Math. Proc. Camb. Phil. Soc. (2013), **154**, 41–62 © Cambridge Philosophical Society 2012 doi:10.1017/S0305004112000357 First published online 3 October 2012

Generating the mapping class group by torsion elements of small order

BY NAOYUKI MONDEN

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan. e-mail: n-monden@cr.math.sci.osaka-u.ac.jp

(Received 29 June 2011; revised 28 May 2012)

Abstract

We show that the mapping class group of a closed, connected, oriented surface of genus at least three is generated by 3 elements of order 3. Moreover, we show that the mapping class group of a closed, connected, oriented surface of genus at least three is generated and by 4 elements of order 4.

1. Introduction

Let Σ_g denote a closed, connected, oriented surface of genus g, and let \mathcal{M}_g denote its mapping class group, which is the group of homotopy classes of orientation-preserving homeomorphisms of Σ_g .

The study of generators of \mathcal{M}_g was pioneered by Dehn. In [2] Dehn proved that \mathcal{M}_g is generated by a finite set of Dehn twists. Lickorish [10] showed that 3g - 1 Dehn twists generate \mathcal{M}_g . For $g \ge 2$ this number was improved to 2g + 1 by Humphries [6]. Humphries proved, moreover, that in fact the number 2g + 1 is minimal; i.e. \mathcal{M}_g cannot be generated by 2g (or less) Dehn twists.

It is classical problem to find small generating sets and torsion generating sets for \mathcal{M}_g . Maclachlan [12] proved that the moduli space is simply connected as a topological space by showing that \mathcal{M}_g is generated by torsion elements. McCarthy and Papadopoulos [13] proved that \mathcal{M}_g is generated by infinitely many conjugates of a single involution for $g \ge 3$. Luo [11] discovered a first finite set of involutions which generate \mathcal{M}_g for $g \ge 3$. He posed the question of whether there is a universal upper bound, independent of g, for the number of torsion elements needs to generate \mathcal{M}_g . Brendle and Farb answered Luo's question. They proved that \mathcal{M}_g is generated by 3 elements of order 2g + 2, 4g + 2 and 2 (or g) in [1]. Korkmaz [9] showed that \mathcal{M}_g is generated by 2 torsion elements, each of order 4g + 2. Brendle and Farb [1] also constructed a generating set of \mathcal{M}_g for $g \ge 3$ consisting of 6 involutions. Kassabov [8] improved their method to show that \mathcal{M}_g is generated by 4 involutions if $g \ge 7$, 5 involutions if $g \ge 5$ and 6 involutions if $g \ge 3$.

It is known that for all $g \ge 1$ there exist elements of order 2, 3 and 4 are in \mathcal{M}_g . In this paper, we show the following results.

THEOREM 1. For $g \ge 3$,

(i) \mathcal{M}_g is generated by 3 elements of order 3,

(ii) \mathcal{M}_g is generated by 4 elements of order 4.

Fig. 2. The curves α_i , β_i , γ_i .

2. Preliminaries

Let c be the isotopy class of a simple closed curve on Σ_g . Then the (right-hand) Dehn twist T_c about c is the homotopy class of the homeomorphism obtained by cutting Σ_g along c, twisting one of the sides by 360° to the right and gluing two sides of c back to each other. Figure 1 shows the Dehn twist about the curve c. We will denote by T_c the Dehn twist about the curve c. If f and h are two elements in \mathcal{M}_g , then the composition fh means that h is applied first.

We recall the following lemmas (see, for instance, [4]) and theorems.

LEMMA 2. For all $h \in \mathcal{M}_g$, the Dehn twists about c and h(c) are conjugate in \mathcal{M}_g ,

$$T_{h(c)} = h T_c h^{-1}.$$

LEMMA 3. Let c and d be two simple closed curves on Σ_g . If c is disjoint from d, then

$$T_c T_d = T_d T_c$$

LEMMA 4. If the geometric intersection number of c and d is one, then

$$T_c T_d T_c = T_d T_c T_d.$$

THEOREM 5 ([6]). We denote the curves α_i , β_i , γ_i as shown in Figure 2. \mathcal{M}_g is generated by T_{α_1} , T_{α_2} , T_{β_1} , ..., T_{β_g} , T_{γ_1} , ..., $T_{\gamma_{g-1}}$.

We call $T_{\alpha_1}, T_{\alpha_2}, T_{\beta_1}, \ldots, T_{\beta_g}, T_{\gamma_1}, \ldots, T_{\gamma_{g-1}}$ Humphries's generators.

We recall the *chain relation*. We say that an ordered set of c_1, \ldots, c_n of simple closed curves on Σ_g forms an *n*-chain if the geometric intersection $(c_k, c_{k+1}) = 1$ for $k = 1, \ldots, n-1$ and $(c_k, c_l) = 0$ if $|k-l| \ge 2$. If *n* is odd, the boundary of a regular neighbourhood of any *n*-chain has two components d_1 and d_2 . The *chain relation* is read as follows : For a given *n*-chain c_1, \ldots, c_n , if *n* is odd we have

$$(T_{c_n}T_{c_{n-1}}\cdots T_{c_2}T_{c_1})^{n+1}=T_{d_1}T_{d_2}$$

We note that $T_{c_n}T_{c_{n-1}}\cdots T_{c_1}(c_i) = c_{i-1}$ for i = 2, ..., n. Given an *n*-chain $c_1, ..., c_n$ and an *m*-chain $c'_1, ..., c'_m$, if c_i is disjoint from c'_j for all i, j, then, by Lemma 3, $T_{c_n}\cdots T_{c_1}$ commutes with $T_{c'_m}\cdots T_{c'_1}$.

Fig. 3. The curves x_1, x_2, δ .

Fig. 4. Cutting the surface of odd genus, I.

Fig. 5. \mathbb{Z}_3 -symmetry of Σ_g for odd g, 1.

3. Generating the mapping class group by 3 elements of order 3

In this section we prove that the mapping class group M_g is generated by 3 elements of order 3. We assume that $g \ge 3$.

3.1. Construction of elements of order 3

We construct two elements of order 3 by cutting and gluing surfaces for each $g \ge 3$. We take the curves x_1 , x_2 and the separating curve δ as in Figure 3.

3.1.1. Odd genus

We assume that g is odd.

We construct an element $f \in \mathcal{M}_g$ of order 3 for each $g \ge 3$. We cut Σ_g along the curves $\gamma_1, \gamma_2, \alpha_3$ and $\alpha_{2k}, \gamma_{2k}, \alpha_{2k+1}$ (k = 2, ..., (g - 1)/2) to obtain (g - 1)/2 surfaces $S_1, S_2, ..., S_{(g-1)/2}$ as shown in Figure 4. S_1 is a sphere with 3(g + 1)/2 boundary components and S_k (k = 2, ..., (g - 1)/2) is a pair of pants bounded by $\alpha_{2k}, \gamma_{2k}, \alpha_{2k+1}$.

Let f_1 and f_k (k = 2, ..., (g - 1)/2) denote the homeomorphisms of S_1 and S_k which are rotation by $2\pi/3$ about the axis indicated in Figure 5. When we embed $S_1, S_2, ..., S_{(g-1)/2}$ in Σ_g , we can define a homeomorphism of Σ_g by gluing together the homeomorphisms $f_1, ..., f_{(g-1)/2}$. When f denotes the homotopy class of the homeomorphism of Σ_g , $f \in \mathcal{M}_g$ has order 3.

We construct a second element $h \in \mathcal{M}_g$ of order 3 for each $g \ge 3$. We cut Σ_g along the curves $\alpha_{2j-1}, \gamma_{2j-1}$ and α_{2j} (j = 1, ..., (g - 1)/2) to obtain (g + 1)/2 surfaces $S'_1, S'_2, ..., S'_{(g+1)/2}$ as shown in Figure 6. S'_1 is a torus with 3(g - 1)/2 boundary components, and S'_j (j = 1, ..., (g - 1)/2) is a pair of pants bounded by $\alpha_{2j-1}, \gamma_{2j-1}, \alpha_{2j}$.

Fig. 6. Cutting the surface of odd genus, II.

Fig. 7. \mathbb{Z}_3 -symmetry of Σ_g for odd g, 2.

We define that the homeomorphism h_j of S'_j (j = 2, ..., (g - 1)/2) is rotation by $2\pi/3$ about the axis indicated in Figure 7. Let S' be a torus bounded by δ . Then, there exists a cube root $h_1 : S'_1 \to S'_1$ of a twist in a neighbourhood of δ in S' as shown in Figure 7. We define $\rho = (T_{\beta_g} T_{\alpha_g})^{-2}$. Note that $(h_1|_{\delta})^3$ is homotopic to T_{δ} , and that by chain relation $\rho^3 = T_{\delta}^{-1}$ and $\rho(\beta_g) = \alpha_g$. When we embed $S'_1, S'_2, \ldots, S'_{(g-1)/2}$ in Σ_g , we can define a homeomorphism of Σ_g by gluing together the homeomorphisms $h_1, \ldots, h_{(g-1)/2}$ and a representative of ρ . When h denotes the homotopy class of the homeomorphism of Σ_g , $h \in \mathcal{M}_g$ has order 3. Since $h|_{S'} = \rho$, we see $h(\beta_g) = \alpha_g$.

Let α and β be simple closed curves on Σ_g . The symbol

$$\alpha \xrightarrow{f} \beta$$
 (resp. $\alpha \xrightarrow{h} \beta$)

means that $f(\alpha) = \beta$ (resp. $h(\alpha) = \beta$). By the constructions of f and h we can send α_1 to all α_i and γ_i by f and h as shown in Figure 8. Moreover, we find that α_i can be send to all β_i by f and h.

3.1.2. Even genus

We assume that g is even. By the similar arguments of the case of odd genus we construct f and $h \in \mathcal{M}_g$ for each $g \ge 4$ which are order 3.

Fig. 9. Cutting the surface of even genus, I.

Fig. 10. \mathbb{Z}_3 -symmetry of Σ_g for even g, 1.

Fig. 11. Cutting the surface of even genus, II.

We construct $f \in \mathcal{M}_g$ of order 3 for each $g \ge 4$. We cut Σ_g along the curves $\gamma_1, \gamma_2, \alpha_3 \alpha_{2k}, \gamma_{2k}$ and α_{2k+1} $(k = 2, \dots, (g - 2)/2)$ to obtain (g - 2)/2 surfaces $S_1, S_2, \dots, S_{(g-2)/2}$ as shown in Figure 9. S_1 is a torus with 3g/2 boundary components, S_k $(k = 2, \dots, (g - 2)/2)$ is a pair of pants bounded by $\alpha_{2k}, \gamma_{2k}, \alpha_{2k+1}$.

We define that the homeomorphism of S_k (j = 2, ..., (g - 2)/2) is rotation by $2\pi/3$ about the axis indicated in Figure 10. Let *S* be a torus bounded by δ . Then, there exists a cube root $h_1 : S_1 \to S_1$ of a twist in a neighbourhood of δ in *S* as shown in Figure 10. We define $\rho = (T_{\beta_g} T_{\alpha_g})^{-2}$. Note that $(f_1|_{\delta})^3$ is homotopic to T_{δ} , and that by chain relation $\rho^3 = T_{\delta}^{-1}$ and $\rho(\beta_g) = \alpha_g$. When we embed $S_1, S_2, \ldots, S_{(g-2)/2}$ in Σ_g , we can define a homeomorphism of Σ_g by gluing together the homeomorphisms $f_1, \ldots, f_{(g-2)/2}$ and a representative of ρ . When *f* denotes the homotopy class of the homeomorphism of Σ_g , $f \in \mathcal{M}_g$ has order 3. Since $f|_{S'} = \rho$, we see $f(\beta_g) = \alpha_g$.

We construct a second element $h \in \mathcal{M}_g$ of order 3 for each $g \ge 4$. We cut Σ_g along the curves $\alpha_{2j-1}, \gamma_{2j-1}, \alpha_{2j}$ $(j = 1, \ldots, \frac{g}{2})$ to obtain $\frac{g}{2}$ surfaces $S'_1, S'_2, \ldots, S'_{\frac{g}{2}}$ as shown in Figure 11. S'_1 is a sphere with 3g/2 boundary components and S'_{j+1} $(j = 1, \ldots, g/2)$ is a pair of pants bounded by $\alpha_{2j-1}, \gamma_{2j-1}, \alpha_{2j}$.

Let h_k (j = 1, ..., g/2) denote the homeomorphisms of S'_k which are rotation by $2\pi/3$ about the axis indicated in Figure 12. When we embed $S'_1, S'_2, ..., S'_{g/2}$ in Σ_g , we can define a homeomorphism of Σ_g by gluing together the homeomorphisms $h_1, ..., h_{g/2}$. When h denotes the homeotopy class of the homeomorphism of Σ_g , $h \in \mathcal{M}_g$ has order 3.

By the constructions of f and h we can send α_1 to all α_i and γ_i by f and h as shown in Figure 13. Moreover, we find that α_1 can be send to all β_i by f and h.

Fig. 12. \mathbb{Z}_3 -symmetry of Σ_g for even g, 2.

Fig. 14. The Lantern Relation.

3.2. Generating the Dehn twist by 3 elements of order 3

We generate the Dehn twist by 3 elements of order 3. The basic idea is to use the *lantern relation* which was discovered by Dehn and rediscovered by Johnson (see [7]).

The *lantern relation* is read as follows:

$$T_{\gamma_2}T_{\gamma_1}T_{\alpha_3}T_{\alpha_1} = T_{x_1}T_{x_2}T_{\alpha_2}.$$

where the curves α_1 , α_2 , α_3 , γ_1 , γ_2 , x_1 and x_2 are shown in Figure 3 and Figure 14.

Since $\alpha_1, \gamma_1, \gamma_2$ and α_3 are disjoint each other and α_2, x_1 and x_2 , by Lemma 3 we can rewrite the relation as

$$T_{\alpha_1} = (T_{x_1} T_{\alpha_3}^{-1}) (T_{x_2} T_{\gamma_2}^{-1}) (T_{\alpha_2} T_{\gamma_1}^{-1}).$$
(3.1)

From the argument of Section 3.1 we have $f^2(\alpha_2) = x_1$, $f^2(\gamma_1) = \alpha_3$, $f(\alpha_2) = x_2$ and $f(\gamma_1) = \gamma_2$. By using Lemma 2 we see that

$$(T_{x_1}T_{\alpha_3}^{-1}) = f^2(T_{\alpha_2}T_{\gamma_1}^{-1})f^{-2}$$

$$(T_{x_2}T_{\gamma_2}^{-1}) = f(T_{\alpha_2}T_{\gamma_1}^{-1})f^{-1}.$$

Since *h* maps γ_1 to α_2 , we see that $T_{\alpha_2} = hT_{\gamma_1}h^{-1}$ and

$$T_{\alpha_2}T_{\gamma_1}^{-1} = hT_{\gamma_1}h^{-1}T_{\gamma_1}^{-1} = h(T_{\gamma_1}h^{-1}T_{\gamma_1}^{-1}).$$

Fig. 15. Cutting the surface of genus 3m, I.

Let \bar{h} denote $T_{\gamma_1} h^{-1} T_{\gamma_1}^{-1}$. We can now rewrite (3.1) as

$$T_{\alpha_1} = (f^2 h \bar{h} f^{-2}) (f h \bar{h} f^{-1}) (h \bar{h}).$$
(3.2)

and hence T_{α_1} is generated by f, h and \bar{h} , each of which has order 3.

Proof of Main Theorem (i). We prove that \mathcal{M}_g is generated by f, h and \bar{h} in the case of odd genus.

Let *G* denote the group generated by *f*, *h* and *h*. By the relation (3·2) T_{α_1} is in *G*. Since we can send α_1 to all α_i , γ_i and β_i by *f* and *h* (see Figure 8), by Lemma 2 we have T_{α_i} , T_{γ_i} and $T_{\beta_i} \in G$ for all *i*.

By a similar arguments we can prove the result in the case of even genus.

4. Generating the mapping class group by 4 elements by order 4

In this section we prove that M_g can be generated by 4 elements of order 4. The key point is to use the *chain relation*.

4.1. Construction of elements of order 4

$4 \cdot 1 \cdot 1$. The genus is 3m

We assume that g = 3m ($m \ge 2$).

We construct an element ϕ of order 4 for each g = 3m. We cut Σ_g along the curves α_{3k-2} , γ_{3k-2} , γ_{3k-1} and α_{3k} (k = 1, ..., g/3) to obtain (g + 3)/3 surfaces $L_1, L_2, ..., L_{(g+3)/3}$ as shown in Figure 15. $L_{(g+3)/3}$ is a sphere with 4g/3 boundary components, and L_k (k = 1, ..., g/3) is a pair of spheres bounded by α_{3k-2} , γ_{3k-2} , γ_{3k-1} and α_{3k} .

We define that the homeomorphism ϕ_k of L_k (k = 1, ..., (g + 3)/3) is rotation by $\pi/2$ about the axis indicated in Figure 16. When we embed $L_1, L_2, ..., L_{(g+3)/3}$ in Σ_g , we can define a homeomorphism of Σ_g by gluing together the homeomorphisms $\phi_1, ..., \phi_{(g+3)/3}$. When ϕ denote the homotopy class of the homeomorphism of $\Sigma_g, \phi \in \mathcal{M}_g$ has order 4. From the construction of ϕ we find that $\phi(\alpha_2) = x_1$ and $\phi(\gamma_2) = \alpha_3$.

We construct a second element ψ of order 4 for each g = 3m. We take the curves $\alpha'_{g-2}, \alpha'_{g-1}$ and the separating curves $\delta_{g-3}, \delta_{g-2}, \delta_{g-1}$ like Figure 17. We cut Σ_g along the curves $\alpha_{3i-2}, \gamma_{3i-2}, \gamma_{3i-1}$ and α_{3i} (i = 1, ..., (g - 3)/3) to obtain g/3 surfaces $L_1, L_2, ..., L_{(g-3)/3}, L''_{g/3}$ as shown in Figure 17. $L''_{g/3}$ is a surface of genus 3 with 4(g - 3)/3 boundary components, and L_i (i = 1, ..., (g - 3)/3) is a sphere bounded by $\alpha_{3i-2}, \gamma_{3i-2}, \gamma_{3i-1}$ and α_{3i} .

We define that the homeomorphism ψ_1 of L_1 is rotation by $\pi/2$ about the axis indicated in Figure 18 and that the homeomorphism ψ_i of L_i i = 2, ..., (g - 3)/3 is ϕ_i . Let S_1 be a surface of genus 3 bounded by δ_{g-2} . Then, there exists a 4th root $\psi_{\frac{g}{3}} : L_{\frac{g}{3}}' \to L_{\frac{g}{3}}''$ of a twist in a neighbourhood of δ_{g-3} in S_1 as shown in Figure 18. Note that $(\psi_{\frac{g}{3}}|_{\delta_{g-3}})^4$ is homotopic to $T_{\delta_{g-3}}$. We define $\rho_1 = (T_{\alpha_{g-2}}T_{\beta_{g-2}}T_{\alpha'_{g-2}})^{-1}(T_{\alpha_{g-1}}T_{\beta_{g-1}}T_{\alpha'_{g-1}})(T_{\alpha_g}T_{\beta_g}T_{\alpha_g})^{-1}$. By the chain relation

Fig. 16. \mathbb{Z}_4 -symmetry of Σ_{3m} , 1.

Fig. 17. Cutting the surface of genus 3m, II.

and Lemma 3 we have

$$\rho_1^4 = (T_{\alpha_{g-2}}T_{\beta_{g-2}}T_{\alpha'_{g-2}})^{-4}(T_{\alpha_{g-1}}T_{\beta_{g-1}}T_{\alpha'_{g-1}})^4(T_{\alpha_g}T_{\beta_g}T_{\alpha_g})^{-4}$$
$$= (T_{\delta_{g-3}}^{-1}T_{\delta_{g-2}})(T_{\delta_{g-2}}T_{\delta_{g-1}})(T_{\delta_{g-1}}^{-1}) = T_{\delta_{g-3}}^{-1}.$$

Moreover, we find $\rho_1(\alpha_g) = \beta_g$. When we embed $L_1, L_2, \ldots, L_{(g-3)/3}, L''_{g/3}$ in Σ_g , we can define a homeomorphism of Σ_g by gluing together the homeomorphisms $\psi_1, \ldots, \psi_{g/3}$ and a representative of ρ_1 . When ψ denote the homotopy class of the homeomorphism of Σ_g , $\psi \in \mathcal{M}_g$ has order 4. From the construction of ψ we find that $\psi(x_1) = x_2, \ \psi(\alpha_3) = \gamma_1$ and $\psi(\alpha_g) = \beta_g$.

We construct a third element ω of order 4 for each g = 3m. We take the curves ϵ like Figure 19. We cut Σ_g along the curves $\alpha_{3j-1}, \gamma_{3j-1}, \gamma_{3j}, \alpha_{3j+1}$ $(j = 1, ..., (g - 3)/3), \alpha_1, \epsilon$, γ_{g-1} and α_{g-1} to obtain (g + 3)/3 surfaces $L'_1, L'_2, ..., L'_{(g-3)/3}, L'_{g/3}$ as shown in Figure 19. $L'_{g/3}$ is a sphere with 4g/3 boundary components, $L_{g/3}$ is a sphere bounded by $\alpha_1, \epsilon, \gamma_{g-1}$ and α_{g-1} , and L_j (j = 1, ..., (g - 3)/3) is a sphere bounded by $\alpha_{3j-1}, \gamma_{3j-1}, \gamma_{3j}$ and α_{3j+1} . We define that the homeomorphism ω_j of L_j (j = 1, ..., (g + 3)/3) is rotation by $\pi/2$ about the axis indicated in Figure 20.

When we embed $L'_1, L'_2, \ldots, L'_{(g+3)/3}$ in Σ_g , we can define a homeomorphism of Σ_g by gluing together the homeomorphisms $\omega_1, \ldots, \omega_{(g+3)/3}$. When ω denotes the homotopy class

Fig. 18. \mathbb{Z}_4 -symmetry of Σ_{3m} , 2.

Fig. 19. Cutting the surface of genus 3m, III.

of the homeomorphism of Σ_g , $\omega \in \mathcal{M}_g$ has order 4. From the construction of ω we find that $\omega(\alpha_2) = \gamma_2$.

Let α and β be simple closed curves on Σ_g . The symbol

$$\alpha \xrightarrow{\phi} \beta$$
 (resp. $\alpha \xrightarrow{\psi} \beta$, $\alpha \xrightarrow{\omega} \beta$)

means that $\phi(\alpha) = \beta$ (resp. $\psi(\alpha) = \beta$, $\omega(\alpha) = \beta$). By the constructions of ϕ , ψ and ω we can send α_1 to all γ_i and β_i by ϕ , ψ and ω as shown in Figure 21. Moreover, we can send α_1 to α_2 by ϕ , ψ and ω .

$4 \cdot 1 \cdot 2$. The genus is 3

We assume g = 3.

The constructions of ψ and ω in Section 4.1.2 are not applicable in this section. In the case of g = 3, the construction of ϕ is the same as the previous argument. Therefore, ϕ satisfies that $\phi(\alpha_2) = x_1$ and $\phi(\gamma_2) = \alpha_3$.

Fig. 20. \mathbb{Z}_4 -symmetry of Σ_{3m} , 3.

Fig. 22. Cutting the surface of genus 3.

We construct a second element ψ of order 4. We cut Σ_3 along the curves α_1 , γ_1 , γ_2 and α_3 to obtain two surfaces L_1 , L_2 as shown in Figure 22. L_1 and L_2 are spheres bounded by α_1 , γ_1 , γ_2 and α_3 .

We define that the homeomorphism ψ_i of L_i (i = 1, 2) is rotation by $\pi/2$ about the axis indicated in Figure 23. When we embed L_1 , L_2 in Σ_3 , we can define a homeomorphism of Σ_3 by gluing together the homeomorphisms ψ_1 , ψ_2 . When ψ denotes the homotopy class of the homeomorphism of Σ_3 , $\psi \in \mathcal{M}_3$ has order 4. From the construction of ψ we find that $\psi(x_1) = x_2$, $\psi(\alpha_3) = \gamma_1$.

We construct a third element ω of order 4. Let α'_3 and ϵ be the curves as shown in Figure 24. We define

$$\omega = (T_{\gamma_2}T_{\beta_2}T_{\alpha_2})(T_{\epsilon}T_{\beta_1}T_{\alpha_1})^{-1}$$

By the chain relation and Lemma 3 we have

$$\omega^{4} = (T_{\gamma_{2}}T_{\beta_{2}}T_{\alpha_{2}})^{4}(T_{\epsilon}T_{\beta_{1}}T_{\alpha_{1}})^{-4}$$

= $(T_{\alpha_{3}}T_{\alpha_{3}})(T_{\alpha_{3}}^{-1}T_{\alpha_{1}}^{-1}) = 1.$

Hence, ω has order 4. By the construction of ω we find that $\omega(\alpha_2) = \beta_2$ and $\omega^2(\alpha_2) = \gamma_2$.

Fig. 23. \mathbb{Z}_4 -symmetry of Σ_3 .

Fig. 24. The curves α'_3 and ϵ .

Fig. 25.

By the constructions of ϕ , ψ and ω we can send α_1 to all γ_i and β_i by ϕ , ψ and ω as shown in Figure 25. Moreover, we find that α_1 can be send to α_2 by ϕ , ψ and ω .

4.1.3. The genus is 3m + 1

We assume that g = 3m + 1 ($m \ge 1$). The construction of ψ is different from the construction of that in Section 4.1.1.

We construct an element ϕ of order 4 for each g = 3m + 1. We cut Σ_g along the curves α_{3k-2} , γ_{3k-2} , γ_{3k-1} and α_{3k} (k = 1, ..., (g - 1)/3) to obtain (g + 2)/3 surfaces $L_1, L_2, ..., L_{(g+2)/3}$ as shown in Figure 26. $L_{(g+2)/3}$ is a torus with 4(g - 1)/3 boundary components, and L_k (i = 1, ..., (g - 1)/3) is a sphere bounded by α_{3k-2} , γ_{3k-2} , γ_{3k-1} and α_{3k} .

We define that the homeomorphism ϕ_k of L_k $(k = 1, \ldots, (g - 1)/3)$ is rotation by $\pi/2$ about the axis indicated in Figure 27. Let S_2 be a torus bounded by δ_{g-1} . Then, there exists a 4th root $\psi_{(g+2)/3} : L_{(g+2)/3} \to L_{(g+2)/3}$ of a twist in a neighbourhood of δ_{g-1} in S_2 as shown in Figure 27. We define $\rho_2 = (T_{\alpha_s}T_{\beta_s}T_{\alpha_s})^{-1}$. Note that $(\phi_{(g+2)/3}|_{\delta_{g-1}})^4$ is homotopic to $T_{\delta_{g-1}}$, and that $\rho_2^4 = T_{\delta_{g-1}}^{-1}$. When we embed $L_1, L_2, \ldots, L_{(g+2)/3}$ in Σ_g , we can define a homeomorphism of Σ_g by gluing together the homeomorphisms $\phi_1, \ldots, \phi_{(g+2)/3}$ and a representative of ρ_2 . When ϕ denotes the homotopy class of the homeomorphism of Σ_g , $\phi \in \mathcal{M}_g$ has order 4. From the construction of ϕ we find that $\phi(\alpha_2) = x_1$ and $\phi(\gamma_2) = \alpha_3$.

Fig. 26. Cutting the surface of genus 3m + 1, I.

Fig. 27. \mathbb{Z}_4 -symmetry of Σ_{3m+1} , 1.

We construct a second element ψ of order 4 for each g = 3m + 1. We define that the homeomorphism ψ_1 of L_1 is rotation by $\pi/2$ about the axis indicated in Figure 28 and that the homeomorphism ψ_k of L_k (k = 1, ..., (g - 1)/3) is ϕ_k . We define that the homeomorphism $\psi_{(g+2)/3}$ of $L_{(g+2)/3}$ is a 4th root of a twist in a neighbourhood of δ_{g-1} in S_2 as shown in Figure 28. Note that $(\psi_{(g+2)/3}|_{\delta_{g-1}})^4$ is homotopic to $T_{\delta_{g-1}}$. When we embed L_1 , $L_2, \ldots, L_{(g+2)/3}$ in Σ_g , we can define a homeomorphism of Σ_g by gluing together the homeomorphisms $\psi_1, \ldots, \psi_{(g+2)/3}$ and a representative of ρ_2 . When ψ denotes the homotopy class of the homeomorphism of Σ_g , $\psi \in \mathcal{M}_g$ has order 4. From the construction of ψ we find that $\psi(x_1) = x_2$, $\psi(\alpha_3) = \gamma_1$. Moreover, since $\psi|_{S_2} = \rho_2$, we see that $\psi(\alpha_g) = \beta_g$.

We construct a third element ω of order 4 for each g = 3m+1. We cut Σ_g along the curves $\alpha_{3j-1}, \gamma_{3j-1}, \gamma_{3j}$ and α_{3j+1} (j = 1, ..., (g-1)/3) to obtain (g+2)/3 surfaces $L'_1, L'_2, ..., L'_{(g-1)/3}$ and $L'_{(g+2)/3}$ as shown in Figure 29. $L'_{(g+2)/3}$ is a torus with 4(g-1)/3 boundary components, and L_j (i = 1, ..., (g-1)/3) is a sphere bounded by $\alpha_{3j-1}, \gamma_{3j-1}, \gamma_{3j}$ and α_{3j+1} .

We define that the homeomorphism ω_j of L'_j (j = 1, ..., (g - 1)/3) is rotation by $\pi/2$ about the axis indicated in Figure 30. Let δ_1 be the separating curve on Σ_g as shown in Figure 29 and let S_3 be a torus bounded by δ_1 . Then, there exists a 4th root $\omega_{(g+2)/3}$: $L'_{(g+2)/3} \rightarrow L'_{(g+2)/3}$ of a twist in a neighbourhood of δ_1 in S_3 as shown in Figure 30.

Fig. 28. \mathbb{Z}_4 -symmetry of Σ_{3m+1} , 2.

Fig. 29. Cutting the surface of genus 3m + 1, II.

We define $\rho_3 = (T_{\alpha_1}T_{\beta_1}T_{\alpha_1})^{-1}$. Note that $(\omega_{(g+2)/3}|_{\delta_1})^4$ is homotopic to T_{δ_1} , and that $\rho_3^4 = T_{\delta_1}^{-1}$. When we embed $L'_1, L'_2, \ldots, L'_{(g+2)/3}$ in Σ_g , we can define a homeomorphism of Σ_g by gluing together the homeomorphisms $\omega_1, \ldots, \omega_{(g+2)/3}$ and a representative of ρ_3 . When ω denotes the homotopy class of the homeomorphism of $\Sigma_g, \omega \in \mathcal{M}_g$ has order 4. From the construction of ω we find that $\omega(\alpha_2) = \gamma_2$.

By the constructions of ϕ , ψ and ω we can send α_1 to all γ_i and β_i by ϕ , ψ and ω as shown in Figure 31. Moreover, we can send α_1 to α_2 by ϕ , ψ and ω .

4.1.4. *The genus is* 3m + 2

We assume that g = 3m + 2 ($m \ge 2$).

We construct an element ϕ of order 4 for each g = 3m + 2. We cut Σ_g along the curves $\alpha_{3k-2}, \gamma_{3k-2}, \gamma_{3k-1}$ and α_{3k} $(k = 1, \dots, (g - 2)/3)$ to obtain (g + 1)/3 surfaces $L_1, L_2, \dots, L_{(g+1)/3}$ as shown in Figure 32. $L_{(g+2)/3}$ is a torus with 4(g - 2)/3 boundary components, and L_k $(k = 1, \dots, (g - 2)/3)$ is a sphere bounded by $\alpha_{3k-2}, \gamma_{3k-2}, \gamma_{3k-1}$ and α_{3k} .

We define that the homeomorphism ϕ_k of L_k (k = 1, ..., (g - 1)/3) is rotation by $\pi/2$ about the axis indicated in Figure 33. Let S_4 be a surface of genus 2 bounded by δ_{g-2} . Then, there exists a 4th root $\phi_{(g+1)/3} : L_{(g+1)/3} \to L_{(g+1)/3}$ of a twist in a neighbourhood of δ_{g-2} in S_4 as shown in Figure 33. We define $\rho_4 = (T_{\alpha_{g-1}}T_{\beta_{g-1}}T_{\alpha_{g-1}})^{-1}(T_{\alpha_s}T_{\beta_s}T_{\alpha_s})$. By the chain

Fig. 30. \mathbb{Z}_4 -symmetry of Σ_{3m+1} , 3.

Fig. 32. Cutting the surface of genus 3m + 2, I.

relation and Lemma 3 we have

$$\begin{split} \rho_4^4 &= (T_{\alpha_{g-1}}T_{\beta_{g-1}}T_{\alpha_{g-1}})^{-4}(T_{\alpha_g}T_{\beta_g}T_{\alpha_g})^4 \\ &= (T_{\delta_{g-2}}^{-1}T_{\delta_{g-1}}^{-1})(T_{\delta_{g-1}}) = T_{\delta_{g-2}}^{-1}. \end{split}$$

Moreover, we find that $\rho_4(\alpha_g) = \beta_g$. Note that $(\phi_{(g+1)/3}|_{\delta_{g-2}})^4$ is homotopic to $T_{\delta_{g-2}}$. When we embed $L_1, L_2, \ldots, L_{(g+1)/3}$ in Σ_g , we can define a homeomorphism of Σ_g by gluing together the homeomorphisms $\phi_1, \ldots, \phi_{(g+1)/3}$ and a representative of ρ_4 . When ϕ denotes the

Fig. 33. \mathbb{Z}_4 -symmetry of Σ_{3m+2} , 1.

Fig. 34. Cutting the surface of genus 3m + 2, II.

homotopy class of the homeomorphism of Σ_g , $\phi \in \mathcal{M}_g$ has order 4. From the construction of ϕ we find that $\phi(\alpha_2) = x_1$, $\phi(\gamma_2) = \alpha_3$ and $\phi(\alpha_g) = \beta_g$.

We construct a second element ψ of order 4 for each g = 3m + 2. We cut Σ_g along the curves $\alpha_1, \gamma_1, \gamma_2, \alpha_3, \alpha_{3i}, \gamma_{3i}, \gamma_{3i+1}$ and α_{3i+2} (i = 2, ..., (g-2)/3) to obtain (g+1)/3 surfaces $L''_1, L''_2, ..., L''_{(g+1)/3}$ as shown in Figure 34. $L''_{(g+2)/3}$ is a torus with 4(g-2)/3 boundary components, and L''_1 and L''_i (i = 2, ..., (g-2)/3) are spheres bounded by α_1 , $\gamma_1, \gamma_2, \alpha_3$ and $\alpha_{3i}, \gamma_{3i}, \gamma_{3i+1}, \alpha_{3i+2}$, respectively.

We define that the homeomorphism ψ_i of L''_i (i = 1, ..., (g - 2)/3) is rotation by $\pi/2$ about the axis indicated in Figure 35. Let δ' and δ'' (resp. α'_4 and α'_5) be the separating (resp. the nonseparating) curves as shown in Figure 34. We denote by S_5 a surface of genus 2 bounded by δ'' . Then, there exists a 4th root $\psi_{(g+1)/3} : L''_{(g+1)/3} \to L''_{(g+1)/3}$ of a twist in a neighbourhood of δ'' in S_5 as shown in Figure 35. We define $\rho_5 = (T_{\alpha_4}T_{\beta_4}T_{\alpha'_4})^{-1}(T_{\alpha_5}T_{\beta_5}T_{\alpha_5})$. By the chain relation and Lemma 3 we have

$$\begin{split} \rho_5^4 &= (T_{\alpha_4} T_{\beta_4} T_{\alpha_4'})^{-4} (T_{\alpha_5} T_{\beta_5} T_{\alpha_5})^4 \\ &= (T_{\delta'}^{-1} T_{\delta''}^{-1}) (T_{\delta''}) = T_{\delta'}^{-1}. \end{split}$$

Note that $(\psi_{(g+1)/3}|_{\delta'})^4$ is homotopic to $T_{\delta'}$. When we embed $L''_1, L''_2, \ldots, L''_{(g+1)/3}$ in Σ_g , we can define a homeomorphism of Σ_g by gluing together the homeomorphisms

Fig. 35. \mathbb{Z}_4 -symmetry of Σ_{3m+2} , 2.

Fig. 36. Cutting the surface of genus 3m + 2, III.

 $\psi_1, \ldots, \psi_{(g+1)/3}$ and a representative of ρ_5 . When ψ denotes the homotopy class of the homeomorphism of $\Sigma_g, \psi \in \mathcal{M}_g$ has order 4. From the construction of ψ we find that $\psi(x_1) = x_2, \ \psi(\alpha_3) = \gamma_1$.

We construct a third element ω of order 4 for each g = 3m+2. We cut Σ_g along the curves $\alpha_{3j-1}, \gamma_{3j-1}, \gamma_{3j}$ and α_{3j+1} (j = 1, ..., (g-2)/3) to obtain (g+1)/3 surfaces $L'_1, L'_2, ..., L'_{(g+1)/3}$ as shown in Figure 36. $L'_{(g+2)/3}$ is a torus with 4(g-2)/3 boundary components, and L_j (j = 1, ..., (g-2)/3) is a sphere bounded by $\alpha_{3j-1}, \gamma_{3j-1}, \gamma_{3j}$ and α_{3j+1} .

We define that the homeomorphism ω_j of L_j (j = 1, ..., (g - 1)/3) is rotation by $\pi/2$ about the axis indicated in Figure 37. Let δ_g and α'_g be the separating and nonseparating curves as shown in Figure 36. We denote by S_6 a surface of genus 2 bounded by δ_g . Then, there exists a 4th root $\omega_{(g+1)/3} : L'_{(g+1)/3} \to L'_{(g+1)/3}$ of a twist in a neighbourhood of δ_g in S_6 as shown in Figure 37. We define $\rho_6 = (T_{\alpha_g}T_{\beta_g}T_{\alpha'_g})^{-1}(T_{\alpha_1}T_{\beta_1}T_{\alpha_1})$. By the chain relation and Lemma 3 we have

$$\begin{aligned} \rho_6^4 &= (T_{\alpha_g} T_{\beta_g} T_{\alpha'_g})^{-4} (T_{\alpha_1} T_{\beta_1} T_{\alpha_1})^4 \\ &= (T_{\delta_g}^{-1} T_{\delta_1}^{-1}) (T_{\delta_1}) = T_{\delta_g}^{-1}. \end{aligned}$$

Note that $(\omega_{(g+1)/3}|_{\delta_g})^4$ is homotopic to T_{δ_g} . When we embed $L'_1, L'_2, \ldots, L'_{(g+1)/3}$ in Σ_g , we can define a homeomorphism of Σ_g by gluing together the homeomorphisms

Fig. 37. \mathbb{Z}_4 -symmetry of Σ_{3m+2} , 3.

 $\omega_1, \ldots, \omega_{(g+1)/3}$ and a representative of ρ_6 . When ω denotes the homotopy class of the homeomorphism of Σ_g , $\omega \in \mathcal{M}_g$ has order 4. From the construction of ω we find that $\omega(\alpha_2) = \gamma_2$.

By the constructions of ϕ , ψ and ω we can send α_1 to all γ_i and β_i by ϕ , ψ and ω as shown in Figure 38. Moreover, we can send α_1 to α_2 by ϕ , ψ and ω .

4.1.5. The genus is 5

We assume that g = 5.

We construct an element ϕ of order 4. Let α'_4 be the nonseparating curve on Σ_5 as shown in Figure 39. We define

$$\phi = (T_{\gamma_3}T_{\beta_3}T_{\gamma_2}T_{\beta_2}T_{\gamma_1}T_{\beta_1}T_{\alpha_1})^2 (T_{\alpha_5}T_{\beta_5}T_{\gamma_4})^{-1}.$$

By the chain relation and Lemma 3 we have

$$\begin{split} \phi^4 &= (T_{\gamma_3} T_{\beta_3} T_{\gamma_2} T_{\beta_2} T_{\gamma_1} T_{\beta_1} T_{\alpha_1})^8 (T_{\alpha_5} T_{\beta_5} T_{\gamma_4})^{-4}.\\ &= (T_{\alpha_4} T_{\alpha'_4}) (T_{\alpha_4}^{-1} T_{\alpha'_4}^{-1}) = 1. \end{split}$$

Hence, ϕ has order 4. We note that $\phi^{-1}(\alpha_2) = x_1$, $\phi^{-1}(\gamma_2) = \gamma_1$ and $\phi(\beta_5) = \gamma_4$.

Fig. 39. \mathbb{Z}_4 -symmetry of Σ_5 , 1.

Fig. 40. Cutting the surface of genus 5.

We construct a second element ψ of order 4. We cut Σ_5 along the curves α_1 , γ_1 , γ_2 and α_3 to obtain two surfaces L_1 , L_2 as shown in Figure 40. L_2 is a surface of genus 2 with 4 boundary components, and L_1 is a sphere bounded by α_1 , γ_1 , γ_2 and α_3 .

We define that the homeomorphism ψ_1 of L_1 is rotation by $\pi/2$ about the axis indicated in Figure 41. Let δ_3 , δ_4 be the separating curves as shown in Figure 40, and let α'_4 be nonseparating curves as shown in Figure 40. We denote by S_7 a surface of genus 2 bounded by δ_3 . Then, there exists a 4th root $\psi_2 : L_2 \to L_2$ of a twist in a neighbourhood of δ_3 in S_7 as shown in Figure 41. We define $\rho_7 = (T_{\alpha_4}T_{\beta_4}T_{\alpha'_4})^{-1}(T_{\alpha_5}T_{\beta_5}T_{\alpha_5})$. By the chain relation and Lemma 3 we have

$$\rho_7^4 = (T_{\alpha_4} T_{\beta_4} T_{\alpha'_4})^{-4} (T_{\alpha_5} T_{\beta_5} T_{\alpha_5})^4 = (T_{\delta_1}^{-1} T_{\delta_1}^{-1}) (T_{\delta_4}) = T_{\delta_1}^{-1}.$$

Note that $(\psi_2|_{\delta_3})^4$ is homotopic to T_{δ_3} . When we embed L_1 , L_2 in Σ_5 , we can define a homeomorphism of Σ_5 by gluing together the homeomorphisms ψ_1 , ψ_2 and a representative of ρ_7 . When ψ denotes the homotopy class of the homeomorphism of Σ_5 , $\psi \in \mathcal{M}_5$ has order 4. From the construction of ψ we find that $\psi^{-1}(x_1) = x_2$ and $\psi^{-1}(\gamma_1) = \alpha_3$.

We construct a third element ω of order 4. Let α'_5 and ϵ be the nonseparating curves on Σ_5 as shown in Figure 42. We define

$$\omega = (T_{\gamma_4} T_{\beta_3} T_{\gamma_3} T_{\beta_2} T_{\gamma_2} T_{\beta_2} T_{\alpha_2})^2 (T_{\epsilon} T_{\beta_1} T_{\alpha_1})^{-1}.$$

By the chain relation and Lemma 3 we have

$$\begin{split} \phi^4 &= (T_{\gamma_4} T_{\beta_3} T_{\gamma_3} T_{\beta_2} T_{\gamma_2} T_{\beta_2} T_{\alpha_2})^8 (T_\epsilon T_{\beta_1} T_{\alpha_1})^{-4}.\\ &= (T_{\alpha_5} T_{\alpha'_5}) (T_{\alpha_5}^{-1} T_{\alpha'_\epsilon}^{-1}) = 1. \end{split}$$

Hence, ω has order 4. We note that $\omega^{-1}(\alpha_2) = \gamma_2$.

By the constructions of ϕ and ω we can send α_1 to all γ_i by ϕ and ω as shown in Figure 43. Moreover, as shown on Figure 43, we find that α_1 can be send to all β_i by ϕ and ω .

4.2. Generating the Dehn twist by 4 elements of order 4

By using the lantern relation we generate the Dehn twist by 4 elements of order 4.

Fig. 41. \mathbb{Z}_4 -symmetry of Σ_5 , 2.

Fig. 42. \mathbb{Z}_4 -symmetry of Σ_5 , 3.

We assume $g \neq 3, 5$. From the lantern relation we can rewrite the relation as

$$T_{\alpha_1} = (T_{x_1} T_{\alpha_3}^{-1}) (T_{x_2} T_{\gamma_1}^{-1}) (T_{\alpha_2} T_{\gamma_2}^{-1})$$

Since $\phi(\alpha_2) = x_1$, $\phi(\gamma_2) = \alpha_3$, $\psi(x_1) = x_2$ and $\psi(\alpha_3) = \gamma_1$, we have

$$T_{x_1}T_{\alpha_3}^{-1} = \phi T_{\alpha_2}T_{\gamma_2}^{-1}\phi^{-1},$$

$$T_{x_2}T_{\gamma_1}^{-1} = \psi T_{x_1}T_{\alpha_3}^{-1}\psi^{-1} = \psi \phi T_{\alpha_2}T_{\gamma_2}^{-1}\phi^{-1}\psi^{-1}.$$

Moreover, since $\omega(\alpha_2) = \gamma_2$, we see that

$$T_{\alpha_2}T_{\gamma_2}^{-1} = T_{\alpha_2}\omega T_{\alpha_2}^{-1}\omega^{-1} = (T_{\alpha_2}\omega T_{\alpha_2}^{-1})\omega^{-1}.$$

Let $\tilde{\omega}$ denote $T_{\alpha_2}\omega T_{\alpha_2}^{-1}$. Then, we have $T_{\alpha_2}T_{\gamma_2}^{-1} = \tilde{\omega}\omega^{-1}$. Hence, we have

$$T_{\alpha_1} = (\phi \tilde{\omega} \omega^{-1} \phi^{-1}) (\psi \phi \tilde{\omega} \omega^{-1} \phi^{-1} \psi^{-1}) (\tilde{\omega} \omega^{-1}).$$

$$(4.1)$$

Therefore, T_{α_1} is generated by ϕ , ψ , ω and $\tilde{\omega}$.

NAOYUKI MONDEN

We assume g = 3. From the lantern relation we can rewrite the relation as

$$T_{\alpha_1} = (T_{x_1} T_{\alpha_3}^{-1}) (T_{x_2} T_{\gamma_1}^{-1}) (T_{\alpha_2} T_{\gamma_2}^{-1}).$$

Since $\phi(\alpha_2) = x_1$, $\phi(\gamma_2) = \alpha_3$, $\psi(x_1) = x_2$ and $\psi(\alpha_3) = \gamma_1$, we have

$$T_{x_1}T_{\alpha_3}^{-1} = \phi T_{\alpha_2}T_{\gamma_2}^{-1}\phi^{-1},$$

$$T_{x_2}T_{\gamma_1}^{-1} = \psi T_{x_1}T_{\alpha_3}^{-1}\psi^{-1} = \psi \phi T_{\alpha_2}T_{\gamma_2}^{-1}\phi^{-1}\psi^{-1}.$$

Moreover, since $\omega^2(\alpha_2) = \gamma_2$, we see that

$$T_{\alpha_2}T_{\gamma_2}^{-1} = T_{\alpha_2}\omega^2 T_{\alpha_2}^{-1}\omega^{-2} = (T_{\alpha_2}\omega T_{\alpha_2}^{-1})^2 \omega^{-2}$$

As before, let $\tilde{\omega}$ denote $T_{\alpha_2}\omega T_{\alpha_2}^{-1}$. Then, we have $T_{\alpha_2}T_{\gamma_2}^{-1} = \tilde{\omega}^2 \omega^{-2}$. Hence, we have

$$T_{\alpha_1} = (\phi \tilde{\omega}^2 \omega^{-2} \phi^{-1}) (\psi \phi \tilde{\omega}^2 \omega^{-2} \phi^{-1} \psi^{-1}) (\tilde{\omega}^2 \omega^{-2}).$$
(4.2)

Therefore, T_{α_1} is generated by ϕ , ψ , ω and $\tilde{\omega}$.

We assume g = 5. From the lantern relation we can rewrite the relation as

$$T_{\alpha_1} = (T_{x_1} T_{\gamma_1}^{-1}) (T_{x_2} T_{\alpha_3}^{-1}) (T_{\alpha_2} T_{\gamma_2}^{-1}).$$

Since $\phi^{-1}(\alpha_2) = x_1$, $\phi^{-1}(\gamma_2) = \gamma_1$, $\psi^{-1}(x_1) = x_2$ and $\psi^{-1}(\gamma_1) = \alpha_3$, we have

$$T_{x_1}T_{\gamma_1}^{-1} = \phi^{-1}T_{\alpha_2}T_{\gamma_2}^{-1}\phi,$$

$$T_{x_2}T_{\alpha_3}^{-1} = \psi^{-1}T_{x_1}T_{\gamma_1}^{-1}\psi = \psi^{-1}\phi^{-1}T_{\alpha_2}T_{\gamma_2}^{-1}\phi\psi.$$

Moreover, since $\omega^{-1}(\alpha_2) = \gamma_2$, we see that

$$T_{\alpha_2}T_{\gamma_2}^{-1} = T_{\alpha_2}\omega^{-1}T_{\alpha_2}^{-1}\omega = (T_{\alpha_2}\omega T_{\alpha_2}^{-1})^{-1}\omega.$$

Let $\tilde{\omega}$ denote $T_{\alpha_2}\omega T_{\alpha_2}^{-1}$. Then, we have $T_{\alpha_2}T_{\gamma_2}^{-1} = \tilde{\omega}^{-1}\omega$. Hence, we have

$$T_{\alpha_1} = (\phi^{-1}\tilde{\omega}^{-1}\omega\phi)(\psi^{-1}\phi^{-1}\tilde{\omega}^{-1}\omega\phi\psi)(\tilde{\omega}^{-1}\omega).$$
(4.3)

Therefore, T_{α_1} is generated by ϕ , ψ , ω and $\tilde{\omega}$.

Proof of Theorem 1 (ii). We show that \mathcal{M}_g is generated by ϕ, ψ, ω and $\tilde{\omega}$.

Let *G* denote the group generated by ϕ , ψ , ω and $\tilde{\omega}$. From the equations (4·1), (4·2) and (4·3) we have $T_{\alpha_1} \in G$. Since we can send α_1 to all γ_i and β_i by ϕ , ψ and ω (see Figures 21, 25, 31, 38 and 43), by Lemma 2, T_{γ_i} and $T_{\beta_i} \in G$ for all *i*. Similarly, we have $T_{\alpha_2} \in G$. Therefore, since we have shown that all Humphries's generators are in *G*, *G* is equal to \mathcal{M}_g .

Remark 6. It seems that for g = 3 we can not construct elements of order 5 by our method. In fact, is well-known that M_3 has no elements of order 5.

5. Remarks

5.1. Low genus

By using the argument of McCarthy and Papadopulos [13] and the work of Hirose [5], we find that \mathcal{M}_g can not be generated by elements of same order for g = 1, 2.

Hirose gave presentations of finite order elements by Dehn twists up to conjugacy for g = 1, ..., 4. We introduce the presentation of finite order elements in the case of g = 1, 2. The list is as follows:

genus	elements	order	
1	$T_{eta_1}T_{lpha_1}$	6	
	$T_{lpha_1}T_{eta_1}T_{lpha_1}$	4	
2	$T_{\beta_2}T_{\gamma_1}T_{\beta_1}T_{\alpha_1}$	10	
	$T_{\beta_2}T_{\beta_2}T_{\gamma_1}T_{\beta_1}T_{\alpha_1}$	8	
	$T_{\alpha_2}T_{\beta_2}T_{\gamma_1}T_{\beta_1}T_{\alpha_1}$	6	
	$(T_{\alpha_1}T_{\beta_1}T_{\gamma_1}T_{\beta_2}T_{\alpha_2})(T_{\alpha_2}T_{\beta_2}T_{\gamma_1}T_{\beta_1}T_{\alpha_1})^3$	6	

McCarthy and Papadopulos proved that M_2 can not be generated by elements of order 2. The argument of McCarthy and Papadopulos is as follows:

Let c be a nonseparating simple closed curve and p be the abelianization map given by Powell's result [14]:

We can find that

$$p((T_{\beta_2}T_{\gamma_1}T_{\beta_1}T_{\alpha_1})^5) = p((T_{\beta_2}T_{\beta_2}T_{\gamma_1}T_{\beta_1}T_{\alpha_1})^4)$$

= $p(((T_{\alpha_1}T_{\beta_1}T_{\gamma_1}T_{\beta_2}T_{\alpha_2})(T_{\alpha_2}T_{\beta_2}T_{\gamma_1}T_{\beta_1}T_{\alpha_1})^3)^3)$
= 0
 $p((T_{\alpha_2}T_{\beta_2}T_{\gamma_1}T_{\beta_1}T_{\alpha_1})^3) = 5.$

Since \mathbb{Z}_{10} can not be generated by 0 and 5, we see that \mathcal{M}_2 can not be generated by elements of order 2.

By the similar proof, we can see that \mathcal{M}_1 and \mathcal{M}_2 can not be generated by elements of same order.

Remark 7. \mathcal{M}_1 and \mathcal{M}_2 can be generated by elements of different order. For example, \mathcal{M}_1 can be generated by $T_{\beta_1}T_{\alpha_1}$ and $T_{\alpha_1}T_{\beta_1}T_{\alpha_1}$, and \mathcal{M}_2 can be generated by $T_{\beta_2}T_{\gamma_1}T_{\beta_1}T_{\alpha_1}$ and $T_{\alpha_2}T_{\beta_2}T_{\gamma_1}T_{\beta_1}T_{\alpha_1}$.

5.2. Lower bound

The order of \mathcal{M}_g is not finite. Therefore, it is clear that a lower bound of the number of generators whose order are 3 (resp. 4) is 2. The author has the following question:

Question 1. What is the minimal number of elements of order 3 (resp. 4) required to generate \mathcal{M}_{g} ?

Kassabov [8] proved that for $g \ge 7 \mathcal{M}_g$ is generated by three involutions. Since \mathcal{M}_g does not have a finite index cyclic subgroup, it is not generated by 2 involutions. The following problem remains open.

Problem 1 ([3], [8]). For $g \ge 7$, determine whether or not \mathcal{M}_g can be generated by three involutions.

NAOYUKI MONDEN

REFERENCES

- T. E. BRENDLE and B. FARB. Every mapping class group is generated by 3 torsion elements and by 6 involutions. J. Algebra 278 (2004), 187–198.
- [2] M. DEHN. Papers on group theory and topology (Springer-Verlag, New York, 1987) (Die Gruppe der Abbildungsklassen, Acta Math. Vol. 69 (1938), 135–206).
- [3] B. FARB. Some problems on mapping class groups and moduli space. Problems on mapping class groups and related topics, 11–55. Proc. Symp. Pure Math., 74. (Amer. Math. Soc., Providence, 2006).
- [4] B. FARB and D. MARGALIT. A Primer on Mapping Class Groups. Princeton Math. Ser., (Princeton University Press, 2012), 623–658.
- [5] S. HIROSE. Presentations of periodic maps on oriented closed surfaces of genera up to 4. Osaka Journal of Mathematics, vol. 47, No. 2 (2010), 385–421.
- [6] S. P. HUMPHRIES. Generators for the mapping class group. *Topology of low-dimensional manifolds*. Proc. Second Sussex Conf. Chelwood Gate 1977 Lecture Notes in Math. 722 (Springer, 1979), 44–47.
- [7] D. JOHNSON. The structure of Torelli group I: A finite set of generators for *I*. Ann. of Math. 118 (1983), 423–442.
- [8] M. KASSABOV. Generating Mapping Class Groups by Involutions. arXiv:math.GT/0311455 v1 25 Nov 2003.
- [9] M. KORKMAZ. Generating the surface mapping class group by two elements. *Trans. Amer. Math. Soc.* 357 (2005), 3299–3310.
- [10] W. B. R. LICKORISH. A finite set of generators for the homeotopy group of a 2-manifold. Proc. Camb. Phils. Soc. 60 (1964), 769–778.
- [11] F. LUO. Torsion Elements in the Mapping Class Group of a Surface. arXiv:math.GT/0004048 v1 8 Apr 2000.
- [12] C. MACLACHLAN. Modulus space is simply-connected. Proc. Amer. Math. Soc. 29 (1971), 85–86.
- [13] J. MCCARTHY and A. PAPADOPOULOS. Involutions in surface mapping class groups. *Enseign. Math.* 33 (1987), 275–290.
- [14] J. POWELL. Two theorems on the mapping class group of a surface. Proc. Amer. Math. Soc. 68 (1978), no. 3, 347–350.