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Two Receiver Autonomous Integrity Monitoring (RAIM) architectures, Advanced RAIM
(A-RAIM) and Relative RAIM (R-RAIM), are compared with two different RAIM
algorithms, the Classic method and the Multiple Hypothesis Solution Separation (MHSS)
method. The difference between A-RAIM and R-RAIM is in the positioning methods that
produce different error models and projection matrices for integrity monitoring. The
difference between RAIM algorithms lies in the methods of risk distribution. The influences
of different positioning methods on integrity results are analysed in this paper via a
generalized RAIM framework. Simulation results for the LPV-200 service with worldwide
coverage show that the R-RAIM position domain method has the best results, while the
differences between these methods decrease with application of the optimization method.
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1. INTRODUCTION. Classic Receiver Autonomous Integrity Monitoring
(RAIM) with Global Positioning System (GPS) was designed to use single frequency
(GPS L1) to provide support for “en route flight, terminal area flight, non-precision
approach operations” in civil aviation (e.g., Parkinson and Axelrad, 1988; Ochieng
et al., 2003; Wang and Ober, 2009). With modernised GPS/Global Navigation
Satellite System (GNSS) constellations and dual frequency capability, it is expected
that future GNSS will also support “precision approach operations with both lateral
and vertical guidance” for flight at 200 feet (defined as LPV-200) with new integrity
monitoring schemes.
A-RAIM and R-RAIM are proposed as two parallel candidates for future

generation integrity monitoring architectures to test the service availability of LPV-
200 for worldwide coverage with modernized GNSS and augmentation systems
(GEAS, 2008). With double civilian frequencies being transmitted, the ionosphere
error can be measured, and therefore removed from the error source which improves
the precision. The major difference between these two architectures is in the
positioning method such that only the code measurements are used in A-RAIM, and
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both code and time-differenced carrier phase (TDCP) measurements are used in R-
RAIM to ensure higher precision without the necessity of integer ambiguity
resolution. TDCP is used in other applications, such as velocity estimation with
standalone GPS methods (Serrano et al., 2004a, 2004b; van Grass and Soloviev, 2004;
Ding and Wang, 2011). R-RAIM is further divided by the location where
observations from two time epochs are combined together as the range domain R-
RAIM and the position domain R-RAIM which results in different errors and
projection matrices. With advantages in R-RAIM, the trade-off is more complicated
errors and projection matrices, and therefore a more complicated process to transfer
these errors with given risks in RAIM.
By the number of alternative hypotheses, there are two types of RAIM algorithms

for both A-RAIM and R-RAIM: the Classic RAIM method with single alternative
hypothesis (e.g., Lee, 1986; Sturza, 1988; Parkinson and Axelrad, 1988; Pervan, 1996;
Ober, 2003; Hewitson and Wang, 2006, 2007; Wang and Kubo, 2010), and the MHSS
RAIM method (Pervan et al., 1998; Blanch et al., 2007, 2008, 2010, 2012). A brief
comparison of these two RAIM algorithms is provided in Blanch et al. (2008).
In GEAS (2008), the Classic RAIM method is used in range domain R-RAIM, and

the MHSS RAIM method is used in A-RAIM. The MHSS method for position
domain R-RAIM is developed and optimized in Lee (2008) and Lee and McLaughlin
(2008). GEAS (2010) reported updated results with A-RAIM adopted as the major
method and position domain R-RAIM only used when A-RAIM was not available.
The MHSS method was applied on both architectures. Also, the optimization method
developed for MHSS (Blanch et al., 2010) can be applied on A-RAIM. Recent studies
on A-RAIM with the MHSS method can be found in Milner and Ochieng (2010),
Rippl et al. (2011) and Wu et al. (2013) with a validation study in Choi et al. (2011a,
2011b).
To further validate the choice for the purpose of future generation integrity

monitoring, a comparison study was conducted among different RAIM architectures
and algorithms. The comparison of the range domain and position domain R-RAIM
with the Classic RAIM method was conducted in Gratton et al. (2010). With very
similar precision from these two positioning methods, the difference in the integrity
results is caused by different error propagation methods. Another comparison of
A-RAIM and position domain R-RAIM is provided in Jiang and Wang (2011) using
the MHSS method, where the difference in the integrity results is concluded as caused
by both the position precision and propagation of the errors. All existing studies on
A-RAIM and R-RAIM are listed in Table 1.
In the previous work, comparison was conducted under an un-unified RAIM

framework. In this paper, a unified risk definition is used with differences only in the
risk allocation process. A more comprehensive comparison is provided among all
candidate RAIM architectures (A-RAIM, range domain R-RAIM, position domain

Table 1. Existing A-RAIM and R-RAIM Mechanisms.

Architectures Measurements Positioning Algorithms Optimization

A-RAIM Code Stand-Alone MHSS Yes
R-RAIM Range Code and Carrier-Phase Range Domain Classic No
R-RAIM Position Code and Carrier-Phase Position Domain MHSS, Classic Yes
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R-RAIM) with both RAIM algorithms applied (Classic RAIM and MHSS RAIM).
Besides analytical conclusions, a numerical example for LPV-200 is designed to
compare A-RAIM and R-RAIM performances with and without optimization.

2. RECEIVER AUTONOMOUS INTEGRITY MONITORING. With
RAIM being generalized as two steps: risk definition and risk allocation, the first step
is introduced as follows. There are two types of risks defined in civil aviation: the
integrity risk and the continuity risk. The integrity risk is the probability of
Hazardously Misleading Information (PHMI) which is defined as any event where
the position error is greater than the dynamically calculated Vertical Protection Level
(VPL) without any alarm for more than the required Time to Alert (TTA) and the
continuity risk is defined as the probability of any interruption in approach service
(GEAS, 2008). The allocation of risks is as follows where the total PHMI PHMI is first
divided into horizontal component, PHMI,h and vertical component, PHMI,v.

PHMI = PHMI ,h + PHMI ,v (1)
The vertical PHMI is allocated onto each hypothesis as PHMI,i,

PHMI ,v =
∑

PHMI ,i (2)
where i=0,1. . .m for multiple hypotheses and i=0, a for single hypothesis.
The vertical PHMI for each hypothesis PHMI,i is defined as,

PHMI ,i = P{( x̃v| | . VPLi)> ( tsi| | , T)|Hi }PHi (3)
where x̃v is the vertical positioning error; the test statistics tsi for hypothesisHi is tested
against the threshold T. The prior probability of hypothesis Hi is PHi ; i=0,1. . .m for
multiple hypotheses and i=0, a for single hypothesis. The threshold is derived by the
fault free alarm rate Pcont,0,

Pcont,0 = P{ tsi| | . T |H0}PH0 (4)
With the optimal weight, the positioning error and test statistic are known to be
independent, concluded by uncorrelation (Ober, 2003) and multivariate normal
distribution. Equation (3) is expressed as,

PHMI ,i = P{x̃v . VPLi|Hi }P{ tsi| | , T |Hi}PHi (5)
For the fault free case, the probability P{|tsi|<T|H0} is approximated to be 1. Since

x̃v is of central distribution, the VPL under H0 is,

VPL0 = K 1− PHMI ,0

2

( )
σv (6)

where K( ) is the inverse of the cumulative distribution function of a Gaussian
distribution N* (0,1) and σv is the standard deviation of x̃v.
Since the position error is not of central distribution with the non-centrality

parameter in both the position error and test statistic unknown under the faulty case,
the derivation of the VPL is not straightforward. Different RAIM algorithms are
developed to solve this problem.

2.1. The Classic RAIM Algorithm. In the Classic RAIM method, the solution of
VPLa is dependent on the probability of missed detection (PMD) besides the defined
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risks above. The idea is to fix the size of the unknown bias with given fault free alarm
rate and PMD as the Minimal Detectable Bias (Teunissen, 2000), which is then
transferred to the position domain by the slope parameter. The faulty VPL is,

VPLc,a = δ · σss,a + K 1− PHMI ,a

2PHa

( )
σv (7)

where the non-centrality parameter is δ = K(1− Pcont,0
2PH0

) + K(1− Pmd ); The slope

parameter is proved to be equivalent with σss,i which is the standard deviation of the
solution separation x̂v − x̂vi with x̂v as full set solution and x̂vi as the subset solution
with the ith observation removed (Blanch et al., 2010). Also, σss,a=max(σss,i).
The final solution is,

VPLc = max(VPL0,VPLc,a) (8)
2.2. The MHSS RAIM Algorithm. It is not necessary to fix the PMD or the bias

size in the MHSS method. With the solution separation used as the test statistic and
bounded by the threshold, the other part of the position error is the subset position
error that is bounded by the allocated integrity risk. Therefore, the calculation remains
in the position domain. The faulty VPL is,

VPLss,i = K 1− Pcont,0

2PH0

( )
σss,i + K 1− PHMI ,i

2PHi

( )
σi (9)

where σi is the standard deviation of the subset solution error x̃vi.
The final result is,

VPLss = max(VPL0,max(VPLss,i)) (10)

3. A-RAIM AND R-RAIM ARCHITECTURES. The architectures
of A-RAIM and R-RAIM are compared with both the Classic and MHSS RAIM
methods. A bias term is added to both architectures to obtain more conservative
results (GEAS, 2008).

3.1. A-RAIM. The position error with A-RAIM is expressed as,

x̃A = (ATQ−1
A A)−1ATQ−1

A (eA + bA + fA) (11)
where A[Rm×n is the design matrix; eA[ Rm×1 is the random error of the code
measurement used in A-RAIM with distribution N* (0, QA); bA=bE is the bias
term with the scalar component as b and the vector component as the matrix of ones
E [ Rm×1; the fault vector fA is unknown.
Therefore, VPL under H0 is,

VPLA,0 = K 1− PHMI ,0

2PH0

( )
σA + |SA|bmax (12)

where σA =
���������������
[ATQ−1

A A]−1
v,v

√
is the standard deviation of the vertical position error;

SA=[(ATQA
1A)−1ATQA

−1]v is the projection matrix for bias (The notation [ ]v,v stands
for the 3rd column and row of the matrix, and the notation [ ]v means the 3rd row of
the matrix in this paper); bmax=bmE is the bias vector with bm for the integrity
calculation.
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VPL under Ha with the Classic RAIM method is,

VPLA,a = δ · σA,ss,a + K 1− PHMI ,a

2PHa

( )
σA + |SA|bmax (13)

where σA,ss,a=max(σA,ss,i) and σA,ss,i =
����������������������������������
[(SA,i − SA)QA(SA,i − SA)T ]v,v

√
is the stan-

dard deviation of the vertical solution separation, SA,i=[(Ai
TQA,i

− 1Ai)
−1Ai

TQA,i
− 1]v with

Ai and QA,i as the design matrix and covariance matrix with ith observation removed.
VPL under Hi with the MHSS method is (GEAS, 2008; 2010),

VPLA,i = K 1− Pcont,0

2PH0

( )
σA,ss,i+|SA,ss,i|bnom,i + K 1− PHMI ,i

2PHi

( )
σA,i + |SA,i|bmax,i (14)

where the projection matrices for the bias vector is SA,ss,i=SA−SA,i;

σA,i =
����������������
[AT

i Q
−1
A,iAi]−1

v,v

√
is the standard deviation of the vertical subset position error;

bnom,i=bnEi and bmax,i=bmEi, Ei is E with ith element as zero and bn is used for
calculation of accuracy.
Therefore, the finalVPL for A-RAIMunder the Classic and theMHSSmethods are,

VPLA,c = max(VPLA,0,VPLA,a) (15)
VPLA,ss = max(VPLA,0,max(VPLA,i)) (16)

3.2. R-RAIM with the Range Domain Method. The measurements from two
time epochs are added together before position estimation in the range domain R-
RAIM method. The position error is,

x̃r = (ATQ−1
r A)−1ATQ−1

r (e0 + eΔ + b0 + fΔ) (17)
where e0 is the random error of the code measurement for the initial position
estimation with distribution N* (0,Q0) and eΔ is the random error of the TDCP
measurement for the relative position estimation with distribution N* (0,QΔ);
Qr=Q0+QΔ; b0 is the bias vector in the code measurement; fΔ is the fault vector in
the TDCP measurement. The code measurements with GIC (GNSS Integrity
Channel) integrity information are used for initial position estimation at the initial
time t-T to guarantee the integrity. Therefore, it is assumed that no fault exists in the
initial position error. With the difference of carrier phase measurement between two
epochs, the bias is eliminated in the TDCP measurement.
Therefore, VPL under H0 is,

VPLR,r,0 = K 1− PHMI ,0

2PH0

( )
σr + |R0|bmax (18)

where σr =
�������������������
[(ATQ−1

r A)−1]v,v
√

, R0= [(ATQr
−1A)−1ATQr

−1]v is the projection matrix
for the bias vector.
VPL under Ha with the Classic method is (GEAS, 2008; Gratton et al., 2010),

VPLR,r,a = δ · σr,ss,a + K 1− PHMI ,a

2PHa

( )
σr + |R0|bmax (19)

where σr,ss,a=max{σr,ss,i}, σr,ss,i =
������������������������������
[(Ri − R0)Qr(Ri − R0)T ]v,v

√
is the standard devi-

ation of the vertical solution separation with Ri=[(Ai
TQr,i

−1Ai)
−1Ai

TQr,i
−1]v and Qr,i is

Qr with ith row and column eliminated.
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VPL under Hi with the MHSS method is,

VPLR,r,i = K 1− Pcont,0

2PH0

( )
σr,ss,i + |Rss,i|bnom + K 1− PHMI ,i

2PHi

( )
σr,i + |Ri|bmax (20)

where Rss,i=R0−Ri and σr,i =
���������������
[AT

i Q
−1
r,i Ai]−1

v,v

√
is the standard deviation of the vertical

subset position error.
Therefore, the final VPL for the range domain R-RAIM under the Classic and the

MHSS methods are,

VPLR,r,c = max(VPLR,r,0,VPLR,r,a) (21)
VPLR,r,ss = max(VPLR,r,0,max(VPLR,r,i)) (22)

3.3. R-RAIM with the Position Domain Method. In the position domain
method, two measurements from two epochs are estimated individually before being
combined together. The position error at the initial time is,

x̃0 = (AT
0 Q

−1
0 A0)−1AT

0 Q
−1
0 (e0 + b0) (23)

where A0 is the design matrix at the initial time.
With Coasting Time (CT) as T, the relative position error between the initial time

t-T and the current time t is,

x̃Δ =(ATWΔA)−1ATWΔ (eΔ + fΔ − ΔAx̃0)
=SΔ[eΔ + fΔ − ΔAS0 e0 + b0( )] (24)

where ΔA=A−A0 is the geometry change during the CT. Only satellites in view in
common at time epochs of t-T and t are used here; WΔ=(QΔ+QΔA)

−1 with QΔA=ΔA

(A0
TQ0

−1A0)
−1ΔAT; The projection matrices are S0=[(A0

TQ−1
0 A0)

−1A0
TQ0

−1,
SΔ=(ATWΔA)

−1ATWΔ.
The position error is the sum of the errors at two epochs,

x̃p = x̃0 + x̃Δ (25)
Therefore, VPL under H0 is,

VPLR,p,0 = K 1− PHMI ,0

2PH0

( )
σp + |P0|bmax (26)

where P0= [S0−SΔΔAS0]v is the projection matrix for the bias vector; σp =
���������
D[x̃p]v,v

√
,

D(x̃p) = (AT
0 Q

−1
0 A0)−1 + (ATWΔA)−1 − (AT

0 Q
−1
0 A0)−1ΔATST

Δ − SΔΔA(AT
0 Q

−1
0 A0)−1.

VPL under Ha with the Classic method is (Gratton et al., 2010),

VPLR,p,a = δ · σ p,ss,a + K 1− PHMI ,a

2PHa

( )
σp + |P0|bmax (27)

where σp,ss,a=max{σp,ss,i}, σp,ss,i =
�����������������
D(x̂Δ,i − x̂Δ)v,v

√
,D(x̂Δ,i − x̂Δ) = (SΔ,i − SΔ)

(QΔ +QΔA), and SΔ,i=(ATWΔ,iA)
−1 ATWΔ,i, WΔ,i is WΔ with the ith row and column

eliminated.
VPL under Hi with the MHSS method is (Lee, 2008; GEAS, 2010),

VPLR,p,i = K 1− Pcont,0

2PH0

( )
σ p,ss,i + |PΔ,i|bnom + K 1− PHMI ,i

2PHi

( )
σ p,i + |Pi|bmax (28)
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where the projection matrices are Pi=(S0−SΔ,iΔAS0)v, PΔ,i=(SΔ,iΔAS0−SΔΔAS0)v;
the standard deviation is σ p,i =

����������������
D(x̃Δ,i + x̃0)v,v

√
with D(x̃Δ,i + x̃0) = (AT

0 Q
−1
0 A0)−1+

(ATWΔ,iA)−1 − AT
0 Q

−1
0 A0)−1ΔATST

Δ,i − SΔ,iΔA(AT
0 Q

−1
0 A0)−1.

Therefore, the final VPL for position domain R-RAIM under the Classic and the
MHSS methods are,

VPLR,p,c = max(VPLR,p,0,VPLR,p,a) (29)
VPLR,p,ss = max(VPLR,p,0,max(VPLR,p,i)) (30)

4. OPTMIZATION FOR THE CLASSIC AND MHSS RAIM
METHODS. With the total integrity risk given, the way to allocate it onto each
hypothesis is uncertain. To take advantage of this uncertainty, the allocation is
optimized so that VPL derived from each hypothesis is equal. In this way, the final
maximum VPL is minimized. This optimization method is used for the MHSS method
(Lee, 2008; Blanch et al., 2010) by applying VPL0=VPLss,i=VPLss,opt on Equations
(2) (6) and (9). Therefore, the optimized VPL is derived by,

2PH0N −VPLss,opt

σv

( )
+
∑m
i=1

2PHiN −
VPLss,opt − K 1− Pcont,0

2PH0

( )
σss,i

σi





=PHMI ,v (31)

The same method can be used for the Classic RAIM method with
VPL0=VPLc,a=VPLc,opt applied in Equations (2), (6) and (7). And the optimal
VPL can be derived by,

2PH0N −VPLc,opt

σv

( )
+ 2PHaN −VPLc,opt − δ · σss,a

σv

( )
= PHMI ,v (32)

5. COMPARISON OF A-RAIM AND R-RAIM
5.1. Comparison with original Classic and MHSS Methods. Generally, the

difference between A-RAIM and R-RAIM is caused by different positioning
methods. With the same RAIM algorithm, the difference between these architectures
in calculating the upper bound is in the error model and the error projection matrix.
The differences were tested on two RAIM algorithms with different mechanisms to
allocate risks onto the position error. To get explicit numerical results for LPV-200,
the following numerical example was designed.
The definition of the error model for both architectures can be found in GEAS

(2008, 2010). The nominal bias is 0·1 m and the maximum bias is 0·75 m. User Range
Error (URE) is 0·25 m and User Range Accuracy (URA) is 0·5 m. The total integrity
risk is 2×10−7 which is evenly divided into the horizontal and vertical cases. Within
the vertical case, the multiple fault modes are excluded, leaving the single fault and
fault free hypotheses with total integrity risk as 8·7×10−8. The integrity risk is
distributed evenly onto each hypothesis. The prior probability for each single fault
mode is 1×10−5. The prior probability for null hypothesis is approximated as 0. The
total continuity risk is 9·2×10−6 and the probability of the fault free and single fault
modes is 8×10−6. The PMD is 10−3 for the Classic method.
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The almanac data from the standard GPS constellation with 24 satellites is used to
decide the geometry at each location with 5×5 degree grid on the world map at 50 m
altitudes. With the error model described above, results of VPL at each location are
decided with one minute interval for A-RAIM or different CT for R-RAIM within a
24 hour time span. The availability is computed by comparing each VPL value with
the Vertical Alarm Limit (VAL) to decide the final availability for each location. The
percentage of over 99% availability over this time is shown worldwide. The software is
based on the MATLAB Algorithm Availability Simulation Tool (MAAST) by
Stanford University. Figures 1 to 6 and Table 2 are results of LPV-200 availability
from different methods with VAL set at 35 m.
The influence of different positioning methods on different RAIM architectures can

be seen from comparing the columns A/B1/C1 in Table 2 and the influence of different
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Figure 1. 99% Availability with A-RAIM Classic.
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Figure 2. 99% Availability with Range R-RAIM Method. Classic Method.
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RAIM algorithms from the rows of Classic and MHSS RAIM. Based on the results in
Table 2, conclusions may be drawn as follows:

. R-RAIM has better integrity results compared with A-RAIM, and R-RAIM
with CT one minute has better precision results compared with A-RAIM. The
precision results with two R-RAIM positioning methods are very close, but
the position domain method has better integrity results than the range
domain one.

. The Classic method has better integrity results than the MHSS method that can
be explained by a more relaxed integrity requirement for the alternative
hypothesis. With same integrity risk for the faulty case and assumption of even
allocation on each hypothesis, the faulty VPL with the Classic method is derived
by the integrity risk m times the one used in the MHSS method.
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Figure 3. 99% Availability with Position R-RAIM Classic Method.
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Figure 4. 99% Availability with A-RAIM MHSS Method.
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. R-RAIM using the position domain method has a big advantage with the MHSS
method compared with the other options. It is the best choice with the Classic
method, but the difference with the MHSS method is more obvious.

The reason for better integrity results with the R-RAIM position domain method is as
follows. It is assumed that there is only fault in the TDCP measurements and no fault
in the code measurement in the initial time. With the capability to separate the delta
range positioning and initial time positioning in the position domain method, the
continuity risk is only allocated to the delta range position error in the position
domain method instead of the total position error in the other two methods. With
much better precision of the delta range position from the delta carrier phase, the
standard deviation with the continuity risk allocated is much smaller, resulting in
lower VPL and better availability.
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Figure 5. 99% Availability with Range R-RAIM MHSS Method.
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Figure 6. 99% Availability with Position R-RAIM MHSS Method, CT=1min.
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The uncertainty in the R-RAIM architecture is the choice of CT, which will
influence the results by the sampling rate (Jiang et al., 2010). If it is too small, there is
not enough time for the integrity information to transfer. Three different choices of
CT are tested in the following tables with both range and position domain methods.
It can be seen in Tables 3 and 4 that with the increase of the CT for the R-RAIM

method, both the precision and the integrity results degraded, which is found to be
caused by the loss of visible satellites and errors accumulated during the CT.

Table 3. R-RAIM Range with Different CT, VAL=35m.

99% Availability Coverage B1 B2 B3

Vertical Precision <2m 75·54% 69·71% 49·49%
Classic RAIM VPL<35m 85·68% 78·78% 67·87%
MHSS RAIM VPL<35m 35·57% 31·74% 25·12%

Table 4. R-RAIM Position with Different CT, VAL=35m.

99% Availability Coverage C1 C2 C3

Vertical Precision <2m 75·71% 72·7% 56·63%
Classic RAIM VPL<35m 100% 97·83% 92·45%
MHSS RAIM VPL<35m 99·03% 96·5% 91·7%

*B2: R-RAIM\ Range Domain\ CT 2min; B3: R-RAIM\ Range Domain\ CT 3min
*C2: R-RAIM\ Position Domain\ CT 2min; C3: R-RAIM\ Position Domain\ CT 3min

Table 2. 99% Availability with A-RAIM and R-RAIM, VAL=35m.

99% Availability Coverage A B1 C1

Vertical Precision <2m 63·8% 75·54% 75·71%
Classic RAIM VPL<35m 78·46% 85·68% 100%
MHSS RAIM VPL<35m 31·46% 35·57% 99·03%

*A: A-RAIM; B1: R-RAIM\ Range Domain\ CT 1min; C1: R-RAIM\ Position Domain\ CT 1min.

Table 5. A-RAIM and R-RAIM with Optimization, VAL=10m.

99% Availability Coverage A B1 C1

Classic RAIM 8·61% 16·38% 22·54%
MHSS RAIM 10·52% 20·34% 23·14%

Table 6. A-RAIM and R-RAIM with Optimization, VAL=15m.

99% Availability Coverage A B1 C1

Classic RAIM 97·47% 97·22% 97·66%
MHSS RAIM 97·6% 96·49% 97·61%
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5.2. Comparison with Optimization. The optimization method described in
Section 4 is applied on each candidate and simulation results are shown in Tables 5
and 6.
Most of the VPL value is less than 15m after optimization from Table 6.

Comparing the results in Tables 5 and 6 with the original results in Table 2, this
optimization method is more effective on the MHSS method. The differences among
different RAIM architectures and between RAIM algorithms after optimization are
much smaller than the original ones.

6. CONCLUSION. With the same definition of integrity risk and continuity
risk, the Classic Receiver Autonomous Integrity Monitoring (RAIM) method has
better integrity results than the Multiple Hypothesis Solution Separation (MHSS)
RAIM method with architectures of Advanced RAIM (A-RAIM) and Relative
RAIM (R-RAIM). However, MHSS RAIM has the potential to accommodate more
complicated failure modes with the multiple hypothesis structure. With the same
RAIM algorithm, the R-RAIM position domain method has the best integrity results.
The advantage of using this method is most obvious with theMHSS method. Coasting
time for R-RAIM in this simulation is found to be better around one minute. With a
longer coasting time period, the results deteriorate with lost satellites and accumulated
errors. After optimization, VPL value reduces greatly with improved availability. This
optimization method has a more obvious effect on the MHSS method. With better
integrity results, the disadvantages of R-RAIM include the uncertainty of the coasting
time and a heavier computation burden.

ACKNOWLEDGEMENTS

The first author is sponsored by the Chinese Scholarship Council for her PhD studies at the
University of New South Wales, Australia.

REFERENCES

Blanch, J., Ene, A., Walter, T. and Enge, P. (2007). An Optimized Multiple Hypothesis RAIM Algorithm
for Vertical Guidance, ION GNSS 2007, Fort Worth, TX.

Blanch, J., Walter, T. and Enge, P. (2008). A Simple Algorithm for Dual Frequency Ground Monitoring
Compatible with ARAIM, Proceedings of the 21st International Technical Meeting of the Satellite
Division of The Institute of Navigation (ION GNSS 2008), Savannah, GA, 1911–1917.

Blanch, J., Walter, T. and Enge, P. (2010). RAIM with Optimal Integrity and Continuity Allocations under
Multiple Failures, Aerospace and Electronic Systems, IEEE Transactions on, 46(3),1235–1247.

Blanch, J., Walter, T. and Enge, P. (2012). Optimal Positioning for Advanced RAIM, Proceedings of the
2012 International Technical Meeting of The Institute of Navigation, Newport Beach, CA, 1624.

Choi, M., Blanch, J., Walter, T. and Enge, P. (2011a). Advanced RAIM Demonstration Using Four
Months of Ground Data, Proceedings of the 2011 International Technical Meeting of The Institute of
Navigation, San Diego, CA, 279–284.

Choi, M., Blanch, J., Akos, D., Heng, L., Gao, G., Walter, T. and Enge, P. (2011b). Demonstrations of
Multi-constellation Advanced RAIM for Vertical Guidance Using GPS and GLONASS Signals,
Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of
Navigation (ION GNSS 2011), Portland, OR, 3227.

Ding, W. and Wang, J. (2011). Precise velocity estimation with a stand-alone GPS receiver, Journal of
Navigation, 64(2): 311–325.

GEAS (2008). GNSS Evolutionary Architecture Study, GEAS Phase I – Panel Report, FAA.

60 YIPING JIANG AND JINLING WANG VOL. 67

https://doi.org/10.1017/S0373463313000507 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000507


GEAS (2010). GNSS Evolutionary Architecture Study, GEAS Phase II – Panel Report, FAA.
Gratton, L., Mathieu, J. and Boris, P. (2010). Carrier Phase Relative RAIM Algorithms and Protection
Level Derivation, Journal of Navigation, 63(2), 215–231.

Hewitson, S. and Wang, J. (2006). GNSS receiver autonomous integrity monitoring (RAIM) performance
analysis, GPS Solutions, 10(3), 55–170.

Hewitson, S. and Wang, J. (2007). GNSS Receiver Autonomous Integrity Monitoring (RAIM) with a
dynamic model, Journal of Navigation, 60(2), 247–263.

Jiang, Y., Wang,, J., Knight, N. and Ding, W. (2010). Optimization of position domain relative RAIM for
weak geometries, 23rd Int. Tech. Meeting of the Satellite Division of the U.S. Inst. of Navigation, Portland,
Oregan, USA, 2182–2189.

Jiang, Y. and Wang, J. (2011). A-RAIM vs. R-RAIM: A Comparative Study. IGNSS Symp., Sydney,
Australia, paper 154.

Lee, Y.C. (1986). Analysis of Range and Position Comparison Methods as a Means to Provide GPS
Integrity in the User Receiver. In: Global Positioning System, Vol. 5. The Institute of Navigation,
Fairfax, Virginia, 5–19.

Lee, Y.C. (2008). Optimization of Position Domain Relative RAIM, ION GNSS 2008, Savannah.
Lee, Y.C. and McLaughlin, M. (2008). A Position Domain Relative RAIM Method, Proceedings of the
IEEE/ION PLANS 2008 Conference, Monterey, California.

Milner, C. and Ochieng, W. (2010). ARAIM for LPV-200: The Ideal Protection Level, Proceedings of the
23rd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS
2010), Portland, OR, 3191–3198.

Ober, P.B. (2003). Integrity Prediction and Monitoring of Navigation Systems, PhD Thesis. TU Delft.
Ochieng, W.Y., Sauer, K., Walsh, D., Brodin, G., Griffin, S. and Denney, M. (2003). GPS Integrity and
Potential Impact on Aviation Safety. Journal of Navigation, 56(1), 51–65.

Parkinson, B.W. and Axelrad, P. (1988). Autonomous GPS Integrity Monitoring Using the Pseudorange
Residual, Navigation, 35(2), 255–74.

Pervan, B. S. (1996). Navigation integrity for aircraft precision landing using the global positioning system,
Thesis (Ph.D.), Stanford University.

Pervan, B., Pullen, S. and Christie, J. (1998). A Multiple Hypothesis Approach to Satellite Navigation
Integrity, Navigation, 45(1), 61–71.

Rippl, M., Spletter, A. and Günther, C. (2011). Parametric Performance Study of Advanced Receiver
Autonomous Integrity Monitoring (ARAIM) for Combined GNSS Constellations, Proceedings of the
2011 International Technical Meeting of The Institute of Navigation, San Diego, CA, 285–295.

Serrano, L., Kim, D. and Langley, R. B. (2004a). A single GPS receiver as a real-time, accurate velocity and
acceleration sensor. ION GNSS 17th international technical meeting of the satellite division, Long Beach
CA. 2021–2034.

Serrano, L., Kim, D., Langley, R. B., Itani, K. and Ueno, M. (2004b). A GPS velocity sensor: How accurate
can it be? –A first look. ION NTM 2004, San Diego CA. 875–885.

Sturza, M.A. (1988). Navigation System Integrity Monitoring Using Redundant Measurements.
Navigation, 35, 483–501.

Teunissen, P.J.G. (2000). Testing Theory, An Introduction, VSSD, Delf.
Van Graas, F. and Soloviev, A. (2004). Precise Velocity Estimation Using a Stand-Alone GPS Receiver,
Navigation, 51(4), 283–292.

Wang, J. and Kubo, Y. (2010). GNSS Receiver Autonomous Integrity Monitoring, In: (Eds. Sugimoto, S &
R. Shibasaki): GPS Handbook, Asakura, Tokyo, ISBN978-4-254-20137-6, 197–207.

Wang, J. and Ober, P.B. (2009). On the Availability of Fault Detection and Exclusion in GNSS Receiver
Autonomous Integrity Monitoring, Journal of Navigation, 62(2), 251–261.

Wu, Y., Wang, J. and Jiang, Y. (2013). Advanced receiver autonomous integrity monitoring (ARAIM)
schemes with GNSS time offsets, Advances in Space Research, 52(1): 52–61.

61A-RAIM AND R-RAIM PERFORMANCENO. 1

https://doi.org/10.1017/S0373463313000507 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000507

