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Abstract We consider abstract Sobolev spaces of Bessel-type associated with an operator. In this work,
we pursue the study of algebra properties of such functional spaces through the corresponding semigroup.
As a follow-up to our previous work, we show that by making use of the property of a ‘carré du champ’
identity, this algebra property holds in a wider range than previously shown.
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1. Introduction

1.1. Setting

Let (M,d) be a locally compact separable metric space, equipped with a Borel measure
μ, finite on compact sets and strictly positive on any non-empty open set. For Ω a
measurable subset of M , we denote μ(Ω) by |Ω|. For all x ∈ M and all r > 0, denote
by B(x, r) the open ball for the metric d with centre x and radius r, and by V (x, r)
its measure |B(x, r)|. For a ball B of radius r and a real λ > 0, denote by λB the ball
concentric with B and with radius λr. We will sometimes denote by r(B) the radius
of a ball B. We will use u � v to say that there exists a constant C (independent of
the important parameters) such that u ≤ Cv, and u � v to say that u � v and v � u.
Moreover, for Ω ⊂ M a subset of finite and non-vanishing measure and f ∈ L1

loc(M,μ),
−
∫
Ω

f dμ = (1/|Ω|) ∫
Ω

f dμ denotes the average of f on Ω.
From now on, we assume that (M,d, μ) is a doubling metric measure space, which

means that the measure μ satisfies the doubling property, that is

V (x, 2r) � V (x, r), ∀x ∈ M, r > 0. (VD)
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As a consequence, there exists ν > 0 such that

V (x, r) �
(

r

s

)ν

V (x, s), ∀ r ≥ s > 0, x ∈ M. (VDν)

We then consider an unbounded operator L on L2(M,μ), as well as an ‘abstract’ notion
of gradient operator Γ under the following assumptions.

Assumptions on L and Γ.

• Assume that L is an injective, ω-accretive operator with dense domain D ⊂ L2(M,μ),
where 0 ≤ ω < π/2. Assume that there exists a bilinear operator Γ, with domain
F × F for some subset F of L2(M,μ), with D ⊂ F .

• For every f ∈ F , we set Γ(f) := |Γ(f, f)|1/2 and assume that Γ satisfies the inequality

|Γ(f, g)| ≤ Γ(f)Γ(g), ∀f, g,∈ F . (1.1)

Moreover, assume that

‖Γf‖2 � ‖L1/2f‖2, ∀f ∈ D. (R2)

• Assume that the semigroup (e−tL)t>0 admits a kernel representation with a kernel
pt satisfying the upper Gaussian pointwise estimates

|pt(x, y)| � 1
V (x,

√
t)

exp
(
− d2(x, y)

Ct

)
, ∀ t > 0, almost everywhere x, y ∈ M.

(UE)

• Assume that the semigroup (e−tL)t>0 and its gradient satisfy L2 Davies–Gaffney
estimates, which means that for every r > 0 and all balls B1,B2 of radius r

‖e−r2L‖L2(B1)→L2(B2) + ‖rΓe−r2L‖L2(B1)→L2(B2) � e−c(d2(B1,B2)/r2). (DG)

By our assumptions, (e−tL)t>0 is bounded analytic on Lp(M,μ) for p ∈ (1,∞) and
uniformly bounded on Lp(M,μ) for p ∈ [1,∞], see [5, Corollary 1.5]. Note that (DG) for
the semigroup is a consequence of (UE). By analyticity of the semigroup, the property
(UE), and thus also (DG), extends to the collections ((tL)ne−tL)t>0 for every integer
n ≥ 0. The operator Γ is a sublinear operator, acting like the length of the gradient on a
Riemannian manifold.

We also assume that Γ and L are related by a weak version of a ‘carré du champ’
identity.

‘Carré du champ’ identity. Assume that Γ and L satisfy the following: for every
t > 0 and all functions f, g ∈ L∞(M,μ) ∩ D

e−tLL(fg) = e−tL[Lf · g] + e−tL[f · Lg] − 2 e−tLΓ(f, g). (1.2)

This equality can be viewed in L2
loc(M,μ), since for functions f, g chosen as above, we

know that Γ(f, g) ∈ L1(M,μ) and so the left-hand side and right-hand side are both
locally in L2(M,μ) owing to (UE).
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Remark 1.1.

• Note that the full ‘carré du champ’ identity, which is

L(fg) = Lf · g + f · Lg − 2Γ(f, g), (1.3)

is stronger than the previous assumption. It is not clear on which set of functions
such an identity may be assumed.

• Let us emphasize that the proofs developed in the next sections do not really require
the exact identity (1.2). It would be sufficient to assume only the following inequality:
for every t > 0 and all functions f, g ∈ L∞(M,μ) ∩ D

|e−tLL(fg) − (e−tL[Lf · g] + e−tL[f · Lg])| � |e−tLΓ(f, g)|. (1.4)

We will assume the above throughout the paper. We abbreviate the setting with
(M,μ,Γ, L).

1.2. The algebra property

Following up on [4], we aim to prove that the (Bessel-type) Sobolev spaces satisfy an
algebra property under our assumptions. This property is very well understood in the
Euclidean space and goes back to initial works by Strichartz [13], Kato and Ponce [9],
and then Coifman and Meyer [6,11] using the paraproduct decomposition. We refer the
reader to [4] and references therein for a more complete review of the literature on this
topic. This algebra property and the corresponding Leibniz rule are crucial in order to
study nonlinear partial differential equations.

In the current work, we describe how the ‘carré du champ’ property allows us to
improve on the main results of [4]. Note that the ‘carré du champ’ identity combined
with (1.1) encodes an algebra property of the order of regularity 1, since the operator Γ
(respectively L) is implicitly an operator of order 1 (respectively 2). We will show how
to deduce algebra properties of fractional order from this.

Let us first give a rigorous sense of what we mean by the algebra property for Sobolev
spaces. We follow the approach of [4]. Denote by C0(M) the space of continuous functions
on M which vanish at infinity, with C := C0(M) ∩ F . We define L̇p

α(M,L, μ) ∩ L∞(M,μ)
as the completion of

{f ∈ C, Lα/2f ∈ Lp(M,μ)}
with respect to the norm ‖Lα/2f‖p + ‖f‖∞. In the following, we denote ‖Lα/2f‖p by
‖f‖p,α.

Let us recall our definition of the algebra property A(p, α) from [4, Definition 1.1].

Definition 1.2. For α > 0 and p ∈ (1,∞), we say that property A(p, α) holds if:

• the space L̇p
α(M,L, μ) ∩ L∞(M,μ) is an algebra for the pointwise product; and

• the Leibniz rule inequality is valid:

‖fg‖p,α � ‖f‖p,α‖g‖∞ + ‖f‖∞‖g‖p,α, ∀f, g ∈ L̇p
α(M,L, μ) ∩ L∞(M,μ).
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1.3. Main result

For p ∈ [1,∞], we say that the semigroup satisfies gradient bounds (Gp) if

sup
t>0

‖√tΓe−tL‖p→p < ∞. (Gp)

Let us observe that by (R2) and (UE), it is classical that our previous assumptions already
imply (Gp) for p ∈ (1, 2].

Our main result reads as follows.

Theorem 1.3. Let (M,μ,Γ, L) as in § 1.1 with a homogeneous dimension ν > 2.
Assume in addition (Gp0) for some p0 ∈ [2, ν). Then A(p, α) holds for every p ∈ (1, p0)
with α ∈ (0, 1), and for every p ∈ (p0,∞) with 0 < α < (p0/p).

The condition p0 < ν is not relevant and not used, but for p0 > ν the result was already
obtained in [4] in a more general framework. That is why we restrict our attention here
to the range 2 ≤ p0 < ν.

We use a slightly different decomposition of the product than in [4]. Indeed in [4], the
product of two functions was decomposed into two paraproducts. Here, we decompose
it into three terms (two paraproducts and a ‘resonant part’). The two paraproducts are
completely uncritical, whereas the third one carries the most subtle information encoded
in the resonances. The ‘carré du champ’ identity now allows us to handle this third part
in a better way. This allows us to improve over [4] in the case p > 2.

Proof. The theorem will be proved in the following sections. The proof makes use
of Stein’s complex interpolation between the two endpoints (α, p) = (1, p0) and (α, p) =
(0,∞).

The case p ∈ (1, p0) is obtained as the combination of the paraproduct decompositions
(3.1) and (3.2) with the boundedness results of Propositions 3.2, 3.7 and 3.8. The case
p ∈ [p0,∞) is shown by combining the paraproduct decompositions (3.1) and (3.2) with
the boundedness results of Propositions 3.2 and 3.9. �

1.4. Comparison with previous results and examples

Let us compare this result with what we have previously obtained in [4, Theorem 1.5].
First, let us mention that even if [4] was written in the setting of a Dirichlet form (which
is a particular case of our current setting here), all of the results in [4] could be described
in our present setting, without assuming the ‘carré du champ’ identity, with identical
proofs. The extra main property used in [4] (instead of (1.2)) is the following inequality

∣∣∣∣
∫

Lf · g dμ

∣∣∣∣ �
∫

Γf · Γg dμ (1.5)

for all functions f, g ∈ F .
Let us now compare our result with that of [4].

• The two approaches rely on the same framework given by a ‘gradient’ operator Γ
satisfying a Leibniz rule and a semigroup (e−tL)t>0. The main difference is that [4]
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required (1.5), whereas here we assume (1.2) or in fact the weaker version (1.4). We
first observe that in the case of a self-adjoint and conservative operator L, integrating
(1.4) implies exactly (1.5). So our current assumption is stronger than the one used
in [4] and corresponds to a pointwise version; it is therefore natural that we are able
to obtain a wider range of exponents. To be more precise, for p > p0 we improve the
range α ∈ (0, 1 − ν((1/p0) − (1/p))) (obtained in [4]) to α ∈ (0, (p0/p)).

• Moreover, we only detail the proofs of [4] and of the current work in the setting
where the semigroup is supposed to satisfy (UE), which corresponds to pointwise
(or L1–L∞) local estimates. However, it is by now well known that all the employed
arguments can be extended to a more general framework, where the semigroup is only
assumed to have local Lp−–Lp+ estimates for some p− < 2 < p+. In such a situation,
the condition on the exponents α, p such that A(α, p) can be proved will depend on
p−, p+. A careful examination reveals the following difference: in [4], we make appear
only one Γ operator, evaluated on a product, and then use a Leibniz property. In
the current work, the ‘carré du champ’ identity (1.2) makes appear the product of
two Γ operators. So, combining the Γ operator (on which we assume Lp−–Lp0 local
estimates through (Gp0)) and the local Lp−–Lp+ estimates on the semigroup will then
lead to more restrictions in the current setting than in [4]. Thus, from this point of
view, it is also natural that we can obtain a wider range for the Sobolev algebra
property, because of our stronger assumption.

As a conclusion of the comparison, our previous work [4] and this current one are both
interesting in themselves, and each of them presents results in its proper framework. If
one can fit into the current framework, then it is better to follow the current approach,
where we develop a simpler proof for the range (1, p0] and a wider range for p > p0 by
taking advantage of the ‘carré du champ’ identity. However, [4] explains how we can still
prove the algebra property in a more general setting, yet with a smaller range.

Let us now describe some examples where the extra assumption in terms of the ‘carré
du champ’ identity is satisfied.

• The Dirichlet form setting (as detailed in [4]) with a ‘carré du champ’. In such a
case, the ‘carré du champ’ operator Γ satisfies the ‘strong’ (pointwise) identity (1.3),
as well as (1.1).

• In the Euclidean setting M = R
n (or more generally in a doubling Riemannian mani-

fold), consider A = A(x) a complex matrix-valued function with bounded measurable
coefficients, satisfying the ellipticity (or accretivity) condition

λ|ξ|2 ≤ �〈A(x)ξ, ξ〉 and |〈A(x)ξ, ζ〉| ≤ Λ|ξ||ζ|, (1.6)

for some constants λ,Λ > 0 and every x ∈ R
n, ξ, ζ ∈ R

n.
For such a complex matrix-valued function A, we may define a second-order

divergence form operator

L = LAf := −div(A∇f),
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which we first interpret in the sense of maximal accretive operators via a sesquilinear
form. That is, D(L) is the largest subspace contained in W 1,2 := D(∇) for which

∣∣∣∣
∫

M

〈A∇f,∇g〉dμ

∣∣∣∣ ≤ C‖g‖2, ∀g ∈ W 1,2,

and we define Lf by

〈Lf, g〉 =
∫

M

〈A∇f,∇g〉dμ

for f ∈ D(L) and g ∈ W 1,2. Thus defined, L = LA is a maximal-accretive operator
on L2, and D(L) is dense in W 1,2.

For such an operator we have the pointwise ‘carré du champ’ identity (1.3) with
the operator

Γ(f, g) := �〈A∇f,∇g〉.
The ellipticity condition then implies (1.1).

• In the case of a non-self-adjoint operator L, we can also consider the following exam-
ple: in the Euclidean space, associated with a rather singular function a, consider
the operator L(f) = −Δ(af). It is non-self-adjoint and non-conservative, but some
of the arguments of [4] or those developed here can be used, if we can prove (UE)
and (DG). We refer the reader to [10] (extended to a doubling setting in [7]), where
it is proven that if the measurable function a has an accretive real part, then the
semigroup e−tL∗

satisfies (UE) and by duality it is also true for e−tL. Combining this
with Riesz transform estimates in L2 also gives L2 Davies–Gaffney estimates (DG)
for the operator L.
For such an operator, it is interesting to observe that assumption (1.5) (used for [4])
relies on a Lipschitz condition on a, although the assumption (1.4) (used here) will
require a C2-condition on a.

2. Technical preliminaries

Let us give some notation and a few reminders about certain operators constructed from
the functional calculus of L. Refer to [4] for more details. We first define approximation
operators, which are the elementary objects to build a paraproduct associated with a
semigroup.

Definition 2.1. Let N ∈ N, N > 0, and set cN =
∫ +∞
0

sNe−s (ds/s). For t > 0, define

Q
(N)
t := c−1

N (tL)Ne−tL (2.1)

and

P
(N)
t := φN (tL), (2.2)

with φN (x) := c−1
N

∫ +∞
x

sNe−s (ds/s), x ≥ 0.

Let us define some suitable sets of test functions. Recall that C := C0(M) ∩ F .
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Definition 2.2. For p ∈ (1,+∞), we define the set of test functions

Sp = Sp(M,L) := {f ∈ C ∩ Lp : ∃ g, h ∈ L2 ∩ Lp, f = Lg and h = Lf},
and

S = ∪p∈(1,+∞)Sp.

We recall from [4, Proposition 2.13] that (UE) implies square function estimates for
Q

(N)
t in Lp.

Lemma 2.3. Let p ∈ (1,∞), N ∈ N and α > 0. Under (UE), one has

∥∥∥∥
( ∫ ∞

0

|(tL)αP
(N)
t f |2 dt

t

)1/2∥∥∥∥
p

� ‖f‖p

for all f ∈ Lp(M,μ).

A direct consequence of the above is the following orthogonality lemma. See [4, Lemma
2.15] for a slightly less general version.

Lemma 2.4. Let p ∈ (1,∞), N ∈ N and α > 0. Assume (UE). Then

∥∥∥∥
∫ +∞

0

(tL)αP
(N)
t Ft

dt

t

∥∥∥∥
p

�
∥∥∥∥
(∫ +∞

0

|Ft|2 dt

t

)1/2∥∥∥∥
p

,

where Ft(x) := F (t, x), F : (0,+∞) × M → R is a measurable function such that the
right-hand side has a meaning and is finite.

Under the additional assumption (Gp0) for some p0 > 2, one also has square function
estimates involving Γ.

Lemma 2.5. Let N ∈ N and α ∈ (0, 1). Assume (Gp0) for some p0 ∈ (2,∞).Then for
every p ∈ (1, p0),

∥∥∥∥
(∫ ∞

0

|√tΓ(tL)−α/2P
(N)
t f |2 dt

t

)1/2∥∥∥∥
p

� ‖f‖p

for all f ∈ Lp(M,μ).

Proof. The proof of [4, Proposition 2.14] has to be adapted as follows. By writing

P
(N)
t f =

∫ ∞

t

Q(N)
s f

ds

s
,

one has the pointwise estimate

|√tΓ(tL)−α/2P
(N)
t f | ≤

∫ ∞

t

(
t

s

)(1−α)/2

|√sΓ(sL)−α/2Q(N)
s f | ds

s
.
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Since α ∈ (0, 1), Hardy’s inequality yields

( ∫ ∞

0

|√tΓ(tL)−α/2P
(N)
t f |2 dt

t

)1/2

�
(∫ ∞

0

|√tΓ(tL)−α/2Q
(N)
t f |2 dt

t

)1/2

.

Having this pointwise inequality, one can proceed as before in [4, Proposition 2.14]. �

3. Main result

From now on, fix D ∈ N in the definition of Q
(D)
t and P

(D)
t sufficiently large (D > 4ν will

suffice), and write Qt := Q
(D)
t and Pt := P

(D)
t .

We define paraproducts associated with the underlying operator L. Note, however, that
the definitions differ from those in [4].

For g ∈ L∞(M,μ), we define the paraproduct Πg on S by

Π(D)
g (f) = Πg(f) :=

∫ ∞

0

Pt(Qtf · Ptg)
dt

t
, f ∈ S.

For every p ∈ (1,∞) and every f ∈ Sp, the integral is absolutely convergent in
Lp(M,μ). We refer the reader to [4, § 3] for the details, noting that (Pt)t>0 is bounded
uniformly in Lp(M,μ).

We define the resonant term Π on S by

Π(D)(f, g) = Π(f, g) :=
∫ ∞

0

Qt(Ptf · Ptg)
dt

t
, f, g ∈ S.

We discuss the question of absolute convergence of the integral in Π(f, g) after
Proposition 3.2.

Lemma 3.1 (product decomposition). For every p ∈ (1,∞) and every f, g ∈ Sp,
we have the product decomposition

fg = Π(f, g) + Πg(f) + Πf (g) in Lp(M,μ). (3.1)

Proof. Since Sp ⊆ L∞(M,μ), we have f · g, Ptf · Ptg ∈ Lp(M,μ). We recall from
[4, Proposition 2.11, Lemma 3.1] that in the Lp sense, f · g = limt→0 Ptf · Ptg and
0 = limt→∞ Ptf · Ptg, where the latter makes use of our assumption N(L) = {0}. The
same arguments then also imply that

f · g = lim
t→0

Pt(Ptf · Ptg),

0 = lim
t→∞Pt(Ptf · Ptg)

https://doi.org/10.1017/S0013091518000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091518000214


Sobolev algebras through a ‘carré du champ’ identity 1049

in the Lp sense. Since Pt and Qt are defined such that Qt = −t∂tPt, we obtain

fg = lim
t→0

Pt(Ptf · Ptg) − lim
t→∞Pt(Ptf · Ptg) = −

∫ ∞

0

∂t(Pt(Ptf · Ptg)) dt

=
∫ ∞

0

Qt(Ptf · Ptg)
dt

t
+

∫ ∞

0

Pt(Qtf · Ptg)
dt

t
+

∫ ∞

0

Pt(Ptf · Qtg)
dt

t
,

which is the stated decomposition. �

The critical term in the product decomposition is the resonant term Π(f, g). We have
shown already in [4, Proposition 3.3] that the paraproduct Πg(f) is bounded in L̇p

α for
all α ∈ (0, 1), with no assumption other than (UE). Notably, the result remains true for
α ≥ 1.

Proposition 3.2. Let p ∈ (1,∞), α ∈ (0, 1) and g ∈ L∞(M,μ). Then Πg is well
defined on Sp for every f ∈ Sp

‖Πg(f)‖p,α � ‖f‖p,α‖g‖∞.

Let us now consider the resonant term Π(f, g). We use the assumed ‘carré du champ’
identity (1.2) to write, with Q̃t := (tL)−1Qt,

Π(f, g) =
∫ ∞

0

(tL)−1QttL(Ptf · Ptg)
dt

t

=
∫ ∞

0

Q̃t(tLPtf · Ptg)
dt

t
+

∫ ∞

0

Q̃t(Ptf · tLPtg)
dt

t

− 2
∫ ∞

0

Q̃tΓ(
√

tPtf,
√

tPtg)
dt

t
. (3.2)

For the first term, one can use the same arguments as for Πg(f) to show that for
p ∈ (1,∞), g ∈ L∞(M,μ) and f ∈ Sp, the integral converges absolutely in Lp(M,μ). By
interchanging the roles of f and g, the same holds true for the second term. In the
third term, for every 0 < ε < R < ∞, the finite integral

∫ R

ε
is well defined. The results of

Propositions 3.5 and 3.8 below, in particular, imply that the integral converges absolutely
in Lp(M,μ).

Instead of showing the boundedness of Π(f, g) in L̇p
α directly, we first show its bound-

edness in Lq(M,μ) for large q < ∞, and then interpolate with L̇p0
1 , where p0 is chosen

such that (Gp0) holds.
With the same arguments as in the proof of Proposition 3.2, one immediately obtains

the Lp boundedness of the first term in (3.2). See the proof of [4, Proposition 3.3].

Lemma 3.3. Assume (UE). Let p ∈ (1,∞). Then for every f ∈ Lp(M,μ) and every
g ∈ L∞(M,μ), we have∥∥∥∥

∫ ∞

0

Q̃t(tLPtf · Ptg)
dt

t

∥∥∥∥
p

� ‖f‖p‖g‖∞.
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For the second term, we obviously obtain the symmetric result in f and g. But it is
also possible to interchange the roles of f and g.

Lemma 3.4. Assume (UE). Let p ∈ (1,∞). Then for every g ∈ Lp(M,μ) and every
f ∈ L∞(M,μ), we have

∥∥∥∥
∫ ∞

0

Q̃t(tLPtf · Ptg)
dt

t

∥∥∥∥
p

� ‖f‖∞‖g‖p.

A result of this kind was already proven in [8, Theorem 4.2]. For the convenience of
the reader we give a (different) proof here.

Proof. By Lemma 2.4 applied to Tt = Q̃t and [4, Theorem 2.17], we have for every
q ∈ (p,∞), with the notation as in [4],

∥∥∥∥
∫ ∞

0

Q̃t(tLPtf · Ptg)
dt

t

∥∥∥∥
p

�
∥∥∥∥
(∫ ∞

0

|tLPtf · Ptg|2 dt

t

)1/2∥∥∥∥
p

� ‖N∗(Ptg)‖p‖Cq(tLPtf)‖∞.

We let the reader check that a simple adaptation of [4, Lemma 4.4(a)] yields
‖N∗(Ptg)‖p � ‖g‖p. Similarly, one can modify the proof of [4, Lemma 4.4(b)] for the
second estimate. To do so, note that by our assumptions,

∥∥∥∥
(∫ ∞

0

|tLPtf |2 dt

t

)1/2∥∥∥∥
q

� ‖f‖q,

and (tLPt)t>0 satisfies Lq off-diagonal estimates of any order. Using this, one obtains
‖Cq(tLPtf)‖∞ � ‖f‖∞. �

In order to treat the third term in (3.2), we define the operator ΠΓ on S by

ΠΓ(f, g) :=
∫ ∞

0

Q̃tΓ
(√

tPtf,
√

tPtg
) dt

t
, f, g ∈ S.

Proposition 3.5. Assume (UE). Let p ∈ (2,∞), and let g ∈ L∞(M,μ). Then ΠΓ( . , g)
is well defined on Lp(M,μ) for every f ∈ Lp(M,μ)

‖ΠΓ(f, g)‖p � ‖f‖p‖g‖∞.

Proof. We can write Q̃t = (tL)−1Q
(D)
t = [c−1

D (tL)D−1e−t/2L]e−t/2L =: ˜̃QtP
(1)
t/2 . By

Lemma 2.4 with Tt = ˜̃Qt in the first step, Minkowski’s inequality in the second step,
(UE) and (1.1) in the third step, and the Cauchy–Schwarz inequality in the last step, we
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obtain

‖ΠΓ(f, g)‖p �
∥∥∥∥
( ∫ ∞

0

|P (1)
t/2Γ(

√
tPtf,

√
tPtg)|2 dt

t

)1/2∥∥∥∥
p

�
∞∑

j=0

∥∥∥∥x �→
(∫ ∞

0

|P (1)
t/21Sj(B(x,

√
t))Γ(

√
tPtf,

√
tPtg)|2 dt

t

)1/2∥∥∥∥
p

�
∞∑

j=0

2−2jN2jν

∥∥∥∥x �→
( ∫ ∞

0

(
−
∫

B(x,2j
√

t)

|√tΓPtf | · |
√

tΓPtg|dμ

)2 dt

t

)1/2∥∥∥∥
p

�
∞∑

j=0

2−2jN2jν

∥∥∥∥x �→
( ∫ ∞

0

(
−
∫

B(x,2j
√

t)

|√tΓPtf |2 dμ

)

×
(
−
∫

B(x,2j
√

t)

|√tΓPtg|2 dμ

)
dt

t

)1/2∥∥∥∥
p

. (3.3)

For all j ≥ 0 and x ∈ M , L2 off-diagonal estimates for (
√

tΓPt)t>0 (see (DG)) yield
(
−
∫

B(x,2j
√

t)

|√tΓPtg|2 dμ

)1/2

≤
∞∑

k=0

(
−
∫

B(x,2j
√

t)

|√tΓPt(1Sk(B(x,2j
√

t))g)|2 dμ

)1/2

�
(
−
∫

B(x,2j
√

t)

|g|2 dμ

)1/2

+
∞∑

k=1

(
1 +

(2j+k
√

t)2

t

)−N

2kν/2

×
(
−
∫

B(x,2j+k
√

t)

|g|2 dμ

)1/2

� ‖g‖∞. (3.4)

Using this estimate in (3.3), we get

‖ΠΓ(f, g)‖p � ‖g‖∞
∞∑

j=0

2−2jN2jν

∥∥∥∥x �→
(∫ ∞

0

−
∫

B(x,2j
√

t)

|√tΓPtf |2 dμ
dt

t

)1/2∥∥∥∥
p

= ‖g‖∞
∞∑

j=0

2−2jN2jν‖√tΓPtf‖T p,2
2j (M),

where T p,2
2j (M) denotes the tent space with angle 2j and appropriate elliptic

scaling. By change of angle in tent spaces [2, Theorem 1.1], ‖√tΓPtf‖T p,2
2j (M) �

2jν/2‖√tΓPtf‖T p,2(M) for all p ≥ 2. On the other hand, it is known – from, for example,
[3, Theorem 3.1] (which extends to our setting) – that

√
tΓPt satisfies a conical square

function estimate for p ≥ 2. Thus, we finally obtain

‖ΠΓ(f, g)‖p � ‖g‖∞
∞∑

j=0

2−2jN2jν2jν/2‖√tΓPtf‖T p,2(M) � ‖f‖p‖g‖∞. �
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Putting Lemmas 3.3 and 3.4 and Proposition 3.5 together, we obtain the following
corollary.

Corollary 3.6. Assume (UE). Let p ∈ (2,∞), and let g ∈ L∞(M,μ). Then Π( . , g) is
well defined on Lp(M,μ) for every f ∈ Lp(M,μ)

‖Π(f, g)‖p � ‖f‖p‖g‖∞.

The above result provides us with the required result at one of the endpoints in the
interpolation. Let us now consider the other endpoint.

One of the terms in (3.2) can be estimated in L̇p
α without further assumptions. The

proof is the same as that of Proposition 3.2.

Proposition 3.7. Assume (UE). Let p ∈ (1,∞), α ∈ (0, 1) and g ∈ L∞(M,μ). Then
the integral on the left-hand side is well defined on Sp for every f ∈ Sp

∥∥∥∥
∫ ∞

0

Q̃t(tLPtf · Ptg)
dt

t

∥∥∥∥
p,α

� ‖f‖p,α‖g‖∞.

The result for the resonant term can be obtained in a similar way to the one in
Proposition 3.5, but it requires the additional assumption of gradient bounds on the
semigroup.

Proposition 3.8. Assume (UE) and (Gp0) for some p0 ∈ [2,∞). Let p ∈ (1, p0), α ∈
(0, 1) and g ∈ L∞(M,μ). Then the integral on the left-hand side is well defined on Sp for
every f ∈ Sp

∥∥∥∥ΠΓ(f, g)
∥∥∥∥

p,α

=
∥∥∥∥

∫ ∞

0

Q̃t(
√

tΓPtf · √tΓPtg)
dt

t

∥∥∥∥
p,α

� ‖f‖p,α‖g‖∞.

Proof. The proof is similar to that of Proposition 3.5. We first use that by choosing
D in the definition of Qt = Q

(D)
t large enough, the operator (tL)α/2Qt satisfies L2 off-

diagonal estimates of order N = N(D,α) > ν. This us allows to follow the steps in (3.3)
and (3.4). We obtain

∥∥∥∥Lα/2

∫ ∞

0

Qt(
√

tΓPtf · √tΓPtg)
dt

t

∥∥∥∥
p

=
∥∥∥∥(tL)α/2

∫ ∞

0

Qt(t−α/2
√

tΓPtf · √tΓPtg)
dt

t

∥∥∥∥
p
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�
∞∑

j=0

2−2jN2jν

∥∥∥∥x �→
( ∫ ∞

0

(
−
∫

B(x,2j
√

t)

|t−α/2
√

tΓPtf |2 dμ

)

×
(
−
∫

B(x,2j
√

t)

|√tΓPtg|2 dμ

)
dt

t

)1/2∥∥∥∥
p

� ‖g‖∞
∞∑

j=0

2−2jN2jν‖√tΓ(tL)−α/2Pt(Lα/2f)‖T p,2
2j (M)

� ‖g‖∞‖√tΓ(tL)−α/2Pt(Lα/2f)‖T p,2(M),

where the last line follows from change of angle in tent spaces [2, Theorem 1.1]. If p ≥ 2,
the above conical square function estimate is dominated by its vertical counterpart [3,
Proposition 2.1, Remark 2.2]. Invoking Lemma 2.5 for p ∈ [2, p0), we therefore have that
the above is bounded by

‖g‖∞‖√tΓ(tL)−α/2Pt(Lα/2f)‖Lp(M ;L2(R+; dt
t )) � ‖g‖∞‖Lα/2f‖p.

If p ∈ (1, 2), we use [1, Proposition 6.8] (adapted to our current setting under (UE) and
(R2)) to obtain the Lp-boundedness of the conical square function, and we reach the
same estimate. �

Stein’s complex interpolation between the estimates in Propositions 3.5 and 3.8 on the
endpoints (α, p) = (0,∞) and (α, p) = (1, p0) then yields the following.

Proposition 3.9. Assume (UE) and (Gp0) for some p0 ∈ [2,∞). Let p ∈ (p0,∞), α ∈
(0, (p0/p)) and g ∈ L∞(M,μ). Then, for every f ∈ L̇p

α(M), we have

‖ΠΓ(f, g)‖p,α � ‖f‖p,α‖g‖∞.

Proof. We apply Stein’s complex interpolation [12]. Let p1 ∈ (p0,∞) and β ∈ (0, 1).
Fix g ∈ L∞(M,μ). Define for z ∈ C the operator

T z
g := Lz/2ΠΓ(L−z/2 . , g).

Recall that under (UE), imaginary powers of L are bounded in Lp for all p ∈ (1,∞)
(see [4, Proposition 2.1]), with bound

‖Liη‖p→p � (1 + |η|)s,

whenever s > (ν/2) and η ∈ R. From Proposition 3.5, we know that T 0
g = ΠΓ( . , g) is a

bounded operator in Lp1 . We thus obtain

sup
γ∈R

(1 + |γ|)−s‖T iγ
g ‖p1→p1 ≤ C0,

with s > (ν/2). On the other hand, Proposition 3.8 yields that T 0
g = ΠΓ( . , g) is bounded

on L̇p
β . Hence,

sup
γ∈R

(1 + |γ|)−s‖T β+iγ
g ‖p0→p0 ≤ C1

β .
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Stein’s interpolation [12, Theorem 1] then yields that the operator

Lα/2ΠΓ(L−α/2 . , g) : Lp → Lp

is bounded whenever α = θβ and (1/p) = (θ/p0) + (1 − θ/p1). Taking the limit for β → 1
and p1 → ∞ yields the result. �
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