS " ROusg Qwo,u,wo)\‘

Hence, if we denote by v the unique dominant weight in W (X — ), this object can be obtained
by completing the bimodule

L(v) @ T(S* X e t°, (Op(w e p— w e \) @y ‘@)\9*&*(1)*")

o~ F(S* X (1) tL(v) @ (O(wepu—we) Qo @)|§*xt*(1)t*)

with respect to the ideal of @(€') corresponding to (A, w e ). Hence, as in the proof of Lemma 5.5,
if we choose an enumeration 7y, . .., n, of the T-weights of L(v) (counted with multiplicities) such
that 7; < n; implies 7 < j, then this bimodule admits a filtration

{0y=MycMyC---CM,= F(S* X 5, (Op(wep—we) Rog 92)|S*><£*(1)t*)
such that
M;/M;_q = F(S* X ' (O(w e p—weX+1n;) g, @)\S*xt*(l)t*)

for any i. The subquotient M; /M;_1 survives after completion at the ideal corresponding to
(A, w e \) if and only if
wefi—weA+T; EWeX—we),
that is, if and only if
w+ w’lm € Wext ® A

Here w™1n; is a weight of L(v), hence u +w~1n; belongs to A + ZR; in view of Lemma 3.1(i),
this condition is therefore equivalent to p + w™1n; € W,g @ X. Since the stabilizer of u for the
dot action of Weg is {e, s}, by [Jan03, Lemma I1.7.7] this condition is satisfied for two values of
1;, corresponding to

p4+win =X and p4+wln =se ),

that is,
wepu+mn=we) and wepu+mn =wseA.

Hence, pAH Qi PH A admits a two-ste filtration, with subquotients isomorphic respectively to
S sg''s p q b P Yy
Quexr,wer and Quserwer- The order in which these subquotients appear depends on whether
wseX>we)lor wse\ < we A and is as indicated in the statement. O

5.4 Convolution with translation bimodules
Let A, p € X, and assume that A is regular. Then there exists a canonical algebra morphism

i\ A
Zg — ZS (5.4)

which can be defined as follows. The algebra Zg A is by definition the completion of (D) at the

ideal corresponding to (ji, A). Hence, it admits a canonical morphism to the completion & (G)“i‘

of 0(€&) at the ideal corresponding to (i1, A). Now the morphism t* — t* defined by £ — & + 1 — A
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induces an automorphism of ¢ sending (A, \) to (fi, \), which therefore induces an isomorphism
o) = o(@), (5.5)

where the right-hand side is the completion of &(&) at the ideal corresponding to (X, \). Finally,
the natural morphism

20 (e (5.6)

is an isomorphism by Lemma 3.2, since X is regular; combining these constructions, we obtain
the wished-for morphism (5.4).

Our goal in this subsection is to prove the following claim, which involves the equivalence
constructed in Corollary 4.8.

PROPOSITION 5.8. Let A, u € X, with A belonging to the fundamental alcove and p on exactly
one wall of the fundamental alcove, attached to a simple reflection s which belongs to W. Then
there exists an isomorphism

)‘7/1/ o~ Mv)‘ ~ 5\75\ “ X
PS" ®usg P§” = L (25 © ziA Z3)

in I\/Iod]%g (Z/{g")‘), where Zg‘ is regarded as a Zg’)‘—modu]e via the morphism (5.4) and Zé"/\ ®Z£’X Zg‘
is endowed with the trivial structure as a representation.

Remark 5.9. From the proof below one can check that the isomorphism in Proposition 5.8 is
‘canonical’ in that it depends only on the choice of an adjunction (Pg”‘@usg(—), Pg’)‘@)usg(—)),
which can be defined by a choice of an isomorphism L(v)* = L(—w(v)) where v is the only
W-translate of p — A; see the proof of Lemma 3.6. From this proof it is clear also that the
morphism

M S A A
Ps g Qusg Pg - Ué\
defined by this adjunction corresponds under %) ) to the morphism

A 5 5
2N ® a5 28 — 23

zpA
) . A A
given by the action of Z5"" on Zg.

The proof of this proposition will use two preliminary lemmas.

LEMMA 5.10. If s is a simple reflection in W, then O(t*) is free of rank 2 as a module over
o(t/({e, s}, 0)).

Proof. First, translating by p, we can reduce the e-action to the standard action; it therefore
suffices to prove that &(t*) is free of rank 2 over the subalgebra &(t*)® of s-invariants. Next,
recall that we have a W-equivariant isomorphism t — t*, induced by a choice of G-equivariant
isomorphism g — g*. We are therefore reduced to proving that &(t) is free of rank 2 over O'(t)*.

Now, standard arguments show that (1, p) is a basis of &(t) over €(t)%; see, for example, [EW16,
Claim 3.11]. O

LEMMA 5.11. Let A\, u € X, with A belonging to the fundamental alcove and u on exactly one
wall of the fundamental alcove, attached to a simple reflection s which belongs to W. Then
there exist isomorphisms of functors which make the following diagrams commutative, where
the upper horizontal arrow on the left-hand side is the restriction-of-scalars functor associated
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with the morphism (5.4):

AN
Zs ®Zﬁ’ﬂ (*)

Y i A A
Mod%g(zg ) Mod]}g(zf; ) Mod}, (257)

fg fg
Ly \L i L LA J/ \L Ly
RN ng\@bfsg(_) N I Pg’#@)usg(_) N
AN TP TP N
Modp, (Ug™) Mody, (U5™)  Modi, (UE™) Modp, (Ug™)

Proof. By definition we have
PE” Bu Laa(-) = (PE” Busg P Buisa P © 1 ().
Using Lemmas 5.3 and 5.5, we deduce that
P& Buisg (=) = (Quip Busg Ps™) © 435 ().
Hence, to prove the commutativity of the diagram of the left it suffices to construct an
isomorphism
(P5 ™" Buge Ps™) ®Z§1,X Zé’;\ = Quu—p Buigg Ps™
or, in other words (in view of (5.5) and (5.6)), an isomorphism
(P§™" Busa Ps") @ 5 O(& = Q. Buigg P (5.7)
To construct a morphism as in (5.7) it suffices to construct a morphism
PE ™’ Qusq ng’/\ — Qu—p Cusg PEW\ (58)
in I\/Iod]}g(ug’j‘). By Remark 5.6 we have
Qu_p = ()P ® 50 PE " (5.9)

in particular, there exists a natural morphism Pg™” — Q,, —,, which allows to define the wished-
for morphism (5.8), hence the morphism (5.7).

Now we claim that & ((,3);2,& (respectively, € (Qf)ﬂ’f") is free of rank 2 over the algebra lel A
(respectively, Zg "), which in view of (5.9) will imply that the morphism (5.7) is an isomorphism.

The two cases are similar, so we only consider & (Q‘E)[L’j‘. It follows from Lemma 3.2 that Zg”\
identifies with the completion

O(t/({e,s},0) Xy €/ (W, )

of O(t"/({e, s}, ) Xy t*/(W,e)) with respect to the ideal corresponding to the image of
(i, \). Now O(€) is free of rank 2 over &(t*/({e, s}, ) X g1y sy t°/(W, @)) by Lemma 5.10, and
its completion with respect to the ideal corresponding to (i, 5\) coincides with its completion
with respect to the ideal of O(t*/({e,s},e) X (1) 7 t*/(W,e)) corresponding to the image of
(7i, A) (because (fi, A) is the only closed point in the fiber over its image in t*/({e, s}, o) X () W
t*/(W,e)). The desired claim follows.

We have finally proved the commutativity of the left diagram of the lemma. The com-
mutativity of the right diagram follows from that of the left one by adjunction, in view of
Lemma 3.6. g
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Proof of Proposition 5.8. Lemma 5.11 provides isomorphisms

)\7 o~ 7)‘ ~ ij‘ - 7)\ ~Y 3\,5\ _ )\
P ®use PE™ 2 20 (24 ® i L (PE™)) = AN(ZS @Zsﬂ,; L (US)).

The desired claim follows, using the isomorphism (4.9). O

5.5 Monoidality of the functors £ x
Our goal in this subsection is to prove the following claim, announced in Remark 4.9.

PROPOSITION 5.12. Let A,v € X in the lower closure of the fundamental alcove, and let p € X
be in the fundamental alcove. Then for M € I\/Iod]%g(Zg"’l) and N € I\/Iod]%g(Zg’ﬂ) there exists a
canonical (in particular, bifunctorial) isomorphism

Ap(M*g N) 2 A (M) Qugg Luv(N).

In the case where A\ = j = v, this isomorphism and (4.9) define on %) ) the structure of a
monoidal functor.

Proof. Recall the completion @(t*(1) /)" introduced in §3.6. By definition and Remark 3.5, if
we set Usg” 1= Usg @) 1) OtV /W)N we have

A A _
Ly u(M) = Mg* ®ZSW M = (Pg™" ®uggr Pg"") ® M

5 .
ZHC®@(¢*(1)/W)/\ lejIC
and

XM,V(N) = Mg’u ®Z§’f’ M = (Pg’ip Outg g ng’u) ®, N.

H0® o(x(1) ywyn Zhe
We deduce that
Lru(M) Busg L (N) = (P ™" Susgn P5"" Qusgr P5 ™" Quggr P5™)
® (M ®Zﬁc N).

ZIS{\C®@-:(£*(1)/W)AZflC@@(t*(l)/W)AZfIC
(Here, ZIS‘{C D () /) Zﬁc O g (1) y)A fIC identifies with the completion of the algebra
Ot [ (W, 8) Xty jyyy 7/ (W, @) Xur) jyyy t7/(W, @) with respect to the ideal corresponding to
(\, i, 7).) By Lemmas 5.5 and 5.3 we have

—PH S =P ~ I~ ~
PS Qusg I:>s - Q—pyu Qusg Quy—p = Q—py—p-

By Lemma 5.1, Q_, _, identifies with the completion of Usg with respect to the ideal of &(t*)
corresponding to —p. Via this identification, the action of Zj is given by the composition

Zhe — O 2 o),

where € (t*)"* and 0 (t*)fp are the completions of &' (t*) with respect to the ideals corresponding to
X and —p respectively, the first map is induced by the embedding Zyc = O(t*/(W, )) — O(t*),
and the second one is defined in terms of translation, in a way similar to that considered at the
beginning of §5.4. Here the first map is an isomorphism by Lemma 3.2, from which we obtain
an isomorphism

gA,u(M) ®Usg XM,,,(N)
> (Py " Quggr P5”") ® - , (M®,: N).

Zﬁc®ﬁ(g*(1)/W)AZI;g:@ﬁ(g*(l)/W)AZﬁC HC
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Finally, we use the fact that the morphism &(t"") /W)" — Z5£. is an isomorphism (see the proof
of Lemma 4.7) to deduce the wished-for isomorphism

XA,M(M) @L{Sg zu,l/(N) = D%A,V(M 7?(S N)

In the case where A = p = v, the fact that the relevant isomorphisms define a monoidal structure
on %y ) is clear from constructions. O

Remark 5.13. Proposition 5.12 also holds in the case where p is singular (in the lower closure of
the fundamental alcove). This case can be treated using the methods of §5.6 below; since it is
not needed in this paper, we omit the details.

5.6 Singular analogues

Let I C fR® be a subset, and let P; C G be the associated standard (i.e. containing B) parabolic
subgroup of G. (In practice, only the case #I = 1 will be considered below.) Let Uy C Py be the
unipotent radical of Pr, and let L; be the Levi factor containing T', so that Py = L; x Uj. Let
Pr := G/ Pr, and consider the natural projection

wr: G/Ur — Pr.

The group L acts naturally on G/U; on the right, via the action induced by multiplication on
the right on G; this action makes wy a (Zariski locally trivial) L;-torsor. We set

D1 = (w1)(Dayu) ™
where the exponent means Lj-invariants. The actions of G and L; on G/U; induce a canonical
algebra morphism
U ®zye O /(Wr,0)) — T'(Pr, Z1); (5.10)

see [BMRO6, Proposition 1.2.3].

Let also Py := PI(I), a parabolic subgroup of G = G with unipotent radical U; := Ul(l).
Let g be the parabolic Grothendieck resolution (for the group G) associated with I, defined as
gr:= G x7 (g/Lie(Up))".

Here g is a vector bundle over G/P; = P}l), and if Ly := Lgl) there is a natural morphism
g — Lie(Ly)*/L; = W /Wy,
where Wy C W is as in §3.1 (seen here as the Weyl group of (L, T)).
Consider the induced morphism fr: g1 X )y, t/(Wr, @) — ”Pl(l), and the Frobenius mor-

phism Frp, : Py — 1(1). As explained in [BMRO06, §1.2.1], there exists a canonical algebra

morphism

(fl)*ﬁgIXL*<1>/WIt*/(W17.) - (Frpl)*@“

where the morphism t*/(W;,e) — t*(1)/ Wi is induced by the Artin—Schreier map. This mor-
phism takes values in the center of (Frp,).Z;, and makes (Frp,).Zr a locally finitely generated
( f])*ﬁglxt* ), /(Wr,e)-module. Since all the morphisms involved in this construction are affine,

using this morphism one can consider & as a coherent sheaf of 05
g1 t*(l)/WI

81 X gy, £/ (Wi, e). (We will not introduce a different notation for this sheaf of algebras.)

¢ /(W ,0)-algebras on

We also have a canonical morphism g; — g*(l), and we denote by S? the (scheme-theoretic)
inverse image of S* under this morphism. As in the case I = &, using [Ricl7, Remark 3.5.4]
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one can check that the morphism g; — (1) /W considered above restricts to an isomorphism
S7 = t*(l)/ Wr; in particular, this scheme is affine. We set

D18 = (@I)\S;xt*m/wlt*/(wm)'

The following lemma is a parabolic analogue of Lemma 5.1, for which the same proof applies.
LEMMA 5.14. The morphism (5.10) induces an algebra isomorphism
Us@ @zye O/ (Wr,0)) = T(S] Xy, €/ (Wr,0), I1s).
Let
Xr:={ eX|Vael, (\a')=0},

so that X; identifies with the character lattice of L;. Then any A\ € X; defines a line bundle
Op,(X\) on Py, from which one can define the space

L(ST %y €/ (W1 0). (00,0 ® T e jwm): (5.11)

!*(1)/WI
This object admits a natural action of the algebra

(Usg ®zye O/ (W1, 0))) ®p(s+) (Usg™ @z, O/ (W, )))
and of the group scheme

/(W @) Xty Is Xy 7/ (W1, 0).
Since A is Wi-invariant, the map & +— X + ¢ factors through an isomorphism
T /(W e) &t/ (Wre),
and the action of the subalgebra O/(t*/(Wi, ) X .a) y t*/(Wr,e)) on (5.11) factors through the
morphism induced by the closed embedding
T X id £/ (Wi, @) — £/ (W, @) X ey pyy £/ (Wi, @),
Given A, p € X such that A — g € Xj, one can then define the object
Q}., € Modf, (Ug™)

as the completion of the module

F(g? X (1) /Wy t*/(W[a .)7 (ﬁPI ()\ - M) 02y @])‘S’;Xt*(l)/w t*/(W[,o))
T

at the ideal of O'(t*/(Wr, @) X )y t*/(Wi, )) corresponding to the image of (A, 12). As for Q .,
this object can be obtained by completing the module at the ideal of & (t*/(WW;, e)) corresponding
to the image of A with respect to the left action, or at the ideal of €'(t*/(W,)) corresponding
to the image of i with respect to the right action.

LEMMA 5.15. Let A\, p,v € X.

(i) Assume that the stabilizer of p for the dot action of Wog is Wi, and that v € —p + XJ.
Then there exists a canonical isomorphism

~ I ~o
Q/\,u ®L{Sg Q%V - Q/\,V

in Mod]}g(Ué\’l}). Similarly, if the stabilizer of u for the dot action of Wyg is Wy, and \ €
—p + Xy, then there exists a canonical isomorphism

T ~ ~
Q)\“u, ®Z/{sg QM,V — Q)\,l/

in Modf, (Ug").
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(ii) Assume that the stabilizer of p for the dot action of Wyg is Wy, and that \,v € —p + X.
Then there exists a canonical isomorphism

I = I ~ I
Q)\,u ®L{SQ Qu,u - Q/\,u
. T /700
in Modg, (Ug™).

Proof. (i) We only prove the first isomorphism; the proof of the second one is similar. Our
assumptions ensure that u — v € Xy, so that the object thl, is well defined. Consider the natural
morphism aj : B — Pr. By [BMRO06, Proposition 1.2.3] there exists a canonical morphism of
sheaves of algebras

D1 — (a1):9. (5.12)
By the projection formula, and since (ar)«0p = Op,, we also have

(ar)«Op(p—v) = Op,(p —v),

and via this isomorphism the action of Z; on Op, (1 — v) is obtained by restriction of scalars
along (5.12) from the natural action of (a;)«Z on (a;)«Op(p—v). We deduce a natural
isomorphism

(an)«(O8(A = 1) ®ps D) @5, (Op, (1 —v) @ap, T1) = (a1)x(O5(\ = v) @5 D),

defined by a formula similar to that considered in the proof of Lemma 5.3. The desired
isomorphism follows by restricting to S? X )y /(W,e) and then completing, using
Lemma 5.14 and the fact that the natural morphism t*/(W;, e) — t*/(W, e) is étale at the image
of fi, see Lemma 3.2.

(ii) The proof is similar to that of Lemma 5.3. O

5.7 Conjugation of wall-crossing bimodules

The following proposition will eventually reduce the question of the description of the bimodules
realizing wall-crossing functors for G to the case of wall-crossing functors attached to simple
reflections which belong to W.

PROPOSITION 5.16. Consider elements s € Sag, 8’ € Sag N W and w € Wey such that s’ =
wsw™ . Let A\, p, ¢/ € X, with \ belonging to the fundamental alcove, and p (respectively, )
belonging to the wall of the fundamental alcove attached to s (respectively, s'), and on no other
wall. Then there exists an isomorphism

)\7 I~ /7)\ ~ o~ )\, ~ 7A o~
PS" ®uga Ps " = Quwer Rugg (P ®ugg PS™) Ougg Quern
. T 77,0\
in Modg, (Ug™").
Proof. By Lemma 5.5 we have isomorphisms
A~ A~
PSM = Qwo)\,wo;u Pg - Qwou,wo)\-
Using Lemma 5.3, we deduce isomorphisms
~ )\7 ~ 7)\ ~
Qxwer @ugg (Ps" Busg Ps™) Bugg Quern
= Q)\,wo)\ ®Z/[sg Qwo)\,wou ®L{Sg Qwop,wo/\ ®L{sg Qwo)\,)\

= Qv wep Otisg Quep,r-
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Now the stabilizer of both i/ and w e u for the dot action of Weg is Wiay, where a € R® is the
simple reflection such that s’ = s,. By Lemma 5.15(i), it follows that we have isomorphisms

Quuwon = Qg Cuisa Qregsr Quioor = Q) 1 B Quins
from which we obtain an isomorphism
Quwep Bt Quopr = Qupr Cuigg Qg Briss Qlial v Biss Quin-
Then by Lemma 5.15(ii) we have
{fo} 5 {e}  ~ pfad
Qur wep Ptss Qe = Qs
which implies (again using Lemma 5.15(i)) that
Q/\,wou @91/159 wa«\ = QM/ ®Usg Qu’)\'
The desired claim follows, again using Lemma 5.5. ([l

6. Hecke action on the principal block

In this section we assume that p > h, where h is the Coxeter number of G (see Remark 3.3). In
particular, this ensures that p is very good for GG, so that the results of the previous sections are
applicable.

6.1 Categories of G-modules and G-equivariant U g-modules

We now take a closer look at the category Rep(G) of finite-dimensional algebraic G-modules, and

review its decomposition into ‘blocks’. This will involve the notation introduced in §§3.1-3.3.
Recall (see § 3.5) that for any A € XT we have a simple G-module L()) of highest weight \, and

that all simple G-modules are of this form. The linkage principle (see [Jan03, Corollary 11.6.17])

states that for \, u € XT we have

EthRep(G)(L(/\)7 L(M)) 7é 0 = Waff o)\ = Waf'f ® /L.

As a consequence, if for a Wag-orbit ¢ C X we denote by Rep.(G) the Serre subcategory of Rep(G)
generated by the simple objects L(\) with A € ¢ X, then we have a direct sum decomposition

Rep(G) = @ Rep.(G). (6.1)
cEX/(Wag®)
For A € X, we will write [\] for the W,g-orbit of A. We will also set
Reppy(G)= €D  Repc(G).

c€X/(Wag o)
cCWexto

Consider the category Mod%(blg) of G-equivariant finitely generated Ug-modules. For £ €
t*/(W,e), we will denote by

Modg’é(Z/lg)

the full subcategory of I\/Iodf%(lxl g) whose objects are the modules annihilated by a power of the
ideal m&¢ C Zyc. As for other similar notation, in the case where { = A\ for some A € X, we will
write Modg’A(Z/{g) for Modg’/\(l/{g). If we denote by Modg’A(L{g) the category of G-equivariant
finitely generated U g-modules annihilated by a power of the ideal Z C Zyc N Zpy defined in § 3.6,
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then, as for example in (3.13), we have a canonical decomposition
G, G\
Modg " (Ug) = €D Mod?* Ug),
A€A
where A C X is as in (3.13).
There is a natural fully faithful functor

Rep(G) — Modg(Z/{g) (6.2)

sending a G-module V to itself, with its G-module structure, and with the U/g-module structure
obtained by differentiating the G-action. The essential image of this functor consists of the finite-
dimensional G-equivariant U/g-modules having the property that their U/ g-module structure is
obtained from their G-module structure by differentiation. Since, for any A € X', the action of
Zuc on L(\) factors through the quotient Zyc/m?, the functor (6.2) restricts to a functor

Reppy)(G) — Modg* (Ug)

for any A € X. Since m* only depends on the orbit Wy ® A, in this way we also obtain a fully
faithful functor

Rep(y(G) — Modg " (Ug). (6.3)

6.2 Action of completed bimodules
Recall the category Modg(u M) introduced in § 3.6. There exists a canonical bifunctor

(=) Bug (=) : Mod U") x Modg”" (Ug) — Modg" (Ug)
which can be defined as follows. Consider some M in Mod%(l/{/\) and some V in Modg’A(Z/{ g).
By definition, there exists m € Z>1 such that Z™ acts trivially on V. Then the tensor product
(M/T™ - M) Qug V

is a finitely generated left A/g-module (where in the tensor product we consider the right Ug-
action on M /Z™ - M), which does not depend on the choice of m, and which admits a natural
(diagonal) algebraic G-module structure. Moreover, the action of Z on this module is nilpotent.
We can therefore take this as the definition of M @ugV.

The bifunctor ®Ug defines on Modng’/\(Ll g) a module category structure for the monoidal
category Modg(uA). It is also easily seen that for A, u € X this bifunctor restricts to a bifunctor

ModS UM) x Mod§ ™ (Ug) — Mod$* (Ug)
(where the category Modfcé(l/{j"[‘) is as in §3.5), which itself restricts to a bifunctor
HCME Rep,) (G) — Rep(y(G)
under the embeddings HCM: — Modng(L{j"ﬂ) and (6.3).

6.3 Relation with translation functors
Recall the definition of the translation functors for G-modules from [Jan03, Chap. I1.7]. Fix
A, 1 € X, and denote by v the only dominant W-translate of A — u. Then the translation functor

le\ : Rep[u](G) — Rep[/\](G)

is the functor sending an object V' to the direct summand of L(v) ® V' which belongs to Rep,(G)
in the decomposition provided by (6.1). We will consider these functors only in the case where
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A and p both belong to the closure of the fundamental alcove. In this setting, we have defined
in §3.5 an object PM* € HC()‘ii’f;g.
LEMMA 6.1. Let A, u € X belonging to the closure of the fundamental alcove. The composition

PGy (-)
Repy,;(G) — Rep(, (G) ——=— Rep1y(G)

is canonically isomorphic to the composition

A

T,
Proof. By definition, the first functor sends a module V' in Rep,j(G) to the quotient

(L)@ V)/(mN" - (L) @ V)

for n > 0, that is, to the direct sum of the factors in L(r) ® V corresponding to orbits included in
Wext ® A in the decomposition provided by (6.1). However, all the T-weights in L(v) ® V' belong
to A+ ZR. In view of Lemma 3.1(i), this implies that [A] is the only Weg-orbit contained in
Wext ® A that can contribute to the direct sum above. O

Remark 6.2. See [Ricl0, Lemma 4.3.1] for a different proof of this claim, under more restrictive
assumptions which would be sufficient for our present purposes.

6.4 Main result

We now consider the category Dpg of §2.1 associated with the group G = GM). We also fix
a weight A in the fundamental alcove. (Such a weight exists since p > h.) For any s € Sug, we
choose a weight ps € X in the closure of the fundamental alcove, which lies on the wall associated
with s but on no other wall. (For the existence of such a weight, see [Jan03, §11.6.3].) Once these
choices have been made, the wall-crossing functor associated with s € S,g is the composition

O, = T/f‘s o T{" : Reppy(G) — Reppy (G).
The main result of the present section (and of this paper) is the following theorem.
THEOREM 6.3. There exists a monoidal functor
U : Dpg — HCM
such that
TN (By) =2 P @y PHe
for any s € Sug.

We explain the proof of this theorem in §6.5. Before we do so, we show that (as explained
in the introduction) this theorem implies the main conjecture of [RW18].

COROLLARY 6.4. There exists a k-linear right action of the monoidal category Dgs on Reppy)(G)
such that for any s € Sy the action of the object By is isomorphic to ©O.

Proof. As explained in §6.2, there exists a canonical (left) action of the category HCM on
the category Rep, )\>(G). The category Dpg admits a canonical autoequivalence ¢+ which satisfies
WX Y)=uY) o(X) for any X,Y € Dpg; see, for example, [RW18, §4.2]. Using this autoequiv-
alence, the functor of Theorem 6.3 therefore provides a right action of Dpg on Repy,(G) such
that B, acts via the bimodule PM#s @ugP“s”\, for any s € S,g. By Lemma 6.1, the action of this
bimodule stabilizes the subcategory Rep[)\] (G), and its action on this summand is isomorphic to
©;. We have therefore constructed the desired action. O
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Remark 6.5. Tt is clear from the proof of Corollary 6.4 that the existence of a right action of Dpg
with the required action of each By is equivalent to the existence of a left action with the same
property. The reason why Conjecture 1.1 mentions a right action is that it makes the comparison
with the combinatorics of the category Repjy(G) easier.

See §6.6 for a discussion of what can be said about the images under ¥* of the generating
morphisms of Dgs.

6.5 Proof of Theorem 6.3
Recall that Theorem 2.10 provides a monoidal functor

Dpg — RepG"‘ (t*(l) X (1) /W Jg X)) /W f*(l)) (64)

Since A belongs to the fundamental alcove, its stabilizer for the dot action on X is trivial, so that
the quotient morphism

= t7/(W,e)
is étale at \; see Lemma 3.2. Similarly, the Artin-Schreier map

& — t*(l)

is étale (everywhere, hence in particular at A), and sends A to 0. Using these maps, we obtain
morphisms

t*(l) Xt*(l)/W t*(l) — Xt*(l)/W " — t*/(W, 0) Xt*(l)/W f*/<VV, 0)

étale at (A, \), which identify the algebra Zg"j‘ from §3.9 with the completion &(t*(1) X ()

t*(l))o’ﬁ of o(t*(V) X (1) /7 t*(1) with respect to the maximal ideal corresponding to (0, 0). Using
this identification, the pullback functor associated with the natural morphism

Spec(O(tM Xy t)0) = W x )y 5
induces a monoidal functor
Rep® (') x i)y J§ X iy 1)) — Mody (257), (6.5)

where the category on the right-hand side is as in §4.3. Precomposing this functor with (6.4),
and then composing with the equivalence of Corollary 4.8, we obtain a monoidal functor

U3 : Dpg — HCG™. (6.6)
PROPOSITION 6.6. For any s € S,g N W, there exists an isomorphism
A ~Y >\7 S N 37A
Ug(Bs) = PSH Qusg P’é :

Proof. In the course of the proof of Lemma 2.9 we have seen that the image of By in the cat-
egory Rep®m (t+(1) X )y Jg X0 () is o (M) X g+(1) /e, }t*(l)), endowed with the trivial
structure as a representation. On the other hand, by Prop051t10n 5.8 the wall-crossing bimod-

ule P “5®usgP”5’ corresponds to the object Z)‘A Z‘” ZS (again endowed with the trivial

structure as a representation) under the equivalence .Z) ). Recall that ZS identifies with the
completion of O(t* X .q) W t*) at the ideal corresponding to (A, A). The considerations in the
proof of Lemma 5.11, together with the fact that the quotient morphism t* — t*/(W, e) is étale

at ), imply that the algebra Zé‘)‘ identifies with the completion of &(t*/({e, s}, e) X)) t*)
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at the ideal corresponding to the image of (fi, A), and that via this identification the morphism

Zg A, Zé")‘ is induced by the natural morphism
t* Xt*(l)/W t* — t*/({e, S}, .) Xt*(l)/W t*

sending (A, A) to the image of (fi, A). This morphism fits in a natural commutative diagram

t* X)) )W o (@ Xt*(l)/W ()

| |

t*/({e, s}, o) Xg1) > t*(l)/{e, s} X (1) J W =)

where the right vertical arrow is induced by the natural quotient morphism (1) — (1) /{e s}
and the horizontal arrows are induced by the Artin-Schreier map. Here the morphism on the
upper row is étale at (A, A), and that on the lower row is étale at the image of (i, A) by the

same arguments as for Lemma 4.7. This observation shows that Zé")‘ ® i Zé\ identifies with
S

the o(¢*(M) X (1) /7 t*(l))()’()-module

ﬁ(t*(l) Xt*(l)/W t*(l))(),O ®ﬁ(£*(l>/{evs}><t*(1)/Wt*(l))()’() ﬁ(t*(l))oa

where 0(t*(M) /{e, s} X 1)y t*(l))o’ is the completion of @ (t*(1) /{e, s} X () t*() at the ideal

corresponding to the image of (0,0), and ﬁ(t*(l))ﬁ is the completion of &(t*(1)) (seen as an
oW /{e, s} X 1)y t*M)-module in the natural way) at the ideal corresponding to 0. Using
the same considerations as in the proof of Lemma 5.11, it is easily seen that this module identifies
with the completion of ﬁ(t*(l) X (1) /{e,s} t*(l)), which finishes the proof of our claim. O

Remark 6.7. The isomorphism constructed in the proof of Proposition 6.6 is essentially canonical,
in the sense that it only depends on the isomorphism of Proposition 5.8 (for the pair (A, us)),
which itself only depends on a choice of isomorphism L(vs)* = L(—wg(vs)) where v, is the only
dominant W-translate of us — A; see Remark 5.9.

Recall the objects (A :w € Wey) introduced at the end of §2.4, and the objects (Qup
v,n € X) introduced in §5.2.

LEMMA 6.8. For any w € Weyt, the object X/\*;(Q,\Vw.,\) is isomorphic to the image of AJ under
the functor (6.5).

Proof. Write w = t,x with v € pX and x € W. Then by Lemma 5.3 we have
Q)\,wo)\ = Q)\,xo>\+py = Q)\,xo)\ ®Z/{sg on)\,xo)\—&—pw
It follows from Lemma 5.4 and the proof of Lemma 2.8 that DS,”)\_){(QQC. Azertpy) is the image of

A"fy. In view of (2.3) and the monoidality of £, \ (see Proposition 5.12), to conclude it therefore

suffices to prove that XA_;(Q,\@.A) is the image of AJ;. In turn, if £ = s1---s, is a reduced
expression (with each s; in W N S,g) then again by Lemma 5.3 we have

Q/\,zo)\ = Q)\,slo)\ ®L{Sg Qslo)\,slsgo)\ ®Msg e ®L{Sg Q(51~“Sr—1)')\,l‘°)\'

If we write y; = s1---s; for j € {0,...,r} then, by monoidality of .Z) , to conclude it suffices
to prove that %y (Qy, ,exnye) is the image of Al forany i€ {1,...,r}.
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Fix i € {1,...,r}. We have y; e A < y;_; @ \. By Lemma 5.7 we therefore have an exact
sequence

)"/J'Si sy ,“‘Si»A
Qyi')\,yi—ld\ - PS ®Usg PS - Qyi—1°>\7yi—1'>\'

~

: Ll —_ )‘7 S, S‘7>\
As seen in the course of the proof of Proposition 6.6, fAi(PS“ ' Qusg Pg )

corresponds to
the completion of &(t*(1) X (1) /{e,s:} t*(1)) (with the trivial structure as a representation of the
appropriate group scheme), and it is clear that fgi(QyFl. Ayi_1e)) is the completion of & (t*(l)).
The object DS,”A_){ (Qyio Ayi_ie A) is therefore the kernel of a surjection from the former completion to

the latter completion. However, up to an automorphism of the completion of &(¢*(1)) there exists
only one such surjection, and its kernel corresponds to the completion of Aﬂi by Lemma 2.5. [

Once Lemma 6.8 is proved, one also obtains that .i”;;(Qw.,\,A), which is the inverse of
23 (Qawen) (see §5.2), is isomorphic to the image of Afrl under (6.5). (In fact, one can then
check that, for any 1 € Wex @ A, g,\_,\l(Qmwou) is isomorphic to the image of A )

We can finally complete the proof of Theorem 6.3.

Proof of Theorem 6.3. Consider the functor U3 from (6.6). We claim that for any s € Sug we
have
~ pAis S PP

\IJ/S\(BS) = Psu Qusg Pg : (6.7)
In fact, if s € W this is the content of Proposition 6.6. Otherwise, as already seen in the course
of the proof of Lemma 2.9, there exist & € Wy and t € Sag N W such that s = ztz~!. Then, by
Lemma 2.4, the image of By in Ceyy is

BsBim 2 A, Qr BPim QR Ax—l;

using Lemma 6.8 (together with the remark following it) and the known description of ¥g(B;),
we deduce that

~ = it S AS
\II/S\(BS) - szlo)\)\ ®Usg PS He ®Usg Pgt ®Usg QA,aflo)\'
In view of Proposition 5.16, this implies (6.7).
Since each object of Dpg is isomorphic to a shift of a product of objects Bs, and since both
of the functors involved are monoidal, our claim implies that \Ifg takes values in the essential
image of the fully faithful functor

HCMA

AA
diag —H CS

(see Proposition 3.7). It follows that \Ilé factors in a canonical way through a monoidal functor
U : Dpg — HCM

sending B, to PM#s @ugP“S’A for any s € S,g, which finishes the proof. O

6.6 Images of generating morphisms

The category Dpg is defined in [EW16] in terms of generators and relations. In Theorem 6.3

we have explained what are the images of the generating objects under ¥* (at least, up to

isomorphism); by monoidality this determines the image of any object in Dpg (again, up to

isomorphism). We finish the paper with a discussion of what can be said about the image under
U of the generating morphisms of Dgs.

Remark 6.9. As explained in [RW18, Remark 5.1.2(3)], although the original version of
Conjecture 1.1 contained information about these images, this information is not needed for
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the applications considered in [RW18, Part I], and in particular the character formula for tilting
modules in Reppy(G).

Recall that these generating morphisms fall into four families:

— the polynomials (morphisms from Bg to a shift of By, determined by homogeneous elements
in R=0(tW));
— the ‘dot’ morphisms for s € S,

o —n

T and

(morphisms from Bj to a shift of By and from Bg to a shift of Bs);
— the ‘trivalent’ morphisms for s € Sug

VoA
(morphisms from Bj to a shift of Bsgs and from Bgs to a shift of By);
— the ‘2mg-valent’” morphisms, for pairs (s,t) of distinct elements of S,z generating a finite

subgroup of Wyg.
The information we can give concerns only the first two families of morphisms. A
The image of polynomials is easy to describe: we have WA(Bg) = U . If Zﬁc is as in

Remark 3.5, any element in ZIS‘{C determines an endomorphism of I/ A, Now the natural morphisms
t*/<W, .) — t*(l)

are étale at \; they therefore determine an isomorphism between Zf}c and the completion
Ot M0 of o(t*M) with respect to the ideal of 0. The image under ¥ of a homogenous

polynomial in R is the endomorphism of * determined by the corresponding element in Zﬁc.

To describe the image of the other morphisms, we must be more specific about the
isomorphism W*(Bj) &2 PMHs iy PHsA. First, assume that s € W. In this case, after choosing
an isomorphism L(vs)* = L(—wo(vs)) we obtain a canonical such isomorphism; see Remark 6.7.
Using this isomorphism, Remark 5.9 shows that the image of the upper dot morphism

!

is the morphism ¢, : PMHs @ugP’“’)‘ — U* determined by the adjunction
Als S A S
(PM Qug (=), P*" ®ug (—))

defined by our choice of isomorphism L(vg)* = L(—wp(vs)). (Here we use an obvious variant of
Lemma 3.6 for Ug in place of Usg.)
Proposition 3.7, Corollary 4.8 and Proposition 5.8 (together with the various étale maps

considered above) show that the & (t*(l))é—modules
Hom,, 5 (Z/IS‘,Z/{j‘) and HomHC;,;(US‘, PAHs Qg PHY)
are both free of rank 1; from this one can check that there exists a unique morphism

st UM — PYEs @ug pis A

1012

https://doi.org/10.1112/S0010437X22007436 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X22007436

HECKE ACTION ON THE PRINCIPAL BLOCK

whose composition with g is the differential of the coroot of (G, T) associated with s (seen as an

endomorphism of 2*), and that this morphism is a generator of HomH oA (U, P/\’“S@ugP“S’A).
In view of the ‘barbell relation’ in Dgg, the image of the lower dot morphism

is .
In the case where s ¢ Wog, we do not have a canonical choice of isomorphism W*(B,)
= P’\’“5®ugP“5’A. What we can say is that there exists a choice of such an isomorphism

ab()v(f.
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Appendix A. Index of notation

Below is a list of the main notation used in the paper, listed by section of appearance.
(We sometimes omit notation used only in one specific subsection.)

A.1 Section 2

k: algebraically closed field of characteristic p, §2.1.

G: connected reductive algebraic group over k, §2.1.

B, T: Borel subgroup and maximal torus in G, §2.1.

g, b, t: Lie algebras of G, B, T, §2.1.

X, XV: weight and coweight lattices of T, §2.1.

d, Y, &, 5: roots, coroots, positive roots, simple roots of (G, B, T), §2.1.
x: choice of isomorphism g — g*, §2.1.

W: Weyl group of (G, T), §2.1.

Watt, Wext: affine and extended affine Weyl groups of (G, T), §2.1.
Saff, Wext: simple reflections in Wg, §2.1.

Dgs: diagrammatic Hecke category attached to G, §2.1.
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B,,: object of Dpg attached to w, §2.1.
R=0(t"), §2.1.
Q: fraction field of R, §2.2.
C, €, Coxt, Cly: Abe’s categories, §2.2.
BB bimodule in C attached to s, §2.2.
A,: ‘standard’ object in Ceyt attached to x, §2.2.
U: unipotent radical in B, §2.3.
n: Lie algebra of U, §2.3.
8reg: Breg: Tegular parts in g and g*, §2.3.
Jreg, Jleg: universal centralizers over greg and gje,, §2.3.
g: Grothendieck resolution attached to G, §2.3.
Sreg: regular part in g, §2.3.
m: natural morphism g — g*, §2.3.
¥: natural morphism g — t*, §2.3.
s, it regular semisimple parts in g and g*, §2.3.
Jrs, Jis: restrictions of Jreg, Jreg 10 8rsy 8rs, §2.3.
S, S*: Kostant sections in g and g*, §2.3.
§: restriction of Jy,, to S*, §2.3.
Rep(G’m (t* X w IS Xeew t*): category of Gy -equivariant representations of
t* X« ow J§ X¢+/w t* on coherent sheaves on t* X yw t7, §2.4.
*: monoidal product on Rep®m (t* Xeow Jg X yw t7), §2.4.

Repg™ (t* x ¢« yw Jg X¢+/w t*): subcategory of Rep®m (t* X¢xjw Jg X¢+yw t*) consisting of

modules flat with respect to the second projection t* x ¢ jyw t* — t7, §2.4.
AJ: object in Rep®m (t* X ¢ w J§ X+ yw t7) corresponding to A, §2.4.

A.2 Section 3

G: connected reductive algebraic group such that G = GV, §3.1.
Fr: Frobenius morphism of G, §3.1.

B, T, U: subgroups of G corresponding to B, T, U, §3.1.

g, b, t, n: Lie algebras of G, B, T, U, §3.1.

W: Weyl group of (G,T), §3.1.

X, XV: weight and coweight lattices of T', §3.1.

R, RY, R, RS roots, coroots, positive roots, simple roots of (G, B,T), §3.1.
wq: longest element in W, §3.1.

p: half-sum of the positive roots, §3.1.

e: dot action of Wey on X and W on t*, §3.1.

X: element of t* associated with A € X, §3.1.

A: image of A in t*/(W, e), §3.1.

tﬁﬁ-p: ‘integral’ part of t*, §3.1.

Wr: subgroup of W associated with I C fR°, §3.1.

Ug: universal enveloping algebra of g, § 3.2.

Zuc, Zw: Harish-Chandra and Frobenius centers of Ug, § 3.2.
AS: Artin—Schreier morphism, §3.2.

¢: spectrum of Z(Ug), §3.2.

m,,: ideal in Zp, associated with n € g, §3.3.

mé: ideal in Znc associated with € € */(W, ), §3.3.
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Uyg, Utyg, Ugg: central reductions of Ug, §3.3.

N*: nilpotent cone in g*, §3.3.

HC: category of Harish-Chandra bimodules for G, § 3.4.

2 = Z(Ug) ©2,, Z(Usg), §3.4.

I\/Iod%(u g Rz, UGP): category of G-equivariant finitely generated Ug ®yz, Ug°P-modules,
§3.4.

D =t/(W,0) Xy t*/(W. o), §3.5.

TMH: ideal in 0(D) associated with A, p € X, §3.5.

DM, spectrum of the completion Qf O0(®) with respect to TV, §3.5.

UM = (Ug @ 7, UGP) @ () O(DM), §3.5.

Modfcé(uj"ﬂ): category of G-equivariant finitely generated Z/l;\’[‘—modules, §3.5.

HCM. subcategory of Modg(ux’ﬂ) of Harish-Chandra bimodules, §3.5.

HCéi’gg: subcategory of HCM of diagonally induced bimodules, § 3.5.
CM (=) = O(DM) @g(m) (), §3.5.

U = MMk @ Ug), §3.5.

h: Coxeter number of G, §3.5.

PA#: translation bimodule attached to \, p € X, §3.5.

A: set of representatives for the (Weyt, ®)-orbits on X, §3.6.

T: ideal of 0(t*(Y) /W) corresponding to the image of 0, §3.6.

D" spectrum of the completion of (D) with respect to Z - (D), §3.6.
oM JW)": completion of @(t*() /W) with respect to Z, §3.6.

Z{j: completion of Zyc with respect to Z - Zyc, §3.6.

Zg‘lc: completion of Zyc with respect to m*, §3.6.

U™ = (Ug ®ZFr Z/Igop) ®ﬁ(©) ﬁ(g/\), §3.6.

Modg(u/\): category of G-equivariant finitely generated 4”-modules, § 3.6.

HC”: subcategory of Mod%(UA) of Harish-Chandra bimodules, § 3.6.

HCé\iag: subcategory of HC" of diagonally induced bimodules, §3.6.

(=) = 6" @o(a) (-). §3.6. A

(—)®ug(—): monoidal product for the categories Mod%(u)"ﬂ), §3.7.

[§: group scheme over S*, §3.8.

Usg :=Ug Rz, O(S*), §3.8.

Cs 1= 8" Xy t7/ (W, 0), §3.8.

Zs = Z @z, 0(87), §3.9.

I\/Iod]%g (Usg ®p(s+) UsgP): category of Ig-equivariant finitely generated
Usg ®p(s+) Usg°P-modules, §3.9.

HCg: subcategory of Mod]flg(usg ®¢(s+) Usg°P) of Harish-Chandra bimodules, §3.9.

Iyt = IM - Zg, §3.9.

Zé"ﬂ: completion of Zg with respect to Ig"“, §3.9.

USH = 23" @24 (Usg ®p(s+) Usg®), §3.9.

I = sge?(zgvﬂ) xs- 1§, §3.9. N

Mod]%g (Z/lé\ M): category of ]Ig’“ -equivariant finitely generated ng’“ -modules, §3.9.
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HCg’ﬂ: subcategory of Mod]flg(l/{é"ﬂ) of Harish-Chandra bimodules, § 3.9.
P3" = O(S*) ® pgeny PP, §3.9. A

(—)®ugqg(—): monoidal product for the categories MOd%g(Z/[QH&), §3.9.

Z{: completion of Zg with respect to Z - Zg, §3.9.

U§ = 2§ ®z¢ (Usg () Usg®P), §3.9.

I§ = Spec(Z24) xg+ I, §3.9.

I\/Iod]}g (UL): category of I§-equivariant finitely generated US-modules, § 3.9.
C4(-) = O(8") ©74, CN(), §3.9.

Us = O(S*) @ p(g-y U, §3.9.

A.3 Section 4

Z, p(£): baby Verma module, §4.2.

Mod]}g(Zé\): category of representations of I§ on finitely generated Z§-modules, §4.3.

(—) *s (—): monoidal product on Mod, (Z§), §4.3.

J§ = Spec(Z24) xg- J§, §4.3.

Mod“}]g(Zé\): category of representations of J§ on finitely generated Z§-modules, §4.3.
Mod%g(Zé"ﬁ ): category of representations of Hg’ﬂ on finitely generated Zé"ﬂ -modules, §4.3.
J/S\’ﬂ = Spec(Zé"ﬂ) xg- J§, §4.3.

Modfg(Zé"ﬂ ): category of representations of Jg’ﬂ on finitely generated Zg"ﬂ -modules, §4.3.
MAK = PA=PRy PP, §4.3.

Mg" = O(S*) @ gy MM, §4.3.

D =t xpo) t*, §4.4.

D(A), D(A): irreducible components associated with A € X, §4.4.
A: set of representatives for X/pX, §4.4.
t}, open subset in t*, §4.4.

S*: preimage of S* in g, §4.4.
2L\ ui localization equivalence, §4.6.

A.4 Section 5

B=G/B, §5.1.

w: natural morphism G/U — B, §5.1.

Z: universal twisted differential operators on B, §5.1.
Ds := @|S*><k*(1)f*’ §5.1.

Usg == Usg Rz, O(t"), §5.1.
0(A): line bundle on B attached to A € X, §5.2.

Z;{g’ﬂ: completion of Usg Qg (s*) (Z;[sg)()p at the ideal corresponding to (), i) € t* X1 7 t*,
§5.2. )
I\/Iod]}g (Z;{é‘ 2 ): category of equivariant finitely generated Z;{é‘ _modules, §5.2.

(_)®Hsg(_): monoida1~product for the categories MNOdEg(Z;{Sj"ﬂ), §5.2.
Q. : completion of F(S* X =) 5 (OB(N — 1) @, @)‘S*Xt*(l) t*), §5.2.

(n): twist functor on I\/Iod]}g(lflsj"ﬂ), §5.2.
¢ =t X0 1y t*/(W,e), §5.3.
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G/ = t*/(V[/, .) Xf*(l)/W t*, §53

O(&)M: completion of &(€) at the ideal corresponding to (X, i), §5.3.

Pr, P;: standard parabolic subgroups in G and G associated with I C RS, §5.6.
L;, Ly, Uy, Uy Levi factor and unipotent radical of P; and Py, §5.6.
Pr=G/Pr, §5.6.

wr: natural morphism G/U; — Py, §5.6.

9r: twisted differential operators on P, §5.6.
g: parabolic Grothendieck resolution for G, §5.6.
S7: preimage of S* in g7, §5.6.

@I,S = (@I)lsixt*u)/WIt*/(WI’.)’ §56

Qg\’uz completion of F(S} X 1)y, €/ (Wi, 0),(Op, (A — p) ® 91)|S7x

¢ /Wr0))> 8§56

L*U)/WI

A.5 Section 6

Rep.(G): subcategory of Rep(G) associated with a Wyg-orbit ¢ C X, §6.1.
[A]: Wag-orbit of A € X, §6.1.

Rep ) (G): sum of the categories Rep.(G) with ¢ C Wex; o A, §6.1.

Mod%(u g): category of G-equivariant finitely generated U g-modules, §6.1.

Modg’g(ug): full subcategory of Modg(Z/{g) of modules annihilated by a power of m¢, §6.1.

Modg’A(Ug): full subcategory of Modg(Ug) of modules annihilated by a power of Z, §6.1.
(—)®ug(—): bifunctor defining the action of Modg(u/\) on Modfi’A(Ug), §6.2.

TY': translation functor (for G-modules) associated with \, 1 € X, §6.3.

Os: wall-crossing functor associated with s € Sag, §6.4.

UA: functor from Dpg to HC{"%‘, §6.4.
¥3: functor from Dpg to HCQ’A, §6.5.
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