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Abstract

We show that the mapping class group of a closed, connected, oriented surface of genus
at least three is generated by 3 elements of order 3. Moreover, we show that the mapping
class group of a closed, connected, oriented surface of genus at least three is generated and
by 4 elements of order 4.

1. Introduction

Let �g denote a closed, connected, oriented surface of genus g, and let Mg denote its
mapping class group, which is the group of homotopy classes of orientation-preserving
homeomorphisms of �g.

The study of generators of Mg was pioneered by Dehn. In [2] Dehn proved that Mg is
generated by a finite set of Dehn twists. Lickorish [10] showed that 3g − 1 Dehn twists
generate Mg. For g � 2 this number was improved to 2g + 1 by Humphries [6]. Humphries
proved, moreover, that in fact the number 2g + 1 is minimal; i.e. Mg cannot be generated
by 2g (or less) Dehn twists.

It is classical problem to find small generating sets and torsion generating sets for Mg.
Maclachlan [12] proved that the moduli space is simply connected as a topological space
by showing that Mg is generated by torsion elements. McCarthy and Papadopoulos [13]
proved that Mg is generated by infinitely many conjugates of a single involution for g � 3.
Luo [11] discovered a first finite set of involutions which generate Mg for g � 3. He posed
the question of whether there is a universal upper bound, independent of g, for the number
of torsion elements needs to generate Mg. Brendle and Farb answered Luo’s question. They
proved that Mg is generated by 3 elements of order 2g + 2, 4g + 2 and 2 (or g) in [1].
Korkmaz [9] showed that Mg is generated by 2 torsion elements, each of order 4g + 2.
Brendle and Farb [1] also constructed a generating set of Mg for g � 3 consisting of 6
involutions. Kassabov [8] improved their method to show that Mg is generated by 4 invol-
utions if g � 7, 5 involutions if g � 5 and 6 involutions if g � 3.

It is known that for all g � 1 there exist elements of order 2, 3 and 4 are in Mg. In this
paper, we show the following results.

THEOREM 1. For g � 3,
(i) Mg is generated by 3 elements of order 3,

(ii) Mg is generated by 4 elements of order 4.
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Fig. 1. The Dehn twist.

Fig. 2. The curves αi , βi , γi .

2. Preliminaries

Let c be the isotopy class of a simple closed curve on �g. Then the (right-hand) Dehn
twist Tc about c is the homotopy class of the homeomorphism obtained by cutting �g along
c, twisting one of the sides by 360◦ to the right and gluing two sides of c back to each other.
Figure 1 shows the Dehn twist about the curve c. We will denote by Tc the Dehn twist about
the curve c. If f and h are two elements in Mg, then the composition f h means that h is
applied first.

We recall the following lemmas (see, for instance, [4]) and theorems.

LEMMA 2. For all h ∈ Mg, the Dehn twists about c and h(c) are conjugate in Mg,

Th(c) = hTch
−1.

LEMMA 3. Let c and d be two simple closed curves on �g. If c is disjoint from d, then

TcTd = Td Tc.

LEMMA 4. If the geometric intersection number of c and d is one, then

TcTd Tc = Td TcTd .

THEOREM 5 ([6]). We denote the curves αi , βi , γi as shown in Figure 2. Mg is generated
by Tα1 , Tα2 , Tβ1, . . . , Tβg , Tγ1, . . . , Tγg−1 .

We call Tα1, Tα2, Tβ1, . . . , Tβg , Tγ1, . . . , Tγg−1 Humphries’s generators.
We recall the chain relation. We say that an ordered set of c1, . . . , cn of simple closed

curves on �g forms an n-chain if the geometric intersection (ck, ck+1) = 1 for k =
1, . . . , n − 1 and (ck, cl) = 0 if |k − l| � 2. If n is odd, the boundary of a regular neighbour-
hood of any n-chain has two components d1 and d2. The chain relation is read as follows :
For a given n-chain c1, . . . , cn , if n is odd we have

(Tcn Tcn−1 · · · Tc2 Tc1)
n+1 = Td1 Td2

We note that Tcn Tcn−1 · · · Tc1(ci) = ci−1 for i = 2, . . . , n. Given an n-chain c1, . . . , cn and
an m-chain c′

1, . . . , c′
m , if ci is disjoint from c′

j for all i , j , then, by Lemma 3, Tcn · · · Tc1

commutes with Tc′
m
· · · Tc′

1
.
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Fig. 3. The curves x1, x2, δ.

Fig. 4. Cutting the surface of odd genus, I.

Fig. 5. Z3-symmetry of �g for odd g, 1.

3. Generating the mapping class group by 3 elements of order 3

In this section we prove that the mapping class group Mg is generated by 3 elements of
order 3. We assume that g � 3.

3·1. Construction of elements of order 3

We construct two elements of order 3 by cutting and gluing surfaces for each g � 3. We
take the curves x1, x2 and the separating curve δ as in Figure 3.

3·1·1. Odd genus

We assume that g is odd.
We construct an element f ∈ Mg of order 3 for each g � 3. We cut �g along the curves

γ1, γ2, α3 and α2k, γ2k, α2k+1 (k = 2, . . . , (g − 1)/2) to obtain (g − 1)/2 surfaces S1, S2,. . . ,
S(g−1)/2 as shown in Figure 4. S1 is a sphere with 3(g + 1)/2 boundary components and Sk

(k = 2, . . . , (g − 1)/2) is a pair of pants bounded by α2k, γ2k, α2k+1.
Let f1 and fk (k = 2, . . . , (g − 1)/2) denote the homeomorphisms of S1 and Sk which are

rotation by 2π/3 about the axis indicated in Figure 5. When we embed S1, S2,. . . , S(g−1)/2

in �g, we can define a homeomorphism of �g by gluing together the homeomorphisms
f1, . . . , f(g−1)/2. When f denotes the homotopy class of the homeomorphism of �g, f ∈
Mg has order 3.

We construct a second element h ∈ Mg of order 3 for each g � 3. We cut �g along the
curves α2 j−1, γ2 j−1 and α2 j ( j = 1, . . . , (g − 1)/2) to obtain (g + 1)/2 surfaces S′

1, S′
2,. . . ,

S′
(g+1)/2 as shown in Figure 6. S′

1 is a torus with 3(g − 1)/2 boundary components, and S′
j

( j = 1, . . . , (g − 1)/2) is a pair of pants bounded by α2 j−1, γ2 j−1, α2 j .
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Fig. 6. Cutting the surface of odd genus, II.

Fig. 7. Z3-symmetry of �g for odd g, 2.

Fig. 8.

We define that the homeomorphism h j of S′
j ( j = 2, . . . , (g − 1)/2) is rotation by 2π/3

about the axis indicated in Figure 7. Let S′ be a torus bounded by δ. Then, there exists a cube
root h1 : S′

1 → S′
1 of a twist in a neighbourhood of δ in S′ as shown in Figure 7. We define

ρ = (Tβg Tαg )
−2. Note that (h1|δ)3 is homotopic to Tδ, and that by chain relation ρ3 = T −1

δ

and ρ(βg) = αg. When we embed S′
1, S′

2,. . . , S′
(g−1)/2 in �g, we can define a homeomorphism

of �g by gluing together the homeomorphisms h1, . . . , h(g−1)/2 and a representative of ρ.
When h denotes the homotopy class of the homeomorphism of �g, h ∈ Mg has order 3.
Since h|S′ = ρ, we see h(βg) = αg.

Let α and β be simple closed curves on �g. The symbol

α −→f β (resp. α −→h β)

means that f (α) = β (resp. h(α) = β). By the constructions of f and h we can send α1 to
all αi and γi by f and h as shown in Figure 8. Moreover, we find that αi can be send to all
βi by f and h.

3·1·2. Even genus

We assume that g is even. By the similar arguments of the case of odd genus we construct
f and h (∈ Mg) for each g � 4 which are order 3.
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Fig. 9. Cutting the surface of even genus, I.

Fig. 10. Z3-symmetry of �g for even g, 1.

Fig. 11. Cutting the surface of even genus, II.

We construct f ∈ Mg of order 3 for each g � 4. We cut �g along the curves γ1, γ2, α3

α2k, γ2k and α2k+1 (k = 2, · · · , (g − 2)/2) to obtain (g − 2)/2 surfaces S1, S2,. . . , S(g−2)/2 as
shown in Figure 9. S1 is a torus with 3g/2 boundary components, Sk (k = 2, · · · , (g − 2)/2)

is a pair of pants bounded by α2k, γ2k, α2k+1.
We define that the homeomorphism of Sk ( j = 2, . . . , (g − 2)/2) is rotation by 2π/3

about the axis indicated in Figure 10. Let S be a torus bounded by δ. Then, there exists a
cube root h1 : S1 → S1 of a twist in a neighbourhood of δ in S as shown in Figure 10.
We define ρ = (Tβg Tαg )

−2. Note that ( f1|δ)3 is homotopic to Tδ, and that by chain relation
ρ3 = T −1

δ and ρ(βg) = αg. When we embed S1, S2,. . . , S(g−2)/2 in �g, we can define
a homeomorphism of �g by gluing together the homeomorphisms f1, . . . , f(g−2)/2 and a
representative of ρ. When f denotes the homotopy class of the homeomorphism of �g,
f ∈ Mg has order 3. Since f |S′ = ρ, we see f (βg) = αg.

We construct a second element h ∈ Mg of order 3 for each g � 4. We cut �g along
the curves α2 j−1, γ2 j−1, α2 j ( j = 1, . . . ,

g
2 ) to obtain g

2 surfaces S′
1, S′

2,. . . , S′
g
2

as shown in

Figure 11. S′
1 is a sphere with 3g/2 boundary components and S′

j+1 ( j = 1, . . . , g/2) is a
pair of pants bounded by α2 j−1, γ2 j−1, α2 j .

Let hk ( j = 1, . . . , g/2) denote the homeomorphisms of S′
k which are rotation by 2π/3

about the axis indicated in Figure 12. When we embed S′
1, S′

2,. . . , S′
g/2 in �g, we can define

a homeomorphism of �g by gluing together the homeomorphisms h1, . . . , hg/2. When h
denotes the homotopy class of the homeomorphism of �g, h ∈ Mg has order 3.

By the constructions of f and h we can send α1 to all αi and γi by f and h as shown in
Figure 13. Moreover, we find that α1 can be send to all βi by f and h.
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Fig. 12. Z3-symmetry of �g for even g, 2.

Fig. 13.

Fig. 14. The Lantern Relation.

3·2. Generating the Dehn twist by 3 elements of order 3

We generate the Dehn twist by 3 elements of order 3. The basic idea is to use the lantern
relation which was discovered by Dehn and rediscovered by Johnson (see [7]).

The lantern relation is read as follows:

Tγ2 Tγ1 Tα3 Tα1 = Tx1 Tx2 Tα2 .

where the curves α1, α2, α3, γ1, γ2, x1 and x2 are shown in Figure 3 and Figure 14.
Since α1, γ1, γ2 and α3 are disjoint each other and α2, x1 and x2, by Lemma 3 we can

rewrite the relation as

Tα1 = (Tx1 T −1
α3

)(Tx2 T −1
γ2

)(Tα2 T −1
γ1

). (3·1)

From the argument of Section 3·1 we have f 2(α2) = x1, f 2(γ1) = α3, f (α2) = x2 and
f (γ1) = γ2. By using Lemma 2 we see that

(Tx1 T −1
α3

) = f 2(Tα2 T −1
γ1

) f −2

(Tx2 T −1
γ2

) = f (Tα2 T −1
γ1

) f −1.

Since h maps γ1 to α2, we see that Tα2 = hTγ1 h
−1 and

Tα2 T −1
γ1

= hTγ1 h
−1T −1

γ1
= h(Tγ1 h

−1T −1
γ1

).
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αgαg-2αg-3αg-5

βg-3βg-5 βg-4

γg-4γg-5

α1 α3 α4 α6

β1 β2 β3 β6 βgβ5 βg-1β4 βg-2

γ2
γg-1γ5γ1 γ4

γg-2

Fig. 15. Cutting the surface of genus 3m, I.

Let h̄ denote Tγ1 h
−1T −1

γ1
. We can now rewrite (3·1) as

Tα1 = ( f 2hh̄ f −2)( f hh̄ f −1)(hh̄). (3·2)

and hence Tα1 is generated by f, h and h̄, each of which has order 3.

Proof of Main Theorem (i). We prove that Mg is generated by f , h and h̄ in the case of
odd genus.

Let G denote the group generated by f , h and h̄. By the relation (3·2) Tα1 is in G. Since
we can send α1 to all αi , γi and βi by f and h (see Figure 8), by Lemma 2 we have Tαi , Tγi

and Tβi ∈ G for all i .
By a similar arguments we can prove the result in the case of even genus.

4. Generating the mapping class group by 4 elements by order 4

In this section we prove that Mg can be generated by 4 elements of order 4. The key point
is to use the chain relation.

4·1. Construction of elements of order 4

4·1·1. The genus is 3m

We assume that g = 3m (m � 2).
We construct an element φ of order 4 for each g = 3m. We cut �g along the curves α3k−2,

γ3k−2, γ3k−1 and α3k (k = 1, . . . , g/3) to obtain (g + 3)/3 surfaces L1, L2,. . . , L (g+3)/3 as
shown in Figure 15. L (g+3)/3 is a sphere with 4g/3 boundary components, and Lk (k =
1, · · · , g/3) is a pair of spheres bounded by α3k−2, γ3k−2, γ3k−1 and α3k .

We define that the homeomorphism φk of Lk (k = 1, . . . , (g + 3)/3) is rotation by π/2
about the axis indicated in Figure 16. When we embed L1, L2,. . . , L (g+3)/3 in �g, we can
define a homeomorphism of �g by gluing together the homeomorphisms φ1, . . . , φ(g+3)/3.
When φ denote the homotopy class of the homeomorphism of �g, φ ∈ Mg has order 4.
From the construction of φ we find that φ(α2) = x1 and φ(γ2) = α3.

We construct a second element ψ of order 4 for each g = 3m. We take the curves
α′

g−2, α′
g−1 and the separating curves δg−3, δg−2, δg−1 like Figure 17. We cut �g along the

curves α3i−2, γ3i−2, γ3i−1 and α3i (i = 1, . . . , (g − 3)/3) to obtain g/3 surfaces L1, L2,. . . ,
L (g−3)/3, L ′′

g/3 as shown in Figure 17. L ′′
g/3 is a surface of genus 3 with 4(g − 3)/3 boundary

components, and Li (i = 1, · · · , (g − 3)/3) is a sphere bounded by α3i−2, γ3i−2, γ3i−1 and
α3i .

We define that the homeomorphism ψ1 of L1 is rotation by π/2 about the axis indicated
in Figure 18 and that the homeomorphism ψi of Li i = 2, . . . , (g − 3)/3 is φi . Let S1 be a
surface of genus 3 bounded by δg−2. Then, there exists a 4th root ψ g

3
: L ′′

g
3

→ L ′′
g
3

of a twist

in a neighbourhood of δg−3 in S1 as shown in Figure 18. Note that (ψ g
3
|δg−3)

4 is homotopic to
Tδg−3 . We define ρ1 = (Tαg−2 Tβg−2 Tα′

g−2
)−1(Tαg−1 Tβg−1 Tα′

g−1
)(Tαg Tβg Tαg )

−1. By the chain relation
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α1 α3
α6

αg

α3k-2

β3k-2

β3k-1

β3k

α3k

γ3k-2 γ3k-1

α4

αg-2

β1

β2

β3 β6 βg

β5
βg-1

β4

βg-2

γ2

γg-1
γ5

γ1γ4
γg-2

x1
Lk

α1

α2

β1

β2

β3

α3

γ1 γ2

L1

φk : π–2 rotation φ1 : π–2 rotation

φ : π–2 rotation Lg+3
3—

g+3
3—

Fig. 16. Z4-symmetry of �3m , 1.

γg-4γg-5

αgαg-2αg-3αg-5

βg-3βg-5 βg-4

α1 α3 α4 α6

β1 β2 β3 β6 βgβ5

βg-1

β4

βg-2

γ2 γ5γ1 γ4

δg-3 δg-2 δg-1

αǵ-2 αǵ-1

αg-1

Fig. 17. Cutting the surface of genus 3m, II.

and Lemma 3 we have

ρ4
1 = (Tαg−2 Tβg−2 Tα′

g−2
)−4(Tαg−1 Tβg−1 Tα′

g−1
)4(Tαg Tβg Tαg )

−4

= (T −1
δg−3

T −1
δg−2

)(Tδg−2 Tδg−1)(T −1
δg−1

) = T −1
δg−3

.

Moreover, we find ρ1(αg) = βg. When we embed L1, L2, . . . , L (g−3)/3, L ′′
g/3 in �g, we can

define a homeomorphism of �g by gluing together the homeomorphisms ψ1, . . . , ψg/3 and
a representative of ρ1. When ψ denote the homotopy class of the homeomorphism of �g,
ψ ∈ Mg has order 4. From the construction of ψ we find that ψ(x1) = x2, ψ(α3) = γ1 and
ψ(αg) = βg.

We construct a third element ω of order 4 for each g = 3m. We take the curves ε like
Figure 19. We cut �g along the curves α3 j−1, γ3 j−1, γ3 j , α3 j+1 ( j = 1, . . . , (g − 3)/3), α1, ε,
γg−1 and αg−1 to obtain (g + 3)/3 surfaces L ′

1, L ′
2,. . . , L ′

(g−3)/3, L ′
g/3 as shown in Figure 19.

L ′
g/3 is a sphere with 4g/3 boundary components, Lg/3 is a sphere bounded by α1, ε, γg−1

and αg−1, and L j ( j = 1, · · · , (g − 3)/3) is a sphere bounded by α3 j−1, γ3 j−1, γ3 j and
α3 j+1. We define that the homeomorphism ω j of L j ( j = 1, . . . , (g + 3)/3) is rotation by
π/2 about the axis indicated in Figure 20.

When we embed L ′
1, L ′

2,. . . , L ′
(g+3)/3 in �g, we can define a homeomorphism of �g by

gluing together the homeomorphisms ω1, . . . , ω(g+3)/3. When ω denotes the homotopy class
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α3
α6

α3i-2

β3i-2

β3i-1

β3k

α3i

γ3i-2 γ3i-1

α4

αg-5 αg-3

αg-2

αg-1

αǵ-2

αǵ-1

αg

βg-2

βg-1

βg

β6

β5
βg-4

βg-3

δg-3

β4

βg-5

γ2

γg-4
γ5

γ1γ4
γg-4

x1

x2
Li

α1α3

γ1 γ2

L1

L´́

φi : π–2 rotation ψ1 : π–2 rotation

x1

x2

α1

β1

β2

β3

α3

γ1 γ2

L1

ψ1 : π–2 rotation

α1

δg-2

δg-1

ψ g
3—

g
3—

S1

Fig. 18. Z4-symmetry of �3m , 2.

βg-1βg-2

γg-4 γg-3 γg-1γ2 γ5γ3

αg-2αg-5 αg-4α1 α2 α4 α5 αg-1

βg-3βg-5 βg-4β1 β2 β3 β6β5β4

Fig. 19. Cutting the surface of genus 3m, III.

of the homeomorphism of �g, ω ∈ Mg has order 4. From the construction of ω we find that
ω(α2) = γ2.

Let α and β be simple closed curves on �g. The symbol

α −→φ β (resp. α −→ψ β, α −→ω β)

means that φ(α) = β (resp. ψ(α) = β, ω(α) = β). By the constructions of φ, ψ and ω we
can send α1 to all γi and βi by φ, ψ and ω as shown in Figure 21. Moreover, we can send α1

to α2 by φ, ψ and ω.

4·1·2. The genus is 3

We assume g = 3.
The consturctions of ψ and ω in Section 4·1·2 are not applicable in this section. In the

case of g = 3, the construction of φ is the same as the previous argument. Therefore, φ

satisfies that φ(α2) = x1 and φ(γ2) = α3.
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α2 α4

α3j-1

β3j-1

β3j

α3j+1

β3j+1

γ3j-1 γ3j

αg-4 αg-2αg-1

αg-1

α1

α1

γg-1

γg-1

β2

β3

β4

βg-3

βg-2βg-4 γ3
γg-3

γ2
γg-4

Ĺj Ĺ

ωj : π–2 rotation ω : π–2 rotation

ω : π–2 rotation

g-3
3—

g-3
3—

Ĺ g
3—g

3—

Fig. 20. Z4-symmetry of �3m , 3.

α1

γ1 γ2 γ3

α4

γ4 γ5 γ6

φ
φ

α2

ω
ω

ω
φ

φ

αg-5

γg-5 γg-4 γg-3

αg-2

φ
φ

ω
ω φ

γg-2 γg-1

αg

φ
φ

ω
ω

β1 β2 β3 β4 β5 β6

φ φ φ
βg-5 βg-4 βg-3

φ φ
βg-2 βg-1

φφω
βg

φ

ψ

ωω

Fig. 21.

α1 α3

β1 β2 β3

γ2γ1

Fig. 22. Cutting the surface of genus 3.

We construct a second element ψ of order 4. We cut �3 along the curves α1, γ1, γ2 and
α3 to obtain two surfaces L1, L2 as shown in Figure 22. L1 and L2 are spheres bounded by
α1, γ1, γ2 and α3.

We define that the homeomorphism ψi of Li (i = 1, 2) is rotation by π/2 about the axis
indicated in Figure 23. When we embed L1, L2 in �3, we can define a homeomorphism of
�3 by gluing together the homeomorphisms ψ1, ψ2. When ψ denotes the homotopy class of
the homeomorphism of �3, ψ ∈ M3 has order 4. From the construction of ψ we find that
ψ(x1) = x2, ψ(α3) = γ1.

We construct a third element ω of order 4. Let α′
3 and ε be the curves as shown in Fig-

ure 24. We define

ω = (Tγ2 Tβ2 Tα2)(TεTβ1 Tα1)
−1.

By the chain relation and Lemma 3 we have

ω4 = (Tγ2 Tβ2 Tα2)
4(TεTβ1 Tα1)

−4

= (Tα3 Tα′
3
)(T −1

α3
T −1

α′
3

) = 1.

Hence, ω has order 4. By the construction of ω we find that ω(α2) = β2 and ω2(α2) = γ2.
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α3

γ2γ1

: π–2 rotation

α1

x1

x2

α1α3

γ1 γ2

L1

L2

ψ1

ψ2

: π–2 rotation

Fig. 23. Z4-symmetry of �3.

γ2

α1 α3

β1

β2

α2α3́

Fig. 24. The curves α′
3 and ε.

γ1 γ2
φ

β1 β2 β3

φ

α1

α2

φ

φ

ω

ω

Fig. 25.

By the constructions of φ, ψ and ω we can send α1 to all γi and βi by φ, ψ and ω as
shown in Figure 25. Moreover, we find that α1 can be send to α2 by φ, ψ and ω.

4·1·3. The genus is 3m + 1

We assume that g = 3m + 1 (m � 1). The construction of ψ is different from the
construction of that in Section 4·1·1.

We construct an element φ of order 4 for each g = 3m + 1. We cut �g along the curves
α3k−2, γ3k−2, γ3k−1 and α3k (k = 1, . . . , (g − 1)/3) to obtain (g + 2)/3 surfaces L1, L2,. . . ,
L (g+2)/3 as shown in Figure 26. L (g+2)/3 is a torus with 4(g − 1)/3 boundary components,
and Lk (i = 1, · · · , (g − 1)/3) is a sphere bounded by α3k−2, γ3k−2, γ3k−1 and α3k .

We define that the homeomorphism φk of Lk (k = 1, . . . , (g − 1)/3) is rotation by π/2
about the axis indicated in Figure 27. Let S2 be a torus bounded by δg−1. Then, there exists a
4th root ψ(g+2)/3 : L (g+2)/3 → L (g+2)/3 of a twist in a neighbourhood of δg−1 in S2 as shown in
Figure 27. We define ρ2 = (Tαg Tβg Tαg )

−1. Note that (φ(g+2)/3|δg−1)
4 is homotopic to Tδg−1 , and

that ρ4
2 = T −1

δg−1
.When we embed L1, L2,. . . , L (g+2)/3 in �g, we can define a homeomorphism

of �g by gluing together the homeomorphisms φ1, . . . , φ(g+2)/3 and a representative of ρ2.
When φ denotes the homotopy class of the homeomorphism of �g, φ ∈ Mg has order 4.
From the construction of φ we find that φ(α2) = x1 and φ(γ2) = α3.
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γg-5 γg-2

βg

γg-3

δg-1

αgαg-3αg-4α1 α3 α4 α6

γ2 γ5γ1 γ4

αg-1

βg-1βg-2βg-3βg-5 βg-4β1 β2 β3 β6β5β4

Fig. 26. Cutting the surface of genus 3m + 1, I.

α1 α3
α6

α3k-2

β3k-2

β3k-1

β3k

α3k

γ3k-2 γ3k-1

α4

αg-3

β1

β2

β3 β6

β5
βg-2

β4

βg-3

γ2

γg-2
γ5

γ1γ4
γg-3

x1
Lk

α1

α2

β1

β2

β3

α3

γ1 γ2

L1

φk : π–2 rotation φ1 : π–2 rotation

αg
βg

δg-1

αg-1

βg-1

Lg+2
3—

φg+2
3—

S2

Fig. 27. Z4-symmetry of �3m+1, 1.

We construct a second element ψ of order 4 for each g = 3m + 1. We define that the
homeomorphism ψ1 of L1 is rotation by π/2 about the axis indicated in Figure 28 and that
the homeomorphism ψk of Lk (k = 1, . . . , (g − 1)/3) is φk . We define that the homeo-
morphism ψ(g+2)/3 of L (g+2)/3 is a 4th root of a twist in a neighbourhood of δg−1 in S2

as shown in Figure 28. Note that (ψ(g+2)/3|δg−1)
4 is homotopic to Tδg−1 .When we embed L1,

L2,. . . , L (g+2)/3 in �g, we can define a homeomorphism of �g by gluing together the homeo-
morphisms ψ1, . . . , ψ(g+2)/3 and a representative of ρ2. When ψ denotes the homotopy class
of the homeomorphism of �g, ψ ∈ Mg has order 4. From the construction of ψ we find
that ψ(x1) = x2, ψ(α3) = γ1. Moreover, since ψ |S2 = ρ2, we see that ψ(αg) = βg.

We construct a third element ω of order 4 for each g = 3m+1. We cut �g along the curves
α3 j−1, γ3 j−1, γ3 j and α3 j+1 ( j = 1, . . . , (g − 1)/3) to obtain (g + 2)/3 surfaces L ′

1, L ′
2,. . . ,

L ′
(g−1)/3 and L ′

(g+2)/3 as shown in Figure 29. L ′
(g+2)/3 is a torus with 4(g − 1)/3 boundary

components, and L j (i = 1, · · · , (g − 1)/3) is a sphere bounded by α3 j−1, γ3 j−1, γ3 j and
α3 j+1.

We define that the homeomorphism ω j of L ′
j ( j = 1, . . . , (g − 1)/3) is rotation by π/2

about the axis indicated in Figure 30. Let δ1 be the separating curve on �g as shown in
Figure 29 and let S3 be a torus bounded by δ1. Then, there exists a 4th root ω(g+2)/3 :
L ′

(g+2)/3 → L ′
(g+2)/3 of a twist in a neighbourhood of δ1 in S3 as shown in Figure 30.
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α1α3
α6

α3k-2

β3k-2

β3k-1

β3k

α3k

γ3k-2 γ3k-1

α4

αg-3

β6

β5

βg-2

β4

βg-3

γ2

γg-2
γ5

γ1γ4

γg-3

Lk

φk : π–2 rotation

αg
βg

δg-1

αg-1

βg-1

Lg+2
3—

x1

x2

α1α3

γ1 γ2

L1

ψ1 : π–2 rotation

g+2
3—

ψ

S2

Fig. 28. Z4-symmetry of �3m+1, 2.

γg-4γg-5 γg-1γg-2γ2 γ5γ3

αgαg-3 αg-2αg-5α1 α2 α4 α5

βgβg-1βg-2βg-3βg-5 βg-4β1 β2 β3 β6β5β4

δ1

Fig. 29. Cutting the surface of genus 3m + 1, II.

We define ρ3 = (Tα1 Tβ1 Tα1)
−1. Note that (ω(g+2)/3|δ1)

4 is homotopic to Tδ1 , and that
ρ4

3 = T −1
δ1

.When we embed L ′
1, L ′

2,. . . , L ′
(g+2)/3 in �g, we can define a homeomorphism

of �g by gluing together the homeomorphisms ω1, . . . , ω(g+2)/3 and a representative of ρ3.
When ω denotes the homotopy class of the homeomorphism of �g, ω ∈ Mg has order 4.
From the construction of ω we find that ω(α2) = γ2.

By the constructions of φ,ψ and ω we can send α1 to all γi and βi by φ, ψ and ω as shown
in Figure 31. Moreover, we can send α1 to α2 by φ, ψ and ω.

4·1·4. The genus is 3m + 2

We assume that g = 3m + 2 (m � 2).
We construct an element φ of order 4 for each g = 3m + 2. We cut �g along the curves

α3k−2, γ3k−2, γ3k−1 and α3k (k = 1, . . . , (g − 2)/3) to obtain (g + 1)/3 surfaces L1, L2,. . . ,
L (g+1)/3 as shown in Figure 32. L (g+2)/3 is a torus with 4(g − 2)/3 boundary components,
and Lk (k = 1, · · · , (g − 2)/3) is a sphere bounded by α3k−2, γ3k−2, γ3k−1 and α3k .

We define that the homeomorphism φk of Lk (k = 1, . . . , (g − 1)/3) is rotation by π/2
about the axis indicated in Figure 33. Let S4 be a surface of genus 2 bounded by δg−2. Then,
there exists a 4th root φ(g+1)/3 : L (g+1)/3 → L (g+1)/3 of a twist in a neighbourhood of δg−2

in S4 as shown in Figure 33. We define ρ4 = (Tαg−1 Tβg−1 Tαg−1)
−1(Tαg Tβg Tαg ). By the chain
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α2 α4
α7

α3j-1

β3j-1

β3j

β3j+1

α3j+1

γ3j-1 γ3j

α5

αg-2

β2

β3

β4 β7

β6

βg-1

β5

βg-2

γ3

γg-1
γ6

γ2γ5

γg-2

ωj : π–2 rotation

α1
β1

δ1

αg

βg

g+2
3—

ωg+2
3— Ĺ

Ĺj

S3

Fig. 30. Z4-symmetry of �3m+1, 3.

β1 β2 β3 β4 β5 β6

φ φ φ
βg-3 βg-2 βg-1

φ φ
βg

φω ωω

α1

γ1

α2

γ2 γ3

α4

γ4 γ5 γ6

φ
φ

ω
ω ω

φ
φ

αg-3

γg-3 γg-2 γg-1

αg

φ
φ

ω
ω

ω
ω

ψ

Fig. 31.

γg-4 γg-3γ2 γ5γ1 γ4

αgαg-4α1 α3 α4 α6 αg-1αg-2

βgβg-2βg-3βg-5 βg-4β1 β2 β3 β6β5β4

βg-1
δg-2 δg-1

αǵ-1

Fig. 32. Cutting the surface of genus 3m + 2, I.

relation and Lemma 3 we have

ρ4
4 = (Tαg−1 Tβg−1 Tαg−1)

−4(Tαg Tβg Tαg )
4

= (T −1
δg−2

T −1
δg−1

)(Tδg−1) = T −1
δg−2

.

Moreover, we find that ρ4(αg) = βg. Note that (φ(g+1)/3|δg−2)
4 is homotopic to Tδg−2 . When

we embed L1, L2,. . . , L (g+1)/3 in �g, we can define a homeomorphism of �g by gluing to-
gether the homeomorphisms φ1, . . . , φ(g+1)/3 and a representative of ρ4. When φ denotes the
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α1 α3
α6

α3k-2

β3k-2

β3k-1

β3k

α3k

γ3k-2 γ3k-1

α4

αg-4

β1

β2

β3 β6

β5
βg-3

β4

βg-4

γ2

γg-3
γ5

γ1γ4
γg-4

x1
Lk

α1

α2

β1

β2

β3

α3

γ1 γ2

L1

φk : π–2 rotation φ1 : π–2 rotation

αg-2

βg-2

Lg+1
3—

φg+1
3—

αg-1αǵ-1

αg

βg-1

βg

δg-2

δg-1S4

Fig. 33. Z4-symmetry of �3m+2, 1.

γg-4γg-5 γg-1γg-2γ2γ1

α1 α3 αgαg-3 αg-2αg-5

βgβg-1βg-2βg-3βg-5 βg-4β1 β2 β3

β5β4

δ́´ α4́́α4́ α5́δ´

Fig. 34. Cutting the surface of genus 3m + 2, II.

homotopy class of the homeomorphism of �g, φ ∈ Mg has order 4. From the construction
of φ we find that φ(α2) = x1, φ(γ2) = α3 and φ(αg) = βg.

We construct a second element ψ of order 4 for each g = 3m + 2. We cut �g along the
curves α1, γ1, γ2, α3, α3i , γ3i , γ3i+1 and α3i+2 (i = 2, . . . , (g − 2)/3) to obtain (g + 1)/3
surfaces L ′′

1, L ′′
2,. . . , L ′′

(g+1)/3 as shown in Figure 34. L ′′
(g+2)/3 is a torus with 4(g − 2)/3

boundary components, and L ′′
1 and L ′′

i (i = 2, · · · , (g − 2)/3) are spheres bounded by α1,
γ1, γ2, α3 and α3i , γ3i , γ3i+1, α3i+2, respectively.

We define that the homeomorphism ψi of L ′′
i (i = 1, . . . , (g − 2)/3) is rotation by π/2

about the axis indicated in Figure 35. Let δ′ and δ′′ (resp. α′
4 and α′

5) be the separating (resp.
the nonseparating) curves as shown in Figure 34. We denote by S5 a surface of genus 2
bounded by δ′′. Then, there exists a 4th root ψ(g+1)/3 : L ′′

(g+1)/3 → L ′′
(g+1)/3 of a twist in a

neighbourhood of δ′′ in S5 as shown in Figure 35. We define ρ5 = (Tα4 Tβ4 Tα′
4
)−1(Tα5 Tβ5 Tα5).

By the chain relation and Lemma 3 we have

ρ4
5 = (Tα4 Tβ4 Tα′

4
)−4(Tα5 Tβ5 Tα5)

4

= (T −1
δ′ T −1

δ′′ )(Tδ′′) = T −1
δ′ .

Note that (ψ(g+1)/3|δ′)4 is homotopic to Tδ′ . When we embed L ′′
1, L ′′

2,. . . , L ′′
(g+1)/3 in

�g, we can define a homeomorphism of �g by gluing together the homeomorphisms
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α1α3
α8

β3i
β3i+2

β3i+1γ3i
γ3i+1

α3i+2α3i

α6

αg-2

β8

β7

βg-1

β6

βg-2

γ2

γg-1
γ7

γ1γ6
γg-2

ψi : π–2 rotation

αg

βg

g+1
3—

ψg+1
3—

α4́́α4́

Lí́ L1́́

L´́

α5́

β4

β5

δ́´

δ´

x1

x2

α1α3

γ1 γ2

ψ1 : π–2 rotation

S5

Fig. 35. Z4-symmetry of �3m+2, 2.

αgα1

γg-2γg-3γ2 γ3

αg-3 αg-1α2 α4

βg

βg-1βg-2βg-3βg-5 βg-4β2 β3 β4
δ1

δgαǵ

β1

Fig. 36. Cutting the surface of genus 3m + 2, III.

ψ1, . . . , ψ(g+1)/3 and a representative of ρ5. When ψ denotes the homotopy class of the
homeomorphism of �g, ψ ∈ Mg has order 4. From the construction of ψ we find that
ψ(x1) = x2, ψ(α3) = γ1.

We construct a third element ω of order 4 for each g = 3m+2. We cut �g along the curves
α3 j−1, γ3 j−1, γ3 j and α3 j+1 ( j = 1, . . . , (g − 2)/3) to obtain (g + 1)/3 surfaces L ′

1, L ′
2,. . . ,

L ′
(g+1)/3 as shown in Figure 36. L ′

(g+2)/3 is a torus with 4(g − 2)/3 boundary components,
and L j ( j = 1, · · · , (g − 2)/3) is a sphere bounded by α3 j−1, γ3 j−1, γ3 j and α3 j+1.

We define that the homeomorphism ω j of L j ( j = 1, . . . , (g − 1)/3) is rotation by π/2
about the axis indicated in Figure 37. Let δg and α′

g be the separating and nonseparating
curves as shown in Figure 36. We denote by S6 a surface of genus 2 bounded by δg. Then,
there exists a 4th root ω(g+1)/3 : L ′

(g+1)/3 → L ′
(g+1)/3 of a twist in a neighbourhood of δg in

S6 as shown in Figure 37. We define ρ6 = (Tαg Tβg Tα′
g
)−1(Tα1 Tβ1 Tα1). By the chain relation

and Lemma 3 we have

ρ4
6 = (Tαg Tβg Tα′

g
)−4(Tα1 Tβ1 Tα1)

4

= (T −1
δg

T −1
δ1

)(Tδ1) = T −1
δg

.

Note that (ω(g+1)/3|δg )
4 is homotopic to Tδg . When we embed L ′

1, L ′
2,. . . , L ′

(g+1)/3 in
�g, we can define a homeomorphism of �g by gluing together the homeomorphisms
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α4α2
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γ3j-1 γ3j
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β7

β6
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β5

βg-3

γ3
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γ6

γ2γ5
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ωj : π–2 rotation
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ω
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β3

β4

αǵ
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β1
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δ1
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βg
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S6

Fig. 37. Z4-symmetry of �3m+2, 3.

β1 β2 β3 β4 β5 β6

φ φ φ
βg-4 βg-3 βg-2

φ φ
βg-1 βg

ψφω ωω

α1

γ1

α2

γ2 γ3

α4

γ4 γ5 γ6

φ
φ

ω
ω ω

φ
φ

αg-4

γg-4 γg-3 γg-2

αg-1

φ
φ

ω
ω

γg-1

αg

ψ
ψ

ω
ω

φ

Fig. 38.

ω1, . . . , ω(g+1)/3 and a representative of ρ6. When ω denotes the homotopy class of the
homeomorphism of �g, ω ∈ Mg has order 4. From the construction of ω we find that
ω(α2) = γ2.

By the constructions of φ, ψ and ω we can send α1 to all γi and βi by φ, ψ and ω as
shown in Figure 38. Moreover, we can send α1 to α2 by φ, ψ and ω.

4·1·5. The genus is 5

We assume that g = 5.
We construct an element φ of order 4. Let α′

4 be the nonseparating curve on �5 as shown
in Figure 39. We define

φ = (Tγ3 Tβ3 Tγ2 Tβ2 Tγ1 Tβ1 Tα1)
2(Tα5 Tβ5 Tγ4)

−1.

By the chain relation and Lemma 3 we have

φ4 = (Tγ3 Tβ3 Tγ2 Tβ2 Tγ1 Tβ1 Tα1)
8(Tα5 Tβ5 Tγ4)

−4.

= (Tα4 Tα′
4
)(T −1

α4
T −1

α′
4

) = 1.

Hence, φ has order 4. We note that φ−1(α2) = x1, φ−1(γ2) = γ1 and φ(β5) = γ4.
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γ4γ3

α1 α4 α5

γ2γ1

β1 β2 β3 β5

α4́

Fig. 39. Z4-symmetry of �5, 1.

γ2γ1

α1 α3

β1 β2 β3

α5α4

β5

β4

δ3 δ4

α4́

Fig. 40. Cutting the surface of genus 5.

We construct a second element ψ of order 4. We cut �5 along the curves α1, γ1, γ2 and
α3 to obtain two surfaces L1, L2 as shown in Figure 40. L2 is a surface of genus 2 with 4
boundary components, and L1 is a sphere bounded by α1, γ1, γ2 and α3.

We define that the homeomorphism ψ1 of L1 is rotation by π/2 about the axis indicated
in Figure 41. Let δ3, δ4 be the separating curves as shown in Figure 40, and let α′

4 be non-
separating curves as shown in Figure 40. We denote by S7 a surface of genus 2 bounded by
δ3. Then, there exists a 4th root ψ2 : L2 → L2 of a twist in a neighbourhood of δ3 in S7

as shown in Figure 41. We define ρ7 = (Tα4 Tβ4 Tα′
4
)−1(Tα5 Tβ5 Tα5). By the chain relation and

Lemma 3 we have

ρ4
7 = (Tα4 Tβ4 Tα′

4
)−4(Tα5 Tβ5 Tα5)

4

= (T −1
δ3

T −1
δ4

)(Tδ4) = T −1
δ3

.

Note that (ψ2|δ3)
4 is homotopic to Tδ3 . When we embed L1, L2 in �5, we can define a

homeomorphism of �5 by gluing together the homeomorphisms ψ1, ψ2 and a representative
of ρ7. When ψ denotes the homotopy class of the homeomorphism of �5, ψ ∈ M5 has
order 4. From the construction of ψ we find that ψ−1(x1) = x2 and ψ−1(γ1) = α3.

We construct a third element ω of order 4. Let α′
5 and ε be the nonseparating curves on

�5 as shown in Figure 42. We define

ω = (Tγ4 Tβ3 Tγ3 Tβ2 Tγ2 Tβ2 Tα2)
2(TεTβ1 Tα1)

−1.

By the chain relation and Lemma 3 we have

φ4 = (Tγ4 Tβ3 Tγ3 Tβ2 Tγ2 Tβ2 Tα2)
8(TεTβ1 Tα1)

−4.

= (Tα5 Tα′
5
)(T −1

α5
T −1

α′
5

) = 1.

Hence, ω has order 4. We note that ω−1(α2) = γ2.
By the constructions of φ and ω we can send α1 to all γi by φ and ω as shown in Figure 43.

Moreover, as shown on Figure 43, we find that α1 can be send to all βi by φ and ω.

4·2. Generating the Dehn twist by 4 elements of order 4

By using the lantern relation we generate the Dehn twist by 4 elements of order 4.
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α3

γ2γ1

α1

x1

x2

α1α3

γ1 γ2

L1

L2

ψ1

ψ2

: π–2 rotation

α4α4́

α5

β4

β5

δ3

δ4
S7

Fig. 41. Z4-symmetry of �5, 2.

α2α1 α5

γ4γ3γ2

β1

β2 β3 β4

α5́

Fig. 42. Z4-symmetry of �5, 3.

γ2α1

α2

φ
γ1 γ3 γ4

φ φ ω

φ

ω

ω

β1 β2 β3 β4 β5

φ φ ω

Fig. 43.

We assume g � 3, 5. From the lantern relation we can rewrite the relation as

Tα1 = (Tx1 T −1
α3

)(Tx2 T −1
γ1

)(Tα2 T −1
γ2

).

Since φ(α2) = x1, φ(γ2) = α3, ψ(x1) = x2 and ψ(α3) = γ1, we have

Tx1 T −1
α3

= φTα2 T −1
γ2

φ−1,

Tx2 T −1
γ1

= ψTx1 T −1
α3

ψ−1 = ψφTα2 T −1
γ2

φ−1ψ−1.

Moreover, since ω(α2) = γ2, we see that

Tα2 T −1
γ2

= Tα2ωT −1
α2

ω−1 = (Tα2ωT −1
α2

)ω−1.

Let ω̃ denote Tα2ωT −1
α2

. Then, we have Tα2 T −1
γ2

= ω̃ω−1. Hence, we have

Tα1 = (φω̃ω−1φ−1)(ψφω̃ω−1φ−1ψ−1)(ω̃ω−1). (4·1)

Therefore, Tα1 is generated by φ, ψ , ω and ω̃.
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We assume g = 3. From the lantern relation we can rewrite the relation as

Tα1 = (Tx1 T −1
α3

)(Tx2 T −1
γ1

)(Tα2 T −1
γ2

).

Since φ(α2) = x1, φ(γ2) = α3, ψ(x1) = x2 and ψ(α3) = γ1, we have

Tx1 T −1
α3

= φTα2 T −1
γ2

φ−1,

Tx2 T −1
γ1

= ψTx1 T −1
α3

ψ−1 = ψφTα2 T −1
γ2

φ−1ψ−1.

Moreover, since ω2(α2) = γ2, we see that

Tα2 T −1
γ2

= Tα2ω
2T −1

α2
ω−2 = (Tα2ωT −1

α2
)2ω−2.

As before, let ω̃ denote Tα2ωT −1
α2

. Then, we have Tα2 T −1
γ2

= ω̃2ω−2. Hence, we have

Tα1 = (φω̃2ω−2φ−1)(ψφω̃2ω−2φ−1ψ−1)(ω̃2ω−2). (4·2)

Therefore, Tα1 is generated by φ, ψ , ω and ω̃.
We assume g = 5. From the lantern relation we can rewrite the relation as

Tα1 = (Tx1 T −1
γ1

)(Tx2 T −1
α3

)(Tα2 T −1
γ2

).

Since φ−1(α2) = x1, φ−1(γ2) = γ1, ψ−1(x1) = x2 and ψ−1(γ1) = α3, we have

Tx1 T −1
γ1

= φ−1Tα2 T −1
γ2

φ,

Tx2 T −1
α3

= ψ−1Tx1 T −1
γ1

ψ = ψ−1φ−1Tα2 T −1
γ2

φψ.

Moreover, since ω−1(α2) = γ2, we see that

Tα2 T −1
γ2

= Tα2ω
−1T −1

α2
ω = (Tα2ωT −1

α2
)−1ω.

Let ω̃ denote Tα2ωT −1
α2

. Then, we have Tα2 T −1
γ2

= ω̃−1ω. Hence, we have

Tα1 = (φ−1ω̃−1ωφ)(ψ−1φ−1ω̃−1ωφψ)(ω̃−1ω). (4·3)

Therefore, Tα1 is generated by φ, ψ , ω and ω̃.

Proof of Theorem 1 (ii). We show that Mg is generated by φ, ψ , ω and ω̃.
Let G denote the group generated by φ, ψ , ω and ω̃. From the equations (4·1), (4·2) and

(4·3) we have Tα1 ∈ G. Since we can send α1 to all γi and βi by φ, ψ and ω (see Figures 21,
25, 31, 38 and 43), by Lemma 2, Tγi and Tβi ∈ G for all i . Similarly, we have Tα2 ∈ G.
Therefore, since we have shown that all Humphries’s generators are in G, G is equal to Mg.

Remark 6. It seems that for g = 3 we can not construct elements of order 5 by our
method. In fact, is well-known that M3 has no elements of order 5.

5. Remarks

5·1. Low genus

By using the argument of McCarthy and Papadopulos [13] and the work of Hirose [5], we
find that Mg can not be generated by elements of same order for g = 1, 2.

Hirose gave presentations of finite order elements by Dehn twists up to conjugacy for
g = 1, . . . , 4. We introduce the presentation of finite order elements in the case of g = 1, 2.
The list is as follows:
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McCarthy and Papadopulos proved that M2 can not be generated by elements of order 2.
The argument of McCarthy and Papadopulos is as follows:

genus elements order

1 Tβ1 Tα1 6
Tα1 Tβ1 Tα1 4

2 Tβ2 Tγ1 Tβ1 Tα1 10
Tβ2 Tβ2 Tγ1 Tβ1 Tα1 8
Tα2 Tβ2 Tγ1 Tβ1 Tα1 6

(Tα1 Tβ1 Tγ1 Tβ2 Tα2)(Tα2 Tβ2 Tγ1 Tβ1 Tα1)
3 6

Let c be a nonseparating simple closed curve and p be the abelianization map given by
Powell’s result [14]:

p : M2 −→ Z10

∈ ∈

Tc �−→ 1.

We can find that

p((Tβ2 Tγ1 Tβ1 Tα1)
5) = p((Tβ2 Tβ2 Tγ1 Tβ1 Tα1)

4)

= p(((Tα1 Tβ1 Tγ1 Tβ2 Tα2)(Tα2 Tβ2 Tγ1 Tβ1 Tα1)
3)3)

= 0

p((Tα2 Tβ2 Tγ1 Tβ1 Tα1)
3) = 5.

Since Z10 can not be generated by 0 and 5, we see that M2 can not be generated by elements
of order 2.

By the similar proof, we can see that M1 and M2 can not be generated by elements of
same order.

Remark 7. M1 and M2 can be generated by elements of different order. For example,
M1 can be generated by Tβ1 Tα1 and Tα1 Tβ1 Tα1 , and M2 can be generated by Tβ2 Tγ1 Tβ1 Tα1

and Tα2 Tβ2 Tγ1 Tβ1 Tα1 .

5·2. Lower bound

The order of Mg is not finite. Therefore, it is clear that a lower bound of the number of
generators whose order are 3 (resp. 4) is 2. The author has the following question:

Question 1. What is the minimal number of elements of order 3 (resp. 4) required to
generate Mg?

Kassabov [8] proved that for g � 7 Mg is generated by three involutions. Since Mg does
not have a finite index cyclic subgroup, it is not generated by 2 involutions. The following
problem remains open.

Problem 1 ([3], [8]). For g � 7, determine whether or not Mg can be generated by three
involutions.
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