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Background. It remains unclear whether the topological deficits of the white matter network documented in cross-sec-
tional studies of chronic schizophrenia patients are due to chronic illness or to other factors such as antipsychotic treat-
ment effects. To answer this question, we evaluated the white matter network in medication-naive first-episode
schizophrenia patients (FESP) before and after a course of treatment.

Method. We performed a longitudinal diffusion tensor imaging study in 42 drug-naive FESP at baseline and then after 8
weeks of risperidone monotherapy, and compared them with 38 healthy volunteers. Graph theory was utilized to cal-
culate the topological characteristics of brain anatomical network. Patients’ clinical state was evaluated using the Positive
and Negative Syndrome Scale (PANSS) before and after treatment.

Results. Pretreatment, patients had relatively intact overall topological organizations, and deficient nodal topological
properties primarily in prefrontal gyrus and limbic system components such as the bilateral anterior and posterior cin-
gulate. Treatment with risperidone normalized topological parameters in the limbic system, and the enhancement posi-
tively correlated with the reduction in PANSS-positive symptoms. Prefrontal topological impairments persisted
following treatment and negative symptoms did not improve.

Conclusions. During the early phase of antipsychotic medication treatment there are region-specific alterations in white
matter topological measures. Limbic white matter topological dysfunction improves with positive symptom reduction.
Prefrontal deficits and negative symptoms are unresponsive to medication intervention, and prefrontal deficits are po-
tential trait biomarkers and targets for negative symptom treatment development.
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Introduction

Over a century ago, it was proposed that schizophrenia
is a disorder arising from pathological alterations in
the brain’s association fibers (Wernicke, 1906), and
since then much evidence of white matter abnormal-
ities has emerged from postmortem studies (Stephan
et al. 2009; Farkas et al. 2010). More recently, diffusion
tensor imaging (DTI) techniques have provided evi-
dence of white matter pathology in schizophrenia in
vivo (Ellison-Wright & Bullmore, 2009; Skudlarski
et al. 2013). Brain regions are connected by a complex
white matter network known as the human connec-
tome (Sporns et al. 2005). The topological organization
of this anatomical network is vital for efficient informa-
tion segregation and integration among brain regions.
The application of graph theory to DTI data permits
quantification of both integration and segregation
properties of the fiber network (Watts & Strogatz,
1998). Individual differences in topological organiza-
tions of white matter networks are substantially
hereditable (Bohlken et al. 2014). Graph analytical
studies have found some consistent topological abnor-
malities, such as prefrontal topological deficits in un-
affected first-degree relatives at high genetic risk for
developing schizophrenia (Shi et al. 2012; Collin et al.
2014), leading us to hypothesize that part of the pattern
of structural network topology observed in this disease
may mediate the genetic effect as an endophenotype or
biological trait. More extensive anatomical network
topological deficits were reported in chronic schizo-
phrenia patients (CSP), such as topological impair-
ments in the prefrontal, cingulate and occipital gyri,
insula, pallidum and caudate (Van den Heuvel et al.
2010, 2013; Zalesky et al. 2011; Wang et al. 2012; Collin
et al. 2014). However, these investigations in CSP are
difficult to rule out the network topologic abnormalities
being a consequence of disease progression or other fac-
tors, particularly antipsychotic treatment effects.

To separate chronic stage disease-related findings
from those related to treatment and treatment re-
sponse, longitudinal studies that examine first-episode
psychosis before medication is started are needed.
Although there is still a lack of follow-up studies dir-
ectly examining antipsychotic effects on the topological
characteristics of white matter networks, three longitu-
dinal studies of first-episode schizophrenia patients
(FESP) have reported region-specific antipsychotic
medication effects on measures of white matter integ-
rity, such as fractional anisotropy (FA). One study
found increased FA in the cingulum and uncinate in
FESP after 12 weeks of medication (Reis Marques
et al. 2014). The two other studies found decreased
FA in frontal, occipital and parietal regions after short-
term treatment (Wang et al. 2013; Szeszko et al. 2014).

In addition, using functional magnetic resonance im-
aging (MRI), Achard & Bullmore (2007) found that a
single dose of sulpiride (400 mg) appeared to have det-
rimental effects on topological parameters (network
efficiency) of cingulate gyrus and temporal cortex in
healthy people; Carbonell et al. (2014) demonstrated
that dopamine depletion can reduce local efficiency
in limbic regions, further supporting a relationship be-
tween brain network topology and dopamine signal-
ing. Given this evidence, a reasonable prediction is
that antipsychotic medications would have effects on
fiber network topological parameters. A longitudinal
DTI study to specifically examine how antipsychotic
medications influence white matter topology would be
a powerful complement to a study of drug-naive FESP.

The current study investigates topological altera-
tions of the anatomical network using baseline MRI
scans within 12 months of psychosis onset in FESP
who had never been treated with an antipsychotic
agent, and a second scan after the baseline scan follow-
ing treatment with risperidone for 8 weeks. To our
knowledge, this is the first longitudinal DTI study to
explore the effect of risperidone monotherapy on ana-
tomical graph-theoretic topological properties in a rela-
tively large study sample (n = 42) of treatment-naive
FESP. We hypothesized that: (a) abnormalities would
be present in the topological characteristics of the
white matter network in medication-naive FESP
when compared with healthy volunteers, particularly
in the prefrontal cortex, limbic/paralimbic system and
subcortical structures based on previous studies
(Zalesky et al. 2011; Wang et al. 2012; Van den
Heuvel et al. 2013; Collin et al. 2014); and (b) anti-
psychotic treatment would influence the topological
organizations of the above-mentioned systems in
patients, but this effect would be differentially loca-
lized based on prior reports (Achard & Bullmore,
2007; Carbonell et al. 2014; Reis Marques et al. 2014;
Szeszko et al. 2014). We also conducted an exploratory
investigation to examine whether alterations of white
matter topological properties would relate to clinical
symptom response to medication.

Method

Participants

A total of 80 right-handed Chinese Han people were
recruited, including 42 treatment-naive FESP and 38
age-, gender- and education-matched healthy volun-
teers. These participants were all in our previous
study (Zong et al. 2015). All the patients were recruited
for this study at Henan Province Mental Health Center,
the Second Affiliated Hospital of Xinxiang Medical
University, Henan, China. Diagnoses of schizophrenia
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were determined with the Structured Clinical Interview
for DSM-IV-TR, patient version (SCID-I/P). All the
patients had less than 1 year since onset of psychotic
symptoms, and mean age was 24.86 (S.D. = 4.80) years
(range 18 to 37 years; online Supplementary Table S1).
Healthy volunteers were recruited by advertisement
and screened using the SCID-NP, non-patient edition
for lifetime absence of any psychiatric illness, and did
not have a family history of psychiatric illness in any
first-degree relative. Any individual with a history of
physical illness, neurological disorder, or alcohol or
drug abuse was excluded from the study.

All procedures were approved by the ethics commit-
tee of the Second Xiangya Hospital and the Second
Affiliated Hospital of Xinxiang Medical University.
Written informed consent was obtained from all partici-
pants, who were permitted to discontinue participation
from this research at any time. One patient discontinued
during theDTI scan at baseline, and alsowithdrew from
the follow-up MRI scan. Three other patients withdrew
from the follow-upMRI scans. Consequently, MRI data
were collected from 41 patients at baseline, 38 patients
after treatment, and 38 healthy controls. All 42 patients
completed clinical assessments.

Medication and clinical assessments

All schizophrenia patients were stabilized on risperi-
done monotherapy at a dosage of 4–6 mg/day for 8
weeks. Mood stabilizers and antidepressants were not
used. The efficacy and safety of risperidone was
assessed weekly by clinical interviews. During the
8-week treatment, no serious adverse effects occurred.
Symptom severity of all patients was evaluated at base-
line and followed up with the 30-item Positive and
Negative Syndrome Scale (PANSS) (Kay et al. 1987).

Acquisition of MRI data

All patients had high-resolution T1-weighted three-
dimensional images and DTI scans both at baseline
when they were free from antipsychotics and after the
8-week treatment, while controls were scanned only
once. Participants were scanned on a 3 T Siemens MRI
scanner (Germany) with a 16-channel head coil.
Whole-brain volume sagittal T1-weighted images were
obtained with a three-dimensional spoiled gradient
echo pulse sequence [repetition time/echo time (TR/TE)
= 1900 ms/2.52 ms, flip angle = 9°, field of view (FOV) =
250 × 250, slice thickness = 1.0 mm, gap = 0 mm, number
of excitations = 1, 176 slices] (Fig. 1a). DTI images were
collected using a single-shot spin-echo planar imaging
(EPI) with a twice-refocused balanced echo sequence
to reduce eddy current distortions (TR/TE = 7500/93
ms, FOV = 240 × 240, acquisition matrix = 128 × 128,
flip angle = 90°, b = 0 and 1000 s/mm2 along 64 non-

collinear directions, slice thickness = 3.0 mm, 45 con-
tiguous axial slices) (Fig. 1b). All data processing used
the same methods and quality thresholds, and was
checked for noise, motion and artifacts. Any individual
withmovement greater than 1.5 mm translation ormore
than 1.5° rotation was excluded.

Construction of anatomical brain network

Weused theAutomatedAnatomical Labeling (AAL) atlas
as a volumetric template with 90 whole-brain regions
(Tzourio-Mazoyer et al. 2002). Statistical Parametric
Mapping (SPM8; http://www.fil.ion.ucl.ac.uk/spm) was
implemented to perform the preprocessing and map
the AAL atlas to each individual’s subject space.
Each individual T1-weighted image was co-registered
to the B0 image by a linear transformation in the native
diffusion space. Co-registered structural images were
mapped to the Montreal Neurological Institute (MNI)
T1 template by utilizing an affine transformation and
a series of non-linear warps. Using nearest-neighbor
interpolation and inverted MNI transformation para-
meters, the volumetric (AAL) template was warped
from MNI space to the native diffusion space, resulting
in 90 network nodes (45 in each hemisphere) (Fig. 1c).

FSL 4.1(FMRIB’s Diffusion Toolbox; http://www.
fmrib.ox.ac.uk/fsl) was used to correct head motion
and eddy current distortions for DTI. The linear
least-squares fitting method was used to estimate dif-
fusion tensor models at each voxel with the Diffusion
Toolkit software (TrackVis.org), and the Fiber
Assignment by Continuous Tracking (FACT) algo-
rithm was used to perform whole-brain fiber tracking
in native diffusion space using TrackVis 0.5.1. The
DTI tracking followed procedures as described in a
previous study (Zhang et al. 2011) (Fig. 1d), and path
tracing was terminated if the FA was <0.1 or the
angle between the current and the previous path seg-
ment was greater than 45°. We constructed weighted
graphs according to the number of reconstructed
streamlines between each pair of regions (Fig. 1e).
One of the reconstructed brain networks was removed
from the control group as its network density was over
mean plus three standard deviations of the group.
Failure to remove those outliers may lead to false-
negative findings (De Reus & van den Heuvel, 2013).

Network organization and topological properties

Graph theoretical analysis was utilized to calculate the
topological characteristics of the weighted brain struc-
tural network at nodal and overall levels in all partici-
pants (Fig. 1f). Nodal characteristics consist of: (1)
nodal degree (kWi ); (2) clustering coefficiency
(CCnodal); (3) path length (PLnodal); (4) betweenness cen-
trality (bWi ); (5) nodal efficiency (Enodal). Overall
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network characteristics include: (1) net strength (SWnet);
(2) global efficiency (Eglob); (3) local efficiency (Eloc);
(4) normalized clustering coefficients (γ); (5) normal-
ized path lengths (λ); (6) small-worldness (σ) (Fig. 1g).

The Brain Connectivity Toolbox (http://www.
brainconnectivtiy-toolbox.net) was used to calculate
the network properties (Rubinov & Sporns, 2010). In
brief, kWi is equal to the sum of the reconstructed
streamlines terminating in a node. CCnodal is defined
as the fraction of how close the node’s neighbors are
to being a clique (complete graph). PLnodal refers to
the average of the shortest path from the node to all
the other nodes in the network. The bWi is equivalent
to the number of all shortest paths in the network
that pass through a node. Efficiency was defined as
the reciprocal or inverse of path length, Eglob is the
average inverse shortest path length in the network,

and Eloc is the Eglob computed on node neighborhoods
(Bullmore & Sporns, 2012). The SWnet is defined as
the gross of all neighboring link weights. A set of
random networks were created by randomizing the con-
nections of the network, keeping the degree distribution
and sequence of the matrix intact (Rubinov & Sporns,
2010). Finally, small-worldness (σ = γ/λ) was used to de-
scribe complex networks that have a high efficiency and
high clustering, respectively, which can be figured by
the two attributes, namely normalized clustering coeffi-
cients (γ =CCreal/CCrandom), and normalized path lengths
(λ = PLreal/PLrandom) (Watts & Strogatz, 1998).

The Eglob, PLnodal and λ properties reflect the integra-
tion of the network, while the Eloc, CCnodal and γ reflect
the segregation. The architectural features kWi , S

W
net and

σ represent the network architecture, and the bWi re-
present the measure of centrality.

Fig. 1. Schematic overview of construction of anatomical network. (a) Acquisition of T1-weighted images. (b) Diffusion tensor
images (DTI). (c) Parcellation of whole brain with Automated Anatomical Labeling (AAL) template consisting of 90 unique
brain regions. (d) Whole-brain fiber tracking. (e) Depiction of white matter network. (f) Calculation of the topological
characteristics with graph theory. (g) Computation of both overall and nodal network properties. (h) Between-group
comparison. The topological characteristics of patients both at baseline and follow-up, respectively, were compared with
controls using a permutation test (corrected). Within-individual comparisons were performed using paired-samples t tests
(corrected). 3D, Three-dimensional; SWnet, net strength; Eglob, global efficiency; Eloc, local efficiency; γ, normalized clustering
coefficients; λ, normalized path lengths; σ, small-worldness; kWi , nodal degree; CCnodal, clustering coefficiency; PLnodal, path
length; bWi , betweenness centrality; Enodal, nodal efficiency.
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Group differences in topological properties

The anatomical network topological characteristics of
patients at baseline and after the 8-week treatment, re-
spectively, were compared with healthy volunteers
using the permutation test. Briefly, for a given charac-
teristic, we firstly computed the group difference be-
tween FESP and controls. Then all participants were
randomly assigned into two groups, and we recalcu-
lated the group difference between the two random
groups. This process was repeated for 5000 permuta-
tions and a sampled group difference null distribution
for every topological property was obtained. We com-
puted the proportion of the actual group difference in
the 5000 random group differences. Finally, any
between-group difference greater than the 95th per-
centile of the empirical distribution in a two-tailed
test can be declared significant at an α = 0.05.
Comparisons in patients before and after treatment
were performed using paired-samples t tests (α =
0.05). As the examined nodal topological measures
are dependent, we performed false discovery rate
(Storey, 2002) correction in 90 × 3 multiple tests (cut-
off value 0.05) for each nodal characteristic.
Comparisons of global network characteristics were
corrected by the Bonferroni method (p < 0.05) (Fig. 1h).

Statistical analysis

Statistical analyses were performed with the SPSS 13.0
software package (SPSS Inc., USA). The independent-
samples t test or χ2 test were used to compute the
group differences of demographic data. The paired-
samples t test was used to compare patients’ longitu-
dinal alterations of PANSS scores. Correlations be-
tween either baseline network metrics (exhibiting
between-group differences) and clinical variables
(PANSS scores), or longitudinal alterations (with sign-
ificance) in anatomical network topological properties
and improvement of clinical symptoms (PANSS
scores) were computed by multiple linear regression
analysis, controlling for age and gender.

Results

Demographics

A total of 42 patients met the criteria of treatment-
naive FESP. Healthy volunteers were well matched
with patients on age, gender, years of education,
and alcohol and tobacco use (p’s > 0.05) (online
Supplementary Table S1).

Longitudinal alterations of clinical symptoms

After the 8-week treatment, patients had pronounced
reductions in PANSS-total scores, positive scores

(PANSS-P) and general psychopathology (PANSS-G),
but no significant alterations in negative scores
(PANSS-N) (online Supplementary Table S1).

Schizophrenia- and treatment-related alterations in
nodal characteristics

At baseline, patients had lower kWi (p = 0.032, corrected)
and Enodal (p = 0.040, corrected) in the right anterior
cingulate and paracingulate gyri (ACG) and decreased
kWi (p = 0.035, corrected) in the left ACG compared with
controls (Table 1; Fig. 2a). There were also reduced
CCnodal in the left (p = 0.035, corrected) and right (p =
0.048, corrected) posterior cingulate gyrus (PCG)
(Table 1; Fig. 2a). After 8 weeks of treatment, there
was an increase in the kWi (p = 0.023, corrected) and
Enodal (p = 0.048, corrected) of the right ACG, and the
kWi (p = 0.043, corrected) of the left ACG (Table 1;
Fig. 3a). CCnodal in the left (p = 0.042, corrected) and
right (p = 0.049, corrected) PCG also increased
(Table 1; Fig. 3a). Moreover, all the observed nodal
parameters bilaterally in the ACG and PCG at the
8-week follow-up did not differ from controls (p’s >
0.05, corrected) (Table 1).

Patients had lower baseline kWi (p = 0.019, corrected)
and Enodal (p = 0.013, corrected) in the left superior
frontal gyrus medial orbital (SFGmedorb), and lower
kWi (p = 0.020, corrected) in the right pallidum compared
with controls (Table 1; Fig. 2a). After treatment, there
were no longitudinal changes in nodal metrics of the
left SFGmedorb or right pallidum (p’s > 0.05, corrected)
(Table 1). Moreover, compared with controls, patients
after 8 weeks of treatment continued to exhibit lower
kWi (p = 0.019, corrected) and Enodal (p = 0.041, corrected)
in the left SFGmedorb, and lower kWi (p = 0.049, cor-
rected) in the right pallidum (Table 1).

Patients revealed no differences in the left amygdala
and left parahippocampal gyrus (PHG) compared with
controls at baseline (p’s > 0.05, corrected). After the
8-week treatment, however, patients showed increased
kWi (p = 0.003, corrected) and Enodal (p = 0.005, corrected)
in the left amygdala, and kWi (p = 0.044, corrected) and
Enodal (p = 0.030, corrected) in the left PHG (Table 1,
Fig. 3a).

At baseline patients had no significant difference in
kWi of the left caudate nucleus (CAU) (p > 0.05, cor-
rected) compared with controls. After treatment, the
kWi (p = 0.013, corrected) in the left CAU decreased
(Table 1).

See online Supplementary Table S2 for more detail
about nodal topographical characteristics. We also nor-
malized these characteristics of each node by dividing
the mean value of each metric of random network to
control the potential bias, and got similar results as
described above (online Supplementary Table S3).
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Comparisons of overall network characteristics

Group comparisons showed no significant differences
in γ, λ, SWnet, Eglob, Eloc or σ (p’s > 0.05, corrected) (online
Supplementary Table S4). We provide preliminary evi-
dence that patients’ regional topological impairments
occur in the context of preserved overall topological or-
ganization during the early phase of schizophrenia (see
online Supplementary Discussion).

Relationships between topological characteristics
and clinical variables

The baseline CCnodal of the left PCG showed a negative
correlation with PANSS-G scores (p = 0.020, corrected

by age and gender, Fig. 2b). The post-treatment
improvements of Enodal of the right ACG were posi-
tively correlated with decreases in PANSS-P scores
(p = 0.048, corrected by age, gender and baseline
Enodal of the right ACG, Fig. 3b). However, none of
the associations survived Bonferroni correction.

Discussion

As hypothesized, drug-naive FESP had baseline topo-
logical abnormalities of the white matter network, pri-
marily located in limbic system regions such as the
bilateral ACG, bilateral PCG, prefrontal area involving
the left SFGmedorb, and in the striatum involving the

Table 1. Nodal topological characteristics of healthy comparison controls and first-episode schizophrenia patients for baseline and follow-up
data

Nodal property Controlsa (n = 37)

Patientsb

Analysisc Analysisd AnalysiseBaseline (n = 41) Week 8 (n = 38)

Left ACG/AAL31
kWi 1022.0 (836.0) 671.8 (514.4) 868.2 (824.1) 0.035* 0.043* 0.066
Right ACG/AAL32
kWi 702.0 (740.0) 423.6 (453.7) 555.7 (596.7) 0.032* 0.023* 0.062
Enodal 45.5 (24.8) 33.8 (20.7) 38.3 (23.1) 0.040* 0.048* 0.076
Left PCG/AAL35
CCnodal 54.9 (24.5) 43.6 (18.4) 48.6 (21.7) 0.035* 0.042* 0.056
Right PCG/AAL36
CCnodal 54.3 (21.4) 45.1 (17.3) 49.6 (22.8) 0.048* 0.049* 0.060
Left SFGmedorb/AAL25
kWi 459.9 (332.4) 245.6 (179.7) 292.7 (213.7) 0.019* 0.052 0.019*
Enodal 32.3 (15.1) 22.1 (10.3) 24.7 (11.2) 0.013* 0.079 0.041*
Right pallidum/AAL76
kWi 937.9 (555.6) 721.0 (342.4) 815.8 (416.4) 0.020* 0.060 0.049*
Left amygdala/AAL41
kWi 150.7 (138.2) 115.7 (128.1) 172.7 (128.6) 0.056 0.003* 0.071
Enodal 18.1 (10.8) 15.7 (8.7) 20.4 (8.5) 0.071 0.005* 0.055
Left PHG/AAL39
kWi 138.1 (100.6) 175.4 (153.6) 182.8 (111.8) 0.053 0.044* 0.035*
Enodal 16.7 (8.8) 17.7 (8.6) 20.2 (9.7) 0.078 0.030* 0.053
Left CAU/AAL71
kWi 1065.6 (489.3) 892.6 (427.1) 769.4 (387.6) 0.052 0.013* 0.015*

Values are given as mean (standard deviation).
ACG, Anterior cingulate and paracingulate gyri; AAL, Automated Anatomical Labeling; kWi , nodal degree; Enodal, nodal

efficiency; PCG, posterior cingulate gyrus; CCnodal, clustering coefficiency; SFGmedorb, superior frontal gyrus medial orbital;
PHG, parahippocampal gyrus; CAU, caudate nucleus; DTI, diffusion tensor imaging; MRI, magnetic resonance imaging; FDR,
false discovery rate.

a One of the reconstructed brain network was removed from the 38 healthy volunteers for its lowest outlier network density.
b One of the 42 patients discontinued during the DTI scan at baseline, and also withdrew from the follow-up MRI scan.

Three other patients withdrew from the follow-up MRI scans.
c Patients at baseline v. controls, permutation test with FDR correction.
d Patients at baseline v. follow-up, paired-samples t test with FDR correction.
e Patients at follow-up v. controls, permutation test with FDR correction.
* Significant difference (p < 0.05).
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right pallidum. These findings suggest that the white
matter topological dysfunction of the limbic system,
frontal gyrus and striatum may be involved in the
pathology of schizophrenia, because they are present

early in the course of overt illness and prior to any
medication usage. To characterize antipsychotic treat-
ment effects on fiber network topology, participants
were rescanned after 8 weeks of risperidone

Fig. 2. Brain regions showing deficient topological characteristics in anatomical brain networks and the relationship with a clinical
variable in drug-naive first-episode schizophrenia patients (FESP). (a) Areas of deficient topological attributes in drug-naive FESP
relative to healthy controls at baseline. There were significant differences in the bilateral anterior cingulate and paracingulate gyri
(ACG), bilateral posterior cingulate gyrus (PCG), left superior frontal gyrus medial orbital (SFG_med_orb_L) and right pallidum
(pallidum_R). (b) Negative correlation between baseline clustering coefficiency (CCnodal) of the left PCG and Positive and Negative
Syndrome Scale general psychopathological symptom scores (PANSS-G) in FESP. L, Left; R, right.
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monotherapy. The topological disruptions of the lim-
bic system improved in at least one nodal property,
while there were no significant changes in the frontal
gyrus or right pallidum. Positive symptoms improved
and the degree of improvement in the PANSS-P scores
correlated with alterations in some indices of topo-
logical disruption in the limbic system. However, as
these findings did not survive corrections for multiple
comparisons, these findings should be considered pro-
visional requiring replication in an independent sam-
ple. Antipsychotic therapy failed to normalize either
prefrontal topology or improve negative symptoms.
Additionally, the topological parameter of the left
CAU decreased after antipsychotic medications, and
yet did not show any baseline differences when com-
pared with the control group. That may be a medica-
tion side effect unrelated to therapeutic benefit or the
pathology of schizophrenia or a compensatory effect.

We found baseline deficits in the kWi of the bilateral
ACG, and Enodal of the right ACG, suggesting the

ACG may have less regional efficiency in transferring
information and communication with the rest of its
anatomical networks. These ‘deficient’ topological
properties of ACG were improved by 8 weeks of treat-
ment. In addition, patients’ reduced baseline CCnodal of
the bilateral PCG showed normalization after treat-
ment, suggesting that risperidone monotherapy may
increase the PCG’s local efficiency of information trans-
fer. Interestingly, treatment increased topological indi-
ces (kWi and Enodal) in the left PHG and amygdala, while
at baseline there were no significant group differences
relative to controls, implying a gain-of-efficiency of
these two regions in transferring information in the
anatomical network. This may reflect a secondary re-
sponse to the changes of the ACG and PCG, given
they are the source of crucial afferent and efferent con-
nections in the limbic system including the PHG and
amygdala (Catani et al. 2013); or it may be part of the
therapeutic effect of the medication or a non-specific
side effect. The ACG, PCG, amygdala and PHG are

Fig. 3. Brain regions showing longitudinal alterations of nodal topological metrics in anatomical brain networks and the
relationship with improvement of clinical variable after 8 weeks of risperidone treatment in drug-naive first-episode
schizophrenia patients (FESP). (a) Areas with alterations of topological attributes in white matter networks after 8 weeks of
risperidone treatment of drug-naive FESP. There was improvement of topological properties in the bilateral anterior cingulate
and paracingulate gyri (ACG), bilateral posterior cingulate gyrus (PCG), left PHG (PHG-L) and left amygdala (amygdala_L).
(b) Positive correlation between improvement of nodal efficiency (Enodal) in the right ACG and the reduction in Positive and
Negative Syndrome Scale positive symptoms (PANSS-P) score (p = 0.048, controlling for age and gender). L, Left; R, right.

2556 M. Hu et al.

https://doi.org/10.1017/S0033291716001380 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291716001380


important components of the limbic system considered
to be involved in the physiopathology of schizophrenia
(Gur et al. 2007; Lahti et al. 2009). The limbic damage is
regarded as a ‘state’ marker and actively responds to
pharmacological interventions (Lahti et al. 2009; Lui
et al. 2010). Moreover, the cingulate gyrus furnishes
the limbic system with the crucial axonal wiring to
constitute connectivity to and from other divisions in-
cluding the amygdala and PHG of the system (Catani
et al. 2013). White matter abnormalities of these iden-
tified regions in schizophrenia have been widely
reported in neuroimaging and histopathological stud-
ies (Kubicki et al. 2003; Farkas et al. 2010; Van den
Heuvel et al. 2010). These implicated nodes included
the key cortical (i.e. ACG) and subcortical (i.e. amyg-
dala) structures of the salience network, as well as the
posterior component (i.e. PCG) andmedial temporal re-
gion (includingPHG) of the defaultmodenetwork. Both
the salience network and defaultmode network are pro-
posed to be an important part of the triple network
model, a unifying network that is implicated in the cog-
nitive dysfunction and aberrant saliency mapping of
schizophrenia and other neuropsychiatric disorders
(Menon, 2011). Our current findings of post-treatment
increased topological attributes in the PCG, ACG,
PHG and amygdala, together with the preliminary evi-
dence suggesting the potential effect of antipsychotic
medications on salient (Palaniyappan et al. 2012) andde-
fault mode network (Sambataro et al. 2010), imply that
dysfunctions of the triple network are viable therapeutic
targets in schizophrenia.

Treatment-related changes of Enodal in the right ACG
positively correlated with reductions in PANSS-P
scores after treatment, suggesting that the degree of in-
crease in the right ACG’s communication efficiency is
linked to improvement in positive symptoms. The
ACG plays a role in decision-making, choosing be-
tween conflicting options and error detection (Carter
et al. 2001), and this region’s inability in self-
monitoring may contribute to the failure to identify
one’s own inner thoughts from external circumstances,
and is therefore a potential neuropathological substrate
for positive symptoms (Kubicki et al. 2003). The associ-
ation of abnormalities of the ACG with positive symp-
toms is in accord with prior studies (Cheung et al. 2011;
Kates et al. 2015). Moreover, salience network dysfunc-
tion leads to damaged detection of salient external
environment and internal events, with significant self-
monitoring consequences (Menon, 2011). Cross-sectional
studies suggest a relationship between structural or func-
tional deficits of the ACG within the salience network
with psychosis (Palaniyappan et al. 2011; Palaniyappan
& Liddle, 2012). Our current findings based on a longitu-
dinal design provide further evidence linking post-
treatment topological organization alterations of the

salience network component and improvement of posi-
tive symptoms in schizophrenia. Additionally, we also
observed a relationship between baseline CCnodal of the
left PCG and PANSS-G, although, to our knowledge,
this is the first study linking PCG topological attributes
with severity of general psychopathological symptoms
in schizophrenia. Pathology of the PCG has been postu-
lated to cause emotional and cognitive impairments
(Maddock, 1999) and thus might underlie the genesis of
the general psychopathological symptoms in
schizophrenia.

We observed lower kWi and Enodal in the left
SFGmedorb at baseline, indicating the possibility of the
frontal gyrus’s inefficient communication with other
brain regions and low regional efficiency in transferring
information in the white matter network. The frontal
gyrus is strongly implicated in the physiopathology of
schizophrenia (Wang et al. 2013; Piantadosi & Floresco,
2014). This study provides new support for the frontal
dysfunction hypothesis of schizophrenia because our
findings are in drug-naive FESP. No improvement of
frontal deficits is consistent with other studies (Snitz
et al. 2005; Van Veelen et al. 2011) and suggests that the
frontal dysfunction may represent a ‘trait’ marker of
schizophrenia because it responds poorly to antipsy-
chotics. It remains to be seen whether these topological
deficits improve when effective treatments for negative
clinical symptoms of schizophrenia are identified.

Behavioral outcome and white matter topological
changes after treatment initiation can be further under-
stood in the context of the schizophrenia dopamine
(DA) hypothesis and risperidone’s D2 antagonism
(Meyer & Feldon, 2009). More specifically, DA in the
mesocortical system (projecting to the prefrontal
areas) may be hypoactive and its deficits are proposed
to underlie negative symptoms, whereas the mesolim-
bic DA pathway may be hyperactive and its hyper-
activity may be critically involved in the emergence
of positive symptoms. Risperidone’s antagonism of
DA, especially D2 receptors in the limbic areas, is ben-
eficial for positive symptoms. However, risperidone’s
block effect in the frontal gyrus has no beneficial and
perhaps detrimental influence on negative symptoms
because patients already have low frontal DA levels.
Our observations of no benefit for negative symptoms
and no improvement in frontal topological parameters
suggest a relationship between frontal topologies and
negative symptom severity at baseline.

Limitations

Although structural network graph theory properties
appear to have moderate test–retest reliability (Cheng
et al. 2012), the lack of repeated scans for the control
group is a limitation of this study as we cannot exclude

Anatomical network topology in schizophrenia 2557

https://doi.org/10.1017/S0033291716001380 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291716001380


the possibility that the observed topological changes
after treatment might be related to test–retest variabil-
ity. The identified relationship between nodal topolo-
gies and clinical symptoms should be considered as
exploratory in nature as results did not survive correc-
tions for multiple comparisons.

Conclusion

In summary, this is the first follow-up DTI study in
drug-naive recent onset psychotic patients which
demonstrates that topological deficits of anatomical
networks may be due to medication effects. Limbic
white matter topological dysfunction improves with
positive symptom reduction, whereas prefrontal topo-
logical deficits appear to be unresponsive to psycho-
pharmacological intervention and may be potential
trait biomarkers and targets for negative symptom
treatment development. Future studies with more ef-
fective treatments for negative symptoms are needed
to evaluate their effects on prefrontal topological defic-
its and to determine whether such deficits may serve as
treatment biomarkers.
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