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We prove some congruences on sums involving fourth powers of central q-binomial
coefficients. As a conclusion, we confirm the following supercongruence observed by
Long [Pacific J. Math. 249 (2011), 405–418]:

((pr−1)/(2))∑
k=0

4k + 1

256k

(2k

k

)4

≡ pr (mod pr+3),

where p � 5 is a prime and r is a positive integer. Our method is similar to but a
little different from the WZ method used by Zudilin to prove Ramanujan-type
supercongruences.
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1. Introduction

Congruences on binomial coefficients modulo prime powers have been widely
studied. In 1819, Charles Babbage [2] proved that, for any prime p � 3,(

2p − 1
p − 1

)
≡ 1 (mod p2).

In 1862, J. Wolstenholme [25] further showed that the above congruence holds
modulo p3 for all primes p � 5, or equivalently,

p−1∑
k=1

1
k
≡ 0 (mod p2) for p � 5.
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There are many variations and generalizations of Wolstenholme’s congruences in
the literature. See [12] for a historical survey on these congruences. In 1895, another
interesting binomial congruence was given by Morley [13]:(

p − 1
((p − 1)/(2))

)
≡ (−1)((p−1)/(2))4p−1 (mod p3)

for any prime p � 5. Moreover, in 1986, Chowla, Dwork, and Evans [3] proved the
congruence: (

((p − 1)/(2))
((p − 1)/(4))

)
≡ 2p−1 + 1

2
(2x − ((p)/(2x))) (mod p2),

where p is a prime such that p ≡ 1 (mod 4) and p = x2 + y2 with x ≡ 1 (mod 4),
proposed by F. Beukers which refines the well-known congruence

(
(p−1)/2
(p−1)/4

) ≡ 2x

(mod p). See [16] for an elementary proof of this congruence.
In 1997, van Hamme [23] conjectured that, for any prime p � 3,

((p−1)/(2))∑
k=0

4k + 1
(−64)k

(
2k

k

)3

≡ p(−1)((p−1)/(2)) (mod p3), (1.1)

which was later proved by Mortenson [14] and Zudilin [26]. Recall that the
Pochhammer symbol (a)k is defined as (a)0 = 1 and (a)k = a(a + 1) · · · (a + k − 1)
for k = 1, 2, . . . . Then we have ((1)/(4k))

(
2k
k

)
= (((1/2)k/((1)k)). In a previous

paper, motivated by Zudilin’s work [26], the first author [8] used the q-WZ method
to prove that, for any odd prime p,

((p−1)/(2))∑
k=0

(−1)kqk2
[4k + 1]

(q; q2)3k
(q2; q2)3k

≡ [p]q(((p−1)2)/(4))(−1)((p−1)/(2)) (mod [p]3),

(1.2)

where the q-shifted factorial is defined by (a; q)0 = 1 and (a; q)n = (1 − a)(1 −
aq) · · · (1 − aqn−1) for n � 1, while the q-integer is defined as [n] = [n]q = 1 + q +
· · · + qn−1 (see [4]). It is clear that (1.2) is a q-analogue of (1.1).

On the other hand, applying hypergeometric identities, Long [11, theorem 1.1]
proved that, for any prime p � 5,

((p−1)/(2))∑
k=0

4k + 1
256k

(
2k

k

)4

≡ p (mod p4). (1.3)

Recently, by using the Zeilberger algorithm, the second author [24] has given some
generalizations of (1.3), such as

((p−1)/(2))∑
k=0

(4k + 1)3

256k

(
2k

k

)4

≡ −p (mod p4)

for any odd prime p with p ≡ 2 (mod 3).
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The first purpose of this paper is to give a q-analogue of (1.3) as follows.

Theorem 1.1. Let p be an odd prime. Then

((p−1)/(2))∑
k=0

[4k + 1]
(q; q2)4k
(q2; q2)4k

≡ [p]q((1−p)/(2)) +
(p2 − 1)(1 − q)2

24
[p]3q((1−p)/(2))

(mod [p]4). (1.4)

Note that the congruence (1.4) modulo [p]3 confirms a congruence in
[8, conjecture 5.2]. Recall that the q-binomial coefficients

[
x
k

]
qn are defined by

[
x

k

]
qn

=

⎧⎨
⎩

(q(x−k+1)n; qn)k

(qn; qn)k
if k � 0,

0 otherwise.

For convenience, when n = 1, the subscript of the q-binomial coefficients will be
omitted in the later discussion. It is easy to see that

(q; q2)k

(q2; q2)k
=

1
(−q; q)2k

[
2k

k

]
,

and so the congruence (1.4) may be restated as

((p−1)/(2))∑
k=0

[4k + 1]
(−q; q)8k

[
2k

k

]4
≡ [p]q((1−p)/(2)) +

(p2 − 1)(1 − q)2

24
[p]3q((1−p)/(2))

(mod [p]4).

Let Φn(q) be the n-th cyclotomic polynomial in q, which may be defined as

Φn(q) :=
∏

1�k�n
gcd(k,n)=1

(q − e2πi((k)/(n))),

where i is the imaginary unit. It is well known that Φn(q) is the minimal polynomial
over the field of rational numbers of any primitive n-th root of unity. Our second
purpose is to give a further generalization of (1.4).

Theorem 1.2. Let n be a positive odd integer. Then

((n−1)/(2))∑
k=0

[4k + 1]
(q; q2)4k
(q2; q2)4k

≡ [n]q((1−n)/(2)) +
(n2 − 1)(1 − q)2

24
[n]3q((1−n)/(2))

(mod [n]Φn(q)3). (1.5)

Letting n = pr be an odd prime power, and noticing that Φpr (q) = [p]qpr−1 , we
immediately get the following conclusion from theorem 1.2.
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Corollary 1.3. Let p be an odd prime and r a positive integer. Then

((pr−1)/(2))∑
k=0

[4k + 1]
(q; q2)4k
(q2; q2)4k

≡ [pr]q((1−pr)/(2))

+
(p2r − 1)(1 − q)2

24
[pr]3q((1−pr)/(2)) (mod [pr][p]3

qpr−1 ). (1.6)

In particular, if p � 5, then the q = 1 case gives

((pr−1)/(2))∑
k=0

4k + 1
256k

(
2k

k

)4

≡ pr (mod pr+3). (1.7)

Note that the congruence (1.7) has already appeared in [11, theorem 1.1]. How-
ever, the proof given there is not correct for r > 1 (see [6, p. 897]). Here we indeed
confirm [11, theorem 1.1].

By using the WZ method, Z.-W. Sun [20] proves the following generalization of
(1.1):

n∑
k=0

(4k + 1)
(

2k

k

)3

(−64)n−k ≡ 0
(
mod 4(2n + 1)

(
2n

n

))
. (1.8)

Recently, a q-analogue of (1.8) has been given by the first author [8]:

n∑
k=0

(−1)kqk2
[4k + 1]

[
2k

k

]3
(−qk+1; q)6n−k ≡ 0

(
mod (1 + qn)2[2n + 1]

[
2n

n

])
.

The last purpose of this paper is to give the following similar congruence, which
confirms the r = 2 case of the second congruence in [8, conjecture 5.4].

Theorem 1.4. Let n be a positive integer. Then

n∑
k=0

[4k + 1]
[
2k

k

]4
(−qk+1; q)8n−k ≡ 0

(
mod (1 + qn)3[2n + 1]

[
2n

n

])
. (1.9)

It should be mentioned that the following q = 1 case of (1.9) is also new:

n∑
k=0

(4k + 1)
(

2k

k

)4

256n−k ≡ 0
(
mod 8(2n + 1)

(
2n

n

))
.
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2. Proof of Theorem 1.1

We define two rational functions in qn and qk:

F (n, k) = (−1)kqk(k−2n−1) [4n + 1](q; q2)3n(q; q2)n+k

(q2; q2)3n(q2; q2)n−k(q; q2)2k
,

G(n, k) =
(−1)k−1qk(k−2n+1)(q; q2)3n(q; q2)n+k−1

(1 − q)2(q2; q2)3n−1(q2; q2)n−k(q; q2)2k
,

where we use the convention that 1/(q2; q2)m = 0 for m = −1,−2, . . . . The
functions F (n, k) and G(n, k) satisfy the relation

[2k − 1]F (n, k − 1) − [2k]F (n, k) = G(n + 1, k) − G(n, k). (2.1)

Indeed, we have the following expressions:

F (n, k − 1)
G(n, k)

=
q2n−4k+2(1 − q)(1 − q4n+1)(1 − q2k−1)2

(1 − q2n−2k+2)(1 − q2n)3
,

F (n, k)
G(n, k)

= −q−2k(1 − q)(1 − q4n+1)(1 − q2n+2k−1)
(1 − q2n)3

,

G(n + 1, k)
G(n, k)

=
q−2k(1 − q2n+1)3(1 − q2n+2k−1)

(1 − q2n)3(1 − q2n−2k+2)
.

Then it is routine to verify the identity

q2n−4k+2(1 − q4n+1)(1 − q2k−1)3

(1 − q2n−2k+2)(1 − q2n)3
+

q−2k(1 − q2k)(1 − q4n+1)(1 − q2n+2k−1)
(1 − q2n)3

=
q−2k(1 − q2n+1)3(1 − q2n+2k−1)

(1 − q2n)3(1 − q2n−2k+2)
− 1,

which is equivalent to (2.1) (dividing both sides by G(n, k)).
Summing (2.1) over n from 0 to ((p − 1)/(2)), we obtain

[2k − 1]
((p−1)/(2))∑

n=0

F (n, k − 1) − [2k]
((p−1)/(2))∑

n=0

F (n, k) = G

(
p + 1

2
, k

)
− G(0, k)

= G

(
p + 1

2
, k

)
. (2.2)
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It is easy to see that, for k = 1, 2, . . . , ((p − 1)/(2)), we have

G

(
p + 1

2
, k

)
= (−1)k−1qk(k−p)

(q; q2)3(p+1)/2(q; q
2)(p+1)/2+k−1

(1 − q)2(q2; q2)3(p−1)/2(q
2; q2)(p+1)/2−k(q; q2)2k

= (−1)k−1qk(k−p)
(1 − q)[p]3(q; q2)3(p−1)/2(q; q

2)(p+1)/2+k−1

(q2; q2)3(p−1)/2(q
2; q2)(p+1)/2−k(q; q2)2k

≡ 0 (mod [p]4), (2.3)

since (q; q2)(p+1)/2+k−1 is divisible by [p], while the denominator is relatively prime
to [p]. In view of (2.2) and (2.3), we have

((p−1)/(2))∑
n=0

F (n, 0) ≡ [2]
[1]

((p−1)/(2))∑
n=0

F (n, 1) ≡ [2][4]
[1][3]

((p−1)/(2))∑
n=0

F (n, 2)

≡ · · · ≡ [2][4] · · · [p − 1]
[1][3] · · · [p − 2]

((p−1)/(2))∑
n=0

F

(
n,

p − 1
2

)
(mod [p]4).

(2.4)

Furthermore,

((p−1)/(2))∑
n=0

F

(
n,

p − 1
2

)
= F

(
p − 1

2
,
p − 1

2

)

= (−1)((p−1)/(2))q((1−p2)/(4))[2p − 1]
(q; q2)(p−1)/2(q; q2)p−1

(q2; q2)3(p−1)/2

=
(−1)((p−1)/(2))q((1−p2)/(4))[p](q; q2)(p−1)/2

(−q; q)2p−1(q2; q2)(p−1)/2

[
p − 1

((p − 1)/(2))

]
q2

[
2p − 1
p − 1

]
. (2.5)

By the proof of [19, lemma 5], we have[
2p − 1
p − 1

]
≡ 1 − (p − 1)(1 − q)

2
[p] +

(p − 1)(5p − 7)(1 − q)2

24
[p]2

≡ q((p(p−1))/(2)) +
(p2 − 1)(1 − q)2

12
[p]2 (mod [p]3), (2.6)

which may be deemed a q-analogue of Wolstenholme’s binomial congruence, and a
q-analogue of Morley’s congruence due to Pan [15, theorem 1.2] gives[

p − 1
p−1
2

]
q2

≡ (−1)((p−1)/(2))q((1−p2)/(4))(−q; q)2p−1

− (−1)((p−1)/(2))q((1−p2)/(4)) (p2 − 1)(1 − q)2

24
[p]2 (mod [p]3). (2.7)
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Substituting (2.6) and (2.7) into (2.5) and noticing (2.4), we get

((p−1)/(2))∑
k=0

[4k + 1]
(q; q2)4k
(q2; q2)4k

≡ [p]q((1−p)/(2))

+ (p2 − 1)(1 − q)2[p]3
(

q((1−p2)/(2))

12
− q((1−p)/(2))

24(−q; q)2p−1

)
(mod [p]4).

The proof then follows from the fact that (−q; q)p−1 ≡ 1 (mod [p]) (see, e.g.,
[5, (1.6)]) and q((1−p2)/(2)) ≡ q((1−p)/(2)) (mod [p]).

Remark. The method we use to prove theorem 1.1 is similar to the WZ method
used by Zudilin [26], or the q-WZ method used by Tauraso [22] and the first author
[8]. In general, the functions F (n, k) and G(n, k) are difficult to find. Here these
functions in the q = 1 case have already been given by the second author [24]
using the Zeilberger algorithm (see [9,17]). This enables us to guess them out,
fortunately.

3. Proof of Theorem 1.2

We first give a generalization of (2.6) indicated by the proof of [19, lemma 5].
The proof of this generalization is similar to that of [19, lemma 5]. The difference
is we need to use a general form of Shi and Pan’s q-analogue of Wolstenholme’s
harmonic series congruence [18]. However, the proof from [18] also works for this
general form. We provide a short proof here for the sake of completeness.

Lemma 3.1. Let n be a positive integer. Then

[
2n − 1
n − 1

]
≡ (−1)n−1q(

n
2) +

(n2 − 1)(1 − q)2

12
[n]2 (mod Φn(q)3). (3.1)

Proof. Noticing that [a + b] = [a] + qa[b], we compute

[
2n − 1
n − 1

]
=

[2n − 1][2n − 2] · · · [n + 1]
[n − 1][n − 2] · · · [1]

=
1∏

1�j�n−1[j]

n−1∏
k=1

([n] + qn[n − k])

which modulo Φn(q)3 reduces to

qn(n−1) + qn(n−2)
n−1∑
j=1

[n]
[j]

+ qn(n−3)
∑

1�j<k�n−1

[n]2

[j][k]
, (3.2)

since [n] is divisible by Φn(q) and [n − 1]! is relatively prime to Φn(q)3. On the other
hand, the proofs given by Shi and Pan [18] imply that (although their theorems

https://doi.org/10.1017/prm.2018.96 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.96


1134 V. J. W. Guo and S.-D. Wang

are only concerning the case where n � 5 is a prime)

n−1∑
j=1

1
[j]

≡ (n − 1)(1 − q)
2

+
(n2 − 1)(1 − q)2

24
[n] (mod Φn(q)2), (3.3)

n−1∑
j=1

1
[j]2

≡ − (n − 1)(n − 5)(1 − q)2

12
(mod Φn(q)). (3.4)

Combining (3.3) and (3.4), we deduce that

∑
1�j<k�n−1

1
[j][k]

≡ (n − 1)(n − 2)(1 − q)2

6
(mod Φn(q)). (3.5)

In view of (3.3) and (3.5), we may rewrite (3.2) modulo Φn(q)3 as

qn(n−1) + qn(n−2)

(
(n − 1)(1 − qn)

2
+

(n2 − 1)(1 − qn)2

24

)

+ qn(n−3) (n − 1)(n − 2)(1 − qn)2

6
.

Using the binomial theorem

qmn = ((qn − 1) + 1)m =
m∑

k=0

(
m

k

)
(qn − 1)k

to reduce the term qmn modulo the approximate power of Φn(q), we obtain[
2n − 1
n − 1

]
≡ 1 − (n − 1)(1 − qn)

2
+

(n − 1)(5n − 7)(1 − qn)2

24
(mod Φn(q)3),

which is equivalent to (3.1) by noticing that q((n)/(2)) ≡ −1 (mod Φn(q)) if n is
even. �

We also need another auxiliary result.

Lemma 3.2. Let n be a positive odd integer. Then

(−q; q)n−1 ≡ 1 (mod Φn(q)). (3.6)

Proof. By the q-binomial theorem (see, e.g., [1, p. 36, (3.3.6)]), we have

(−q; q)n−1 =
n−1∑
k=0

[
n − 1

k

]
q(

k+1
2 ) ≡

n−1∑
k=0

(−1)k = 1 (mod Φn(q)),

since [
n − 1

k

]
=

k∏
j=1

1 − qn−j

1 − qj
≡

k∏
j=1

1 − q−j

1 − qj
= (−1)kq−(k+1

2 ) (mod Φn(q)). �
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Proof of Theorem 1.2.. The proof is similar to that of theorem 1.1. Let m > 1 be
an odd integer. Summing (2.1) over n from 0 to ((m − 1)/(2)), and noticing that

(1 − q)[m]3(q; q2)3(m−1)/2(q; q
2)(m+1)/2+k−1

(q2; q2)3(m−1)/2(q
2; q2)(m+1)/2−k(q; q2)2k

≡ 0 (mod [m]2Φm(q)2)

for k = 1, 2, . . . , ((m − 1)/(2)) (see [7, lemmas 2.1 and 2.2 with (r, d) = (1, 2)]), we
obtain

((m−1)/(2))∑
n=0

F (n, 0) ≡ [2][4] · · · [m − 1]
[1][3] · · · [m − 2]

((m−1)/(2))∑
n=0

F

(
n,

m − 1
2

)

=
(−1)((m−1)/(2))q((1−m2)/(4))[m]

(−q; q)2m−1

[
m − 1

((m − 1)/(2))

]
q2

[
2m − 1
m − 1

]

(mod [m]2Φm(q)2). (3.7)

Substituting (3.1) and the following congruence [10, (1.5)]

[
m − 1
m−1

2

]
q2

≡ (−1)((m−1)/(2))q((1−m2)/(4))(−q; q)2m−1

− (−1)((m−1)/(2))q((1−m2)/(4)) (m2 − 1)(1 − q)2

24
[m]2 (mod Φm(q)3)

into (3.7), then using (3.6) and q((1−m2)/(2)) ≡ q((1−m)/(2)) (mod Φm(q)), we
immediately obtain (1.5) for n = m. �

4. Proof of Theorem 1.4

We need two divisibility results on q-binomial coefficients. The first one is just [7,
lemma 4.1], and the proof of the second one is similar to that of [7, lemma 4.2].

Lemma 4.1. Let n be a positive integer. Then

(−q; q)3n

[
4n + 1

2n

]
≡ 0 (mod (1 + qn)2(−q; q)2n).

Lemma 4.2. Let n and k be positive integers with k � n + 1. Then

(q; q2)3n+1(q; q
2)n+k(−q; q)8n

(1 − q2k−1)(q2; q2)3n(q2; q2)n−k+1(q; q2)2k
≡ 0

(
mod (1 + qn)3[2n + 1]

[
2n

n

])
.
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Similarly as before, summing (2.1) over n from 0 to N , we obtain

[2k − 1]
N∑

n=0

F (n, k − 1) − [2k]
N∑

n=0

F (n, k) = G(N + 1, k). (4.1)

By lemma 4.2, for 1 � k � N , we have

G(N + 1, k)(−q; q)8N
[2k − 1]

≡ 0
(
mod (1 + qN )3[2N + 1]

[
2N

N

])
. (4.2)

Multiplying both sides of (4.1) by (−q; q)8N/[2k − 1] and applying (4.2), we get

N∑
n=0

F (n, k − 1)(−q; q)8N

≡ [2k]
[2k − 1]

N∑
n=0

F (n, k)(−q; q)8N

(
mod (1 + qN )3[2N + 1]

[
2N

N

])
,

and, therefore,

N∑
n=0

F (n, 0)(−q; q)8N

≡ [2]
[1]

N∑
n=0

F (n, 1)(−q; q)8N ≡ [2][4]
[1][3]

N∑
n=0

F (n, 2)(−q; q)8N

≡ · · · ≡ [2][4] · · · [2N ]
[1][3] · · · [2N − 1]

N∑
n=0

F (n,N)(−q; q)8N

(
mod (1 + qN )3[2N + 1]

[
2N

N

])
.

(4.3)

It is easy to see that

N∑
n=0

F (n,N) = F (N,N) = (−1)Nq−N(N+1)[4N + 1]
(q; q2)N (q; q2)2N

(q2; q2)3N

= (−1)Nq−N(N+1) (q; q2)N [4N + 1]
(q2; q2)N (−q; q)2N (−q; q)2N

[
2N

N

][
4N

2N

]
.

By lemma 4.1, we have

[2][4] · · · [2N ]
[1][3] · · · [2N − 1]

N∑
n=0

F (n,N)(−q; q)8N

= (−1)Nq−N(N+1)(−q; q)6N
[2N + 1]
(−q; q)2N

[
2N

N

][
4N + 1

2N

]

≡ 0
(
mod (1 + qN )3[2N + 1]

[
2N

N

])
. (4.4)
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Combining (4.3) and (4.4), we obtain

N∑
n=0

F (n, 0)(−q; q)8N ≡ 0
(
mod (1 + qN )3[2N + 1]

[
2N

N

])
.

That is, the congruence (1.9) holds for n = N . �

5. Two open problems

Numerical calculation suggests that the range of summation in (1.5) can be modi-
fied but the result modulo [n]Φn(q)3 remains unchanged. Specifically, we have the
following conjecture.

Conjecture 5.1. Let n be a positive odd integer. Then

n−1∑
k=0

[4k + 1]
(q; q2)4k
(q2; q2)4k

≡ [n]q((1−n)/(2)) +
(n2 − 1)(1 − q)2

24
[n]3q((1−n)/(2))

(mod [n]Φn(q)3). (5.1)

In particular, if p � 5 is a prime and r is a positive integer, then

pr−1∑
k=0

4k + 1
256k

(
2k

k

)4

≡ pr (mod pr+3). (5.2)

Note that, the congruence (5.1) is true for n = p by theorem 1.1, since
(((q; q2)k)/((q2; q2)k)) ≡ 0 (mod [p]) for ((p + 1)/(2)) � k � p − 1. Swisher [21] has
made many conjectural supercongruences that generalize van Hamme’s 13 Ramanu-
jan type supercongruences. In particular, her conjectural supercongruence (C.3) is
as follows: for any prime p � 5,

((pr−1)/(2))∑
k=0

4k + 1
256k

(
2k

k

)4

≡ p

((pr−1−1)/(2))∑
k=0

4k + 1
256k

(
2k

k

)4

(mod p4r).

Inspired by the above conjecture of Swisher, the first author (see [6, conjecture
4.6]) has proposed the following conjecture, which is clearly a refinement of (5.2).

Conjecture 5.2. Let p � 5 be a prime and r a positive integer. Then

pr−1∑
k=0

4k + 1
256k

(
2k

k

)4

≡ p

pr−1−1∑
k=0

4k + 1
256k

(
2k

k

)4

(mod p4r).
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