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Abstract

We show that the mapping class group of a closed, connected, oriented surface of genus
at least three is generated by 3 elements of order 3. Moreover, we show that the mapping
class group of a closed, connected, oriented surface of genus at least three is generated and
by 4 elements of order 4.

1. Introduction

Let X, denote a closed, connected, oriented surface of genus g, and let M, denote its
mapping class group, which is the group of homotopy classes of orientation-preserving
homeomorphisms of X,.

The study of generators of M, was pioneered by Dehn. In [2] Dehn proved that M, is
generated by a finite set of Dehn twists. Lickorish [10] showed that 3g — 1 Dehn twists
generate M,. For g > 2 this number was improved to 2g 4 1 by Humpbhries [6]. Humphries
proved, moreover, that in fact the number 2g + 1 is minimal; i.e. M, cannot be generated
by 2g (or less) Dehn twists.

It is classical problem to find small generating sets and torsion generating sets for M,.
Maclachlan [12] proved that the moduli space is simply connected as a topological space
by showing that M, is generated by torsion elements. McCarthy and Papadopoulos [13]
proved that M, is generated by infinitely many conjugates of a single involution for g > 3.
Luo [11] discovered a first finite set of involutions which generate M, for g > 3. He posed
the question of whether there is a universal upper bound, independent of g, for the number
of torsion elements needs to generate M. Brendle and Farb answered Luo’s question. They
proved that M, is generated by 3 elements of order 2g + 2, 4g + 2 and 2 (or g) in [1].
Korkmaz [9] showed that M, is generated by 2 torsion elements, each of order 4g + 2.
Brendle and Farb [1] also constructed a generating set of M, for g > 3 consisting of 6
involutions. Kassabov [8] improved their method to show that M, is generated by 4 invol-
utions if g > 7, 5 involutions if g > 5 and 6 involutions if g > 3.

It is known that for all g > 1 there exist elements of order 2, 3 and 4 are in M. In this
paper, we show the following results.

THEOREM 1. For g > 3,
(i) M, is generated by 3 elements of order 3,
(ii) M, is generated by 4 elements of order 4.
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Fig. 2. The curves «;, B;, v;.

2. Preliminaries

Let ¢ be the isotopy class of a simple closed curve on X,. Then the (right-hand) Dehn
twist 7, about c is the homotopy class of the homeomorphism obtained by cutting X, along
¢, twisting one of the sides by 360° to the right and gluing two sides of ¢ back to each other.
Figure 1 shows the Dehn twist about the curve c. We will denote by 7, the Dehn twist about
the curve c. If f and h are two elements in M,, then the composition fh means that /4 is
applied first.

We recall the following lemmas (see, for instance, [4]) and theorems.

LEMMA 2. Forall h € M,, the Dehn twists about ¢ and h(c) are conjugate in M,,

Ty = hT.h".

LEMMA 3. Let ¢ and d be two simple closed curves on %,. If c is disjoint from d, then

T.T; = T,T,.

LEMMA 4. Ifthe geometric intersection number of ¢ and d is one, then

T.T,T. = T;T.1;.

THEOREM 5 ([6]). We denote the curves o;, B, y; as shown in Figure 2. M, is generated

by Tom Taz, Tﬂw ey Tﬂg, TV]? ey Tygfl'

Wecal 1,,, To,, Tg,, . . ., Tg,, Ty o - s Tygfl Humphries’s generators.

We recall the chain relation. We say that an ordered set of cy, ..., c, of simple closed
curves on X, forms an n-chain if the geometric intersection (ck, crq1) = 1 for k =

1,....,n—1and (¢, c;) =0if [k — | > 2. If n is odd, the boundary of a regular neighbour-
hood of any n-chain has two components d; and d,. The chain relation is read as follows :
For a given n-chain cy, ..., ¢,, if n is odd we have

(TCu TCn—] o TCz TCl)n+l = le sz

We note that 7, T,, ,---T,,(c;) = ¢;—; fori = 2,...,n. Given an n-chain c, ..., c, and
an m-chain cj, ..., c,, if ¢; is disjoint from c; for all i, j, then, by Lemma 3, T, --- T,
commutes with 7., --- T..
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Fig. 4. Cutting the surface of odd genus, I.
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Fig. 5. Z3-symmetry of ¥, forodd g, 1.

3. Generating the mapping class group by 3 elements of order 3

In this section we prove that the mapping class group M, is generated by 3 elements of
order 3. We assume that g > 3.

3-1. Construction of elements of order 3

We construct two elements of order 3 by cutting and gluing surfaces for each g > 3. We
take the curves x;, x, and the separating curve § as in Figure 3.

3-1-1. Odd genus

We assume that g is odd.

We construct an element f € M, of order 3 for each g > 3. We cut X, along the curves
V1, V2, o3 and aoy, Yor, Aopv1 (K =2, ..., (g — 1)/2) to obtain (g — 1)/2 surfaces Sy, S5,...,
S(e—1y,2 as shown in Figure 4. §) is a sphere with 3(g + 1)/2 boundary components and S
(k=2,...,(g — 1)/2) is a pair of pants bounded by o, Yax, ¥ox+1-

Let fiand f; (k =2, ..., (g — 1)/2) denote the homeomorphisms of S| and S; which are
rotation by 2 /3 about the axis indicated in Figure 5. When we embed S, S,,..., Si-1)2
in X,, we can define a homeomorphism of X, by gluing together the homeomorphisms
fi. ..., fle—n2- When f denotes the homotopy class of the homeomorphism of >,, f €
M, has order 3.

We construct a second element 7 € M, of order 3 for each g > 3. We cut X, along the
curves azj_1, 2j—1 and ap; (j = 1,..., (g — 1)/2) to obtain (g + 1)/2 surfaces Sj, S5....,
S(¢+1/2 as shown in Figure 6. S| is a torus with 3(g — 1)/2 boundary components, and S

(g+1)/
(j=1,...,(g —1)/2) is a pair of pants bounded by as;_1, 21, ®2;.
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We define that the homeomorphism /; of S} (j=2,...,(g — 1)/2) is rotation by 27 /3
about the axis indicated in Figure 7. Let S’ be a torus bounded by 8. Then, there exists a cube
root hy : S} — S} of a twist in a neighbourhood of § in $” as shown in Figure 7. We define
p = (T3, T,,) "% Note that (h]5)* is homotopic to T, and that by chain relation p* = 7,
and p(B;) = . When we embed S}, S5...., S(,_;, ), in X, we can define a homeomorphism
of X, by gluing together the homeomorphisms 4, ..., h,_1),» and a representative of p.
When /& denotes the homotopy class of the homeomorphism of X,, & € M, has order 3.
Since h|y = p, we see h(B,) = a,.

Let  and 8 be simple closed curves on X,. The symbol

a—L B (resp.a - B)

means that f (o) = B (resp. h(a) = B). By the constructions of f and 4 we can send «; to
all &; and y; by f and & as shown in Figure 8. Moreover, we find that ¢; can be send to all
Bi by f and h.

3-1.2. Even genus

We assume that g is even. By the similar arguments of the case of odd genus we construct
f and h (e M,) for each g > 4 which are order 3.

https://doi.org/10.1017/50305004112000357 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004112000357

Generating the mapping class group by torsion elements of small order 45

a7 Qg § Qg

3, ' B 5, " B ( D

Fig. 9. Cutting the surface of even genus, I.
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Fig. 10. Z3-symmetry of X, for even g, 1.
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Fig. 11. Cutting the surface of even genus, 1I.

We construct f € M, of order 3 for each g > 4. We cut X, along the curves yi, y», a3
o, Y and ayeqy (k=2,---, (g —2)/2) to obtain (g — 2)/2 surfaces S;, S,,. .., Se—2),2 as
shown in Figure 9. S| is a torus with 3g/2 boundary components, S; (k =2,---, (g —2)/2)
is a pair of pants bounded by oy, Var, €2x41-

We define that the homeomorphism of S, (j = 2,..., (g — 2)/2) is rotation by 27/3
about the axis indicated in Figure 10. Let S be a torus bounded by §. Then, there exists a
cube root iy : S} — S of a twist in a neighbourhood of § in S as shown in Figure 10.
We define p = (Tp, Tag)‘z. Note that (f;]s)° is homotopic to Ts, and that by chain relation
o’ = T{l and p(B8,) = o,. When we embed S;, S3,..., Sg—2,2 in X,, we can define
a homeomorphism of X, by gluing together the homeomorphisms fi, ..., f(;—2,2 and a
representative of p. When f denotes the homotopy class of the homeomorphism of Z,,
f € M, has order 3. Since f|y = p, we see f(B,) = o,.

We construct a second element & € M, of order 3 for each g > 4. We cut X, along
the curves azj_1, y2j-1, 02, (j = 1, ..., £) to obtain § surfaces Si, S...., S% as shown in
Figure 11. S} is a sphere with 3g/2 boundary components and S, (j = 1,...,g/2)isa
pair of pants bounded by o, _1, 21, tta;.

Lethy (j = 1,..., g/2) denote the homeomorphisms of S, which are rotation by 27/3
about the axis indicated in Figure 12. When we embed S}, S5... ., S; /2 in X, we can define
a homeomorphism of X, by gluing together the homeomorphisms Ay, ..., hypn. When h
denotes the homotopy class of the homeomorphism of %,, 4 € M, has order 3.

By the constructions of f and & we can send «; to all «; and y; by f and & as shown in
Figure 13. Moreover, we find that o can be send to all 8; by f and A.
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Fig. 12. Z3-symmetry of X, for even g, 2.
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Fig. 14. The Lantern Relation.

3.2. Generating the Dehn twist by 3 elements of order 3

We generate the Dehn twist by 3 elements of order 3. The basic idea is to use the lantern
relation which was discovered by Dehn and rediscovered by Johnson (see [7]).
The lantern relation is read as follows:

TVZ TJ’] I, Ty, = T4, T\, To, -

where the curves o, o, a3, ¥1, Y2, X1 and x, are shown in Figure 3 and Figure 14.
Since oy, 1, ¥» and o3 are disjoint each other and «,, x; and x,, by Lemma 3 we can
rewrite the relation as

T, = (T, T, )T, T,, NI, T, ). (3-1

From the argument of Section 3-1 we have f?(as) = x1, f2(y1) = a3, f(az) = x, and
f(y1) = y». By using Lemma 2 we see that

(na)—f<mm)r
(T T, = f(T,T,H "
Since h maps y; to a,, we see that T,, = hT,,h~" and
T.,T, ' =hT,h'T, "' = h(T,,h~'T,").

@7y
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Fig. 15. Cutting the surface of genus 3m, L.

Let /2 denote T,,h~" T,'. We can now rewrite (3-1) as

Toy = (f*hhf2)(fRI ) (). (3-2)
and hence 7,, is generated by f, h and h, each of which has order 3.

Proof of Main Theorem (i). We prove that M, is generated by f, h and h in the case of
odd genus.

Let G denote the group generated by f, & and h. By the relation (3-2) T,, is in G. Since
we can send «; to all «;, y; and B; by f and & (see Figure 8), by Lemma 2 we have 7,,, T,
and Tp, € G forall i.

By a similar arguments we can prove the result in the case of even genus.

4. Generating the mapping class group by 4 elements by order 4

In this section we prove that M, can be generated by 4 elements of order 4. The key point
is to use the chain relation.

4-1. Construction of elements of order 4
4-1-1. The genus is 3m

We assume that g = 3m (m > 2).

We construct an element ¢ of order 4 for each g = 3m. We cut X, along the curves o3;_»,
Vik—2, Vak—1 and a3 (k = 1,...,g/3) to obtain (g+3)/3 surfaces L, L,,..., L(g+3)/3 as
shown in Figure 15. L4433 is a sphere with 4g/3 boundary components, and L; (k =
1,---, g/3) is a pair of spheres bounded by o312, Y3¢—2, ¥3c—1 and ozy.

We define that the homeomorphism ¢, of Ly (k = 1, ..., (g + 3)/3) is rotation by /2
about the axis indicated in Figure 16. When we embed L, L,,..., L33 in X,, we can
define a homeomorphism of X, by gluing together the homeomorphisms ¢y, ..., @433
When ¢ denote the homotopy class of the homeomorphism of %,, ¢ € M, has order 4.
From the construction of ¢ we find that ¢ (a;) = x; and ¢ (y») = 3.

We construct a second element {y of order 4 for each g = 3m. We take the curves
o, &, and the separating curves 8,3, 8,2, 6,1 like Figure 17. We cut X, along the
curves o3; 2, V3i—2, ¥3i-1 and a3; (i = 1, ..., (g —3)/3) to obtain g/3 surfaces Ly, L,,...,
L33, Lg/3 as shown in Figure 17. Lg/3 is a surface of genus 3 with 4(g — 3)/3 boundary
components, and L; (i = 1,---, (g — 3)/3) is a sphere bounded by «3;_», y3i2, ¥3i—1 and
as3;.

We define that the homeomorphism v, of L, is rotation by m/2 about the axis indicated
in Figure 18 and that the homeomorphism ; of L; i = 2,...,(g —3)/3is ¢;. Let S; be a
surface of genus 3 bounded by ,->. Then, there exists a 4th root ¥« : L’%’ — L’%’ of a twist
in a neighbourhood of §,_3 in S| as shown in Figure 18. Note that (Ve 5g-3)4 is homotopic to
T;, .. We define p; = (T, , T, , Tw;,z)_] (Toy  Tp, Ty, ) (To, T, T,,)~'. By the chain relation

g2

https://doi.org/10.1017/50305004112000357 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004112000357

48 NAOYUKI MONDEN

®r : Trotation ¢; : Trotation
A3k-2 Qs

5%- B
N
ng 53k—73k-1

T Brst T UL g

dg-3 1592 15;11—1
Pg-2 Bg-1

Oég—z (1(!}_1

By

Ba

Bs  Bs

Fig. 17. Cutting the surface of genus 3m, 1.

and Lemma 3 we have

pt = (T, Ty T ) (T Ty Ty ) (T, T, Tu) ™

= (T(s:,,l3 Ta;,lz)(ng—?. Tag—l)(Tﬁg,ll) = Ta;lg-
Moreover, we find p;(a,) = B,. When we embed L, Ly, ..., L33, Lg/3 in X,, we can
define a homeomorphism of X, by gluing together the homeomorphisms v, ..., v¥,,3 and

a representative of p;. When 1 denote the homotopy class of the homeomorphism of X,
Y € M, has order 4. From the construction of  we find that v (x1) = x,, ¥ (@3) = y; and
Vetg) = Be.

We construct a third element w of order 4 for each g = 3m. We take the curves € like
Figure 19. We cut X, along the curves a3;_1, ¥3j-1, ¥3j, 2341 (j = 1,..., (g —3)/3), ai, €,
Ye—1 and gy to obtain (g + 3)/3 surfaces L}, L),..., L{, 35, L} 5 as shown in Figure 19.
L;, /3 1s a sphere with 4g/3 boundary components, L,/ is a sphere bounded by a1, €, ;-1
and gy, and L; (j = 1,---,(g —3)/3) is a sphere bounded by a3;_i, y3j-1, y3; and
a3j4+1. We define that the homeomorphism w; of L; (j =1, ..., (g + 3)/3) is rotation by
7 /2 about the axis indicated in Figure 20.

When we embed L), L)...., L;g+3)/3 in X,, we can define a homeomorphism of X, by
gluing together the homeomorphisms w;, . .., w+3)3. When w denotes the homotopy class
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Fig. 19. Cutting the surface of genus 3m, IIl.

of the homeomorphism of X,, w € M, has order 4. From the construction of w we find that
w(a) = ¥>.
Let o and B be simple closed curves on X,. The symbol

a2 B (resp.a & B, a 25 B)

means that ¢ (o) = B (resp. ¥ (@) = B, w(«a) = B). By the constructions of ¢, ¢ and w we
can send «; to all y; and B; by ¢, ¥ and w as shown in Figure 21. Moreover, we can send o
to o by ¢, ¥ and w.

4.1-2. The genus is 3

We assume g = 3.

The consturctions of ¥ and w in Section 4-1-2 are not applicable in this section. In the
case of g = 3, the construction of ¢ is the same as the previous argument. Therefore, ¢
satisfies that ¢ (ay) = x1 and ¢ (y») = a3.
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Fig. 22. Cutting the surface of genus 3.

We construct a second element i of order 4. We cut X5 along the curves «;, ¥, ¥, and
a3 to obtain two surfaces L, L, as shown in Figure 22. L; and L, are spheres bounded by
a, ¥i, y2 and as.

We define that the homeomorphism v; of L; (i = 1, 2) is rotation by 7 /2 about the axis
indicated in Figure 23. When we embed L, L, in X3, we can define a homeomorphism of
33 by gluing together the homeomorphisms ¥, ¥,. When i denotes the homotopy class of
the homeomorphism of X3, ¥ € M3 has order 4. From the construction of ¥ we find that
Y(x1) = x2, ¥(a3) = 1.

We construct a third element w of order 4. Let o} and € be the curves as shown in Fig-
ure 24. We define

w = (T, T, T, )(T. Tp, Tor,) "
By the chain relation and Lemma 3 we have
0)4 = (Tyz Tﬁz Taz)4(T€ T/31 TO!] )_4
= (T, Ty)(T,' T ") = 1.
R 3

Hence, o has order 4. By the construction of @ we find that @ (az) = B, and w? () = y».
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By the constructions of ¢, ¥ and w we can send «; to all y; and B; by ¢, ¥ and w as
shown in Figure 25. Moreover, we find that «; can be send to «; by ¢, ¥ and w.

4.1-3. The genus is 3m + 1

We assume that ¢ = 3m + 1 (m > 1). The construction of i is different from the
construction of that in Section 4-1-1.

We construct an element ¢ of order 4 for each g = 3m + 1. We cut X, along the curves
0362, Vak—2, Vak—1 and az, (k =1, ..., (g — 1)/3) to obtain (g + 2)/3 surfaces L, L,,...,
L (4123 as shown in Figure 26. L, 3 is a torus with 4(g — 1)/3 boundary components,
and L, (i =1,---, (g — 1)/3) is a sphere bounded by o3;_2, ¥3c—2, Y3x—1 and azy.

We define that the homeomorphism ¢, of L; (k = 1,..., (g — 1)/3) is rotation by /2
about the axis indicated in Figure 27. Let S, be a torus bounded by 6,_;. Then, there exists a
4th root Y¥(g42)/3 : L(g+2)3 = L(g+2),3 of a twist in a neighbourhood of §,_; in S, as shown in
Figure 27. We define p, = (T,,, T, T,,)". Note that (¢+2)3s,_,)* is homotopic to Ty, ,, and
that ,og‘ = Ta:l .When we embed L, L,,..., L42),3 in X,, we can define a homeomorphism
of X, by gluing together the homeomorphisms ¢, ..., ¢,12),3 and a representative of p.
When ¢ denotes the homotopy class of the homeomorphism of X,, ¢ € M, has order 4.
From the construction of ¢ we find that ¢ (o) = x| and ¢ (y») = 3.
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Fig. 26. Cutting the surface of genus 3m + 1, L.
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Fig. 27. Z4-symmetry of X3,,41, 1.

We construct a second element i of order 4 for each g = 3m + 1. We define that the
homeomorphism v, of L, is rotation by /2 about the axis indicated in Figure 28 and that
the homeomorphism v, of L, (k = 1,...,(g — 1)/3) is ¢,. We define that the homeo-
morphism ¥(,42)/3 of Lg42),3 is a 4th root of a twist in a neighbourhood of §,_; in S,
as shown in Figure 28. Note that (/(42) /3|5H)4 is homotopic to 75, ,.When we embed L,
L,,..., L2310 X,, we can define a homeomorphism of X, by gluing together the homeo-
morphisms Vi, ..., ¥(,+2),3 and a representative of p,. When ¢ denotes the homotopy class
of the homeomorphism of X,, ¥ € M, has order 4. From the construction of ¥ we find
that ¥ (x;) = x2, ¥(a3) = y;. Moreover, since ¥|s, = p», we see that ¥ (a,) = B,.

We construct a third element w of order 4 for each g = 3m+-1. We cut X, along the curves
o3j—1, V3j—15 V3j and 03j+1 (j =1,..., (g — 1)/3) to obtain (g + 2)/3 surfaces Lll’ L,2’ .
Li 13 and Li, 5 5 as shown in Figure 29. L{, ., - is a torus with 4(g —1)/3 boundary
components, and L; (i = 1,---, (g — 1)/3) is a sphere bounded by a3;_;, y3;_1, y3; and
3j41-

We define that the homeomorphism w; of L’j (j=1,...,(g — 1)/3) is rotation by 7 /2
about the axis indicated in Figure 30. Let §; be the separating curve on X, as shown in
Figure 29 and let S; be a torus bounded by §;. Then, there exists a 4th root w123 :
Ligin3 = Ligia) Of a twist in a neighbourhood of §; in S5 as shown in Figure 30.
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Fig. 29. Cutting the surface of genus 3m + 1, II.

We define p3 = (T,,TsT,,) " Note that (w12)3l5)* is homotopic to T, and that
pi = T; '.When we embed L, L)...., Li, 123 in X, we can define a homeomorphism
of X, by gluing together the homeomorphisms w;, ..., w23 and a representative of ps.
When w denotes the homotopy class of the homeomorphism of ¥,, @ € M, has order 4.
From the construction of w we find that w () = y».

By the constructions of ¢, and @ we can send «; to all y; and B; by ¢, ¥ and w as shown
in Figure 31. Moreover, we can send «; to o, by ¢, ¥ and w.

4.-1-4. The genus is 3m + 2

We assume that g = 3m + 2 (m > 2).

We construct an element ¢ of order 4 for each g = 3m + 2. We cut X, along the curves
O3k—2, V3k—2s V3k—1 and o3 (k =1,... s (g — 2)/3) to obtain (g + 1)/3 surfaces Ly, Ls,...,
L (4+1y3 as shown in Figure 32. L,42),3 is a torus with 4(g — 2)/3 boundary components,
and Lk (k = 1, ey, (g - 2)/3) is a sphere bounded by A3k—2, V3k—25 V3k—1 and 3.

We define that the homeomorphism ¢, of L, (k = 1,..., (g — 1)/3) is rotation by /2
about the axis indicated in Figure 33. Let S, be a surface of genus 2 bounded by §,_,. Then,
there exists a 4th root @ 1)/3 : Lg+1)3 = L(g+1y/3 Of a twist in a neighbourhood of §,_»
in S; as shown in Figure 33. We define p4 = (T, Tp, T, )" (T, Tp, To,). By the chain
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wj : Trotation
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> L

'Y3j B35 35

Fig. 30. Zy4-symmetry of X3,,41, 3.

(65} Q2 iy Qg

S YA S/

'Ygg 7g2 Yg-1
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Fig. 31

Qi Q3 Qy a6 Qg-y Qg-2 Og-1 Qg

% 5 % Bes Bos Besid il
dg-2) [0g1
Bg-1

(15}_1

Bz P

B

Fig. 32. Cutting the surface of genus 3m + 2, L.

relation and Lemma 3 we have

p3 = (To, Tp, To, ) " (To, T, T,,)"
= (Ta;lz T,s;l)(TzSg_l) = T5;2~

Moreover, we find that p4(e,) = B,. Note that (@41 /3|5H)4 is homotopic to T, ,. When
we embed Ly, Ls,..., L1)3 in X,, we can define a homeomorphism of X, by gluing to-
gether the homeomorphisms ¢, . .., ¢+1),3 and a representative of p,. When ¢ denotes the
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O Zrotation o1 : Zrotation
A3k-2 Qs

Bsk
ﬁjk‘__ Lk

73k ﬁgk—%k-l

5 il il af
By Bs
Fig. 34. Cutting the surface of genus 3m + 2, IL.

Bs

homotopy class of the homeomorphism of X,, ¢ € M, has order 4. From the construction
of ¢ we find that ¢ (o) = x1, ¢(y») = a3 and ¢ (or,) = B,.

We construct a second element ¥ of order 4 for each g = 3m + 2. We cut X, along the
curves oy, ¥1, Y2, @3, 03, V3i, Vzie1 and az; 0 (0 = 2,..., (g —2)/3) to obtain (g + 1)/3
surfaces L, L},..., L’(’ﬁl)/3 as shown in Figure 34. L/(/ngz)/3 is a torus with 4(g — 2)/3
boundary components, and L} and L! (i = 2,---, (g —2)/3) are spheres bounded by o,
Y1, V2, O3 and 3iy V3is V3it1ls X342, respectively.

We define that the homeomorphism v; of LY (i = 1,..., (g — 2)/3) is rotation by /2
about the axis indicated in Figure 35. Let 6" and §” (resp. o, and «5) be the separating (resp.
the nonseparating) curves as shown in Figure 34. We denote by S5 a surface of genus 2
bounded by §”. Then, there exists a 4th root Y413 + L{,1y)5 = Li,y1)5 of atwistin a
neighbourhood of §” in Ss as shown in Figure 35. We define ps = (T, T, Tag)" (Tos Tp, T)-
By the chain relation and Lemma 3 we have

/Og == (Tot4T,34 Taé)_4(T(15 T/35 TO(S)4
= (T, ' T, ) (Ty) = Ty '

Note that (Y41)3l5)* is homotopic to Ty. When we embed LY, L},..., L{,,, 5 in
X,, we can define a homeomorphism of X, by gluing together the homeomorphisms
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¥; : Trotation ¥y : Trotation
€27 A3j+2

1| — 1 1 T |
B B3 B4 Bg-5 Bg-s Bgs Pgz Pgr
Fig. 36. Cutting the surface of genus 3m + 2, IIl.

Y1, ..., Y+1),3 and a representative of ps. When i denotes the homotopy class of the
homeomorphism of %,, v € M, has order 4. From the construction of v we find that
V(x1) = x2, Y(oz) =y

We construct a third element w of order 4 for each g = 3m+2. We cut X, along the curves
aszj—1, V3j—1, y3j and azj (j =1,...,(g —2)/3) to obtain (g + 1)/3 surfaces L), L),...,
L/(g +13 as shown in Figure 36. L/(g +2)3 1s a torus with 4(g — 2)/3 boundary components,
and L; (j =1,---,(g —2)/3) is a sphere bounded by o3;_1, ¥3;-1, ¥3; and a3;41.

We define that the homeomorphism w; of L; (j = 1,..., (g — 1)/3) is rotation by 7/2
about the axis indicated in Figure 37. Let §,; and «, be the separating and nonseparating
curves as shown in Figure 36. We denote by Ss a surface of genus 2 bounded by §,. Then,
there exists a 4th 100t @(e11y/3 : Lig )5 = Lig.y)5 Of a twist in a neighbourhood of §, in
S as shown in Figure 37. We define ps = (T, T, T%)’l(Tm Ty, T,,). By the chain relation
and Lemma 3 we have

,Og = (Tongﬂg T(x;)74(Ta1 Tﬂ; Toq)4
= (T;,'T;, W(T5,) =T,

Note that (w(g1y3l5,)* is homotopic to T;,. When we embed L}, L),..., L{,,, , in
X,, we can define a homeomorphism of X, by gluing together the homeomorphisms
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Wiy Trotation
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Fig. 37. Z4-symmetry of X3,,47, 3.
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72_> V3 74_> V5 Yg-4 Vg-3 Vg

¢ ¢ w ¢ ¢ w ¢

% w L
Bi Je B3 Bi Bs B6 C Bga  Bgs  Bg= ﬁg—lu By
Fig. 38.

w1, ..., We+1),3 and a representative of ps. When w denotes the homotopy class of the
homeomorphism of X,, w € M, has order 4. From the construction of @ we find that

w(a) = ).
By the constructions of ¢, ¥ and w we can send «; to all y; and B; by ¢, ¥ and w as
shown in Figure 38. Moreover, we can send «; to a; by ¢, ¥ and w.

4.1-5. The genus is 5

We assume that g = 5.
We construct an element ¢ of order 4. Let «r; be the nonseparating curve on X5 as shown
in Figure 39. We define

¢ = (T,,T5.T,, Tp, T, Tp, To,))* (To Tp, Ty) ™'
By the chain relation and Lemma 3 we have
¢* = (T, T3, T,, T3, T, T, To,))* (Tus T, T, .
= (TMT%)(Taleazl) =1.
Hence, ¢ has order 4. We note that ¢~ (ay) = x1, ¢~ (3») = y; and ¢(Bs) = y4.
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oy

Fig. 40. Cutting the surface of genus 5.

We construct a second element i of order 4. We cut X5 along the curves «;, y;, > and
o3 to obtain two surfaces L, L, as shown in Figure 40. L, is a surface of genus 2 with 4
boundary components, and L, is a sphere bounded by o, y;, ¥, and 3.

We define that the homeomorphism 1, of L, is rotation by 7 /2 about the axis indicated
in Figure 41. Let 83, 84 be the separating curves as shown in Figure 40, and let o} be non-
separating curves as shown in Figure 40. We denote by S; a surface of genus 2 bounded by
83. Then, there exists a 4th root i, : L, — L, of a twist in a neighbourhood of §; in S;
as shown in Figure 41. We define p; = (1, Tp, Tag)_l (T4 T3, Ty ). By the chain relation and
Lemma 3 we have

p7 = (T, Tp, 1) " (T, Ty, To)*
= (T;;'T;,)(T) = T "
Note that (¢2|53)4 is homotopic to T5,. When we embed L,, L, in X¥s, we can define a
homeomorphism of ¥s by gluing together the homeomorphisms v, ¥, and a representative
of p;. When ¢ denotes the homotopy class of the homeomorphism of X5, ¥ € Ms has
order 4. From the construction of ¥ we find that ¥ ~!(x;) = x, and ¥~ (y1) = as.

We construct a third element w of order 4. Let 5 and € be the nonseparating curves on
%5 as shown in Figure 42. We define

w = (T)’4 Tﬁ} T)’z Tf32 Tl/z Tﬁz Taz)z(TE Tﬁl TO!] )71 .
By the chain relation and Lemma 3 we have
¢4 = (T)’4 Tﬁ3 T)’z Tﬁz TVz Tﬂz Taz)s (T Tﬁl T011 )74'
= (T, T)(T,;' T, ) = 1.

Hence, w has order 4. We note that 0™ ! (ay) = y».
By the constructions of ¢ and w we can send «; to all y; by ¢ and w as shown in Figure 43.
Moreover, as shown on Figure 43, we find that «; can be send to all 8; by ¢ and w.

4.2. Generating the Dehn twist by 4 elements of order 4

By using the lantern relation we generate the Dehn twist by 4 elements of order 4.

https://doi.org/10.1017/50305004112000357 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004112000357

Generating the mapping class group by torsion elements of small order 59

¥y : Trotation

B B B By s
Fig. 43.

We assume g + 3, 5. From the lantern relation we can rewrite the relation as

TO([ = (Tx Tﬁl)(Tx Tﬁl)(Ta Tﬁl)-

173 27N 257
Since ¢ (az) = x1, ¢ (y2) = a3, Y (x1) = x2 and ¥ (@3) = y1, we have
—1 1,1
I T, =¢T.,.T, ¢,
T T, = YT Ty = VT, T, ¢y
Moreover, since w (a;) = y», we see that

T, T = TO(za)TO;la)_l = (Taza)Ta;l)a)_'.

7y

Let & denote T,, T, ". Then, we have T,,T, ' = d»™". Hence, we have

T, = (poo™'¢" ) (Ypow™ ¢~ Yy (@w™). 1)
Therefore, T,, is generated by ¢, ¥, @ and ®.
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We assume g = 3. From the lantern relation we can rewrite the relation as

T., = (T, T, 'NT,,T, ') (T.,T,").

2792
Since ¢ (a2) = x1, ¢(y2) = a3, Y (x1) = x2 and Y (a3) = y1, we have
.1, =¢T.T,'¢"",
LT, = YT, T, v = yoT, T, ¢~y
Moreover, since w*(a,) = y», we see that

T(,ZTVQ1 =T,o'T, ' v = (T,oT, ' Yw .

As before, let @ denote T,, T, '. Then, we have Ty, Tyzl = &*w 2. Hence, we have

Ty, = (90’0 ¢ (Yoo ’w ¢~ 'Yy (@ w™?). (4-2)

Therefore, T,, is generated by ¢, ¥, w and ®.
We assume g = 5. From the lantern relation we can rewrite the relation as

T., = (T, T, ' NT,, T, ) (T.,T,").

2 as Q2 Y
Since ¢~ (@2) = x1, ¢ (1) = 1, ¥ ' (x1) = x and ¥~ (1) = a3, we have
T.T,' =¢7'T,T,'¢,

TXzTot;] = v/_]TJC] Tyjl’(/l = w_lqb_]TazTy:](b]//'

Moreover, since o™ ! (ay) = », we see that

T, T, = T,o 'T, 'o = (T,0T,") 0.
Let & denote T,,wT,'. Then, we have T,, Tyj = & 'w. Hence, we have
T, = (@ 'd 'op) ¥ ¢ 0 wpy) (@ w). 4-3)

Therefore, T,, is generated by ¢, ¥, w and ©.

Proof of Theorem 1 (ii). We show that M, is generated by ¢, /,  and @.

Let G denote the group generated by ¢, ¥,  and @. From the equations (4-1), (4-2) and
(4-3) we have T,, € G. Since we can send «; to all y; and B; by ¢, ¥ and w (see Figures 21,
25, 31, 38 and 43), by Lemma 2, T,, and T, € G for all i. Similarly, we have T,, € G.
Therefore, since we have shown that all Humphries’s generators are in G, G is equal to M,.

Remark 6. It seems that for g = 3 we can not construct elements of order 5 by our
method. In fact, is well-known that M3 has no elements of order 5.

5. Remarks
5-1. Low genus
By using the argument of McCarthy and Papadopulos [13] and the work of Hirose [5], we
find that M, can not be generated by elements of same order for g =1, 2.
Hirose gave presentations of finite order elements by Dehn twists up to conjugacy for
g = 1,...,4. We introduce the presentation of finite order elements in the case of g = 1, 2.
The list is as follows:
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McCarthy and Papadopulos proved that M, can not be generated by elements of order 2.
The argument of McCarthy and Papadopulos is as follows:

genus elements order
1 Ty T, 6
T, 1 Tﬂ 1 T, 1 4
2 T, T, Tp, T, 10
Ty, Tp, T, Tp, 1, 8
Taz Tﬁz TV] T/SI TO!] 6
(T T, T, T, To)) (T, T, Ty Ty Ty )? 6

Let ¢ be a nonseparating simple closed curve and p be the abelianization map given by
Powell’s result [14]:

p:M2—>Z10
w w

T, — 1.

We can find that

(T3, T, T, 1)) = p((Tp, T3, Ty, Tp, To)*)
= P((T, Ty, T T, To) (T, T, Ty, T, T ) )
=0
p((T,,Ts, T, T, To,)) = 5.
Since Z( can not be generated by 0 and 5, we see that M, can not be generated by elements
of order 2.

By the similar proof, we can see that M; and M, can not be generated by elements of
same order.

Remark 7. My and M, can be generated by elements of different order. For example,
M, can be generated by Ty, T,, and T,,Tp T,,, and M, can be generated by T, T, Ty, T,,
and Taz Tﬁz T}/l Tﬁl Toz] .

5-2. Lower bound
The order of M, is not finite. Therefore, it is clear that a lower bound of the number of
generators whose order are 3 (resp. 4) is 2. The author has the following question:

Question 1. What is the minimal number of elements of order 3 (resp. 4) required to
generate M, ?

Kassabov [8] proved that for g > 7 M, is generated by three involutions. Since M, does
not have a finite index cyclic subgroup, it is not generated by 2 involutions. The following
problem remains open.

Problem 1 ([3], [8]). For g > 7, determine whether or not M, can be generated by three
involutions.
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