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Optimal fluxes and Reynolds stresses
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It is remarked that fluxes in conservation laws, such as the Reynolds stresses in
the momentum equation of turbulent shear flows, or the spectral energy flux in
anisotropic turbulence, are only defined up to an arbitrary solenoidal field. While this
is not usually significant for long-time averages, it becomes important when fluxes
are modelled locally in large-eddy simulations, or in the analysis of intermittency
and cascades. As an example, a numerical procedure is introduced to compute
fluxes in scalar conservation equations in such a way that their total integrated
magnitude is minimised. The result is an irrotational vector field that derives from
a potential, thus minimising sterile flux ‘circuits’. The algorithm is generalised
to tensor fluxes and applied to the transfer of momentum in a turbulent channel.
The resulting instantaneous Reynolds stresses are compared with their traditional
expressions, and found to be substantially different. This suggests that some of the
alleged shortcomings of simple subgrid models may be representational artefacts, and
that the same may be true of the intermittency properties of the turbulent stresses.

Key words: mathematical foundations, turbulence theory, turbulent boundary layers

1. Introduction
Conservation laws are staples of continuum mechanics. They take the form of the

rate of change of a conserved quantity ρ, such as mass, energy or momentum density,
balanced by the divergence of a vector flux φ = {φj},

∂tρ + ∂jφj = S̃, (1.1)

where ∂j is the partial derivative along the jth coordinate, repeated indices imply
summation over all coordinate directions and S̃ represents any sources or sinks.
Conserved vectors require tensor fluxes. While the physical significance of the
conserved quantity is usually obvious, that of the flux is less clear because only
its divergence enters the equation. In spite of this, the fluxes themselves are often
given physical significance, such as when Reynolds stresses are taken to represent the
flux of momentum and are explicitly modelled in large-eddy simulations (LES), when
they are considered observables in the ‘quadrant’ analysis of bursting in wall-bounded
turbulence (Wallace, Eckelmann & Brodkey 1972; Lu & Willmarth 1973), or when
a constant energy transfer rate is used as the basic scaling parameter in the spectral
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586 J. Jiménez

theory of the turbulence cascade (Kolmogorov 1941). The cascade theories that
form the backbone of modern turbulence research are theories not about conserved
quantities, but about their fluxes.

A consequence of these considerations is that fluxes cannot be uniquely defined.
Consider the generalisation of (1.1),

∂jφj = S̃− ∂tρ ≡ S, (1.2)

where S has been modified to include the instantaneous temporal rate of change of
the density, and φ is a vector flux in an n-dimensional space. In the first place, there
is often some ambiguity about which part of S is incorporated into the flux, such as,
for example, when a constant pressure gradient g is interpreted as a secular term gxj
within the corresponding spatial flux. But, even when that decomposition is decided on
physical or other grounds, the definition of the fluxes remains ambiguous. The relation
(1.2) is singular when interpreted as an equation for the vector flux φ, given S. For
example, any solenoidal vector field can be added to φ without changing (1.2), and a
three-dimensional vector flux is only defined up to the addition of a rotor.

It should be noted that any two representations of the fluxes are linked by
their divergence. This can be used to simplify calculations because, if a particular
expression Rj is known for the fluxes, there is no need to compute the right-hand
side of (1.2). All other flux representations satisfy

∂jφj = ∂jRj = S. (1.3)

Applying Gauss’s theorem to this equation shows that∫
∂Ω

φn d(∂Ω)=
∫
∂Ω

Rn d(∂Ω). (1.4)

This implies that the total flux across a boundary is independent of the representation,
even if the distribution of the fluxes along that boundary may vary. In fact, the use
of fluxes instead of their divergence is most often linked to a particular domain.
Equation (1.1) shows that the local rate of change of the density only depends on the
divergence of the flux, but it may be useful to determine where along the boundary
of a domain the flux is entering or leaving. In physical space this may help to
define control strategies. In scale space, whenever the range of scales of interest is
artificially restricted, such as in LES, the issue is how to model the fluxes across a
scale boundary.

The ambiguity discussed above is a particular case of the gauge invariance familiar
from electromagnetic and other field theories (Barut 1980), and it should be clear
that it in no way invalidates the original field equations. As in the case of other
classical field theories, it only becomes important when giving physical significance
to quantities that only appear in the equations as a gradient or as a divergence. In
those cases, gauge transformations provide an extra degree of freedom in the choice
of expressions for the fluxes that can be used to simplify further manipulations
for specific purposes. For example, we will see below that the energy–momentum
tensor of classical fluid mechanics can be gauge-transformed. The same is true of its
modelling counterpart, the Reynolds or subgrid stresses. This suggests that neither of
them should be the primary object of analysis, and that both should only be used
as one among many possible representations of the same physical object. Which
representation to use in each particular case should be decided on utilitarian, rather
than on absolute, grounds.
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Optimal fluxes and Reynolds stresses 587

A point to note is that, when the equations of motion are written in terms of the
fluxes, they no longer need to remain invariant under gauge transformations. For
example, it is well known in electromagnetism that some gauges lead to an ‘infinite
speed of light’ for the scalar electric potential, and that a gauge can always be found
in which that potential vanishes identically. Such examples are clearly beyond the
scope of this paper, but details can be found in the previously cited textbook by Barut
(1980) or in Jackson (2002). While these are representational artefacts, and none of
the resulting equations are ‘wrong’, they can lead to incorrect physical arguments
unless properly understood. One may think of similar dangers in the formulation of
second-order turbulence closures in which the Reynolds stress tensor is explicitly
modelled.

Some gauges produce flux expressions that are easier to measure observationally
than others, and could thus be characterised as ‘experimental’. In fluid mechanics,
velocities are easily measured, and the ‘experimental’ mass and momentum fluxes,
ρui and ρuiuj+ pδij, where ρ is the fluid density, ui and p are velocities and pressure,
and δij is Kronecker’s delta, may be considered more ‘natural’ in this sense than
other expressions. They also have intuitive interpretations rooted in mechanics. If it
is assumed that the flux vector or tensor can depend only on the local velocities,
and that they have to behave properly under Galilean transformations, both forms
are essentially unique (Landau & Lifshitz 1958). However, once the equations of
motion have been written and, especially, once they are particularised to a system
with a preferred frame of reference, neither observability nor invariance considerations
necessarily make a particular gauge preferable to others. In the previous example of
electromagnetism, the scalar electric potential can be easily measured, even if it is
gauge-dependent. In the case of the momentum tensor, the full flux includes the
pressure, which is not easily measured and depends on global boundary conditions.

This separation between the equations of motion and their original derivation
becomes clearer when modelling is involved. Conditions such as the local dependence
on the velocities are then routinely dropped, and it is mainly the basic symmetries
that need to be respected.

This paper describes a gauge designed to minimise a particular norm of φ. Although
these ‘optimal’ fluxes have some useful properties, the emphasis should not be so
much on them as on their comparison with the fluxes defined in more classical ways.
The goal is to determine whether different gauges result in very different fluxes, and
to use this information to differentiate properties that are intrinsic to the physics from
those linked to a particular gauge.

The paper is organised as follows. Optimal vector fluxes for scalar conservation laws
are introduced in § 2.1 and generalised to tensor fluxes and vector equations in § 2.2.
The methodology thus developed is applied to the stress tensor of the momentum
conservation equation for a turbulent channel in § 3, and the results are compared
to the classical Reynolds stress tensor in § 4. Conclusions and possible directions for
future research are offered in § 5.

2. Optimal fluxes
2.1. Vector fluxes

As an example of the previous considerations, we will develop expressions for
‘optimal’ fluxes that minimise the integrated flux magnitude over a domain of
interest Ω . It should be emphasised that this definition is not unique, and that it
is only optimum in the sense of minimising a particular norm. In general, choosing
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588 J. Jiménez

another norm or even another domain results in a different expression, but we shall
see that such fluxes sometimes have a physically reasonable interpretation and that, as
mentioned above, comparing two alternative definitions may be useful to determine
which properties of the classically defined expressions are intrinsic to the physics,
and which ones are accidents of a particular choice of gauge. Define a cost function,

J =
∫
Ω

[φjφj/2+ λ(∂jφj − S)] dΩ, (2.1)

where (1.2) has been added as a constraint with the scalar Lagrange multiplier λ.
Taking the first variation, φj→ φj + δφj, and integrating by parts, we obtain

δJ =
∫
Ω

(φj − ∂jλ) δφj dΩ +
∫
∂Ω

λ δφn d(∂Ω)= 0, (2.2)

where ∂Ω is the boundary of Ω , and the ‘n’ subscript denotes components normal
to ∂Ω . Requiring (2.2) to be satisfied for arbitrary δφ yields the Euler variational
equations (Gelfand & Fomin 1963)

φj = ∂jλ, (2.3)

with natural boundary conditions

λ= 0 at ∂Ω. (2.4)

The latter may require modification in special cases. For example, if the fluxes are
assumed to be spatially periodic along some direction, λ can also be assumed to be
periodic. Equation (2.3) expresses the intuitive condition that the optimum flux should
be an (irrotational) gradient, ‘as free as possible’ from circuits. When combined with
the dynamical relation (1.2), the potential λ satisfies the Poisson equation

∇2λ= S, (2.5)

with homogeneous Dirichlet boundary conditions. Note that this does not imply that
the fluxes vanish at the boundary.

Note also that the results in this section can be seen as a variational characterisation
of the potential part of the Helmholtz decomposition of a vector field into irrotational
and solenoidal components, but that the variational formulation simplifies the
generalisation to tensor fluxes in the next section.

2.2. Tensor fluxes
Equation (1.2) can be generalised to a vector right-hand side S = {Si}, such as
momentum, and to a tensor flux Φ = {φij},

∂jφij = Si. (2.6)

The potential is then a vector λ= {λi}, and the problem can be defined as minimising
the integrated Euclidean norm of the tensor. However, it is often the case that Φ
is not fully arbitrary, and the minimisation has to consider additional constraints.
For example, the momentum flux tensor should be symmetric, in which case the cost
function is

J =
∫
Ω

[φijφij/2+ λi(∂jφij − Si)+ εmijµmφij] dΩ, (2.7)
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Optimal fluxes and Reynolds stresses 589

where εmij is the completely antisymmetric Levi-Civita symbol, and the µm are extra
Lagrange multipliers to ensure the symmetry of φij. The Euler equations are then

φij = ∂jλi − εmijµm, (2.8)

with natural boundary conditions as in (2.4). The requirement that φij = φji implies

εmijµm = (∂jλi − ∂iλj)/2, (2.9)

and (2.8) becomes
φij = (∂jλi + ∂iλj)/2. (2.10)

Substituting in (2.6) results in

∇(∇ · λ)+∇2λ= 2∇(∇ · λ)−∇×∇× λ= 2S. (2.11)

This vector equation proves that λ is a Cartesian vector, and that Φ is a Cartesian
tensor. A useful equation for the trace of Φ, Π = φii =∇ · λ, is obtained taking the
divergence of (2.11),

∇2Π =∇ · S. (2.12)

If desired, Π can be separated from Φ as a pressure-like isotropic term, and (2.12)
becomes a variant of the usual pressure equation. In fact, the procedure leading to
(2.3)–(2.5) is akin to the classical derivation of the pressure equation in incompressible
flows, and Φ can be loosely interpreted as a generalised ‘tensor pressure’ that
completes the right-hand side of (2.6) in the same sense that the standard scalar
pressure projects the momentum equation onto the incompressible subspace. On the
other hand, the interpretation of the optimal tensor flux is not as straightforward
as for a vector, since there is nothing like a rotor to justify the interpretation of
‘minimum circularity’. The condition of minimum magnitude remains.

Once Π is known from (2.12), the vector potential is obtained from (2.11) written
in the form

∇2λ= 2S−∇Π. (2.13)

Note that, although λ in (2.13) has to satisfy the homogeneous boundary conditions
(2.4), there are no explicit boundary conditions for Π in (2.12). How these are derived
as compatibility conditions in the case of a channel is explained in detail in the next
section.

3. Momentum transfer in a turbulent channel
We illustrate the above procedure by computing the optimal momentum fluxes in

a pressure-driven incompressible turbulent channel between infinite parallel plates
separated by 2h. We denote by xi, with i = 1–3, the streamwise, wall-normal and
spanwise coordinates, respectively, with x2 = 0 at the lower wall. Momentum is
injected across the channel cross-section by the streamwise gradient g1 of the
kinematic pressure, uniform in space but not necessarily in time. The spanwise
pressure gradient vanishes at all times. Momentum is removed at the walls by
viscous friction, and has to be transferred along x2 from the body of the flow to the
wall. The resulting flux is conserved except for the constant pressure forcing, and its
conservation is responsible for the possibility of using the friction velocity uτ as a
uniform velocity scale at all wall distances (Townsend 1976). Quantities normalised
with uτ and with the kinematic viscosity ν are denoted by a ‘+’ superscript.
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590 J. Jiménez

We use simulations in a doubly periodic channel with reasonably large streamwise
and spanwise dimensions L1×L3= 8πh× 3πh, and h+= 934 (del Álamo et al. 2004).
The different fluxes are computed using 73 existing flows snapshots, sufficiently
separated in time to be essentially uncorrelated. The numerical discretisation used
in the original simulations is Fourier spectral in (x1, x3), dealiased by the 2/3 rule,
and Tchebychev in x2. The grid resolution is 1x+1 = 11.4, 1x+3 = 5.7, in terms
of Fourier modes, and 1x+2 = 7.6 at the centre of the channel. Other details can
be found in the original publication. The same discretisation is used here, as well
as the same spectral routines to differentiate the data and to solve the required
Poisson equations. The right-hand-side forcing S was computed in two different
ways. In the first one, the temporal momentum equation was marched in time for
a single time step with very low Courant–Friedrichs–Lewy number (CFL = 0.01),
and the time derivative ∂tu on the right-hand side of (1.2) was obtained by Euler
differentiation. In the second method, S was obtained simply as the divergence of
the classical energy–momentum tensor, as in (1.3). No significant differences were
found between the two computational schemes, but the second one is more robust
(and generally faster), because it is free from the effects of the arbitrary parameter
of the marching CFL.

As mentioned above, our main purpose is to determine how different are the
optimal momentum fluxes from the classical Reynolds stresses, and thereby which
properties of the latter should be considered physical and which ones accidental. The
structures responsible for this transfer have been studied often. A recent summary
can be found in Lozano-Durán, Flores & Jiménez (2012), where it is shown that
three-dimensional ‘quadrant’ structures (Wallace et al. 1972; Lu & Willmarth 1973)
exist at all scales, and that the most intense ones form a self-similar hierarchy of
sweeps and ejections with sizes proportional to their distance from the wall. Because
of this size stratification, it can be argued that the momentum transfer constitutes
an inertial turbulent cascade taking place mostly in space (Jiménez 2012, 2013b).
However, the non-uniqueness of the fluxes raises the question of the generality of
these structures and of their properties.

The momentum equation can be written as

∂jφij =−∂tui − gi = ∂jRij, (3.1)

where
Rij ≡ uiuj + pδij − 2νσij, (3.2)

and σij = (∂iuj + ∂jui)/2 is the rate-of-strain tensor. The left-hand side of (3.1) has
been written in the form of a divergence, but we will see below by direct calculation
that the tensor flux Rij in (3.2) is not optimal. We are not aware of any analytic
expression for the optimal flux tensor φij associated with (3.1), but the algorithm
discussed above can be easily implemented numerically. We will be particularly
interested in the tangential flux φ12, which is the only one that survives under
long-time averaging. Introducing 〈 〉 to denote averaging over wall-parallel planes and
time, it follows from (3.1) that

∂2〈φ12〉 + 〈g1〉 = 0. (3.3)

Note that the pressure gradient g1 has been taken outside the divergence in (3.1),
because of its obvious physical interpretation as a momentum source. This also allows
us to define quantities that are periodic in x1, including the residual pressure p and
the diagonal momentum fluxes φjj (no summation).
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The different variables are expanded in Fourier series, as in

ui = ûi,α(x2) exp[i(α1x1 + α3x3)], (3.4)

where the wavenumbers αk( j) = 2πj/Lk, j = −∞, . . . , −1, 0, 1, . . . ,∞, for k = 1
or k = 3. For the rest of the paper, the dependence of the Fourier coefficients on
the wavenumber will be omitted. Consider, for example, the streamwise component
of equation (2.13) for the flux potential

∂22λ̂1 − (α2
1 + α2

3)λ̂1 = 2Ŝ1 − iα1Π̂, (3.5)

λ̂1(0)= λ̂1(2h)= 0, (3.6)

where Ŝi is the Fourier transform of the right-hand side of (3.1), and

Π̂ = ∇̂ · λ= iα1λ̂1 + ∂2λ̂2 + iα3λ̂3. (3.7)

The fluxes become

φ̂11 = iα1λ̂1, (3.8)

φ̂12 = φ̂21 = (∂2λ̂1 + iα1λ̂2)/2, (3.9)

φ̂13 = φ̂31 = i(α3λ̂1 + α1λ̂3)/2. (3.10)

The divergence Π̂ satisfies Poisson’s equation (2.12) with unknown boundary
conditions. These are handled indirectly, as in the channel simulations of Kim,
Moin & Moser (1987). The equation for each Fourier component of the divergence
is solved three times: one with its full right-hand side and homogeneous boundary
conditions,

∂22Π̂0 − (α2
1 + α2

3)Π̂0 = ∇̂ · S, Π̂0(0)= Π̂0(2h)= 0, (3.11a,b)

and two with a homogeneous right-hand side, with unit boundary condition at one
wall and zero at the other. For the solution associated with the lower wall,

∂22Π̂L − (α2
1 + α2

3)Π̂L = 0, Π̂L(0)= 1, Π̂L(2h)= 0, (3.12a−c)

with an equivalent expression for the upper one, Π̂U. The divergence can then be
written as Π̂ = Π̂0 + aLΠ̂L + aUΠ̂U, which satisfies,

Π̂(0)= aL, Π̂(2h)= aU. (3.13a,b)

The Poisson problem (3.5)–(3.6) is solved three times for each λi. For example, once
for λ̂10, with right-hand side Ŝ1− iα1Π̂0, and once for each of λ̂1L and λ̂1U, with right-
hand sides −iα1Π̂L and −iα1Π̂U, respectively. Again, the solution can be expressed
as λ̂1 = λ̂10 + aLλ̂1L + aUλ̂1U. The process is repeated for λ̂2 and λ̂3, allowing us to
compute the divergence of the resulting λ from its definition (3.7). The values of this
divergence at the two walls are also linear combinations of three terms, two of which
are proportional to aU and aL. Substituting them in (3.13a,b) allows these coefficients
to be computed, and the problem to be closed.
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3.1. Fluctuation velocities
The different components of the fluxes Rij in (3.2) have very dissimilar magnitudes.
Equation (3.3) can be integrated to give 〈φ+12〉 = 〈φ12〉/u2

τ = 1 − x2/h, where
u2
τ = −〈g1〉. This is satisfied by all flux definitions, and implies that the mean of
φ+12 is O(1) in wall units. However, the classical fluxes given by (3.2) are found
to have standard deviations of the order of R+rms = O(20–60), which can be used
as proxies for their integrated Euclidean norm. The optimisation procedure reduces
these intensities considerably (not shown), but only to φ+rms=O(10). This is important
because, if instantaneous fluxes are to be used to study their contribution to the mean
momentum transport or to model them in LES, it is useful if their characteristic
magnitude is not much larger than their average.

Some reflection shows that the problem is that (3.1)–(3.2) are written in the frame
of reference linked to the wall, and that the fluctuating fluxes are dominated by
sweeping terms of the type Uu′i, where we have made the customary decomposition,
ui = U(x2)δi1 + u′i with respect to the mean profile U(x2) = 〈u1〉. In terms of the
perturbation velocities, the momentum equation becomes

∂jφ
′
ij =−∂tu′i − gi −U∂1u′i + (ν∂22U − u′2∂2U)δi1, (3.14)

one of whose solutions is

φ′ij = R′ij ≡ u′iu
′
j + pδij − 2νσ ′ij, (3.15)

with σ ′ij defined as in (3.2) using u′. When compared with (3.1), most of the extra
terms on the right-hand side of (3.14) average to zero over long times, but they can
be large instantaneously, and are responsible for the large standard deviations of the
fluxes in (3.2). For example, it is known experimentally that the standard deviation
of the perturbation tangential stress in the logarithmic layer is (u′1u′2)

+
rms ≈ 2 (Lozano-

Durán et al. 2012), but the standard deviation of (u1u2)
+ is O(20).

The fluctuation intensities of the perturbation fluxes in (3.15) are represented in
figure 1 as lines with symbols. They are weaker than the values cited above for the
fluxes based on the full velocities, and only the standard deviation of R′+11 reaches
O(10) near the wall. However, it should be borne in mind that these fluxes no longer
represent the full momentum transfer, and that part of the momentum is now carried
by the linear advection terms on the right-hand side of (3.14). The leftmost one,
U∂1u′1, is the advection of the velocity fluctuations by the mean velocity profile, and
appears as flux fluctuations in any but the semi-Lagrangian frame of reference that
follows the mean flow. It was shown in Jiménez (2013a) that approximately 90 % of
the particle acceleration in a channel flow is due to this term, and this is the main
reason why the standard deviation of the fluxes is reduced when defined in terms of
fluctuations. The price of this non-uniform frame of reference is the last term on the
right-hand side of (3.14), u′2∂2U, which is the classical lift-up representing the change
in mean velocity of a fluid particle as it moves with respect to the wall. Whether
these transfers should be treated as fluxes or sources has to be decided on physical
grounds.

4. Results
The results of applying the optimisation process to (3.14) are shown in figure 1,

where they are compared with the classical algebraic perturbation fluxes R′ij. The
optimisation reduces the fluctuating intensity of all the fluxes by a substantial factor
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FIGURE 1. (Colour online) Root-mean-squared fluctuation intensities of the momentum
fluxes along the three coordinate directions, computed with the fluctuation velocity
equation (3.14). (a) Fluxes of the streamwise momentum: – – –, φ11; ——, φ12; – · – · –, φ13.
(b) Fluxes of the transverse momenta: – – –, φ22; ——, φ23; – · – · –, φ33. Lines with circles
are R′ij from (3.14). Those without symbols are optimum fluxes φ′ij from (3.5)–(3.10).

that varies among components. In fact, the reduction is larger than shown in the
figure, because the standard deviation is computed with respect to the mean value,
which is typically not zero for the classical fluxes. For example, 〈R′11〉 = 〈u′12〉 > 0,
while it follows from (2.10) that the mean value of the optimal diagonal fluxes along
any homogeneous direction vanishes identically. All the optimal flux fluctuations are
of similar magnitude, and of the order of the mean momentum transfer rate, u2

τ . Note
that the standard deviations discussed here refer to the fluctuations of the quadratic
functions of the velocities, as in (u2)2rms = 〈u4〉 − 〈u2〉2, not to those of the velocities
themselves.

Although not shown in figure 1, the effect of the pressure on the diagonal stresses
R′ii in (3.15) (no summation implied) is not negligible, and always increases the
fluctuation intensities when compared with the Reynolds products u′i

2. This is
particularly evident for the wall-normal velocity u2

2. On the other hand, the effect of
the viscous term in R′ij is negligible above x+2 ≈ 20.

The optimal fluxes are also less intermittent than the classical algebraic ones or than
the Reynolds products τij = u′iu

′
j. Their third-order skewness and fourth-order flatness

are given in figure 2(a,b). It is well known that the Reynolds products are skewed and
intermittent, which is clear from the figure, but this is mostly a consequence of their
definition as quadratic forms. For example, even if a variable is Gaussian distributed,
its square is not, and Antonia & Atkinson (1973) and Lu & Willmarth (1973) showed
that the probability distribution of the product u′1u′2 is essentially the same as the
product of two Gaussian variables with the correct cross-correlation coefficient. The
theoretical moments for this product of Gaussian variables are given in figure 2(a,b),
and represent well the observations for the tangential Reynolds product, except very
near to and far from the wall. The optimal fluxes, which do not suffer from these
algebraic artefacts, are much less intermittent and stay approximately Gaussian except
in the buffer layer. Although not shown in figure 2 to avoid clutter, the effect of the
pressure on R′ij is to decrease intermittency. Particularly for u′22 and u′23 , the flatness of
the Reynolds products is approximately three times higher than for the corresponding
R′ii= u′2i + p− 2ν∂iu′i (no summation). The effect of the viscous term is also negligible
in this case.
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FIGURE 2. (Colour online) Higher-order moments of the fluctuation intensities of the
centred momentum fluxes, computed from the fluctuation velocities: – – –, φ′11; ——,
φ′12; – · – · –, φ′22. (a) Third-order skewness, 〈φ′3〉/〈φ′2〉3/2. (b) Fourth-order flatness,
〈φ′4〉/〈φ′2〉2. The horizontal dashed lines are theoretical values for different functions of
Gaussian-distributed variables:C, a Gaussian variable (S3 = 0, F4 = 3);@, the product of
two Gaussian variables with cross-correlation coefficient −0.4 (S3 = −2.02, F4 = 11.9).
(c) Probability density function of φ12 at x2/h ∈ (0.1 − 0.2), normalised in wall units.
The dashed line is the product of two Gaussian variables with cross-correlation coefficient
−0.4. (d) As in (c), for φ22. The line with triangles is for u′22 + p. In all panels, lines with
circles are the Reynolds products, u′iu

′
j, and those without symbols are optimum fluxes

from (3.5)–(3.10).

The probability density functions (p.d.f.s) for two flux components in the
‘logarithmic’ layer are given in figure 2(c,d), where both the smaller standard deviation
and the weaker intermittency are clear. In the case of τ12 in figure 2(c), also shown
is the theoretical p.d.f. for the product of two Gaussian variables, which fits the
classical Reynolds product well except at the extreme tails. Note that the mean value
of these two p.d.f.s is exactly the same, 〈φ+12〉 = x2/h− 1, but is achieved by the two
fluxes in different ways. While the p.d.f. of the classical Reynolds product peaks at
τ12= 0, and owes its negative mean value to the skewness of its tails, the distribution
of the optimal fluxes is roughly symmetric about its mean value. Consequently, the
volume fraction of the ‘countergradient’ momentum flux, defined as φ12∂2U > 0, is
approximately 15 % for the optimal fluxes φ′12 in the logarithmic layer, and 30 % for
τ12 ≈ R′12.

Figure 2(d) displays the p.d.f. of the diagonal stress φ22. It also shows the narrower
distribution of the optimal flux and its narrower tails, although the main difference
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(a)

(b)

FIGURE 3. (Colour online) Wall-parallel snapshots of the instantaneous tangential
momentum flux in a channel at Reτ = 934 (del Álamo et al. 2004) and x2/h= 0.15. Flow
is from left to right, and the area in the panels is L1 × L3 = 4πh× 3πh/2. (a) Classical
flux R′12 from (3.15). (b) Optimal flux φ′12. In both cases, the flux is centred with its mean
value, and the colour scale spans ±3 standard deviations, increasing from dark to light.

in this case is that the classical product, u′22 , is intrinsically positive. Figure 2(d)
also shows the effect of the pressure, discussed at the beginning of this section. Its
main effect is to restore the approximate symmetry of the p.d.f. of u′22 + p, which
now includes negative values. As mentioned above, this also decreases intermittency,
although figure 2(d) shows that most of the decrease is due to the effect of centring
the one-sided p.d.f. of the square. On the other hand, there is almost no difference
between the p.d.f. of the optimum φ′22 and that of its traceless equivalent, φ′22−Π ′/3
(not shown).

Reynolds and optimal fluxes are also structurally quite different. This is shown in
figure 3(a,b), where the classical transverse Reynolds stress R′12 ≈ u′1u′2 is compared
with the corresponding optimal flux φ′12. Both quantities are shown centred with
respect to their mean and normalised with their standard deviation. This scaling
absorbs the difference in their magnitude, but the geometry of the field remains
different. This is partly because of the stronger intermittency of R′12, manifested by
the presence of numerous dark and light spots in figure 3(a), but the characteristic
streamwise organisation of the Reynolds stresses is also much less marked in the
optimal flux in figure 3(b). The differences are even more marked in the buffer layer
(not shown), where the classical tangential Reynolds stress reflects the organisation
of the near-wall velocity streaks, while the optimal one does not. The correlation
coefficient between R′12 and φ′12 is approximately 0.5 throughout most of the channel,
but falls to approximately 0.1 at x+2 ≈ 15.

The differences are confirmed by the spectra in figure 4, where φ′12 is compared to
R′12. They are presented premultiplied by the appropriate wavenumbers, and displayed
in terms of the wavelengths ζj=2π/αj. Note that these spectra, such as ERR=〈R̂′12R̂′12〉,
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FIGURE 4. (Colour online) (a) Two-dimensional premultiplied spectra as functions of the
wall-parallel wavelengths, ζ = 2π/α: ——, R′12; – – –, optimal φ′12; – · – · –, cospectrum of
u′1 and u′2. The two contours contain 30 % and 80 % of the spectral mass. The dashed
diagonals are ζ1 = ζ3. Flow as in figure 3, x2/h = 0.15. (b) Streamwise premultiplied
spectra as a function of x2: ——, R′12; – – –, φ′12. Each horizontal section is a spectrum
normalised to unit energy, and the contours are 50 % and 80 % of the global maximum.
The dashed diagonal is ζ1 = 1.2 x2.

are different from the cospectrum, E12=−〈û′1û′2〉, which is included in figure 4(a) for
comparison. The latter represents the spectral contribution of the product τ12 = u′1u′2
to the mean tangential stress, while the former reflects the geometry of the product
(Lozano-Durán et al. 2012), and expresses the spectral contribution to the variance.
Figure 3(a) shows two-dimensional spectra in the plane x2/h= 0.15, and reveals that
the cospectrum is contaminated by the elongated streaks of the streamwise velocity.
In the case of products of velocities, the high-order spectra such as ERR were shown
by Van Atta & Wyngaard (1975) to be dominated by the sweeping of the small scales
by the larger ones, and the spectrum of R′12 is also anisotropic, although less than the
cospectrum. On the other hand, the spectrum of φ′12, which is only indirectly linked to
u1 through the right-hand side of (3.14), is weakly influenced by the elongated streaks,
and is more isotropic (i.e. closer to ζ1 = ζ3).

Figure 4(b) shows one-dimensional premultiplied spectra as functions of the
streamwise wavelength and of the distance to the wall. It is known that the wavelength
of the maximum of the cospectrum increases linearly with x2 at high Reynolds
numbers (see figure 1b in Jiménez 2012), but this is still not obvious at the relatively
low Reynolds number of figure 4. The reason is that R′12 is dominated by the effect
of the wall-parallel velocity u′1, whose scale is not constrained by the impermeability
condition near the wall (Townsend 1961). On the other hand, figure 4(b) shows that
the spectral peak of φ′12, which is free from the spurious influence of the inactive
wall-parallel motions, grows linearly away from the wall even at this relatively
low Reynolds number. It can be shown that the difference between the spectrum
of classical and optimal fluxes is largest in the buffer layer, and decreases with
increasing distance to the wall. This effect is more marked for quantities involving
u′1 or u′3, and almost non-existent for φ′22.

5. Discussion and conclusions
We have noted that the fluxes implicit in conservation laws are not uniquely defined,

in a way similar to the gauge ambiguity of classical field theory. As an example,
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we have developed a particular definition that minimises the integral of their square.
Although this definition should not be considered in any way unique, it has the
intuitive appeal of minimising ‘sterile circularities’ in the transfers of conserved
scalars. We have generalised these observations to vector conservation laws and
tensor fluxes, and presented a way to compute such fluxes from simulations. We
have applied it to the momentum transfer in turbulent channels, and showed that
the results differ substantially from the classical Reynolds stresses. In particular, the
fluctuations of the optimal fluxes are weaker than the classical ones, their probability
distributions are closer to Gaussian, and their spectra show less contamination from
individual velocity components.

These results raise some interesting questions that go beyond the scope of the
present paper, and which should eventually be considered individually. Not the least
of them is whether, given their arbitrariness, pointwise Reynolds stresses should be
considered to be proper targets for the subgrid models of LES. Only their divergence
is important, while the stresses themselves can vary widely without ill effects. This
may help explain the apparent contradiction that a priori testing of many LES
models fails grossly while the a posteriori results are reasonable (Bardina 1983). It is
interesting to note in this context that the very successful dynamic model of Germano
et al. (1991) can be characterised as an algorithm to determine the magnitude of the
eddy viscosity from the difference of the subgrid stresses at two different scales, and
can therefore be seen as an integral implementation of fitting the divergence of the
fluxes in scale space, rather than the fluxes themselves.

In particular, we noted in the introduction that, while gauge transformations leave
the field equations invariant, the same is not generally true when the equations are
written in terms of the fluxes or of the potentials, and remarked that this may give
rise to problems in the second-order turbulence closures that model the Reynolds
stresses directly. While there should be nothing wrong with their use in applications
to domains large enough for the flow to be considered in equilibrium, the results in
this paper suggest that they may not be very useful over smaller domains, such as
over individual LES cells. In fact, Lund & Novikov (1993) showed that introducing
a full set of tensor invariants in models of the subgrid stresses did not improve them
appreciably with respect to simpler models. On the other hand, the above results
suggest that much of the effort spent in modelling individual components may be
largely irrelevant, as long as the divergence of the flux is correctly represented. For
example, there is probably no reason why closures should be expected to reproduce
the intermittency of the Reynolds stresses. Note that this conclusion applies to all
gauges, including the optimal one discussed here. The present paper should not be
construed as an invitation to model the optimal fluxes, but as an indication that it
is enough for closures to mimic the simplest tensor structure that guarantees the
right divergence, even if the fluxes themselves appear to be incorrect. Although the
formulation of turbulence models is beyond the scope of this paper, it is interesting
to note that the expression (2.10) of the optimal fluxes as the symmetrised gradient
of a vector suggests the possibility of formulations that depend on fewer than full
tensor quantities.

The somewhat different approach of simplifying second-order closures by modelling
directly the divergence of the stress tensor (the ‘turbulent force’), instead of the tensor
itself, has been discussed before by Perot & Moin (1996), following earlier work by
Wu, Zhou & Wu (1996) and Wu et al. (1999). This last paper, which also frames the
problem in terms of the gauge ambiguity of the stress tensor, contains references to
earlier work in the same direction.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

69
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.692


598 J. Jiménez

The gauge freedom in the definition of the momentum fluxes also calls into
question the meaning of individual structures of intense Reynolds products, such as
those studied in the classical ‘quadrant’ classification of the (u′1, u′2) plane by Wallace
et al. (1972) and Lu & Willmarth (1973), and in modern three-dimensional extensions
of the same idea by Lozano-Durán et al. (2012) and Lozano-Durán & Jiménez (2014).
Although a detailed investigation of this question is beyond the scope of this paper,
the present results suggest that these structural analyses should be repeated using
other gauges, such as the present optimal one, to test how dependent on the gauge
are the properties of the resulting structures. This is a case in which intermittency
is beneficial, since the hope is to identify structures strong enough to stay coherent
independently of the rest of the flow, but able to explain some flow characteristics
from a small fraction of the total volume. The weaker intermittency of the optimal
fluxes in figure 2 suggests that analyses based on intense structures may be less
relevant for them than for the classical Reynolds products. For example, it follows
from the p.d.f.s in figure 2(c) that, while the 10 % strongest points of −τ12 contain
approximately 70 % of the total Reynolds stress, the equivalent strongest 10 % of the
optimal −φ′12 accounts for only 33 %.

Also interesting is that (1.2) and (1.3) provide an algorithmic ‘accounting’ definition
of fluxes that can be computed even in cases in which the physical formulation is
difficult to interpret locally. There is no implication that the result can be expressed
in terms of a ‘formula’ of local observables, but this is no worse than for the
pressure, which is part of the classical momentum and energy fluxes, and can only
be determined as the solution of an elliptic partial differential equation. Numerically,
all variables are equally simple to obtain, particularly since (1.3) ensures that the
knowledge of any expression for the fluxes provides a way to compute all other
representations.

For example, the Kolmogorov inertial energy cascade assumes that energy is
transferred across scales from its injection into large structures to its dissipation
in small viscous ones. The momentum transfer in physical space and the energy
cascade in wavenumber space are different problems, but the underlying mathematical
ambiguity is the same, and the questions of how relevant are intermittency and
backscatter are similar. Defining the energy flux, ε, is straightforward in isotropic
flows for which scale is a one-dimensional parameter and the conservation equation
(1.2) can be solved by a simple quadrature. In more general situations, the definition
is no longer unique. Even in the simple case of statistically isotropic flows, the
energy flux in three-dimensional wavenumber space is a vector that depends on the
wavenumber and time. It only coincides with the classical scalar ε when averaged
over full spherical wavenumber shells.

In the slightly more complicated case of statistically homogeneous anisotropic shear
turbulence, the average energy flux is also a vector in wavenumber space, but its
direction is undetermined even in the mean. Any attempt to write energy conservation
in spectral space in terms of observables leads to wavenumber triads that cannot be
interpreted locally (Kraichnan 1971). The formulation in Dar, Verma & Eswaran
(2001) shows that triads can be combined to provide an essentially unique definition
for the energy transfer among arbitrary modes, but the fundamental transfer unit
is still the triad (Verma 2004). Even this formulation does not provide a transfer
definition restricted to contiguous wavenumbers. Energy is transferred among all
possible mode pairs in wave space, and it is interesting that these authors note that
there is an undetermined ‘circulating transfer’ in any triad that is essentially a gauge
(Verma 2004). Most of these ambiguities disappear when the energy flux is averaged
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over sufficiently large wavenumber surfaces, or over time, but, when applied locally,
they are at the root of many of the discussions about the instantaneous direction of the
energy transfer and about the relevance of backscatter (Domaradzki & Rogallo 1990).
An energy equation equivalent to (1.2) in wavenumber space provides a definition of
a vector energy transfer rate that is local, algorithmically computable and, inasmuch
as energy conservation embodies the behaviour of the energy in spectral space, as
physically ‘relevant’ as any definition based on algebraic expressions. Note that
even the classical one-dimensional definition of ε relies on a homogeneous boundary
condition such as (2.4); the energy transfer rate can only be given a definite value
by assuming that it vanishes at very large and at very small scales.

An even more interesting application concerns non-homogeneous flows. While the
concept of scale is unambiguous in homogeneous flows, it is harder to define in
inhomogeneous ones, where it is not easily separated from position. Consider, for
example, a turbulent channel in which energy is being transferred among eddies of
different sizes while they move relative to the wall. The ambiguity is whether their
energy should be considered as transferred across space or across scale. A recent
analysis of this problem led to a transport equation for the second-order structure
function (the ‘scale energy’) in the form of a double divergence, in space and scale,
of a six-dimensional vector flux (Hill 2002),

∂xjφj + ∂rjψj = S, (5.1)

where xj with j = 1, . . . , 3 represent the spatial directions, and rj are the respective
separations along those directions. The analysis provides explicit expressions for the
fluxes in space, φj, and scale, ψj, which have been computed and interpreted in
turbulent channels by Cimarelli & De Angelis (2011, 2012). They are not optimal
in the sense described here (Cimarelli, private communication). Irrespective of the
merits of the structure function as a measure of energy at a given scale, the previous
considerations show that these fluxes and this analysis are not unique, and suggest
that their conclusions should be revisited in terms of their robustness with regards to
the different definitions.

In general, cascade theories concern themselves with fluxes, which are typically
conserved across some ‘inertial’ range. The quantities being transferred, such as the
energy, are typically created and dissipated somewhere else in the system. The results
in the present paper suggest that the concept of flux, and therefore of cascades, should
be re-examined with care.
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