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Developing constitutive models for particle phase rheology in gas-fluidized suspensions
through rigorous statistical mechanical methods is very difficult when complex
inter-particle forces are present. In the present study, we pursue a computational
approach based on results obtained through Eulerian–Lagrangian simulations of the
fluidized state. Simulations were performed in a periodic domain for non-cohesive
and mildly cohesive (Geldart Group A) particles. Based on the simulation results,
we propose modified closures for pressure, bulk viscosity, shear viscosity and the
rate of dissipation of pseudo-thermal energy. For non-cohesive particles, results in
the high granular temperature T regime agree well with constitutive expressions
afforded by the kinetic theory of granular materials, demonstrating the validity of
the methodology. The simulations reveal a low T regime, where the inter-particle
collision time is determined by gravitational fall between collisions. Inter-particle
cohesion has little effect in the high T regime, but changes the behaviour appreciably
in the low T regime. At a given T , a cohesive particle system manifests a lower
pressure at low particle volume fractions when compared to non-cohesive systems; at
higher volume fractions, the cohesive assemblies attain higher coordination numbers
than the non-cohesive systems, and experience greater pressures. Cohesive systems
exhibit yield stress, which is weakened by particle agitation, as characterized by T .
All these effects are captured through simple modifications to the kinetic theory of
granular materials for non-cohesive materials.

Key words: kinetic theory, particle/fluid flow, rheology

1. Introduction
Eulerian models for gas–particle flows require as input a constitutive model for

the particle phase stress. A great deal of work has been done in the literature on
the development of constitutive models by adapting the kinetic theory of dense gases
to particulate flows. The earliest and most widely used kinetic-theory models have
been derived for flows of inelastic, smooth, frictionless spheres with no effects from
interstitial fluid (Jenkins & Savage 1983; Lun et al. 1984; Jenkins & Richman 1985b;
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Gidaspow 1994; Garzó & Dufty 1999). They have been extended or modified to
account for particle roughness (Lun 1991; Kumaran 2006; Chialvo & Sundaresan
2013; Yang, Padding & Kuipers 2016), dense regime (Chialvo & Sundaresan 2013;
Berzi & Vescovi 2015), decomposition of particle fluctuations into correlated and
uncorrelated parts (Février, Simonin & Squires 2005; Fox 2014), role of the interstitial
fluid (Koch 1990; Gidaspow 1994; Balzer, Boëlle & Simonin 1995; Boëlle, Balzer &
Simonin 1995; Ma & Kato 1998; Koch & Sangani 1999; Lun & Savage 2003; Garzó
et al. 2012) and cohesion (Gidaspow & Huilin 1998; Kim & Arastoopour 2002;
Ye, Van Der Hoef & Kuipers 2005; Van Wachem & Sasic 2008; Takada, Saitoh &
Hayakawa 2016; Kellogg et al. 2017).

An alternative way to simulate granular flows is through the discrete element
method (DEM) (Cundall & Strack 1979). Its strength lies in its flexibility to directly
include the particle size distribution (Rognon et al. 2007; Tripathi & Khakhar 2011;
Gu, Ozel & Sundaresan 2016c), complex particle–particle interactions including van
der Waals forces (Rognon et al. 2008; Gu, Chialvo & Sundaresan 2014), electrostatic
forces (Kolehmainen et al. 2016), capillary forces (Forsyth, Hutton & Rhodes 2002),
liquid bridges (Boyce et al. 2017), solid bridges (Kuwagi, Mikami & Horio 2000)
or a combination thereof (Gu, Ozel & Sundaresan 2016b). However, such a method
becomes impractical for a large number of particles, and consequently there have been
efforts to deduce continuum rheological models based on DEM simulations (Campbell
2002; MiDi 2004; da Cruz et al. 2005; Jop, Forterre & Pouliquen 2006; Olsson &
Teitel 2007; Rognon et al. 2008; Otsuki & Hayakawa 2009; Sun & Sundaresan
2011; Gu et al. 2014, 2016c). Most of these simulations used to deduce models are
based on particle-only DEM simulations where particles are sheared or flow down a
slope. The deficiencies of these resultant models when applied to fluid–solid flows
are threefold. First, the effects of the interstitial fluid are not accounted for in these
DEM simulations. Second, these simulations are mostly one-dimensional in nature,
and thus the effects of dilation and compaction of the particle phase are not probed
adequately. Third, it has been reported in several studies (Gu et al. 2014; Takada,
Saitoh & Hayakawa 2014; Saitoh, Takada & Hayakawa 2015) that local complex
flow structures would form when cohesive forces are included in these simulations,
whose effects are not fully captured by these nearly one-dimensional flows.

These deficiencies can be addressed through Eulerian–Lagrangian simulations,
where the local-average equations of the fluid phase are solved using Eulerian grids
and the motion of the particles is followed through DEM (an approach commonly
referred to as CFD (computational fluid dynamics)-DEM in the literature). Indeed,
CFD-DEM simulations have been used to deduce models for systems such as dilute
gas–solid turbulent flows (Capecelatro, Desjardins & Fox 2014, 2015, 2016a,b) and
granular flows in bedload transport (Maurin, Chauchat & Frey 2016).

In this paper, we seek to deduce a rheological model for granular materials in
fluidized suspensions from CFD-DEM simulations. First, we consider the case of
non-cohesive particles fluidized by gas (§ 3.1), and demonstrate that the approach
yields models that are consistent with the analytically derived kinetic theory models,
which indicates the validity of the methodology. We also show intriguing results that
were previously not observed through traditional methods, such as the dependency
of bulk viscosity on the state of dilation or compaction and the gravity dependence
of stress. Then, we demonstrate that this methodology can be used to cases where
complex inter-particle interaction is important (§ 3.2). We use the van der Waals
force as an example, which is known to affect flow behaviours of Geldart Group A
particles (Geldart 1973) that are frequently encountered in industry. We show that
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this approach yields results that are consistent with previous studies of cohesive
particles (Rognon et al. 2008; Gu et al. 2014; Irani, Chaudhuri & Heussinger 2014),
thus further corroborating the methodology. Different from these studies, the present
methodology is able to probe a wider parameter space. We then propose an adaptation
of the kinetic-theory-based model for granular flows in the presence of van der Waals
interaction between particles. This methodology can be readily applied to systems
where other complex inter-particle interactions are present.

2. Mathematical modelling and flow configurations
2.1. Mathematical modelling

For fluidization simulations through CFD-DEM, the gas phase equations are
solved using an OpenFOAM-based computational fluid dynamics solver (OpenCFD
2013), while the particle phase DEM equations are evolved via the LIGGGHTS
platform (Kloss et al. 2012). The two phases are coupled via CFDEMcoupling (Zhou
et al. 2010; Goniva et al. 2012; Kloss et al. 2012).

In DEM (Cundall & Strack 1979), particles are tracked by solving Newton’s
equations of motion:

mi
dvi

dt
=

∑
j

(f n
c,ij + f t

c,ij)+
∑

k

f v,ik + f g→p,i +mig, (2.1)

Ii
dωi

dt
=

∑
j

Tt,ij. (2.2)

In the equations, particle i has mass mi, moment of inertia Ii, translational and
rotational velocities vi and ωi. There are several forces acting on the particle i.
f n

c,ij and f t
c,ij are the normal and tangential contact forces from the collision of two

particles i and j. f v,ik is the van der Waals force from the interactions between
two particles i and k. f g→p,i is the total interaction force on the particle i due to
surrounding gas (explained further below). mig is the gravitational force. The torque
acting on particle i due to particle j is Tt,ij, which results from the tangential force
and is equal to Rij× f t

c,ij. Rij is the vector from the centre of particle i to the contact
point. Rolling friction is not accounted for in the present simulations.

The particle contact forces f n
c,ij and f t

c,ij are calculated using a Hertzian contact
model as shown below (Johnson 1987; Renzo & Maio 2004):

f n
c,ij =

4
3 Y∗
√

r∗δ3/2
n nij + 2

√
5
6β
√

Snm∗vn
ij, (2.3)

f t
c,ij =


−8G∗

√
r∗δntij + 2

√
5
6β
√

Stm∗vt
ij for | f t

c,ij|<µp|f n
c,ij|

−µp|f n
c,ij|

tij

|tij|
for |f t

c,ij|>µp|f n
c,ij|,

(2.4)

where

1
Y∗
=

1− ν2
i

Yi
+

1− ν2
j

Yj
,

1
r∗
=

1
ri
+

1
rj
, (2.5a,b)

β =
ln(ep)√

ln2(ep)+π2
, Sn = 2Y∗

√
r∗δn, (2.6a,b)
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1
G∗
=

2(2+ νi)(1− νi)

Yi
+

2(2+ νj)(1− νj)

Yj
, St = 8G∗

√
r∗δn. (2.7a,b)

The subscripts i, j denote spherical particle i or j, and the superscript ∗ denotes the
effective particle property of those two particles. The effective particle mass m∗ is
calculated as m∗ = mimj/(mi + mj); δn is the normal overlap distance; nij represents
the unit normal vector pointing from particle j to particle i; vn

ij represents the normal
velocity of particle j relative to particle i; tij represents the tangential displacement
obtained from the integration of the relative tangential velocity during the contact, vt

ij;
and µp is the particle sliding friction coefficient. Here, Y is Young’s modulus, G is
the shear modulus, ν is Poisson’s ratio and r is the particle radius.

The van der Waals force f v,ik between particles i an k is modelled as,

f v,ik =−fv,iknik =

{
−Fvdw(A, s)nik for smin < s< smax,

−Fvdw(A, smin)nik for s 6 smin.
(2.8)

Here, Fvdw is the magnitude of the van der Waals force given by

Fvdw(A, s)=
A
3

2rirk(ri + rk + s)
s2(2ri + 2rk + s)2

[
s(2ri + 2rk + s)

(ri + rk + s)2 − (ri − rk)2
− 1
]2

, (2.9)

where A is the Hamaker constant (Hamaker 1937) which depends on the material
properties (Israelachvili 2010), and s is the distance between the particle surfaces.
It is assumed that the force saturates at a minimum separation distance, smin, which
corresponds to typical inter-molecular spacing (Yang, Zou & Yu 2000). This constant
maximum force is also applied when the particles are in contact. As the magnitude
of the van der Waals force decreases rapidly as the distance between the surfaces
increases, a maximum cutoff distance smax = (ri + rk)/4 (Aarons & Sundaresan 2006)
is employed to speed up the simulation. For s> smax, the van der Waals force is not
accounted for.

To accelerate the computations, simulations typically employ a soft Young’s
modulus (YS) that is much smaller than the real value (YR). The superscript S
denotes that the parameter corresponds to the case where a soft Young’s modulus is
used, and the superscript R denotes that the parameters correspond to real particle
properties. However, as shown previously (Moreno-Atanasio, Xu & Ghadiri 2007;
Kobayashi et al. 2013; Gu, Ozel & Sundaresan 2016a; Liu et al. 2016; Wilson, Dini
& van Wachem 2016; Murphy & Subramaniam 2017), this cohesion model (2.8)
would yield simulation results that are dependent on the Young’s modulus of the
particle. Thus, the cohesion model must be modified if one wishes to soften the
particles without significantly affecting the simulation results. A modified cohesion
model has been developed (Gu et al. 2016a) based on conserving the cohesive energy
to produce results that are insensitive to Young’s modulus. This modified cohesion
model, shown below, is used in the simulations:

f M
v,ik =−f M

v,iknik =

{
−Fvdw(AR, s− so)nik for sS

min < s< smax ≡ (ri + rk)/4
−Fvdw(AS, sR

min)nik for s 6 sS
min.

(2.10)

Here, AS
= ARθ , where θ is (YS/YR)

2/5; sS
min is the minimum separation distance for

soft Young’s modulus and so is an additional model parameter. They can be found by
solving the following equations:
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Fvdw(θ, sR
min)= Fvdw(1, sS

min − so), (2.11)

Fvdw(1, sR
min)s

R
min +

∫ smax

sR
min

Fvdw(1, s) ds= fv,ik(θ, sR
min)s

S
min +

∫ smax

sS
min

Fvdw(1, s− so) ds.

(2.12)

It should be noted that the applicability of this modified cohesion model (Gu et al.
2016a) is restricted to weakly cohesive Geldart Group A particles (Geldart 1973).
Strongly cohesive Geldart Group C particles tend to form large agglomerates and are
difficult to suspend via fluidization. As shown by Gu et al. (2016a), the modified
cohesion model captures the bed dynamics satisfactorily in the case of Group A
particles, but not the Group C particles. In the present study we focus only on Group
A particles.

The fluid phase is modelled by solving the following conservation of mass and
momentum equations in terms of the locally averaged variables:

∂

∂t
(1− φ)+∇ · [(1− φ)ug] = 0, (2.13)

ρg(1− φ)
(
∂ug

∂t
+ ug · ∇ug

)
=−∇pg +∇ · τg +Φd + ρg(1− φ)g. (2.14)

Here, ρg is the density of the gas which is assumed to be constant, φ is the particle
volume fraction, ug is the gas velocity, pg is the gas phase pressure, τg is the gas
phase deviatoric stress tensor. The total gas–particle interaction force per unit volume
of the mixture −Φd, exerted on the particles by the gas, is composed of a generalized
buoyancy force due to the slowly varying (in space) local-average gas phase stress
(−pgI + τg) and the force due to the rapidly varying flow (in space) field around the
particles.

In finite-volume-method-based computations employed in our simulations, Φd

in any computational cell is related to f g→p,i of all the particles in that cell as
Φd = −

∑
i∈cell f g→p,i/Vc where Vc is the volume of the computational cell. On a per

particle basis, the total interaction force on the particle by the gas can be written as
f g→p,i = −Vp,i∇pg|x=xp,i + Vp,i∇ · τg|x=xp,i + f d,i, where Vp,i is the particle volume and
f d,i is the drag force calculated by the Wen & Yu (1966) drag law. As discussed in
appendix B, particle phase stress extracted from the simulations is not sensitive to
the drag law used in the simulations. Here, |x=xp,i denotes that the Eulerian variable
is interpolated to the location of particle i. The gas phase deviatoric stress tensor
contribution is relatively insignificant in f g→p,i for modelling gas-fluidized beds of
particles (Agrawal et al. 2001) and is hence ignored.

2.2. Flow configurations
We perform simulations in periodic domains in which one can examine the flow
dynamics without wall-induced restrictions. To drive the flow in this periodic domain,
we decompose the pressure term pg in equation (2.14) into two components as
follows: pg(x, t)= p′′g(x, t)− ρ̄|g|(z− zo). Here, p′′g is the computed gas pressure that
obeys the periodic boundary condition and ρ̄|g|(z − zo) represents the mean vertical
pressure drop due to the total mass of a two-phase mixture; ρ̄ is the domain-averaged
mixture density; z is the coordinate in the direction that is opposite of gravity and zo

is a reference elevation.
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Although we will present our results in dimensionless form, it is useful to present
typical dimensional quantities to demonstrate that the simulations have been done for
gas–particle systems of practical interest. With this in mind, in table 1, we present
the simulation parameters in both dimensional and dimensionless form. Simulations
were performed for two domain-averaged particle volume fractions 〈φ〉 = 0.1 and 0.3
with different values of particle diameter and acceleration due to gravity (which was
lowered to help probe relevant dimensionless groups). The simulations were run for a
sufficiently long duration (10τ St

p ) to ensure that a statistical steady state is reached (see
table 1 for the definition of τ St

p ). Subsequently, snapshots were collected at every τ St
p

time instant for a duration of 20τ St
p . Snapshots of the particle volume fraction fields

obtained in simulations with different domain-averaged particle volume fractions for
non-cohesive particles with Frp = 65 are shown in figure 1. The computational data
from these snapshots were then post-processed to compute the particle phase stress σ
and granular temperature T for each cell with a volume of Vc:

σ =
1
Vc

∑
i∈cell

[ ∑
j∈cell,( j6=i)

1
2

rij ⊗ f ij +mi(vi − us|x=xi)⊗ (vi − us|x=xi)

]
, (2.15)

and

T =
1
3

∑
i∈cell

[(vi − us|x=xi) · (vi − us|x=xi)], (2.16)

where rij is the centre-to-centre contact vector from particle j to particle i, f ij is the
total force between the two particles, vi is the velocity of particle i and us|x=xi is the
local-average particle velocity at the location of the particle, obtained by interpolating
from the Eulerian velocity of the solid phase at the cell centres (more details in Ozel
et al. (2017)). In appendix C, we present how we choose the mapping mesh size to
compute the particle phase stress. In appendix D, we present how frequently local
variables of granular temperature and particle volume fractions take different values;
all the analyses that follow are based on a parameter space where enough statistics
have been collected.

3. Simulation results
In fluidization, the normal stress in the vertical direction is usually larger than

those in the lateral directions (Koch & Sangani 1999). Normal stress differences were
probed briefly in this study (see appendix A) and it was found to be dependent on
domain-averaged particle volume fraction 〈φ〉 and local particle volume fraction φ.
As the normal stress difference has not been demonstrated to be responsible for any
known flow phenomena in fluidized beds, we have not probed it further in this study.

By following Goldstein, Handler & Sirovich (1993), Garzó & Dufty (1999), Jenkins
& Richman (1985a) and Jenkins & Richman (1985b), the particle phase stress tensor
is expressed as:

σ = [p−µb(∇ · us)]I − 2µsS, (3.1)

where p is pressure, µb is bulk viscosity, µs is shear viscosity and S is the rate of
deformation tensor:

S = 1
2 [∇us + (∇us)

T
] −

1
3(∇ · us)I. (3.2)
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Simulation parameters Value

Domain size; (d× d× d) 240× 240× 960
Grid size; (d× d× d) 3× 3× 3
Acceleration due to gravity; g (m s−2) 9.81/2.45
Particle diameter; d (µm) 75/150/300
Particle density; ρp (kg m−3) 1500
Real Young’s modulus; YR (Pa) 7× 1010

Soft Young’s modulus
used in simulations; YS (Pa) 106

Poisson’s ratio; ν 0.42
Restitution coefficient; ep 0.9
Sliding friction coefficient; µp 0.5
Real Hamaker constant; AR (J) 10−19/10−18

Minimum separation distance for real
Young’s modulus; sR

min (m) 10−9

Minimum separation distance for soft
Young’s modulus; sS

min (m) 1.641× 10−7

Modified cohesion model parameter; so (m) 1.548× 10−7

Gas density; ρg (kg m−3) 1.3
Gas viscosity; µg (Pa s) 1.8× 10−5

Characteristic quantities Value

Stokes relaxation time; τ St
p =

ρpd2

18µg
(s) 0.026 (d= 75 µm)

0.104 (d= 150 µm)
0.417 (d= 300 µm)

Terminal velocity based on Wen & Yu (1966)
drag law; vt (m s−1) 0.219 (d= 75 µm; g= 9.81 m s−2)

0.649 (d= 150 µm; g= 9.81 m s−2)

1.533 (d= 300 µm; g= 9.81 m s−2)

0.0597 (d= 75 µm; g= 2.45 m s−2)

Froude number; Frp = vt
2/(gd) 65 (d= 75 µm; g= 9.81 m s−2)

286 (d= 150 µm; g= 9.81 m s−2)

799 (d= 300 µm; g= 9.81 m s−2)

19 (d= 75 µm; g= 2.45 m s−2)

Particle Reynolds number; Rep =
ρgvtd
µg

1.18 (d= 75 µm; g= 9.81 m s−2)

7.03 (d= 150 µm; g= 9.81 m s−2)

33.23 (d= 300 µm; g= 9.81 m s−2)

0.32 (d= 75 µm; g= 2.45 m s−2)

Particle Stokes number; Stp =
1
18
ρp

ρg
Rep 76 (d= 75 µm; g= 9.81 m s−2)

451 (d= 150 µm; g= 9.81 m s−2)

2130 (d= 300 µm; g= 9.81 m s−2)

20 (d= 75 µm; g= 2.45 m s−2)

Bond number; Bo∗ = Fmax
coh /(mpg)

where Fmax
coh =

ARdp

24sR
min

2 96 (d= 75 µm; AR
= 10−19 J)

960 (d= 75 µm; AR
= 10−18 J)

3840 (d= 75 µm; AR
= 4× 10−18 J)

TABLE 1. Computational domain and simulation parameters.
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0.64
ƒ

0.48

0.32

0.16

0

(a) (b)

FIGURE 1. Snapshots of the particle volume fraction field in a periodic domain. Domain-
averaged particle volume fraction 〈φ〉 is (a) 0.1 and (b) 0.3. Simulation parameters are
listed in table 1. Fluidization simulations of non-cohesive particles are performed with
Frp = 65. Figures are taken from Ozel et al. (2016).

It is worth noting that only linear terms in the spatial gradients are retained in (3.1). A
more rigorous way to model inhomogeneous gas–solid flows is to perform systematic
derivations of the kinetic equations up to high-order terms (Burnett and super-Burnett
orders) starting from the Boltzmann equation (e.g. see Sela, Goldhirsch & Noskowicz
(1996), Sela & Goldhirsch (1998), Kumaran (2004, 2006)). The number of spatial
derivatives in the high-order terms for the stress tensor is much more than that for
Navier–Stokes level of modelling used here. They are functions of all hydrodynamic
variables. Initial assessment has been performed on the isotropic part of the stress
tensor (based on constitutive relations suggested by one referee), and suggests that
the contributions of second-order terms are minimal. For further investigations, one
would have to perform even more complex binning of the data and also include an
anisotropic streaming stress tensor. These are beyond the scope of this manuscript,
which seeks to deduce a simple model for cohesive systems that captures most of the
effects. Thus, we choose not to directly model these higher-order terms.

Based on simulation results, we propose closures for pressure p, bulk viscosity µb

and shear viscosity µs for both non-cohesive and cohesive particles. In the following,
we first illustrate that the present methodology can yield results for non-cohesive
particles that are consistent with analytically derived kinetic-theory models, and
demonstrate the suitability of the methodology (§ 3.1). Then, we modify these closures
to include cohesion (§ 3.2).

3.1. Non-cohesive particles
As shown in table 1, fluidization simulations with non-cohesive particles are performed
for several Froude numbers corresponding to different values of particle diameter and
acceleration due to gravity as well as for different domain-averaged particle volume
fractions. In the model development, independent variables and scalings are carefully
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1.8

1.6

1.4

1.2

1.0

(÷ 10-3)

-0.015 -0.010 -0.005

ƒ = 0.315 T/√2
t = 1.0 ÷ 10-3

ƒ = 0.435 T/√2
t = 4.1 ÷ 10-4

d(◊ · us)/√t

(1
/3

)tr
(ß

)/
(®

s√
2 t)

0 0.005 0.010

FIGURE 2. Dimensionless trace of the stress tensor versus dimensionless rate of dilation
for two combinations of local particle volume fraction (φ= 0.315 and 0.435) and granular
temperature. In both cases, tr(σ ) exhibits a linear relationship with ∇ · us for both us < 0
and us > 0 segments, as indicated by the dashed lines. Data from fluidization simulations
of non-cohesive particles; Frp = 799; 〈φ〉 = 0.1.

chosen so that the stress results from these different simulations collapse, ensuring the
generality of the proposed model.

3.1.1. Pressure
From (3.1), we have

1
3 tr(σ )= p−µb∇ · us. (3.3)

As detailed in § 2.2, σ is computed for each computational cell, and tr(σ ) is binned
with particle volume fraction φ, granular temperature T , and rate of dilation ∇ · us.

Figure 2 shows the dimensionless trace of the stress tensor (1/3)tr(σ )/(ρsv
2
t ) versus

the dimensionless rate of dilation d(∇ ·us)/vt for two combinations of particle volume
fraction φ and dimensionless granular temperature T/v2

t . It is found that tr(σ ) exhibits
a linear relationship with ∇ · us for both ∇ · us < 0 and ∇ · us > 0 segments. This
finding is consistent with (3.3), and thus supports the suitability of the constitutive
equation (3.1). Furthermore, since tr(σ ) varies substantially with ∇ · us in the system,
the pressure p is extracted from bins where ∇ · us ≈ 0. It is worth noting that the
flow domain is fully periodic and there is no macroscopic dilation or compression,
〈∇ · us〉 = 0.

Figure 3(a) shows the variation of p/(ρsv
2
t ) with T/v2

t . It is found that p scales with
T , which is consistent with the standard kinetic theory (Lun et al. 1984),

p= ρsH(φ)T, (3.4)
H(φ)= φ[1+ 4ηφg0], (3.5)

where η= (1+ ep)/2 and g0 is the radial distribution function at contact.
Figure 3(b) shows a plot of p/(ρsT) against φ for various Frp and 〈φ〉. The data

collapse onto a single curve, and it is found that the standard kinetic theory captures
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FIGURE 3. (a) Dimensionless pressure versus dimensionless granular temperature for
various local particle volume fractions (φ = 0.105, 0.195, 0.315, 0.405, 0.465). In all
cases, p scales with T as indicated by the dashed line with slope of 1. Data from
fluidization simulations of non-cohesive particles; Frp = 65; 〈φ〉 = 0.1. (b) Pressure scaled
by granular temperature versus local particle volume fraction for various Froude numbers
and domain-averaged particle volume fractions. Dashed line: equation (3.5).

the collapse well. Throughout this paper, we have used g0 proposed by Chialvo &
Sundaresan (2013):

g0 =
1− φ/2
(1− φ)3

+
αg0φ

2

(φc − φ)3/2
, (3.6)

where αg0 = 0.58, and φc is a jamming volume fraction that varies with the sliding
friction coefficient µp (Chialvo, Sun & Sundaresan 2012; Chialvo & Sundaresan 2013).
The jamming condition was found by Sun & Sundaresan (2011) to depend on the
nature of the deformation. Simple shear appears to afford the smallest value of φc
among all types of deformations. For µs= 0.5, simple shear simulations yielded φc=

0.587 (Chialvo et al. 2012). In the present simulations, where appreciable compaction
and dilation are also at play, φc= 0.61 was found to fit the data better and is used in
all subsequent figures.

3.1.2. Bulk viscosity
According to (3.3) as well as figure 2, bulk viscosity µb can be found by computing

the slope of (1/3)tr(σ ) versus −∇ · us. As indicated in the figure, the slope differs
between ∇ ·us< 0 and ∇ ·us> 0. Thus, µb is calculated for ∇ ·us< 0 (corresponding
to compaction) and ∇ · us > 0 (corresponding to dilation) separately.

Figure 5(a) shows the dimensionless bulk viscosity µb/(ρsdvt) versus T/v2
t for two

particle volume fractions. It is found that µb scales with
√

T , which is consistent with
the standard kinetic theory. According to Lun et al. (1984)

µb =

(
η

8
3
√

π
φ2g0

)
ρsd
√

T. (3.7)

However, unlike the standard kinetic theory, it is found that bulk viscosity is larger
for compaction than for dilation for a given particle volume fraction and granular
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FIGURE 4. (Colour online) Snapshots of (a) granular temperature, (b) dilation/compression
∇ · us, (c) vertical solid velocity with local solid volume fraction iso-contours
(φ = 0.3). Frp = 75. Domain-averaged volume fraction 〈φ〉 = 0.1.

temperature. This behaviour of bulk viscosity has also been observed in simulations of
travelling waves in particle–fluid suspensions (Moon, Kevrekidis & Sundaresan 2006;
Derksen & Sundaresan 2007). One can interpret this behaviour as µb being a function
of ∇ · us/(

√
T/d), which is indicative of a higher-order effect.

We plot the bulk viscosity scaled by granular temperature, µb/(ρsd
√

T), against φ
for different Froude numbers Frp and 〈φ〉 in figure 5(b). Values of bulk viscosity for
compaction and those for dilation each collapse. The bulk viscosity data could be
captured by

µb =

(
αµbη

8
3
√

π
φ2g0

)
ρsd
√

T, (3.8)

where αµb = 1 for dilation and αµb = 1.5 for compaction.
By following Capecelatro et al. (2014), snapshots of granular temperature,

dilation/compression ∇ · us and vertical solid velocity with a solid volume fraction
contour (φ= 0.3) were generated (see figure 4). As seen from the figure, the granular
temperature is very low within falling clusters and it reaches maximum values just
out of a cluster, where maximum dilation ∇ · us < 0 occurs. As discussed by Fox
(2014), viscous heating due to dilation/compaction behaves as a source term for the
granular temperature.

3.1.3. Shear viscosity
The shear viscosity, µs, is calculated as:

µs =
τ : (2S)

(2S) : (2S)
, (3.9)

where the deviatoric stress tensor τ =−σ + (1/3)tr(σ )I .
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FIGURE 5. (a) Dimensionless bulk viscosity versus dimensionless granular temperature for
two local particle volume fractions (φ = 0.315 and 0.435). Filled (unfilled) symbols are
for compaction (dilation). In all cases, µb scales with

√
T as indicated by the dashed line

with slope of 1/2. Data from fluidization simulations of non-cohesive particles; Frp= 799;
〈φ〉 = 0.1. (b) Bulk viscosity scaled by granular temperature versus local particle volume
fraction for different Froude numbers and domain-averaged particle volume fractions. Solid
line: equation (3.8) with αµb = 1.5. Dashed line: same equation with αµb = 1.

Kinetic-theory-based models derived for gas–solid systems (Koch 1990; Gidaspow
1994; Balzer et al. 1995; Boëlle et al. 1995; Ma & Kato 1998; Koch & Sangani
1999; Lun & Savage 2003; Garzó et al. 2012) have taken into consideration the
potential influence of the slip velocity uslip = |ug − us| on shear viscosity. Therefore,
in our analysis, µs was computed in each Eulerian grid, and initially binned with uslip,
φ and T . Figure 6 shows the dimensionless shear viscosity µs/(ρsdvt) versus T/v2

t
for various dimensionless slip velocities uslip/vt. Two regimes are readily identified,
as indicated by the dashed lines, where µs scales with T in the low T regime and
with T1/2 in the high T regime. These two flow regimes are also observed in the
kinetic-theory-based models derived for gas–solid systems (Koch 1990; Gidaspow
1994; Balzer et al. 1995; Boëlle et al. 1995; Ma & Kato 1998; Koch & Sangani
1999; Lun & Savage 2003; Garzó et al. 2012). However, unlike these studies, it is
found that uslip affects µs minimally. Therefore, µs was simply binned with φ and T .

We plot the scaled shear viscosity in the high T regime µs,c/(ρsd
√

T) against φ
for various Frp and 〈φ〉 in figure 7(a). The data are consistent with the predictions of
standard kinetic theory that does not account for effects of interstitial fluid (Lun et al.
1984):

µs,c =

(
2+ α0

6

) [
5
√

π

48g0η(2− η)

(
1+

8
5
φηg0

)(
1+

8
5
η(3η− 2)φg0

)
+

16
5
η
φ2g0
√

π

]
ρsd
√

T, (3.10)

where α0 = 1.6. The modified kinetic theory proposed by Chialvo & Sundaresan
(2013) that is based on an inertial number model in the dense regime (MiDi 2004;
da Cruz et al. 2005; Jop et al. 2006) yields essentially indistinguishable predictions
as (3.10), as illustrated in figure 7(a). This consistency again affirms the validity of
the computational approach followed in the present study.
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FIGURE 6. Dimensionless shear viscosity versus dimensionless granular temperature for
various dimensionless slip velocities and φ= 0.465. Two regimes are identified. µs scales
with T in the low T regime and with T1/2 in the high T regime, as indicated by the two
dashed lines with slopes of 1 (left) and 1/2 (right). Data from fluidization simulations of
non-cohesive particles; Frp = 286; 〈φ〉 = 0.3.
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FIGURE 7. Scaled shear viscosity versus local particle volume fraction for different Froude
numbers and domain-averaged particle volume fractions. (a) Data in the high T regime
where µs scales with T1/2 are plotted. Dashed line: equation (3.10). Dotted line: the
modified kinetic theory proposed by Chialvo & Sundaresan (2013). (b) Data in the low
T regime where µs scales with T are plotted. Dashed line: equation (3.12).

We found that shear viscosity data in the low T regime could be captured as,

µs,g = fµs,g(φ)ρsT
√

d/g. (3.11)

Such a dependence of transport coefficient on gravity has also been observed before;
from numerical simulations, it was found that gravity affects heat conductivity of
molecular gas (Doi, Santos & Tij 1999). Figure 7(b) shows a plot of µs/ρsT

√
d/g

against φ extracted from simulations performed using different particle diameters and
acceleration due to gravity (which are combined in terms of Froude number). Data
collapse reasonably well onto a single curve, supporting the scaling. The dashed line
in figure 7(b) corresponds to

fµs,g = αµs,gg0φ
2, (3.12)

where αµs,g = 8.0.
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The transition from the high T regime to the low T regime can be understood as a
change in time between inter-particle collisions. µs∼ρsTτ , where τ is a collision time
for the system. At high T conditions, the collision time scales as d/

√
T . In the low

T regime, collisions appear to be largely determined by gravitational fall and hence
the
√

d/g scaling for collision time. In our computationally generated model approach,
we simply bridge the low and high T regimes via

µs =min(µs,g, µs,c). (3.13)

3.1.4. Pseudo-thermal energy balance
As proposed kinetic-theory-based models for pressure, bulk viscosity, and shear

viscosity directly depend on granular temperature, a balance of pseudo-thermal
energy (PTE) of particle velocity fluctuations needs to be solved to obtain the
granular temperature. In fluidized gas–particle mixtures, the rate of production of
PTE by shear −σ : ∇us is, to a good approximation, balanced locally by the rate of
dissipation of PTE by inter-particle collisions Jcoll. Therefore, we set

− σ : ∇us = Jcoll. (3.14)

This approximation is supported by the following two observations.
First, our computational results show that uslip affects −σ : ∇us minimally, and thus

all the terms that depend on uslip affect the rates of generation and dissipation of PTE
only in a secondary fashion; this is consistent with the high particle Stokes number, as
shown in table 1. Hence any terms involving uslip cannot be probed using our results.
The weak role of uslip is illustrated in figure 8, where the scaled rate of production of
PTE by shear −σ : ∇usd/ρsv

3
t is plotted against T/v2

t for various uslip/vt.
Second, at high T regime, the expression for Jcoll from the kinetic theory of granular

materials is found to match −σ : ∇us from the simulations. This is illustrated in
figure 9(a) where the scaled rate of production of PTE by shear −σ : ∇usd/ρsT3/2 is
plotted against φ for various Frp and 〈φ〉. Data collapse onto a single curve, which
is described well by (3.14) where Jcoll is equal to Jcoll,MKT from modified kinetic
theory (Chialvo & Sundaresan 2013):

Jcoll,MKT =
12
√

π
φ2g0(1− e2

eff )
ρsT3/2

d
. (3.15)

In this equation, the restitution coefficient ep in the standard kinetic theory (Lun et al.
1984) is replaced by an effective restitution coefficient eeff (Chialvo & Sundaresan
2013) to account for the total energy loss due to inelasticity and friction during
an inter-particle collision, which is supported by analytical derivations of kinetic
theory for slightly frictional particles (Jenkins & Zhang 2002). Based on simple shear
simulations of frictional particles, Chialvo & Sundaresan (2013) related eeff to the
particle sliding friction coefficient µp as the following,

eeff = ep −
3
2µexp(−3µ). (3.16)

Both observations above suggest that the approximation −σ : ∇us = Jcoll is
reasonable, and therefore we formulate models for Jcoll based on −σ : ∇us data
from simulations, when (3.15) is not valid (e.g. as in the low T regime).
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FIGURE 8. Dimensionless production rate of PTE by shear versus dimensionless granular
temperature for various dimensionless slip velocities and φ = 0.465. Two regimes are
identified. −σ : ∇us scales with T2 in the low T regime and with T3/2 in the high T
regime, as indicated by the two dashed lines with slope of 2 (left) and 3/2 (right). Data
from fluidization simulations of non-cohesive particles; Frp = 286; 〈φ〉 = 0.3.
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FIGURE 9. Rescaled rate of production of PTE by shear scaled versus local particle
volume fraction for different Froude numbers and domain-averaged particle volume
fractions. (a) Data in the high T regime where −σ : ∇us scales with T3/2 are plotted.
Dashed line: equation (3.15). (b) Data in the low T regime where −σ : ∇us scales with
T2 are plotted. Dashed line: equation (3.22).

Before we move on to the low T regime, one can further improve the model
accuracy by including a term that linearly depends on ∇ · us. Specifically, we have
the following expression for the rate of dissipation Jcoll:

Jcoll = J0 + Ju(∇ · us). (3.17)

We triple binned (−σs : ∇us) (which is assumed to balance with the rate of
dissipation) with φ, T and ∇ · us. To evaluate and model the terms J0 and Ju, from
the triple-binned data gathered above, for each combination of φ and T , we calculate
the intercept (to obtain J0) and slope (to obtain Ju) of (−σs : ∇us) versus (∇ · us).

We can keep the same expression as in (3.15) for J0. As shown in figure 10(a), the
data from different granular temperatures collapse onto a curve that is captured by the
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FIGURE 10. Rescaled J0 (a) or rescaled Ju (b) is plotted against solid volume fraction for
different granular temperatures and different Froude numbers. To obtain these values, we
calculate the intercept (to obtain J0) and slope (to obtain Ju) of (−σs :∇us) versus (∇ · us).
In (a), the dashed line is from equation (3.15). In (b), the dashed line is from equation
(3.19), where αJu = 3.5. Data from fluidization simulations of non-cohesive particles; Frp=

65; 〈φ〉 = 0.3.

dashed line, validating the model. Furthermore, this collapse and agreement with the
model prediction are both achieved for different particle diameters (different Froude
numbers in the legend).

For Ju, we write (Gidaspow 1994):

Ju =−3(1− e2
eff )φ

2ρsg0T. (3.18)

To test out this expression, in a similar fashion as done for J0, we rescale Ju by
T , and plot against φ in figure 10(b). We see data collapse onto a curve, supporting
the scaling with T in the expression. For the model to capture the collapse, it is
found that a proportionality constant αJu of 3.5 is needed. As indicated by the dashed
line in figure 10(b), this constant works for different solid volume fractions, granular
temperatures and particle diameters (as indicated by Froude number Frp). Thus, we
have the following

Ju =−3αJu(1− e2
eff )φ

2ρsg0T, (3.19)

where αJu = 3.5.
Now, we can move on to the lower granular temperature region.
It is useful to express (3.15) as

Jcoll,MKT = fJ(φ)ρsT/τvis, (3.20)

where τvis = d2ρs/µs. In the high T regime, as discussed in § 3.1.3 on definitions of
µs, we have µs ∼ ρsd

√
T , and the expression returns back to the one in (3.15).

At low T regime, where µs ∼ ρsT
√

d/g, we then anticipate

Jcoll,g = fJ,g(φ)
ρsT2

d2

√
d/g. (3.21)

If this model is reasonable, the rate of production of PTE by shear in the low T
regime, scaled as −σ : ∇usd2/ρsT2√d/g, should only be a function of φ independent
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of the Froude number of the particles used in the simulations. Figure 9(b) confirms
that the data do collapse reasonably well, supporting the model form chosen in (3.21).
The dashed line in this figure corresponds to

fJ,g(φ)= αJ,gφ
2g0(1− e2

eff ), (3.22)

where αJ,g = 45.
As in the case of shear viscosity, we bridge Jcoll in the low and high T regimes

via

Jcoll =min(Jcoll,g, Jcoll,c), (3.23)

where

Jcoll,c = J0 + Ju(∇ · us). (3.24)

3.1.5. Summary
It is found that the results for non-cohesive particles in the high T regime obtained

by post-processing CFD-DEM simulations agree well with the constitutive expressions
afforded by the kinetic theory of granular materials, which have been modified to
include the effect of inter-particle friction. These findings demonstrate the validity of
the adopted methodology. The present computational approach has also revealed a
low T regime, where the inter-particle collision time is determined by gravitational
fall between collisions. Modifications to the kinetic-theory constitutive models are
proposed to capture both the low and high T regimes. Table 2 includes a summary
of the constitutive models for non-cohesive particles.

3.2. Cohesive particles
Fluidization simulations were performed including inter-particle van der Waals forces
with two Hamaker constants (see table 1). The cohesion strength is characterized by
the Bond number Bo∗ = Fmax

coh /(mp|g|). Here, Fmax
coh is the maximum cohesive force

between two particles. From (2.9), for s= sR
min� d, Fmax

coh becomes:

Fmax
coh = Fvdw(AR, sR

min)=
ARd

24sR
min

2 . (3.25)

Figure 11(a,b) shows solid volume fraction on the y–z plane for non-cohesive and
high cohesive cases, respectively. As expected, the cohesive case shows larger clusters
compared with the non-cohesive case. It is also seen that there is a more uniform
distribution of particles at moderate and high solid volume fractions.

3.2.1. Pressure
It is known from previous studies (Rognon et al. 2008; Gu et al. 2014; Irani

et al. 2014) that cohesion bifurcates the inertial regime into two regimes: a new
rate-independent regime (namely cohesive regime) at low shear rates and an inertial
regime at high shear rates, where Bagnold scaling is observed and cohesion has little
influence. The present CFD-DEM simulations reveal both of these regimes, as shown
in figure 12. We also determined the average coordination number Z, defined as the
average number of contacts per particle in each cell, and binned the results with φ
and T , as illustrated in figure 13. Two trends which have been reported previously
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σ = [p−µb(∇ · us)]I − 2µsS,
S = 1

2 [∇us + (∇us)
T
] −

1
3 (∇ · us)I .

g0 =
1− φ/2
(1− φ)3

+
αg0φ

2

(φc − φ)3/2
.

η= (1+ ep)/2, eeff = ep −
3
2µexp(−3µ).

Non-cohesive particles
p= ρsφ[1+ 4ηφg0]T

µb =


αµb,comη

8
3
√

π
φ2g0ρsd

√
T for ∇ · us < 0,

αµb,dilη
8

3
√

π
φ2g0ρsd

√
T for ∇ · us > 0.

µs =min(µs,g, µs,c)

µs,g = αµs,gg0φ
2ρsT
√

d/g

µs,c =

(
2+ α0

6

) [
5
√

π

48g0η(2− η)

(
1+

8
5
φηg0

)(
1+

8
5
η(3η− 2)φg0

)
+

16
5
η
φ2g0
√

π

]
ρsd
√

T .

Pseudo-thermal energy balance: −σ :∇us =min(Jcoll,g, Jcoll,c);

Jcoll,g = αJ,gφ
2g0(1− eeff

2)
ρsT2

d2

√
d/g; Jcoll,c = J0 + Ju(∇ · us);

J0 =
12
√

π
φ2g0(1− eeff

2)
ρsT3/2

d
; Ju =−3αJu(1− e2

eff )φ
2ρsg0T

Cohesive particles

Fmax
coh =

ARd

24sR
min

2 .

p=


ρsφ[1+ 2(1+ ep)φg0]T − αcoh,1

Fmax
coh

d2
φ2 for φ < φa,

ρsφ[1+ 2(1+ ep)φg0]T − αcoh,1
Fmax

coh

d2
φ2
+ αcoh,2

Fmax
coh

d2

(φ − φa)
2

(φc − φ)
for φ > φa.

µb is the same as non-cohesive particles.

µ=min(µs,g, µs,c)+
τy

γ̇

W
(
αW
ρsT
τy

)
αW
ρsT
τy

,

τy is yield stress, and τy =
Fmax

coh

d2

fφ(φ)
φc − φ

, fφ(φ)= φ(0.0249φ3
− 0.0215φ2

+ 0.0048φ + 0.0005)

γ̇ =
√

2S : S
Pseudo-thermal energy balance:

−σ : ∇us =min(Jcoll,g(ecoh), Jcoll,c(ecoh))+ αcoh,3τy

W
(
αW
ρsT
τy

)
αW
ρsT
τy

√
T

d

ecoh =

√
e2

eff −
αeFmax

coh d
mT

.

Model parameters (for µ= 0.5 and ep = 0.9)
φc = 0.61, αg0 = 0.58, αµb,com = 1.5, αµb,dil = 1, αµs,g = 8.0, α0 = 1.6, αJu = 3.5, αJ,g = 45,
αcoh,1 = 3× 10−3, αcoh,2 = 3.4× 10−3, φa = 0.2, αW = 14, αcoh,3 = 1.2, αe = 1× 10−7.

TABLE 2. Computationally generated kinetic-theory-based models for non-cohesive and
cohesive particles proposed in the present study.
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FIGURE 11. (Colour online) Snapshots of solid volume fraction for (a) non-cohesive,
(b) high cohesive cases and (c) local granular temperature for high cohesive case. Frp= 75.
Domain-averaged volume fraction 〈φ〉 = 0.3.
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FIGURE 12. Dimensionless pressure versus dimensionless granular temperature for various
particle volume fractions. Data from fluidization simulations of cohesive particles; Bo∗ =
960 in (a) and Bo∗ = 96 in (b); Frp = 65; 〈φ〉 = 0.3.

for cohesive particles (Rognon et al. 2008; Gu et al. 2014; Irani et al. 2014) are
observed. First, at low T , Z increases with φ and plateaus at high φ values. Second,
at a given φ, increasing T lowers Z, which is indicative of the disruption of the
particle contact network. This consistency in the regime transition with the previous
studies manifested in both a macroscopic quantity (p) and the microstructure (Z)
again affirms the validity of the methodology in this study.
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FIGURE 13. Average coordination number versus dimensionless granular temperature for
various particle volume fractions. Data from fluidization simulations of cohesive particles;
Bo∗ = 960; Frp = 65; 〈φ〉 = 0.3.
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FIGURE 14. Scaled pressure contributed from cohesion versus local particle volume
fraction. Solid line: equation (3.26). Data from fluidization simulations of cohesive
particles; Frp = 65; 〈φ〉 = 0.3. Dashed line: equation (3.27).

However, different from these previous studies of cohesive particles (Rognon et al.
2008; Gu et al. 2014; Irani et al. 2014), the present methodology explores easily a
wider parameter space; e.g. lower particle volume fractions in the low T temperature
regime, which have been difficult to access (Gu et al. 2014; Irani et al. 2014). The
results for this region are shown in figure 14. In this figure, to study the effects
of cohesion, we subtract the contribution from collisions that are present for non-
cohesive particles ρsH(φ)T from the total pressure p. We focus on the low temperature
region where pressure is essentially temperature independent. One can see that, as φ
increases, p − ρsH(φ)T starting from 0 initially decreases to become negative, and
then increases.

This non-monotonic behaviour in the low temperature region can be understood
physically as the following. In the low temperature region, effects from cohesion
dominate over particle agitation. These effects from cohesion are manifested
differently depending on the number of particles present locally. At low particle
volume fractions (φ < 0.2), where there are not enough particles to form force chains
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that can transmit stress over large distances (low Z in figure 13), the attractive van der
Waals interaction between particles decreases the pressure. At high particle volume
fractions (φ > 0.2), where the particles tend to form force chains (high Z in figure 13),
the pressure increases.

We model this non-monotonic behaviour manifested by p − ρsH(φ)T in the low
temperature region as follows. At low particle volume fraction, where attractive pair
interaction is the principal correction, we write:

d2

Fmax
coh
(p− ρsH(φ)T)=−αcoh,1φ

2 for φ < φa. (3.26)

Here, φa= 0.2 and αcoh,1= 3× 10−3. As shown in figure 14, this equation, denoted by
a solid line, captures the data for φ < 0.2. At high particle volume fraction, to capture
the increase of pressure due to the force chains, we add a new term that is consistent
with a previous study (Gu et al. 2014) on the right-hand side:

d2

Fmax
coh
(p− ρsH(φ)T)=−αcoh,1φ

2
+ αcoh,2

(φ − φa)
2

φc − φ
for φ > φa. (3.27)

Here, αcoh,2 = 3.4× 10−3. As shown in figure 14, this equation, denoted by a dashed
line, captures the data for φ > 0.2.

Assembling these models together, we obtain the following:

p=


ρsφ[1+ 2(1+ ep)φg0]T − αcoh,1

Fmax
coh

d2
φ2 for φ < φa

ρsφ[1+ 2(1+ ep)φg0]T − αcoh,1
Fmax

coh

d2
φ2
+ αcoh,2

Fmax
coh

d2

(φ − φa)
2

(φc − φ)
for φ > φa,

(3.28)

where αcoh,1 = 3× 10−3, αcoh,2 = 3.4× 10−3, φa = 0.2 and φc = 0.61.
For bulk viscosity, it is found that the inclusion of cohesion has a negligible impact

on the values, and thus (3.8) is applied.

3.2.2. Shear viscosity
Figure 15(a–c) displays the variation of dimensionless shear stress (τ ≡ µsγ̇ ,

γ̇ ≡
√

2S : S) with dimensionless granular temperature at different particle volume
fractions, for both non-cohesive (a) and cohesive particles (b–c). Similar to pressure,
shear stress is largely unaffected by cohesion in the high T regime, but becomes
temperature independent in the low T limit. This behaviour is consistent with previous
findings (Gu et al. 2014; Irani et al. 2014).

Figure 11(c) shows granular temperature in the y–z plane for the high cohesive case.
Comparing figures 11(b) and 11(c) one can see that for high solid volume regions
(clusters in the figure), the particles at boundary tend to have higher T and thus in
inertial regime. Particles inside the clusters tend to have lower T and stay in cohesive
regime.

The dip in the shear stress observed at the transition between these two regimes
can readily be attributed to the destruction of force chains (as evidenced by a
sharp decrease in Z) by increased particle agitation. To study this dip and the low
temperature region, we examine in figure 16(a) the excess shear stress, defined as the
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FIGURE 15. Dimensionless shear stress versus dimensionless granular temperature
for various particle volume fractions. Data from fluidization simulations of both (a)
non-cohesive particles and (b,c) cohesive particles; Bo∗ = 960 in (b) and Bo∗ = 96 in (c);
Frp = 65; 〈φ〉 = 0.3.
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FIGURE 16. The variation of scaled excess shear stress with local particle volume fraction
at different scaled granular temperatures. Data from fluidization simulations of cohesive
particles; Bo∗=960; Frp=65; 〈φ〉=0.3. Data from (a) are rescaled in (b) through x/W(x),
where x= αW(ρsT/τy). Solid line in (b): equation (3.31).

difference in the shear stress in a cohesive system and a corresponding non-cohesive
system. Specifically, we plot (d2/Fmax

coh )(µs − µ
∗

s )γ̇ , where µ∗s = min(µs,g, µs,c) and
µs denote viscosities of non-cohesive and cohesive systems, respectively. In order to
capture the residual dependence on granular temperature, we adopt the model of Irani
et al. (2014) based on the fluidity approach of Picard et al. (2002),

µγ̇ =µ∗s γ̇ + τy
W(x)

x
. (3.29)

Here, τy is the yield stress; W(x) is the Lambert–W function, which is defined as
W−1(z)= z exp(z). For computation, its principal branch (x> 0) can be approximated
(Winitzki 2003) as W(x) ≈ [2 ln(1 + 0.8842y) − ln(1 + 0.9294 ln(1 + 0.5106y)) −
1.213]/[1+ 1/(2 ln(1+ 0.8842y)+ 4.688)], where y=

√
2ex+ 2. Here, e is Napier’s

constant. As detailed by Irani et al. (2014), W(x)/x captures the competition between
kinetic energy supplied by shear and the cohesive energy. Correspondingly, we set
x= f1(φ)ρsTd2/Fmax

coh . Similar to the expression for pressure, the yield stress τy has the
form τy = f2(φ)Fmax

coh /d
2.
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Thus, (3.29) becomes,

f2(φ)=
d2

Fmax
coh

f1(φ)
ρsTd2

Fmax
coh

W
(

f1(φ)
ρsTd2

Fmax
coh

)(µγ̇ −µ∗γ̇ ). (3.30)

We find f1(φ) and f2(φ) as follows: at various chosen φ values, we demand that
equation (3.30) be satisfied at two temperatures. Such an analysis leads to us
conclude that f1(φ) and 1/f2(φ) have essentially the same φ dependence. Therefore,
x = f1(φ)ρsTd2/Fmax

coh ∼ (1/f2(φ))(ρsTd2/Fmax
coh ) ∼ ρsT/τy. Within the framework of the

computationally deduced model, the φ dependence of τy as denoted by f2(φ) is simply
correlated as

τy =
fφ(φ)
φc − φ

Fmax
coh

d2
, (3.31)

where fφ(φ) = φ(0.0249φ3
− 0.0215φ2

+ 0.0048φ + 0.0005). Correspondingly, x =
αW(ρsT/τy), where αW = 14.

Using the x/W(x) scaling from the fluidity approach where x is defined as above,
the data points from different temperatures shown in figure 16(a) are now collapsed
onto a single curve in (b). This collapse of data is captured by (3.31), as denoted by
the solid line in the figure.

Thus, we have the final shear viscosity model for cohesive particles:

µ=µ∗s +
τy

γ̇

W
(
αW
ρsT
τy

)
αW
ρsT
τy

. (3.32)

It should be noted that this yield-stress-based model for cohesive particles is
consistent with prior observations from both experiments and simulations. For
fluidization of Geldart Group A particles (Geldart 1973), for which inter-particle
van der Waals forces start to become important compared to particle weight, a
bubbleless expanded regime is observed in both experiments (Geldart 1973; Menon
& Durian 1997) and simulations (Hou, Zhou & Yu 2012; Gu et al. 2016b). Both
experiments (Geldart 1973; Menon & Durian 1997) and simulations (Hou et al.
2012; Gu et al. 2016b) found that particles are essentially in a static state in this
regime. This regime corresponds to the case where the shear stress supplied in the
system does not overcome the yield stress τy. Furthermore, it has been found in these
experimental and simulation studies that the formation of this regime depends on
particle volume fraction of the system, which is consistent with the dependence of τy
on particle volume fraction φ.

3.2.3. Pseudo-thermal energy balance
Similar to the analysis on non-cohesive particles, figure 17 shows the variation of

(−σ : ∇us) with temperature at three different volume fractions. At high T , cohesion
has little effect. However, the cohesive systems differ noticeably from the non-cohesive
case at low temperatures; this behaviour can be explained by two hypotheses: (i) the
part of (−σ : ∇us) associated with cohesive yield stress is not a source of PTE or
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FIGURE 17. Dimensionless rate of production of PTE by shear versus dimensionless
granular temperature for various particle volume fractions. Data from fluidization
simulations of cohesive particles; rate of production of PTE is triple binned by particle
volume fraction, granular temperature and rate of dilation. The data are then processed by
conditioning on the rate of dilation being zero, and plotted here for; Bo∗= 960; Frp= 65;
〈φ〉 = 0.3. Solid lines: equations (3.24) (3.21) (3.34).

(ii) there is an additional rate of PTE dissipation associated with the cohesive yield
stress. There is precedence in the literature for the first argument. For example, in
frictional–kinetic models, only the kinetic part of the stress is recognized as a source
in the PTE balance in a number of studies (Ocone, Sundaresan & Jackson 1993; Alam
& Nott 1997; Srivastava & Sundaresan 2003). In this spirit, we identify −σ : ∇us −

γ̇ τyW(x)/x as the source of PTE.
Regarding the dissipation term of PTE by inter-particle collisions, cohesion is

known (from both experiments (Kim & Dunn 2007) and simulations (Murphy &
Subramaniam 2015; Gu et al. 2016a; Kellogg et al. 2017)) to alter the effective
restitution coefficient for a two-particle collision. When two cohesive particles
undergo a head-on collision, the effective restitution coefficient goes to zero as the
impact velocity drops below some critical value; the effective restitution coefficient
approaches the non-cohesive limit at high impact velocities. Based on energy
balance, a relation has been derived and verified with particle–surface collision
experiments (Kim & Dunn 2007; Gu et al. 2016a) to connect the effective restitution
coefficient for cohesive particles ecoh to the one for non-cohesive particles eeff
(accounting for inelasticity and friction only). Replacing the impact velocity vimpact
with granular temperature T as T = v2

impact, we have the following relation

ecoh =

√
e2

eff −
αeFmax

coh d
mT

. (3.33)

PTE balance now becomes

− σ : ∇us − γ̇ τyW(x)/x=min(Jcoll,g(ecoh), Jcoll,c(ecoh)), (3.34)

where αe is fit to be 1× 10−7. As shown in figure 17, this equation captures all the
regimes as well as the transitions between them.
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3.2.4. Summary
Analysis of the results obtained with cohesive particles reveals the following. First,

the cohesion introduces a correction to the pressure, which could be non-negligible
at low T values. Second, the cohesive system manifests a yield stress, whose
decreasing strength with increasing particle agitation can be quantified via the fluidity
approach. Third, cohesive interaction lowers the effective coefficient of restitution in a
T-dependent fashion that is easily rationalized based on two-particle collision studies.
Table 2 includes a summary of the proposed closure models.

4. Summary

In this paper, we have formulated constitutive models for particle phase stress based
on CFD-DEM simulations of gas-fluidized beds of non-cohesive and mildly cohesive
(Geldart Group A) particles. Based on the simulation results, closures for pressure,
bulk viscosity, shear viscosity and the rate of dissipation of the pseudo-thermal energy
are proposed.

For non-cohesive particles, the present results are consistent with analytically
derived kinetic-theory models in the high T limit, confirming their validity. In addition,
the present study has uncovered a low T regime where the closures manifest different
scalings and a definite dependence on gravitational acceleration.

Particles interacting through van der Waals force are then studied as a model
cohesive system. Cohesion has little effect on pressure in the high T regime. In
the low T regime, it lowers the pressure at low particle volume fractions and
increases it at higher volume fractions when force chains begin to form. Cohesive
systems subjected to shear manifest yield stress, whose strength increases rapidly
with particle volume fraction. Interestingly, the results suggest that particle agitation
lowers the effective yield stress; this weakening of the yield-stress contribution is
readily accounted for in the model via the fluidity approach described previously in
the literature (Picard et al. 2002; Irani et al. 2014).

The main motivation of this study is to investigate fluidization characteristics
of mildly cohesive particles and how inter-play between cohesion and interstitial
fluid alters mesostructures of flow and solid phase stresses. A powerful approach
to modelling gas–particle flows with dynamic agglomerates is to use a population
balance model coupled with Eulerian transport equations (see e.g. Marchisio, Vigil
& Fox (2003), Marchisio & Fox (2013), Kellogg et al. (2017)). In mildly cohesive
systems, for example fluidization of cohesive Geldart Group A particles, a simpler
approach that incorporates the effects of cohesion into stress models directly without
solving an additional population balance is attractive. Previous studies such as those
of Arastoopour (2001), Kim & Arastoopour (2002), Seu-Kim & Arastoopour (1995),
extended the standard kinetic theory of granular materials to simulate cohesive
particles. In these studies and herein, we show how one can still retain the framework
of the kinetic theory of granular materials to evolve the granular temperature in
particulate flows, but modify it in a simple fashion to account for cohesion. This
opens up the possibility of simulating fluidization behaviour of mildly cohesive
(Geldart Group A (Geldart 1973)) particles using the kinetic-theory framework, which
is widely used to simulate fluidization of non-cohesive (Geldart Group B) particles.

In this study, we considered only gas–solid flows in unbounded domains and
showed that the assumption of local equilibrium of granular temperature is valid
to a very good approximation. However, the presence of wall boundaries further
complicates the flow behaviour and not only alters macroscale structures but also it
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FIGURE 18. Normal stress components scaled by the trace of the stress versus
particle volume fraction. The results are based on data from fluidization simulations of
non-cohesive particles with Frp = 65 performed for different domain-averaged particle
volume fractions.

causes production, destruction and redistribution of the granular temperature. Effects
of wall boundaries on the constitutive relations are beyond the scope of this study
and should be investigated in further studies.

The present approach can be applied to particles interacting through complex inter-
particle forces, such as the liquid-bridge force when the particles are wet and the
electrostatic force when the particles carry charges.
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Appendix A.

Figure 18 plots scaled normal stress components σi/(1/3tr(σ )) against particle
volume fraction φ. The data are from fluidization simulations of non-cohesive particles
with Frp = 65. Horizontal normal stress components σxx and σyy are indistinguishable,
to within computational accuracy. At higher volume fractions, the variation of stress is
under ±20 %. As volume fraction decreases, the anisotropy increases. This behaviour
is expected as there are fewer collisions at lower volume fractions.

Appendix B. Effect of microscopic drag law on constitutive relations

To study the effects of the microscopic drag law on the constitutive relations, we
performed an additional simulation with Beetstra’s drag law (Beetstra, van der Hoef
& Kuipers 2007). In this simulation, the domain size is 180dp × 180dp × 720dp with
a particle diameter of 145 µm and domain-averaged solid volume fraction 〈φ〉 of 0.1.
We generated figure 3(b) (scaled solid pressure versus solid volume fraction) of the
manuscript and the scaled solid shear viscosity versus scaled granular temperature
for Beetstra’s drag law, which is shown in figure 19. These figures show that the
dependency of solid pressure and shear viscosity is essentially independent of choice
of the microscopic drag law.
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FIGURE 19. (a) Pressure scaled by granular temperature versus local particle volume
fraction and (b) shear viscosity versus granular temperature for the Wen & Yu (1966)
and Beetstra et al. (2007) drag laws. In the legend, W–Y and B denote Wen & Yu
and Beetstra drag laws, respectively. Particle diameters dp are 75 µm and 145 µm for
Wen & Yu and Beetstra et al. cases, respectively. Domain-averaged solid volume fraction
〈φ〉 = 0.1.

Changing the drag law can alter the details of the mesoscale structure and the
prevailing granular temperature; however, as is clear from the comparison we show
here, the drag law does not have any systematic effect on the relationship between
particle phase viscosity and granular temperature. In other words, in our simulations,
the fluid–particle drag principally supplies energy to sustain the fluctuating motion of
the particles in this dissipative system.

Appendix C. Effect of mapping mesh size on constitutive relations

The computed Eulerian particle velocity us and granular temperature T are
dependent on the mapping mesh size selection. To study the mesh dependency
of these variables, we mapped particle velocity and solid volume fraction on a mesh
size of 4dp and 5dp. It is worth remembering that the mesh size and the CFD grid
size are 3dp in our reference case. Figure 20 shows the scaled solid pressure versus
solid volume fraction for various mapping cell sizes. The discrepancy from Lun et al.
(1984) increases as the mapping mesh size increases. It is expected that, with larger
mesh size, we account for inhomogeneities from averaging whereas the kinetic theory
uses the assumption of homogeneous distribution of particles in a control volume.

Capecelatro et al. (2015) stated that computed statistics, such as particle fluctuating
energy, were independent of the number of particles if the number of particles inside
a cell volume is greater than 10. We have checked the number of particles in a cell
volume in the range of volume fractions (0.1 < φ < 0.6) that we have studied. As
an example, we have approximately 10 particles inside the filtering volume with the
smallest cell size of ∆= 3dp at the filtered solid volume fraction φ= 0.2 which should
give adequate statistics.

Appendix D. Number of realizations of macroscopic quantities

Figure 21 shows how frequently local variables of granular temperature and particle
volume fraction take different values. The numbers in this figure are per snapshot, and
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FIGURE 20. Pressure scaled by granular temperature versus particle volume fraction for
various mapping mesh sizes. Frp = 65; 〈φ〉 = 0.1.
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FIGURE 21. (Colour online) Collection of statistics for a given local granular temperature
and local particle volume fraction, based on data from a single snapshot. Non-cohesive
particles with Frp = 65 and 〈φ〉 = 0.3.

we typically use data from more than eight snapshots. As exemplified in the figure,
all analyses in the manuscript are based on a parameter space where enough statistics
have been collected, as one can confirm by comparing the figure here with other
figures in the manuscript; specifically, in each bin (characterized by a set of φ and T)
from which the result is averaged, we have collected over ∼100 data points.
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