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We study the evolution of a 2D vortex layer at high Reynolds number. Vortex layer flows
are characterized by intense vorticity concentrated around a curve. In addition to their
intrinsic interest, vortex layers are relevant configurations because they are regularizations
of vortex sheets. In this paper, we consider vortex layers whose thickness is proportional
to the square-root of the viscosity. We investigate the typical roll-up process, showing
that crucial phases in the initial flow evolution are the formation of stagnation points
and recirculation regions. Stretching and folding characterizes the following stage of the
dynamics, and we relate these events to the growth of the palinstrophy. The formation of an
inner vorticity core, with vorticity intensity growing to infinity for larger Reynolds number,
is the final phase of the dynamics. We display the inner core’s self-similar structure, with
the scale factor depending on the Reynolds number. We reveal the presence of complex
singularities in the solutions of Navier–Stokes equations; these singularities approach the
real axis with increasing Reynolds number. The comparison between these singularities
and the Birkhoff–Rott singularity seems to suggest that vortex layers, in the limit Re → ∞,
behave differently from vortex sheets.

Key words: free shear layers, Navier–Stokes equations, shear layers

1. Introduction

In many instances of considerable physical interest, fluids display configurations of
highly concentrated vorticity. When a high-Reynolds-number flow interacts with a solid
boundary, for example, separation causes the ejection of strong vorticity from within the
boundary layer in the form of vortex layers and vortex cores (Schlichting 1960). The
formation and the evolution of these structures assume particular importance also because
they are the primary source of dissipation in the bulk of the fluid.
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This paper presents a thorough study of the dynamics of thin vortex layers at high
Reynolds numbers and a comparison of their evolution, as predicted by the Navier–Stokes
(NS) equations, with the motion of an equivalent inviscid vortex sheet, as predicted by the
Birkhoff–Rott (BR) equation. It is well known that the BR equation, governing the motion
of an inviscid vortex sheet, suffers from the Kelvin–Helmholtz instability according to
which small disturbances grow exponentially. The main consequence of such instability is
ill-posedness, revealing itself via curvature-blow up, see Caflisch & Orellana (1989) and
Duchon & Robert (1988).

The seminal work of Moore (1979) contained the analytical procedures, based on
formal asymptotic expansion, indicating that the components of the vortex sheet curve
develop branch singularities of order 3/2, and that the curvature blows up due to an
inverse square-root singularity. This remarkable result was later supported by the analysis
presented in Baker, Meiron & Orszag (1982), Moore (1985), Duchon & Robert (1988),
Caflisch & Orellana (1989), Brady & Pullin (1999), and by numerical simulations (Krasny
1986b; Shelley 1992; Baker, Caflisch & Siegel 1993; Ishihara & Kaneda 1995; Cowley,
Baker & Tanveer 1999; Nitsche 2001) for both 2D and 3D vortex sheet flow.

The singularity formation sets the limit of applicability of the BR equation in predicting
the vortex sheet motion. To go beyond the singularity time, one needs to invoke some
regularization of the BR solution or use different mathematical models. In the former
case, δ-vortex blob regularization (Krasny 1986a; Baker & Beale 2004; Baker & Pham
2006; Lopes Filho et al. 2006; Sohn 2011) and BR-α model (Holm, Nitsche & Putkaradze
2006; Bardos, Linshiz & Titi 2008; Caflisch et al. 2017) are commonly used to regularize
the singular kernel of the BR equation. These regularizations prevent the singularity
formation, which allows the continuation of the vortex sheet motion up to the typical
roll-up phenomena observed in shear layer flows. However, despite the regularization
induced by these models, some phenomena resembling the singular behaviour are still
present: for example, Caflisch et al. (2017), the regularized BR-α solution has complex
singularities that, in the limit α → 0 get close to the real axis, producing spiking and
pinching both in the curvature and in the true vortex strength of the sheet.

Baker & Shelley (1990) approximated the vortex sheet with an inviscid layer of uniform
vorticity and, writing BR-like equations for the bounding interfaces of the layer, they
were able to follow in time the layer motion and to analyse the roll-up phenomenon
in the limit of zero initial thickness. Benedetto & Pulvirenti (1992) rigorously proved
that the dynamics of a thin vortex layer of uniform vorticity, in the zero thickness limit,
approximates the vortex sheet motion. Tryggvason, Dahm & Sbeih (1991) used the 2D NS
equations to reproduce the motion of an array of viscous vortex blobs distributed along
a curve; the authors compared the NS dynamics, at small viscosity, with the δ-vortex
blob regularization of the BR equation for small blob size: they showed that most of
the large-scale features characterizing the δ–BR curve were also captured by the viscous
layer induced by the vortex blobs sequence. Viscosity effects were also included in the
model proposed in Dhanak (1994), where an integrodifferential BR-like equation was
derived from the zero thickness limit of a viscous layer of non-uniform vorticity. However,
subsequent numerical analysis (Sohn 2013) showed that this viscous version of the BR
equation does not prevent the formation of singularity in the solution. Surface tension
and density stratification have also been used as regularizing agent in Hou, Lowengrub &
Shelley (1997), Baker & Nachbin (1998), Pugh & Shelley (1998), Baker & Beale (2004)
and Chen & Forbes (2011).

The continuation of the vortex sheet solution after the singularity time can also be
viewed as related to the more general problem of the global (or local) existence of weak
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solutions for the 2D Euler equations with vortex sheet initial data. The rigorous results
reported in DiPerna & Majda (1987a,b), Delort (1991), and Lopes Filho, Nussenzveig
Lopes & Xin (2001) ensure the global existence of measured-value solutions for Euler
equations, although no information is given for the structure of the solution, let alone
if it remains a smooth vortex sheet satisfying the BR equation. Existence results were
also obtained as zero viscosity limit for NS equations (Majda 1993; Schochet 1995), the
α → 0 limit of the Euler-α equation (Bardos, Linshiz & Titi 2010) and using point vortex
approximation (Liu & Xin 1995).

A recent result by Székelyhidi (2011) has shown that infinitely many non-stationary
weak solutions of the Euler equations for vortex sheet initial data exist and satisfy energy
conservation. Previous numerical evidence of non-uniqueness was first reported in Pullin
(1989), where it was shown that multiple self-similar solutions of a class of vortex sheet
configurations dependent on a parameter, produced non-trivial spiral-sheet structures in
the limit in which the parameter approaches the value for which the initial configuration
is a stationary solution of the Euler equations. This conclusion was also supported by the
numerical analysis performed in Lopes Filho et al. (2006) in which multiple solutions of
the 2D Euler equations were determined for a vortex sheet with non-distinguished vorticity
sign. Non-uniqueness can also be suggested by highlighting the differences coming from
different regularizations of the BR equation. Majda (1993), Schochet (1995), Liu & Xin
(1995) and Bardos et al. (2010) reported rigorous analyses where regularized models have
been shown, in the zero regularization limits, to converge to weak Euler solutions with
vortex sheet initial data. However, several numerical tests have pointed out that small-scale
irregular features are typical of certain regularizations only, raising the question of whether
the various regularized solutions converge to different limits in the zero regularization
regime. For instance, in Tryggvason et al. (1991) and, subsequently, in Nitsche, Taylor &
Krasny (2003) it was shown that many large-scale features of the roll-up process, such as
the number of outer spiral turns at a fixed time, are similarly captured by a sequence of
viscous vortex blobs governed by the NS equations and by the δ–BR curve, although in
Nitsche et al. (2003) the more detailed analysis showed that some small-scale differences
arise in the innermost part of the core of the spiral. These irregular features were due to the
onset of chaos in a particular resonance band, which develops after a large time in the δ–BR
solution as depicted in Krasny & Nitsche (2002) and later in Sohn (2014), and were not
observed in the viscous vortex blobs motion governed by the NS equations. Furthermore,
Holm et al. (2006) considered both δ-vortex blob and Euler-α regularizations for vortex
sheet motion in planar and axisymmetric flows: inner core dynamics and spiral vortex
sheet roll-up showed different small-scale behaviours due to differences in the spiral core
oscillations. However, the authors admit that further investigations are necessary to verify
that these differences remain in the zero regularization limit.

The aim of this work is essentially twofold. First, we shall deal with the analysis of a
2D viscous layer flow governed by the NS equation. One could expect that a vortex sheet
is the approximation of a real viscous flow in which vorticity is strongly concentrated on
a layer of small thickness. The previously cited works (Tryggvason et al. 1991; Nitsche
et al. 2003), where the authors studied a viscous layer and compared it with a vortex sheet
flow, deal with a low-viscosity regime but fixed (non-dependent from the viscosity) initial
thickness of the layer. Although various initial thicknesses were considered, this fixed
finite thickness is a regularized agent itself; hence, it remains to understand how the layer
behaves in both the zero viscosity and thickness limits. Instead, we shall assume that the
layer thickness depends on the square root of viscosity ν (or the inverse of the square root
of the Reynolds number Re). Although the layer motion shows some similarities for the
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various Re considered, we describe two different Re number dynamics. In the moderate-
to high-Re-number regime (Re > O(103)), the flow evolution is characterized by mixing
events in which vorticity is rapidly advected within the main core of the layer from the
thin braid attached. Conversely, in the low-Re regime (Re � O(103)) these events are not
present. These differences will be highlighted by the analysis of the enstrophy decay rate
(the palinstrophy), and by the different topological structure and complex singularities of
the central curve centred within the layer.

The second aim is to understand the possible structure of the layer in the zero
regularization limit. To accomplish this, we shall focus on the evolution of the central
material curve of the layer. We shall see that, in the zero regularization limit, the central
curve has, at a point of zero circulation, diverging curvature and vortex strength; this
structure is similar to what is predicted in Baker & Shelley (1990) for inviscid layers
of uniform vorticity. We shall give further evidence for the above scenario through the
analysis of the complex singularities of the curvature and vortex strength, and we shall
see how they have character compatible with a diverging behaviour. We shall also perform
a direct comparison of the outcomes of the viscous layer with the motion governed by
the δ-vortex blob regularization of the BR equation. We shall see that the two solutions
present quantitative differences in the small regularizations regime. These discrepancies
might suggest that the various regularizations presented for the vortex sheet show different
behaviour in the zero regularization limit.

We have also briefly analysed the Euler solutions having a vortex layer as the initial
datum. This analysis will allow us to highlight the different roles played by the two
regularizing agents (viscosity and finite layer thickness) in resolving the vortex sheet
dynamics.

The plan of the paper is the following. In § 2, we present the general framework by
defining our initial setup for the viscous layer, and we describe the layer motion in the
zero thickness limit. In § 3, we apply the singularity analysis to the material curve centred
within the layer, and to the curvature as well to the vorticity intensity. Section 4 is devoted
to the comparison between the singularities developed by the NS vortex layer and those
present in the regularized vortex-blob evolution of the vortex sheet. In § 5, we summarize
our results.

2. Vortex layers

2.1. Formulation and initial set-up
In the 2D periodic domain D∗ = [−Lx/2, Lx/2] × [−Ly/2, Ly/2], we consider an
incompressible viscous flow. We assume that the evolution is governed by the NS
equations which in the vorticity streamfunction formulation are

∂ω∗

∂t∗
+ u∗ · ∇x∗ω∗ = ν∇2

x∗ω,

∇⊥
x∗ψ∗ = u∗, ∇2

x∗ψ∗ = −ω∗,

⎫⎬⎭ (2.1)

where x∗ = (x∗, y∗) ∈ D∗, ∇x∗ = (∂x∗, ∂y∗), ∇⊥
x∗ = (∂y∗,−∂x∗), u∗ = (u∗, v∗) is the

velocity field, ψ∗ is the streamfunction, ω∗ is the vorticity and ν is the kinematic viscosity.
We make the equations non-dimensional using the characteristic length λ = Lx/2π and

the quantity Γ = ∫
D∗ ω∗

0 dS∗, where ω	0 is the initial datum. Non-dimensional quantities

932 A21-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

96
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.966


Complex singularity analysis for vortex layer flow

are thus defined as

(x, y) = (x∗, y∗)
λ

, t = t∗
Γ

λ2 , (u, v) = (u∗, v∗)
λ

Γ
, ω = ω∗λ2

Γ
, (2.2a–d)

whereas the Reynolds number is

Re = Γ

ν
. (2.3)

The governing equations can therefore be written in non-dimensional form as

∂tω + u∂xω + v∂yω = 1
Re
(∂2

xxω + ∂2
yyω), (2.4)

∂2
xxψ + ∂2

yyψ = −ω, (2.5)

u = ∂yψ, v = −∂xψ, (2.6a,b)

ω(x, y, t = 0) = ω0. (2.7)

We shall solve the above system in the periodic domain D = [−π,π] × [−π,π], having
fixed the aspect ratio Ly/Lx = 1, and Lx = 2π. Equation (2.4) is the vorticity transport
equation, (2.5) is the Poisson equation for the streamfunction and (2.6a,b) relate the
velocity components to the streamfunction.

The initial data we consider in this paper consist of intense positive vorticity highly
concentrated on a small layer of thickness O(Re−1/2) around a curve φ(x). To be more
specific, introducing the rescaled variable Y = Re1/2( y − φ(x)), the vortex layer initial
data we shall consider, are of the form

ω0(x, y) = Re1/2f (x, Y), (2.8)

where f (x, Y) > 0 has decay in Y fast enough such that
∫

f (x, Y) dY is finite. We shall
make the choice

f (x, Y) = exp(−Y2/2)/
√

2π, φ(x) = sin(x)/2, (2.9a,b)

which means that the profile of the vorticity, in the y-direction, is a Gaussian layer with
thickness of order Re−1/2 centred around a sinusoidal profile. In the limit of the thickness
going to zero, that is, Re → ∞, the layer shrinks to a sheet coinciding with y = φ(x).
The reasons for the O(Re−1/2) scaling are two. From the mathematical point of view,
the vortex layer is considered a possible regularization of a vortex sheet: the viscous
dissipation, after an O(1) time, would spread a vortex sheet into a layer of O(Re−1/2)
thickness, which is therefore considered a realistic approximation of a vortex sheet. From
the physical perspective, vortex layers often arise from the detachment of boundary
layers from obstacles interacting with high-Reynolds-number flows. The thickness of these
shear/vortex layers is related to the boundary layer thickness before separation, which is
O(Re−1/2); see the classical textbook Schlichting (1960) and the interesting discussion in
the recent paper Widmann & Tropea (2015).

For our purposes, it is of interest to follow the motion of the centre of the layer (that
we shall denote C(t)). This is done by placing, at t = 0, N + 1 particles on φ(x) and
transporting them using the velocity field (u, v) generated by the NS equations. Namely,
let (xj(0), yj(0)) for j = 0, . . .N, be the particles initially placed at (θj, φ(θj)), θj = −π +
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j2π/N. The Lagrangian evolution of the generic particle x(θj, t) = (xj(t), yj(t)) is given
by

dxj

dt
= u(xj(t), yj(t)),

dyj

dt
= v(xj(t), yj(t)). (2.10a,b)

A relevant related quantity that we analyse is the vorticity distribution computed on the
material curve C

ωC(θ, t) = ω(x(θ, t)). (2.11)

Spatial discretization of the NS equation is achieved through a fully spectral method,
while a semi-implicit third-order Runge–Kutta scheme is used to evolve in time the system;
see Zhong (1996) for more details. At each time step, to solve (2.10a,b), the velocity
field (u, v) is spectrally interpolated in the position of the particles (xj(t), yj(t)). All
simulations started with a coarser grid and periodically increased when the small spatial
scales developed: this required a periodic check on the saturation of the spectrum of the
solution (the vorticity), and the new resolution was adopted before all the modes were
excited. The maximum attained grid was 32 768 × 32 768 for the larger Re. Thanks to the
spectrally accurate spatial discretization, the numerical errors are mainly due to the time
discretization. Therefore, the numerical scheme has third-order convergence. We did not
use any filtering technique for the vortex layer computations, as the viscosity damps the
growth of the round-off error. Instead, filtering was necessary for the BR computations;
see § 4.1.

2.2. Roll-up, enstrophy dissipation and mixing
In this section, we analyse the dynamics of the vortex layer flow for all the Re considered.
We shall see how, in all cases, the roll-up of the layer and the formation of two vortex cores
characterizes the first stage of the evolution. This is analysed in § 2.2.1. The subsequent
stages, instead, depend on Re. In the moderate- to high-Re regime (5 × 103 � Re < 7.5 ×
104), we shall observe strong enstrophy dissipation with palinstrophy growth and mixing
events; see § 2.2.2. For the low-Re regime (Re ∼ 103), one observes none of the above: the
merging of the two cores is the only phenomenon worth mentioning, see § 2.2.3.

2.2.1. Initial stage: core formation
In figures 1 and 2, we show the vorticity distribution and the material curve C for the
moderate- to high-Re and the low-Re regimes, respectively.

We recall that in the limit Re → ∞, the initial datum (2.7) consists of the sinusoidal
vortex sheet originally introduced in Moore (1978), and that a pair of curvature
singularities, symmetric with respect to the origin, appears in the vortex sheet curve
(Cowley et al. 1999). Here the initial datum is regular, and no singularity, in the NS
solution, can develop; however, in the layer motion, one can observe physical events
associated with the blow-up in the vortex sheet solution. In fact, the vorticity within the
layer is advected toward the points where the Moore singularities would be in the case
Re → ∞. At these points, as a consequence of the incompressibility, the layer bulges
outwards. This leads to the formation of two symmetric cores of vorticity, with trailing
arms that wrap around them (the cores are visible, at different times, in figures 1(a,b)
and 2(a,b) for Re = 2 × 104 and Re = 103, respectively). We can interpret core formation
also in terms of the winding of C: for high enough Re, this curve, as already mentioned,
closely follows the dynamics predicted by the vortex sheet equation, thereby showing the
typical roll-up. The vorticity carried by the curve C, consequently, mixes and folds because
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Figure 1. The vorticity distribution at various times for Re = 2 × 104 (a–c) and the corresponding
palinstrophy distribution density (d–f ): (a) ω at t = 2.4; (b) ω at t = 2.875; (c) ω at t = 4.2; (d) |∇ω|2 at
t = 2.4; (e) |∇ω|2 at t = 2.875; ( f ) |∇ω|2 at t = 4.2. Only one main core is shown, the other is obtained by
symmetry with respect to the point (0,π). The black lines represent the material curve C computed by (2.10a,b).
At t = 2.4, when mixing effects are evident, the total palinstrophy begins to increase; see also figure 3. We
report the case Re = 104 in supplementary movie 1 available at https://doi.org/10.1017/jfm.2021.966.

different points of the curve get very close; see figure 1(a–c). The result is the formation
of a vortex core around which increasing portions of the curve wrap, leading to the growth
of the core. It is clear that this stage resembles and replicates the initial roll-up stage
encountered in many vortex-sheet flows and governed by the Kelvin–Helmholtz instability
which is independent from the Re number. The stage following this core formation shows
phenomena that depend upon two different Re regimes.

2.2.2. Moderate- to high-Re regime, 5 × 103 � Re � 1.5 × 105

In the moderate- to high-Re regime, we have detected intense mixing events. These
events are, in general, associated to phenomena producing filament-like structures and
enhancement of vorticity gradients with the growth of the palinstrophy P = ‖∇ω‖2, see
Ayala & Protas (2014) for further characterizations of the mixing events. For a 2D flow
with periodic boundary conditions one can write the following equations for the energy
E = ||u||2/2, the enstrophy Ω = ||ω||2 and the palinstrophy P :

dE
dt

= − 1
Re
Ω(t) (2.12)

dΩ
dt

= − 2
Re

P(t) (2.13)

dP
dt

= − 2
Re

‖∇θ‖2 − 2
∫

D
θ · ∇ θ · u dx, (2.14)
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Figure 2. The vorticity distribution at various times for Re = 103 (a–c) and the corresponding palinstrophy
density distribution (d–f ): (a) ω at t = 3.2; (b) ω at t = 4.6; (c) ω at t = 10; (d) |∇ω|2 at t = 3.2; (e) |∇ω|2 at
t = 4.6; ( f ) |∇ω|2 at t = 10. The black lines represent the material curve C computed by (2.10a,b). The roll-up
behaviour, typical of the vortex layer motion, is visible. The palinstrophy distribution attains its maxima on the
braids in the vicinity of the core.

where θ = ∇⊥ω. These equations imply that E and Ω are always decreasing in time and
bounded by their initial values E(0) and Ω(0), whereas P can increase, locally in time,
depending on the sign of R = −2

∫
D θ · ∇ θ · u dx and its balance with the P-dissipation

rate 2‖∇θ‖2/Re.
During the layer’s motion, we recognize the occurrence of intense mixing resulting from

the continuous stretching and folding of the vortical structure. Folding relates to the core’s
spiraling and, therefore, to the rapid movement of the braids’ particles toward the centre.
At the same time, one observes a strong stretching of the braids so that their local thickness
diminishes, creating the thin vortex filament structure shown in figures 1(a)–1(c). To see
how the stretching of the braids relates to the growth of the vorticity gradients (and,
therefore, of the palinstrophy), we write the equation for the evolution of θ = ∇⊥ω:

∂tθ + u · ∇θ − θ · ∇u = 1
Re
θ . (2.15)

Note how the mathematical structure of the above equation resembles the 3D vorticity
equation, with the presence of convective and stretching effects. Only the stretching term
θ · ∇u can contribute to the growth of θ along the particle path. One can interpret the
stretching term as the derivative of the velocity field along θ , that is (given that θ is
mostly tangential to the curve), along the direction tangential to the curve. Therefore, the
stretching term can lead to the growth of the vorticity gradients only when a significant
amount of stretching along the curve is present.
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Figure 3. The rescaled palinstrophy P̃(t) = P(t)Re−3/2. For Re � 5 × 103, the palinstrophy increases due to
the mixing events characterizing the flow evolution: during these events, an intense stretching of the central
curve is seen, see figure 12. For Re = 103, we do not observe this phenomenon.

The time evolution of the palinstrophy is shown in figure 3. In figures 1(d)–1( f ), we
show, for Re = 2 × 104 and at selected times, the corresponding palinstrophy density. At
t = 2.4, when P(t) begins to increase, the maximum palinstrophy density is reached on
the braid above the core of the vortex, see figure 1(d). Subsequently, the palinstrophy
density rapidly increases on the braid below the core, see figure 1(e, f ). At t ≈ 2.875,
the flow reaches its maximum palinstrophy density, which is of the order of 106; at this
time, P(t) also reaches a peak. Later, palinstrophy density weakens, and its maximum
value decreases monotonously. Similar behaviour is present in the case Re = 104, shown
in supplementary movie 1, where the growth of the palinstrophy density occurs in the time
range 2.75 � t � 3.25.

Another striking phenomenon one can observe is the formation of recirculation regions
that, when the spiral begins to turn, are strong enough to create reverse flows (on the upper
part of the layer to the left of the core, and on the lower part of the layer to the right of
the core), see figure 4(a). These reverse flows, which cause the flow above and below the
curve to have the same direction, weaken the jump across the curve, so that the vorticity
ωC develops two minima. In figures 4(a)–4(c), these minima are marked with red dots;
with (×) we have marked the stagnation point, where the flow reverses its direction to the
left of the core. The stagnation point to the right of the core, not visible in the figures, is
close to the upper-right corner of the figures. These stagnation points separate the arms of
the spiral from the inner part of the spiral: all the vorticity between these stagnation points
is convected toward the core of the spiral. Between the two minima, vorticity reaches, at
the centre of the spiral, a peak. This is visible in figure 5(b), where we plot, at different
times, the vorticity ωC in terms of the arc length s of C.

At t = 2.4, that is when palinstrophy begins to increase, the peak of vorticity is reached
at the centre of the core, delimited by the two local minima.

The above description of the layer motion in terms of palinstrophy growth replicates
similar analyses already present in literature for different vorticity configurations (Ayala
& Protas 2014; Kimura & Herring 2001). In the geophysical literature the study of the
palinstrophy has been shown to be a useful tool to understand vorticity evolution during
extreme events, see Schubert et al. (1999) and Abarca & Corbosiero (2005).
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Figure 4. The kinetic energy density (|u|2/2) for Re = 2 × 104 at various times: (a) at t = 2.4; (b) at
t = 2.875; (c) at t = 4.2. The arrows represent the velocity u, the red points are the points of minimal vorticity
on the central curve C, the red symbol × signals the point of minimal kinetic energy on the layer outside the
core.

2.2.3. Low-Re regime
In the low-Re regime, as opposed to the moderate- to high-Re regime, we have observed
neither mixing events nor palinstrophy growth. In figure 2(e, f ), we can see that the roll-up
process is also accompanied by the formation of local maxima in the palinstrophy density
in the braids in the vicinity of the cores. In this case, compared with the moderate- to
high-Re regime, the flow evolution is characterized simply by the large-scale motion of
the two symmetric cores. Moreover, due to high dissipative effects, the two cores are
very weak, and they are not strong enough to produce significant stretching of the braids.
Consequently, the palinstrophy density is always low (of the order of 102 and 103 in the
braid), whereas palinstrophy P(t) never increases, see figure 3. For low Re one never sees
the formation of the minimum of ωC on the left of the maximum (see figure 5a), an event
that, instead, characterizes the moderate- to high-Re regime. The final significant event is
the merging of the two cores, visible in figure 2(c).

From the analysis of the previous subsections 2.2.2 and 2.2.3, one can conclude that,
in both cases, the linear Kelvin–Helmholtz instability, which causes the roll-up of the
layer, rules the initial stages of the dynamics. The subsequent stages are determined
by the competition between viscous dissipation and stretching, see (2.14) and (2.15),
which is a fully nonlinear phenomenon. For lower Re, dissipation dominates, palinstrophy
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Figure 5. The vorticity ωC(s) on the material curve at different times for (a) Re = 103 and (b) Re = 2 × 104.
The origin of s is (0,π), and data are shown only for s � 0 (curve are extended by parity for s < 0). For
Re = 2 × 104, at t = 2.4, the transport of vorticity from the layer braid to the main core, leads to high values
of the vorticity between the two minima. This phenomenon is also observable for Re � 5 × 103, but not for
Re = 103.

decreases, and no small-scale phenomena appear. Increasing the Re, stretching dominates
over dissipation and causes the growth of palinstrophy and vorticity gradients: small scales
(that, in § 3, we shall interpret in terms of complex singularities) not damped by viscosity
appear, ultimately evolving in the concentration of vorticity.

The analysis of the Fourier energy spectra gives further evidence to these phenomena
and adds more meaning to them. We define the kinetic energy density K ≡ |u|2/2 and, in
figure 6(a,b), we show the 1D spectrum obtained from K through shell summation

AK =
∑

K�|(kx,ky)|<K+1

|K̂kx,ky |, K � 0, (2.16)

where K̂kx,ky are the Fourier modes of K. In figure 6(a), one can note the appearance
of a range of growing modes: these modes are intermediate between the range of small
wavenumbers (related to the large-scale feature of the fluid motion) and the range of
large wavenumbers (very small scales, within the dissipative range). The growth of the
intermediate modes coincides with the palinstrophy growth phase. Therefore, it is not
observable for Re < 5 × 103, that is, when dissipation dominates, it is barely visible for
Re = 5 × 103, and clearly noticeable for Re � 104.

The appearance of the above-described range of excited modes is related to the
appearance of the O(Re−1/2) structure, that is, the core that forms due to intense stretching
and fast rotation. In fact, the most excited wavenumber Ke in this range, measured at the
time of the palinstrophy peak, follows quite well the law Ke ≈ 0.42Re1/2, as shown in
figure 6(c). The excitation of the intermediate modes, therefore, is another sign of the
bifurcation occurring at approximately Re ≈ 5 × 103.

The phenomena we have encountered in this section, such as palinstrophy growth and
the excitation of the intermediate range of modes, are observed, during transition regimes,
in flows ruled by very different mechanisms, such as boundary layers, mixing layers and jet
flows. For instance, in boundary layer flows, the palinstrophy grows during the transition
to the small-scale regime, which governs the interactions between the boundary layer and
the inviscid outer flow for large enough Re numbers (Gargano, Sammartino & Sciacca
2011; Gargano et al. 2014). This transition, as shown in Nguyen Van Yen et al. (2018),
appears to be related to the instabilities forming in the reversed flow region near the
wall; the range of unstable wavenumbers scales as Re1/2. In mixing layers and jet flows
(Catrakis & Dimotakis 1996; Dimotakis 2000; Cook & Dimotakis 2001; Dimotakis 2005),
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Figure 6. (a) Energy density spectrum for Re = 2 × 104 at different times. A range of growing uncoupled
modes emerge during the palinstrophy growth phase. (b) Energy density spectrum for various Re at the time
of palinstrophy peak. In the inset the spectrum for Re = 103 for which no growing range is observed. (c) The
most excited mode Ke in the uncoupled range vs the Re1/2, and the best power-law fitting curve.

the transition to turbulence is accompanied by the formation of large vorticity gradients,
along with a typical energy spectrum behaviour: the mechanism of decoupling of the inner
scales (viscously damped) from the outer scales (characterizing the large-scale motion),
responsible for the transition to turbulence is the same we have encountered in analysing
the energy spectrum of the vortex layers.

No vorticity is generated during the vortex layers’ evolution, contrary to what is
quintessential of the boundary layer dynamics. Moreover, vortex layers do not evolve
in turbulent flows, as it happens for mixing layers. Nevertheless, we have seen that
all these configurations show striking similarities; among them, we also mention the
existence of a Reynolds number bifurcation value, in all cases laying between 5 ×
103 and 104. All this suggests the existence of a common mechanism of competition
between dissipation and vorticity gradients creation that, for high enough Re, triggers
the transition toward states characterized by small scales excitation, mixing and vorticity
concentration.
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Figure 7. The central curve C at t = 4 for various Re. Outside the spiral region, all the curves collapse onto a
single curve.

2.3. Vortex layer solution for Re → ∞: self-similar behaviour
In this section, we shall compare the behaviours of the material curve C = (x(θ), y(θ))
at different Re. In figure 7, the curve C is shown at time t = 4 for increasing Re, starting
from Re = 1000. It is evident that outside the core of the spiral the various curves collapse
onto a single curve, whereas inside the core the spirals are strongly dependent on the Re
number: the roll-up process is more intense for increasing Re, and, at a fixed time, the
spiral contains more windings as Re increases. On the other hand, one can see that once
rescaled with Re1/2, the curves inside the core coincide. In fact, we introduce the spatial
scaling

XRe(θ) = Re1/2 (x(θ)− xc) , YRe(θ) = Re1/2 ( y(θ)− yc) , (2.17a,b)

where the point (xc, yc) is the centre of the spiral, that is, the point of C with the highest
vorticity. In figures 8(a) and 8(b), the scaled curves are shown when two and three
windings have already formed, respectively. The winding of the spirals are defined as
follows: we assume that the first winding begins when, for the first time, the tangent at
(xc, yc) is vertical, whereas the (k + 1)th winding begins when the tangent at (xc, yc) forms
an angle of π/2 + kπ, k � 0, with the horizontal direction. For Re � 5 × 103, the rescaled
curves collapse onto a single spiral, especially in the innermost part of the core. The fact
that, instead, for Re = 103, the scaled curve has an entirely different form, shows once
again the separation between the two, low and moderate–high, Re regimes.

Figure 9(a,b) shows the same comparison of figure 8, at the time in which the derivatives
in the x and y direction, respectively, vanish, that is, when the first winding begins to form
and when the curve has done half a turn. In figure 9(c), we report the times at which
the above events occur, where it is evident that the spatial scaling (2.17a,b) should be
complemented with the temporal scaling

T = Re1/3(t − ts), (2.18)

where ts the singularity time for the BR equation.
The above scaling suggests that in the limit Re → ∞, the layer shrinks to a vortex-sheet

curve satisfying, at t → t+s , the conditions ∂θx, ∂θy → 0 in its centre. This would imply
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Figure 8. Self-similarity of the central curve inside the core. The spirals, rescaled as (2.17a,b), when two (a)
and three (b) windings are formed. The times are t ≈ 6.48, 3.74, 3.16, 2.74 for (a) and t ≈ 7.98, 4.25, 3.5, 2.98
for (b).
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Figure 9. (a) The rescaled curves at the beginning of the first winding when the x-derivative vanishes. (b) The
rescaled curve when the y-derivative vanishes. (c) Plots in log–log scale of the times t − ts at which the first
winding begins (vanishing of the x-derivative of C) and when C does half a turn (vanishing of the y-derivative
of C), as function of the Re. Here ts = 1.507 is the time in which BR solution develops singularity. Both curves
follow the time scaling t − ts ∼ Re−1/3.
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Figure 10. Singular-like behaviour of the central curve C for Re = 1.5 × 105. (a) The behaviour, at different
times, of the curvature κC of the central curve C for Re = 1.5 × 105. At t1w = 1.845, the time at which the first
winding begins, κC has dramatically increased its maximum magnitude in two different points, close to the
centre of the spiral. (b) The behaviour, at different times, of γ̂C for Re = 1.5 × 105. At t1w = 1.845, γ̂C has a
spike in the centre of C, and its maximum value significantly increases. (c) The curve C for Re = 1.5 × 105 at
different times. In the inset, the magnification. Black circles are points of maximum γ̂C ; empty black squares
are points of maximum curvature κC which tend to collapse on the centre of the curve.

the blow-up of the curvature κC(θ, t) = (xθyθθ − yθxθθ )/((x2
θ + y2

θ )
3/2) and of the true

vortex sheet strength
γ̂C(θ, t) ∝ |(xθ , yθ )|−1 = |∂θ s(θ)|−1, (2.19)

where γ̂C(θ, t) is classically interpreted as a measure of the circulation density.
In figure 10(a), we show the behaviour of κC for Re = 7.5 × 104 at different times; one

can observe how, at t = 1.9275, the curvature has dramatically increased its maximum
magnitude at two different points. These points are close to the centre of the spiral, and
visible as empty black squares in figure 10(c). Figure 11(a), where we report, for different
Re, the time evolution of maxθ |κC |, gives more support to the diverging behaviour at ts for
Re → ∞.

For a vortex-sheet curve, the true vortex strength γ̂C is a well-defined quantity. Instead,
for a viscous layer, at each point s of C, we measure the vortex layer strength γ̂C as the
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Figure 11. The time behaviour of the maxima of the curvature κC and vortex strength γ̂C . (a) The maximum
value of the curvature κC for various Re up to the time in which the first winding forms in the layer. For
increasing Re this value rapidly increases after ts = 1.507, with ts being the singularity time for the vortex
sheet solution of the BR equation. (b) The maximum value of γ̂C for various Re, up to the time in which the
first derivative of the x-component vanishes. The maximum value is always reached in the centre of the curve,
that is, the point having the highest vorticity ωC . The black dotted horizontal line is the maximum value of the
true vortex strength γ̂BR computed from the BR-vortex sheet motion at the singularity time ts.

total vorticity integrated along the normal to the curve at that point. The roll-up of the
layer limits the application of this procedure: we have found that we can obtain a reliable
measure of γ̂C only up to the formation of the first winding. In figure 10(c), we show the
behaviour of γ̂C , for Re = 7.5 × 104, at t = 1.507, 1.75, 1.9275. In figure 11(b) we report,
at different Re, the maximum values attained by γ̂C , up to the time in which the first
winding forms: it is evident that this value rapidly increases both with time and for larger
Re, although the predicted diverging behaviour for t → t+s is less evident if compared
with the eruptive behaviour of the maximum curvature maxθκC . The point of C having the
highest value of γ̂C is the centre of the spiral, and visible as a black circle in figure 10(c).

We also note that the net circulation of the core of the layer decreases for increasing
Re. To measure the circulation of the core, we have adopted a procedure similar to that
used in Baker & Shelley (1990). In particular, we consider two material curves Cup, Cdown
consisting on particles initially placed at a distance dRe−1/2 above and below the curve C.
The real positive parameter d sets how distant Cup and Cdown are from C. The core of the
layer at each time is then the region bounded by Cup, Cdown on the one hand, and by the
straight lines starting from the point of maximum curvature in Cup (or Cdown) and reaching
the closest point in Cdown (or Cup) on the other. One can, therefore, compute the circulation
of the core as the integral of the vorticity over this area. We have checked at several times,
and for different values of d, that the circulation decreases for increasing Re, meaning that
most of the vorticity is concentrated outside the core of the layer.

If the depicted trend continues in the limit Re → ∞, the vortex layer tends to a
vortex sheet curve with diverging curvature and true vortex strength, and zero circulation
increment in its centre. This possible blow up implies also ∂θ s(θ) = 0, so that the flow
particles coalesce in the centre of C where the true vortex strength becomes infinite.
In that case, γ̂C is the true vortex strength defined on a vortex sheet curve, and goes
like |∂θ s(θ)|−1. Hence, the collision condition ∂θ s(θ) = 0 is satisfied only when the
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true vortex strength diverges. This structure is also consistent with the results shown in
Baker & Shelley (1990), where the authors found the same asymptotic behaviour in the
zero-thickness limit of an inviscid vortex layer of uniform vorticity. A similar conclusion
has been proposed also in DeVoria & Mohseni (2018) where the authors showed that the
true vortex strength of an inviscid vortex sheet rapidly increases just after the singularity
time of the BR solution.

The diverging behaviour of κC and γ̂C will receive further evidence from the singularity
analysis we shall present in § 3.2.

3. Singularity analysis for the vortex layer

In this section, we describe how the dynamics of the vortex layer generates complex
singularities in the solution of the NS equations. Tracking of these singularities in the
complex plane could shed light on some aspects related to the layer dynamics, in the
spirit of similar other analysis performed in fluid dynamics (see Caflisch et al. 2015).
Here we briefly recall that if an analytic function u(z) has a complex singularity at z∗ and
u(z) ≈ (z − z∗)μ as z → z∗, then μ is the character of the singularity. The estimate of μ
predicts the singular behaviour of u if the singularity z∗ becomes real.

For the viscous layer the complex singularities never become real (smooth solutions of
the 2D NS equations remain smooth, so that loss of regularity is impossible); however,
we shall observe that, during the flow evolution, the singularities can get very close to the
real axis, and that the minimal distance becomes zero asymptotically when Re → ∞. We
shall also see how the singularities behave (in terms of character) differently in the two Re
regimes that we have identified in the previous section, low (Re � 103) and moderate–high
(5 × 103 × Re � 1.5 × 105).

We shall base our investigation mainly on the analysis of ωC , the vorticity on the curve
C; see § 3.1. In § 3.2, we shall also briefly consider the curvature κC and the vortex strength
γ̂C .

To perform the singularity analysis, we shall use the Borel–Polya–van der Hoeven
(BPH) method, exposed in more detail in Appendix A; initially proposed in Pauls &
Frisch (2007), it allows us to retrieve information on the positions and the characters of
the algebraic singularities of an analytic function.

All the quantities we shall analyse in the following will be expressed as Fourier series
in terms of the Lagrangian variable θ ∈ [0, 2π], rather than the arc length s(θ).

3.1. Singularity tracking for the vorticity ωC
We have already seen how the vorticity on the curve, ωC , develops two minima (in the
moderate- to high-Re regime, whereas for low Re, there is only one minimum), which
separate the inner from the outer core. These minima correspond to zones where the
formation of sharp vorticity gradients occurs, with associated intense stretching of the
curve. See the discussion after (2.15), where we explained how stretching and growth of
vorticity gradients are closely related.

In figure 12(a), we show, for Re = 2 × 104, ωC both as a function of θ and the arc length
s(θ): the presence of the minima and sharp gradients is evident. The stretching of the curve
is apparent in figure 12(b), where one can see that the function s(θ) increases (strongly,
after time t = 2) in correspondence with the minima of ωC . It is also remarkable that,
between the two stretching regions, there is a zone where s(θ) is almost flat, which implies
that fluid particles that initially were well separated are almost coalescing.
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Figure 12. (a) The vorticity ωC along the material curve C is shown as a function of both θ and s(θ) for
Re = 2 × 104 at t = 3. In s(θ), high gradients form corresponding to the minima of ωC , where the stretching
of C is present. (b) Arc length of the curve C as a function of the parameter θ for Re = 2 × 104 from t = 2 to
t = 3 (time steps of 0.2). The curve C is elongated close to the points where vorticity is transported from the
layer braid to the core of the layer (see also figure 5b). In the centre of the core, where s(θ) is almost flat, a
strong compression (coalescence of fluid particles) along the curve is present.

In this section, we show how the vorticity minima are related to the presence of
complex singularities in ωC , and how one can characterize the two flow regimes (low
and moderate–high Re) in terms of the behaviour of the trajectory of the complex
singularities.

We were able to detect and track in time, for all the Re considered, two main singularities
whose complex locations are denoted with θωC

1 = θ1 + iθim1 and θωC
2 = θ2 + iθim2 (from

the symmetry of the problem there are also singularities at 2π − θ
ωC
1 and 2π − θ

ωC
2 ).

Hereafter, we label these singularities (and all the singularities we introduce in the sequel)
with their locations. These two singularities are indeed related to the minima in ωC , as
they have real components that correspond to the local minima visible, for instance, in
figure 12(a) for Re = 2 × 104.

To highlight the different behaviour of θωC
1 and θωC

2 , we show in figures 13 the path
of the singularities in the complex plane (s(θ), θim). All the tracking start at t = 2, up to
t = 5.9 for Re = 103, up to t = 3.25 for Re = 104, and up to t = 2.85 for Re = 2 × 104:
these final times are the time of formation of the third winding for Re = 103 and the
times in which palinstrophy has its local maximum (Re = 104, 2 × 104), respectively. We
can observe different behaviours depending on the Re number, mainly in the position of
θ
ωC
1 . In fact, for Re = 104, 2 × 104 (and also for Re = 5 × 103, not shown here), after an

initial period in which the singularity moves toward the real plane having almost fixed
real part s(Re{θωC

1 }), during the mixing events θωC
1 begins to rapidly shift on the right

along s and to move toward the second singularity θωC
2 . See also supplementary movie

2 where, for the case Re = 104, we report the time evolution of the singularities in the
complex plane and the corresponding vorticity evolution: red and black dots in the central
curve are the points corresponding to the real parts of the singularities. When θωC

1 is
sufficiently close to the real domain, the local minimum visible, for instance, in figure 5(b)
forms.
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s (θ)

0 0.5 1.0 1.5

θim

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Re = 103

Re = 104

Re = 2 × 104

t = 5.9

t = 2

t = 2.85

t = 3.25

t = 2

t = 2

s (θ)

1 2 3 4
–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t = 2

t = 2

t = 3.25

t = 5.9

t = 2.85

(a) (b)

Figure 13. Tracking the singularities θωC
1 (a) and θωC

2 (b) for various Re in the complex plane (s(θ), θim) (see
supplementary movie 2 for the case Re = 104). The blue dot is for time t = 2.4, red dot is for time t = 2.7,
green dot is t = 2.85. All the tracking starts from t = 2, up to t = 5.9 for Re = 103, to t = 3.25 for Re = 104,
and up to t = 2.85 for Re = 2 × 104. These final times are, respectively, the time of formation of the third
winding for Re = 103, and the times at which palinstrophy has its local maximum for Re = 104, 2 × 104.

On the other hand, in the case Re = 103, θωC
1 always moves leftward along s. At t ≈ 5.9,

that is when the third winding forms in C, θωC
1 collapses to s(0) = 0 with the symmetric

singularity 2π − θ
ωC
1 . As already stated in the previous section, no mixing events are

observed for Re = 103, no new local minimum for ωC on the left of the maximum and,
from the point of view of the complex singularity θωC

1 always moves toward the origin
s = 0 and never moves toward the second singularity θωC

2 .
In the qualitative behaviour of θωC

2 , we observe no difference related to Re: in all Re
regimes, initially, θωC

2 moves toward the real domain slightly shifting leftward along s,
then goes rightward, still approaching the real axis, see figure 13(b).

Therefore, θωC
1 plays the key role in the formation of the intense mixing and the

concentration phenomena occurring for higher Re: θωC
1 is responsible for the extreme

stretching of the curve and, ultimately, for the palinstrophy growth; moreover, the collision
of θωC

1 with the other singularity θωC
2 causes, in the limit Re → ∞, the blow-up of γ̂C , a

phenomenon which is absent in the BR dynamics.
Using the BPH method, we have determined the algebraic characters of the singularities.

Usually, it is more difficult to determine the algebraic character of a singularity rather than
its position (see, e.g., Caflisch et al. 2015). However, after time t � 1.3, the characters
μθωC1

and μθωC2
of θωC

1 and θωC
2 have been reliably determined. For all Re > 103, μθωC1

and μθωC1
are approximately equal to 1/2, whereas, for Re = 103, they have higher values,

close to 0.9, see table 1. The values μθωC1
and μθωC2

reveal that θωC
1 and θωC

2 are two branch
points, consistent with the rapid variation of the first derivative of ωC close to its two local
minima, see figure 12(b).
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Re μ
θ
ωC
1

μ
θ
ωC
2

μ
θ

XC
1

μ
θ

XC
2

μ
θ

YC
1

μ
θ

YC
2

μ
θ
κC
1

μ
θ
κC
2

μθγ̂C

1.5 × 105 0.51 0.51 1.69 1.69 1.68 1.69 −0.34 −0.37 −0.34
7.5 × 104 0.51 0.51 1.69 1.72 1.71 1.7 −0.35 −0.38 −0.34
2 × 104 0.58 0.56 1.78 1.75 1.81 1.79 −0.29 −0.32 −0.33
104 0.65 0.57 1.78 1.89 1.89 1.9 −0.24 −0.31 −0.32
103 1.03 0.9 1.9 1.92 1.95 1.94 −0.19 −0.16 0.1

Table 1. Characters of the singularities at ts = 1.507. For each Re we show the characters of the singularities:
the vorticity ωC , θωC

1,2 ; (XC,YC) in (4.7), θXC
1,2 and θYC

1,2; the curvature κC of C, θκC1,2; and the vortex strength γ̂C ,
θ γ̂C . Error bars are, in general, less than 15 % of the estimated parameters, except for the case Re = 103, for
which μθγ̂C , μθκC1,2

have errors are up to the order of 80 % of the estimated parameters.

3.2. Singularity tracking for κC and γ̂C
In § 2, we have seen that the final structure of the layer in the limit Re → ∞ could be
represented by a curve having, at ts = 1.507, the singularity time of the BR solution,
infinite curvature and infinite true vortex strength. We show that the possible diverging
nature of both κC and γ̂C is confirmed by the presence of complex singularities having
negative character.

The explicit expression of the curvature of the material curve C is κC(θ, t) = (xθyθθ −
yθxθθ )/((x2

θ + y2
θ )

3/2). For all the Re numbers considered, we have detected the presence
of two complex singularities, θκC1 and θκC2 . In figure 14(a), we represent the singularities
in the complex plane (θ, θim), for different Re, at ts = 1.507 and at t1w the time when the
first winding forms in C.

The singularities θκC1 and θκC2 have different positions than those of ωC , although some
similarities are evident. They are closer to the real domain for increasing Re, and they
tend to coalesce. In figure 14(c) we show a consistent power-law scaling θim ∝ Rec, with
c = −0.17 and −0.16 for the first and second singularities, respectively. This suggests
that the singularities approach the real axis as Re → ∞. (We have obtained a slightly
more consistent fitting with a curve of the kind ∝ logd(Re)Rec, although d is a very
small parameter of order 10−3). One can see the effects owing to the presence of these
singularities in figure 10(b), where the two maximum curvature points (positive and
negative) are located close to s(Re{θκC1 }) ≈ 1.048 and s(Re{θκC2 }) ≈ 1.065. Concerning
the evaluation of the algebraic characters μθκC1

and μθκC2
, we have found that both

singularities have negative character at ts = 1.507 (see table 1) and t1w = 1.9275. The
above analysis confirms that the limiting Re → ∞ behaviour of C, as far as the curvature
is concerned, is entirely consistent with the behaviour observed in the BR solution.
We note that the BPH method can find other complex singularities that are due to
subsequent maximum points of curvature forming during the roll-up process. However,
these secondary singularities are, in general, more distant from the real axis, and do not
play a significant role in our analysis.

The singularity analysis of the vortex strength γ̂C reveals the presence of one main
singularity, denoted by θ γ̂C , and reported in figure 14(b), for different Re, and at times
ts and t1w. The presence of θ γ̂C can be related to the peak in γ̂C visible, for instance, in
figure 10(b) in the centre of the spiral. At ts = 1.507, the singularity is quite far from the
real axis (θ γ̂C ≈ 1.222 + i0.41), and the peak has a moderate magnitude. At t1w = 1.937,
the singularity is closer to the real axis (θ γ̂C ≈ 1.233 + i0.104), and the peak in γ̂C is more
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Figure 14. (a) Tracking in the complex plane (θ, θim) of the two main singularities θκC1,2 of the curvature
κC of C. Singularities are tracked at ts = 1.507 and at the time t1w in which the first winding forms (times
reported in the text and in figure 10(a) for Re = 5 × 103, 104, 2 × 104, 7.5 × 104 and 1.5 × 105). The size of
the markers decreases for larger Re. The value θ = 1.287, where the BR singularity forms, is also shown
as a straight line. (b) Tracking in the complex plane (θ, θim) of the main singularity θ γ̂C of the vortex
strength γ̂C . The singularity is tracked at ts = 1.507 and at the time t1w in which the first winding forms
for Re = 5 × 103, 104, 2 × 104, 7.5 × 104 and 1.5 × 105. The size of the markers decreases for larger Re. (c,d)
Imaginary parts of the singularities shown in (a,b) versus the Re number and best power-law fitting (log–log
scale).

pronounced in s(1.233) ≈ 1.12; see figure 10(b). Similarly to the other singularities we
have analysed, θ γ̂C gets closer to the real axis for increasing Re. The distance from the
real axis of the singularities versus the Re is shown in figure 14(d) along with the best
power-law fitting curve of the kind θim ∝ Rec, with c ≈ −0.15. The character μθγ̂C of θ γ̂C
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is negative (of order ≈ −0.4) for the times we have considered, and for the moderate- to
high-Re regime; see table 1 at ts. Given that our simulation indicate that Im{θ γ̂C } → 0
when Re → ∞, the above singularity analysis gives further evidence for the diverging
behaviour of γ̂C for t → t+s , as conjectured in § 2.3.

As reported in Appendix A, one recovers the characteristics of the singularities
discussed previously through fitting procedures of the solution spectra. These procedures,
unavoidably, are prone to errors. Concerning the character of the singularities, which is the
most delicate quantity to be estimated, for R � 5 × 103, the amplitude of the confidence
interval is 15 % for 95 % confidence level. Moreover, the goodness of the fitting model is
attested by values of the R2 coefficient very close to 1, typically between 0.98 and 0.99.
For Re = 103, we have obtained larger errors, especially for the characters: this is likely
due to the large distance of the singularities from the real domain, making the noise-free
part of the solution spectrum smaller as compared with the other cases, and governed
mainly by the exponential decay, see (A1). For instance, for Re = 103, we have obtained
θ γ̂C ≈ 0.1 ± 0.09; whereas, for Re = 104, θ γ̂C ≈ −0.34 ± 0.025. Moreover, the relative
error decreases for increasing Re. Therefore, these errors do not affect the main conclusion
of the present section, that is, γ̂C → ∞ for Re → ∞.

4. Vortex layers versus vortex sheet motion

In this section, we describe the vortex sheet motion governed by the BR equation, we
perform the singularity analysis of this solution and compare it with the results obtained
for the vortex layer. To continue the BR motion after the singularity time, we use the
regularization of the BR kernel resulting in the vortex-blob method.

4.1. The BR model
The initial vortex sheet corresponding to the vortex layer configuration that we have
studied in previous sections consists of a vorticity distribution concentrated, as a delta
function, on the curve

xBR(θ) = (θ, Ly sin(2πθ/Lx)/4π), θ ∈ [−Lx/2, Lx/2], (4.1)

with intensity

γ (θ) = 1. (4.2)

The vorticity distribution has to be considered in the box D = [−Lx/2, Lx/2] ×
[−Ly/2, Ly/2] and extended by periodicity both in the x and in the y directions. Being
γ (θ) = 1, the parameter θ identifies with the circulation Γ = ∫ θ

0 γ (θ̃) dθ̃ . Therefore, to
compute the dynamics of the sheet, we use θ as a Lagrangian parameter, whereas the true
vortex strength along the sheet is given by γ̂ (θ, t) = γ (θ)|∂θxBR|−1. The choice of the
Lagrangian parameter θ allows the evolution of the curve to be written without involving
the equation for the true vortex strength γ̂ (θ, t) (see the interesting discussion in Lopes
Filho, Nussenzveig Lopes & Shochet (2007)). The BR equation hence reads as

∂xBR(θ, t)
∂t

=
∫ Lx/2

−Lx/2
KLx,Ly(xBR(θ, t)− xBR(θ̃, t))) dθ̃ , (4.3)
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where the components of the singular kernel are

KLx,Ly(x) =
(

y
LxLy

− 1
2Lx

h=∞∑
h=−∞

sinh(2π( y − hLy)/Lx)

cosh(2π( y − hLy)/Lx)− cos(2πx/Lx)
,

1
2Lx

h=∞∑
h=−∞

sin(2πx/Lx)

cosh(2π( y − hLy)/Lx)− cos(2πx/Lx)

)
. (4.4)

One can obtain the above expression taking the orthogonal gradient of the fundamental
solution of the 2D periodic Poisson equation, derived in Bailey et al. (2013).

To continue the solution after the singularity time, one can regularize the kernel with
the classical vortex-blob method: see Krasny (1986a), Cowley et al. (1999) and Baker &
Pham (2006). We have accomplished this by using the regularization reported in Baker &
Pham (2006); see, in particular, their (2.8a) and (2.8b). In our case the regularized δ–BR
equation reads as

∂xδBR(θ, t)
∂t

=
∫ Lx/2

−Lx/2
K δ

Lx,Ly
(xδBR(θ, t)− xδBR(θ̃, t))) dθ̃ , (4.5)

where the regularized kernel is

K δ
Lx,Ly

(x)

=
⎛⎝ y

LxLy
− 1

2Lx

h=∞∑
h=−∞

y − hLy√
( y − hLy)2 + δ2

sinh(2π

√
( y − hLy)2 + δ2/Lx)

cosh(2π

√
( y − hLy)2 + δ2/Lx)− cos(2πx/Lx)

,

1
2Lx

h=∞∑
h=−∞

sin(2πx/Lx)

cosh(2π

√
( y − hLy)2 + δ2/Lx)− cos(2πx/Lx)

⎞⎠ , (4.6)

and δ > 0 is the regularizing parameter. To solve the BR equation, we have used a
fourth-order Runge–Kutta scheme; in (4.3) and (4.5), we have performed the integration
by using the alternating points quadrature formula (see Krasny 1986a). Close to the
singularity time, we had to use 65 536 discretization points. To avoid the growth of the
round-off disturbances due to the Kelvin–Helmholtz instability, we apply the Fourier
filtering technique (Krasny 1986b; Ely & Baker 1993; Baker & Xie 2011): performing
computations with 32-digit precision, at each time step, we set to zero the Fourier modes
with amplitude smaller than the threshold value 10−29. In the regularized case, filtering
was necessary only for the case δ = 10−3; a larger regularization is able to damp round-off.
Finally, we need to evaluate only a finite number of terms in the infinite sums of (4.4) and
(4.6), as they rapidly decay to zero with h; the choice h = 50 was enough to ensure an
error below the machine precision. In all the numerical simulations, we set Lx = Ly = 2π.

4.1.1. Comparison between the BR vortex sheet and the NS vortex layer singularities
In this section, we compare the outcomes of the singularity analysis for C (the centre of the
layer), presented in § 3.2, with those coming from the BR solution’s singularity analysis.
In particular, we compare the singularities of the components of the BR solution and C, of
the curvatures κBR and κC , and of the true vortex strengths γ̂BR and γ̂C . This comparison
can be made only up to the time ts when the BR solution becomes singular.
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Figure 15. Trajectories of the two complex singularities θXC
1 and θXC

2 of the component XC of the material
curve C. The tracking goes from t = 0.8 up to ts = 1.507. The singularities of YC have similar trajectories. The
dashed line is the tracking of the BR singularity. At ts, the BR singularity, with character 3/2, hits the real axis.
At ts, the characters of θXC

1 and θXC
2 are compatible with the character of the BR solution; see table 1.

In Caflisch et al. (2017), the singularity analysis of (XBR(θ, t), YBR(θ, t)), revealed that
a singularity forms in a finite time. In particular, the two functions XBR(θ, t), YBR(θ, t)
become singular at ts ≈ 1.507 and θ∗ ≈ 1.287. The singularities of XBR and
YBR always have the same positions in the complex plane, although they have
different characterizations, μXBR ≈ 1.61 and μYBR ≈ 1.72, respectively. Therefore, both
components experience a blow-up in their second derivative, and the X-component is
more singular than the Y-component. In figure 15, we show the trajectories of these
singularities in the complexified θ -plane. At t = ts, the trajectory terminates, hitting the
real axis and producing the blow-up of the solution. At t = ts, also the curvature κBR
and the true vortex strength γ̂BR become singular, with characterizations μκBR ≈ −0.44
and μγ̂BR ≈ 0.55, respectively. Therefore, at θ = θ∗, the curvature diverges, whereas γ̂BR
has a cusp behaviour: at t = ts, γ̂BR is singular but finite. The above results are in full
agreement with those predicted in Moore (1979), and later observed by other authors
investigating numerically the singularities generated by vortex-sheet motion with several
initial configurations (see, e.g. Krasny 1986b; Shelley 1992).

In figure 16, we show the vortex sheet curve and its curvature, and compare them with
the C curve (the centre of the vortex layer) and its curvature. The time is t = 1.505, just
before the singularity formation. The C curve approximates the vortex sheet curve well;
the effect of the regularization is evident in the smooth behaviour of the curvature of C.

Given the parametrization C = (x(θ, t), y(θ, t)), we apply the BPH method to find the
singularities of the components

(XC(θ, t), YC(θ, t)) = (x(θ, t)− θ, y(θ, t)), θ ∈ [−π,π]. (4.7)

We label these singularities θXC
1 , θ

XC
2 and θYC

1 , θ
YC
2 . As one could expect, the positions of

the singularities of XC and YC in the complex plane coincide with those of ωC and are
shown, for instance, in figures 13. In figure 15 we show the paths in the complex plane of
θ

XC
1 and θXC

2 (θYC
1 , θ

YC
2 have the same positions) for various Re. The paths are represented

up to the singularity time of the BR solution ts = 1.507. As Re increases, the singularities
are closer to the real axis, and the distance between θXC

1 and θXC
2 diminishes; moreover,

they seem to converge toward the BR singularity. We have found that, at time ts = 1.507,
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Figure 16. (a) The vortex sheet curve obtained solving the BR equation, at t = 1.505, and the curve C, for
various Re, at the same time. (b) The curvatures κBR and κC , at t = 1.505.

both singularities have characters μ
θ

XC
1,2

and μ
θ

YC
1,2

in the range (1.0–1.5), compatible with

the predicted characterization of the BR singularity (see table 1) and with the blow-up in
their second derivatives. At subsequent times, for instance at t1w, these characters remain
in the same range.

A similar behaviour is observed for the singularities of the curvature: the curvature of
C admits two singularities (see § 3.2) that, in the limit Re → ∞, seem to converge toward
the BR curvature singularity. The algebraic characters of these singularities appear to be
the same; see the last three columns of table 1.

The crucial difference between the vortex sheet and C lies in the singularity of the true
vortex strengths γ̂BR and γ̂C (the differences between the characters of the singularities are
reported in table 3). In the BR case, at ts, a cusp forms in γ̂BR and ∂θ s(θ) is small but
not vanishing. In contrast, in the analysis we have performed in § 3.2, we found that γ̂C
has a singularity with negative algebraic character μθγ̂C (of order ≈ −1/3, see table 1).
This means that, in the limit Re → ∞ and at ts, γ̂C blows up. One of the consequences is
that ∂θ s(θ) = 0 and, therefore, an infinite particle compression occurs at the centre of the
spiral, with the two vorticity minima colliding. The difference between the behaviour of
the BR solution at t = ts, and the infinite Reynolds number of the vortex layer solution,
suggests that BR, close to the singularity, is not the zero-viscosity limit of the NS vortex
layer solutions.

4.2. Vortex blob regularization
In this section, we shall compare the solutions of the δ–BR equation with the NS vortex
layer solution.

In figure 17(a), we show the comparison between the curves C, the centre of the NS layer,
and xδBR, the solution of the δ–BR equation; the solutions are computed taking Re = 104

and δ = 10−2, respectively. The two curves overlap in the outer part of the spiral while one
can appreciate significant qualitative differences in the innermost part of the spiral, as the
curve xδBR develops more turns.
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Figure 17. (a) Plot of C, the NS (with Re = 104) layer’s central curve, and the vortex sheet obtained from the
δ-vortex blob regularization (with δ = 10−2). The times are t = 2, t = 3.0 and t = 3.6 (upper plots): the outer
part of the spirals seems to be independent of the regularization used, whereas the innermost part depends on
it. In the inset, the magnification of the spirals at t = 3.6. (b) We show the spirals after the scaling (4.8) for
δ = 10−1, 10−2, 10−3. (c)We compare the spiral given by the δ–BR solution (scaled by (4.8)) with the material
curve C (in the NS and Euler cases). The regularizing parameters are δ = 10−3 for the δ model, Re = 2 × 104

for the viscous layer and δ = 0.0141 for the inviscid layer.

We have seen that the inner part of the spiral formed by C obeys a self-similarity
law given by (2.17a,b). It is also known that a similar scaling exists for the vortex blob
regularization; Baker & Pham (2006) and Sohn (2014) showed that the inner core region
of the spirals is invariant under the transformation

Xδ = (
xδBR − (xc, yc)

)
/δ. (4.8)

The self-similarity law is illustrated in figure 17(b). Formally (4.8) is the same as the
Re−1/2-scaling (2.17a,b) for the curve C.

In figure 17(c), we compare the rescaled C and the rescaled δ–BR curves when they
have completed the same number of turns. The figure shows an almost perfect matching
in the very vicinity of the centre. This comparison shows that both the regularizations
predict a qualitatively similar structure represented by the spiral. However, the differences
obtained from the scaled curves highlight some quantitative differences, which does not
rule out the possibility that, in the limits δ → 0,Re → ∞, the two regularizations provide
different weak solutions of the Euler equations. We have analysed the outcomes of the
singularity analysis for the components

(XδBR(θ, t), YδBR(θ, t)) = (xδBR(θ, t)− θ, yδBR(θ, t)), θ ∈ [−π,π]. (4.9)
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Figure 18. Tracking the complex singularities θ
XδBR
1 and θ

XδBR
2 of the component XδBR of the regularized δ–BR

solution in the complex plane from t = 0.8 up to ts = 1.507 . The singularities θ
YδBR
1 and θ

YδBR
2 of the YδBR

components have the same tracking. The dashed line is the tracking of the BR singularity. For δ = 10−3 the

two singularities are very close to each other, θ
XδBR
1 ≈ θ

XδBR
2 , so only one singularity is tracked. At t = ts the

singularities have characters compatible with the singularity character of the BR solution (see table 2).

δ μ
θ

XδBR
1

μ
θ

XδBR
2

μ
θ

YδBR
1

μ
θ

YδBR
2

μ
θ
κδ
1

μ
θ
κδ
2

μ
θγ̂δ

10−3 1.56 1.63 1.59 1.65 −0.33 −0.49 −0.43
5 × 10−3 1.55 1.68 1.74 1.706 −0.32 −0.48 −0.43
10−2 1.69 1.72 1.79 1.71 −0.33 −0.45 −0.41
10−1 1.78 1.91 1.89 1.89 −0.19 −0.25 −0.29

Table 2. Characters of the singularities of the δ–BR solution at ts = 1.507. For each δ we show the characters
of the singularities: of (XδBR,YδBR) in (4.9), μ

θ
XδBR
1,2

and μ
θ

YδBR
1,2

; of the curvature κδ , μθκδ1,2
and μ

θγ̂δ
; of the true

vortex strength γ̂δ , θ γ̂δ . Error bars are in general less than 10 % of the estimated values.

and compared with the C case. Similarly to C, both components have two main singularities

θ
XδBR
1,2 and θ

YδBR
1,2 . Figure 18 reports the paths of θ

XδBR
1,2 in the complex plane. For δ = 10−3,

the singularities are very close to each other, and the BPH method does not discern the
positions of the two singularities. Compared with the tracking of the singularities of C in

figure 15, the θ
XδBR
1,2 are, in general closer to the singularity of the BR solution and closer

to the real domain: for instance, one can check this from the tracking in the case when
δ = Re−1/2 = 10−2. The characterization of the vorticity intensity singularity θ γ̂δ is the
most relevant quantity. From table 2 one can see that the algebraic character of θ γ̂δ is
μ
θγ̂δ

≈ −0.43, which makes the vorticity concentration for the BR-δ stronger than for the
NS-layer case, see table 1. The error bound in the fitting procedure is even smaller than in
the viscous case, being, in general, of magnitude less than 10 % of the estimated values.

In table 3 we report the differences between the characters of the singularities developed
by the BR solution and the regularized versions. For example,

μ
κδ
θ1

= μ
κδ
θ1

− μ
κBR
θ . (4.10)
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Vortex-blob-δ μθ
κδ
1

μθ
κδ
2

μθγ̂δ NS-Re μθ
κC
1

μθ
κC
2

μθγ̂C Euler-δ μθ
κEU
1

μθ
κEU
2

μθγ̂EU

10−3 0.11 −0.04 −0.98 1.5 × 105 0.1 0.07 −0.89 0.0141 0.1 −0.02 −0.94
5 × 10−3 0.12 −0.03 −0.98 7.5 × 104 0.09 0.06 −0.89 0.0158 0.11 −0.02 −0.94
10−2 0.11 −0.01 −0.97 2 × 104 0.15 0.12 −0.88 0.0316 0.11 −0.03 −0.93
10−1 0.22 0.14 −0.84 104 0.2 0.13 −0.87 0.1 0.15 0.01 −0.91

Table 3. Differences between the character of the singularities appearing in the regularized dynamics
(vortex-blob regularization, finite-thickness NS regularization and finite-thickness Euler regularization) and
in the BR dynamics. In all cases we compare, at the singularity time ts = 1.507, curvature and vortex strength
singularities. The differences are significant in the characters of vortex strength: for all the regularizations the
vortex strength has a divergent behaviour, whereas for BR it is regular.

The table shows, first, that the regularized versions display concentration phenomena in the
form of the divergent behaviour of the vorticity intensity and, second, that the δ–BR model
presents stronger singularities than those coming from other regularizations. This could be
a strong indication that the different regularizations represent different weak solutions of
the Euler equations.

4.3. Comparison with the inviscid vortex layer
Our configuration introduces two regularizing agents: layer thickness and viscosity. In this
paper, we have linked these two factors choosing the thickness to be O(Re−1/2); in the
introduction, we have given the mathematical and physical motivations for this choice,
which we believe to be natural. Here we want to briefly discuss the limiting behaviour of
the vortex layer sending to zero separately the thickness (that in the present subsection
we shall denote by δ, δ being the standard deviation of the Gaussian) and the viscosity.
Such analysis will also highlight the different roles played by the two regularizations.
First, we notice that keeping the thickness fixed and sending the viscosity to zero does
not lead to any new interesting effect: the datum is regular, and a classical result ensures,
in the zero-viscosity limit, the convergence to the Euler solution, which, given that we
are in two dimensions, remains smooth for all times. More interesting is the opposite
case when, keeping the viscosity fixed, one considers the zero-thickness limit. We have
performed several numerical explorations keeping the viscosity zero. This situation is quite
challenging from the computational point of view also; we have seen that the absence of
the regularizing effect of the viscosity makes it difficult to compute the evolution of layers
whose initial thickness δ is smaller than 0.0141, which corresponds in the viscous case
to a Re = 5000 (in the viscous case, we have been able to compute up to Re = 1.5 × 105

flows).
The first evident effect of the lack of dissipation is the considerable acceleration of

the roll-up process compared with the viscous counterpart. This effect is observable in
figure 19(a), where we show the central curves for the viscous and inviscid cases at
two different times starting from the same initial thickness δ = 0.0141 (corresponding to
Re = 5 × 103). The second effect is the monotonous growth of palinstrophy as opposed
to the behaviour observed in the viscous case, see figure 3. One can understand this
as an outcome of the lack of dissipation in the palinstrophy balance equation (2.14);
the absence of the dissipative term leaves the stretching term to dominate, causing the
palinstrophy to grow independently from layer thicknesses. Therefore, the dichotomy we
have observed in the viscous case (low Re, where the dominance of the viscous effects
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Figure 19. (a) The central material curves for the inviscid and viscous cases computed at the same times and
for the same initial thickness . The lack of dissipation in the inviscid case makes the rolling of the inviscid curve
more intense. (b) Vorticity distribution at t = 2.85 for the inviscid Euler case with initial thickness δ = 0.0141.
The black curve is the central curve xδEU . In the inset the palinstrophy distribution. In the inviscid case the
vorticity along xδEU is constant (≈28.2) for all the times. Peaks of palinstrophy are reached in the braids where
the local thickness is significantly small.

leads to the monotonous decrease of palinstrophy, versus moderate–high Re, where one
sees a temporary palinstrophy growth, see figure 3), is not present in the inviscid case. In
figure 19(b), one can see how the stretching of the layer is particularly intense in the braids
in the vicinity of the core, where palinstrophy distribution reaches very high values, and
the local thickness of the layer has significantly decreased due to the intense stretching.

We have performed the singularity analysis for the vortex strength γ̂EU , and the
curvature κEU of the central curve xδEU. The vortex strength γ̂EU is shown in figure 20(a)
at different times for the initial thickness δ = 0.0141 and compared with the same quantity
of the viscous case with the same initial thickness. In figure 20(b), we show the path
of the main singularity and the best power-law fitting for the imaginary part θim in its
dependence from the initial thickness. We have obtained θim ∝ δ0.5, which, compared
with the power-law scaling θim ∝ Re−0.16 for the viscous case, expresses that singularities
tend to approach the real domain faster as δ → 0 than the viscous case for Re → ∞.
Concerning the character of the singularity of γ̂EU , we have obtained that it is close to the
value μ

θγ̂EU ≈ 2/5 (differences with the BR singularity reported in table 3): this value is
different from the values found in the viscous case and the vortex-blob case, but similar to
them it is compatible with the diverging behaviour of the vortex strength as t → t+s . We
conclude mentioning that the layers governed by the Euler equations show the same scale
invariance (4.8), see figure 17(c).

The typical role of the viscosity, as always, is to dampen higher modes, making less
sharp the solutions gradients; more specifically, in our case, viscous terms counteract the
stretching coming from the roll-up of the layer, also leading to milder complex singularities
compared with the inviscid case. However, in addition to numerical difficulties, there
are no obstacles in computing the vortex layer solutions in the zero-viscosity limit. The
regularizing agent playing a crucial role in allowing the computations to go beyond the
BR singularity time is the finite thickness.

Most of this paper is devoted to analysing the solutions when the layer thickness δ and
the viscosity ν relate as ν ∼ δ2. In this subsection, we have briefly considered the case
when ν = 0. The more general case when ν ∼ δα is certainly of interest, but this is outside
the scope of this paper.
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Figure 20. (a) The vortex strength computed for the inviscid case (γ̂EU) and the viscous case (γ̂C), for the
same initial thickness δ = 0.0141 (corresponding to Re = 5 × 103). Plots are shown at the times ts = 1.507
of singularity formation for the BR equation, and the time t1w in which the x derivative of the central curves
vanish, that is, t ≈ 2.2 for the inviscid case and t ≈ 2.4 for the viscous case. (b) Tracking in the complex plane
(θ, θim) of the main singularity of the vortex strength γ̂EU for the inviscid case. The singularity is tracked at
ts = 1.507 and at the time t1w for various initial thickness: the size of the markers decreases for smaller δ. In
the inset, the imaginary parts of the singularities shown vs the initial thickness δ, and best power-law fitting
(log–log scale).

5. Conclusion

The flow configuration in which vorticity concentrates around a curve is one of the most
relevant and studied in fluid dynamics. The interest in these configurations was initially
motivated by their practical importance, being vorticity layers originated by fluid–structure
interactions. Later it was clear how these configurations were also of great relevance
from a theoretical point of view, being the possible source of more singular behaviour,
concentration and non-uniqueness. The BR equation is the leading-order approximation
of the layer’s motion that neglects viscosity and the layer thickness. One of the major
problems is to understand how the BR solution’s behaviour is related to a vortex layer’s
dynamics. In particular, whether the BR singularity is related to the core formation and
vorticity concentration shown by a vortex layer.

In this paper, we have analysed the evolution of a viscous vortex layer, whose initial
thickness is O(Re−1/2), governed by the 2D NS equations. We have also compared the
layer’s dynamics with its inviscid counterpart, the BR vortex sheet, and, beyond the
singularity time, with its regularized versions.

First, we have focused our analysis on describing the most important physical
phenomena characterizing the evolution of the layer. These phenomena led us to
distinguish between two Re regimes. For low Re, in our case Re � O(103), the flow is
characterized by the formation of two symmetric cores and by their large-scale spiraling,
which finally induces their merging (see figure 2). Conversely, we have observed no
merging of the two cores for the higher Re we have been able to simulate, that is,
5 × 103 � Re � 1.5 × 105. In these cases, instead, the final stage of the evolution is
characterized by a concentration phenomenon occurring in each core (see figure 1), that
becomes more intense for higher Re.
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The stages leading to concentration can be summarized as follows. During the first stage,
the layer or, to be more precise, the central curve C, closely follows the dynamics predicted
by the BR equation. Up to the BR singularity time, therefore, our computations show
excellent agreement between the BR equation and the vortex layer dynamics. These results,
therefore, provide a numerical extension of the rigorous short-time theorems, obtained in
Caflisch, Lombardo & Sammartino (2020), concerning the convergence of vortex layers
ruled by Euler equations: because, here, we show that a small viscosity does not disrupt
the agreement between NS and BR solutions; and because, here, we have observed that the
agreement is not limited to short times but persists almost up to the BR singularity time.

A second stage begins after the BR singularity time. Although the BR curve terminates
its evolution developing an infinite curvature, we see the layer bending (see, e.g.,
figure 10c). When the bending becomes more pronounced (see figure 4a), this causes
an interaction between different sections of the layer in the form of a cascade that
creates stagnation points and reverse flow. This reverse flow weakens the velocity jump
between the flow above and below the layer, creating two vorticity minima, the red dots
in figure 4(a–c). These vorticity minima separate the inner part of the core from the outer
part of the core, and play a crucial role in the third stage of the flow evolution.

During the third stage, the vorticity minima become sharper, and strong vorticity
gradients appear (see figure 12a). These sharp gradients are related to the intense stretching
of the curve, which is evident in figure 12(b). We have seen, discussing (2.15), how
stretching is the mechanism leading to the growth of vorticity gradients, and how this leads
to the growth of palinstrophy (see figure 3). Stretching, combined with intense rotation and
folding, leads to mixing, through a mechanism similar to the classical horseshoe map (see
figure 1 and supplementary movie 1).

The intense tangential stretching of the curve occurs where the vorticity minima are. On
the other hand, the core centre is a zone where the opposite event occurs: intense tangential
compression. Compression is visible in figure 12(b) where ∂θ s ≈ 0, as this means that
different Lagrangian particles occupy the same spatial position. Our computations suggest
that the compression increases with the Re, that is, that ∂θ s(θ) ↘ 0 when Re → ∞. The
counterpart of the coalescence condition is that the vorticity intensity γ̂C should grow
without bound at the centre of the layer, when Re increases (see figures 10c and 11b). These
results would suggest that the vortex layer, in the limit, shows a vorticity concentration
compatible with the 2D weak solution of the Euler equations as supposed by the Di Perna
and Majda theory (DiPerna & Majda 1987a,b). Moreover, the blow-up of the vorticity
concentration γC would imply non-convergence, for t → t+s , of the NS solution to the BR
solution, as it is well known that γBR remains finite up to the singularity time. The complex
singularity analysis we have performed in § 3 confirms the fact that NS-layer solutions,
at the singularity time, have a different structure than the BR solution. In particular,
singularity analysis has validated that γC , which has complex singularities with negative
algebraic character, is more singular than γBR, which instead has a cusp-type singularity,
whose algebraic character is 1/2.

We have already noticed that the two minima of ωC , are the sources of the intense
stretching of the curve (see supplementary movie 2). Two complex singularities, traveling
toward the real axis and getting closer for increasing Re, correspond to these minima.
In the limit Re → ∞, we expect that these two singularities coalesce into a single real
singularity, as t → t+s .

Another result we have obtained is strong evidence of the self-similar character of the
vorticity core. We have seen, at least for the Re we have been able to analyse, that this core
is invariant under the spatial scaling (x′, y′) → Re−1/2(x, y) (see figure 7). Moreover, the
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first stages of the layer evolution after the BR singularity time obey the time scaling t′ =
(t − ts)Re−1/3 (see figure 9). These results confirm once again the concentration occurring
at the core of the spiral, leading, at t → t+s , to the blow-up of the vorticity intensity when
Re → ∞. We observe that the self-similar character of the dynamics had already been
noticed for different vortex sheet configurations (see Sohn 2016) and for the inviscid vortex
layer (see Hoepffner, Blumenthal & Zaleski 2011). It would be an essential achievement
to give a rigorous proof of the self-similar character of the spiraling and concentration of
the vortex layer configuration analysed in the present paper.

One could regard the initial configurations we have considered (layers or sheets of
sinusoidal shape) as low-wavenumber mode perturbations of the flat layer or sheet.
These configurations are relevant, for example, because they are representative of layers
emerging from the interaction of high-Re flows with O(1) structures; in fact, extensive
scientific literature concerning these configurations has developed, as detailed in the
Introduction. As pointed out by one of the referees, it would be interesting to consider
the effects of high-wavenumber Re-dependent perturbations as these would grow faster
and, asymptotically, in zero time. Analogously, one could consider forcing the initial
configuration by placing complex singularities at finite distances from the real axis, in the
same spirit of Gargano, Sammartino & Sciacca (2009), where dipole complex singularities
forced a boundary layer to became singular in zero time. These topics are outside the scope
of the present paper and will be the object of future work.

Another point deserving further attention concerns the non-uniqueness of the weak
solutions of the 2D Euler equations for an initial vortex sheet configuration. It is known
that 2D Euler equations may have infinitely many admissible weak solutions (see, e.g.,
Székelyhidi (2011), and the recent Mengual & Székelyhidi (2020)). The lack of uniqueness
could reflect on the fact that different regularizations might converge to different Euler
solutions. Some authors have already highlighted the differences between the solutions
arising from the various regularization procedures. For example, the typical irregular
features of the vortex-blob flow due to the onset of chaos analysed in Krasny & Nitsche
(2002), were not observed in viscous layers (Nitsche et al. 2003). A comparison with the
Euler-α regularizations is given in Holm et al. (2006); the authors showed that, for small
regularizing parameters δ and α, the two regularizations induce different behaviours in
the core vicinity region. In this work, through singularity analysis, we have given further
evidence of the fact that different regularizations can, in the limit, give rise to different
behaviours. In fact, we have considered the BR solution coming from the vortex-blob
regularization, and we have seen that the singularities of the δ–BR solution have lower
characters than the singularities developed by the centre of the viscous layer, the curve C.
How the presence of a complex singularity, and its character, manifest themselves in the
statistical properties of the measure-valued solutions (see Fjordholm, Mishra & Tadmor
2016) is unclear, though, and merits further analysis.

Finally, we would like to mention that the 3D version of the problem we have considered
here is of great fundamental interest. In fact, it is well known how, in three dimensions,
the existence of regular solutions is ensured for a short time only; in the case of a vortex
layer, the existence time could, in principle, shrink to zero in the limit of zero viscosity
and/or zero thickness. We believe that analyticity could avoid this, but no rigorous proof
is available at the present moment, nor has an analysis of the singularity behaviour been
performed.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.966.
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Appendix A. Singularity tracking

The singularity tracking method is widely used to characterize the complex singularity of
an analytic function u(z), and the scientific literature is rich of papers in which singularity
analysis is applied to solution of both ordinary differential equations (ODEs) and partial
differential equations (PDEs) arising in fluid dynamics, see Sulem, Sulem & Frisch
(1983), Shelley (1992), Caflisch (1993), Ely & Baker (1993), Cowley et al. (1999), Frisch,
Matsumoto & Bec (2003), Siegel & Caflisch (2009), Pauls et al. (2006), Pauls & Frisch
(2007), Gargano et al. (2009), van der Hoeven (2009), Malakuti et al. (2013), Gargano
et al. (2014), Caflisch et al. (2015) and Caflisch et al. (2017).

The singularity tracking is based on the asymptotic analysis of the Fourier transform
of a function and gives information on the width of its analyticity strip. Suppose that
the function u(z) has a complex singularity at z∗ = x∗ + iy∗ and that u(z) ≈ (z − z∗)μ as
z → z∗, where μ is the character of the singularity. Then, if u(z) = ∑k=K/2

k=−K/2 ukeikz is the
discrete Fourier expansion of u, then the asymptotic behaviour of its spectrum is governed
by Laplace’s formula (Carrier, Krook & Pearson 1966):

uk ∼ |k|−(1+μ) exp (−y∗|k|) exp (ix∗k) k → ∞. (A1)

If one can estimate the rate of the exponential decay y∗ of the spectrum, one obtains the
distance of the complex singularity from the real axis; the estimate of the period of the
oscillations of the spectrum gives the real location x∗ of the singularity. Estimating the
rate of algebraic decay 1 + μ, one can classify the singularity type. If u(z) is the solution
of an evolutionary PDE, all the previous quantities, x∗, μ and y∗, are time dependent and
if, at a given time ts, y∗(ts) is zero, then the solution shows a real singularity at time ts,
located in x∗(ts) with character μ(ts).

However, this method gives information on the singularity nearest to the real axis.
To retrieve more information about the possible singularities outside the width of the
analyticity strip, the BPH method proposed in Pauls & Frisch (2007) can be used. In
particular, given the inverse Taylor series expansion of a function u(z),

u(z) =
N∑

k=0

uk/zk+1, (A2)

that has n complex singularities cj = |cj|e−iρj for j = 1, 2, . . . , n, one can define its
Borel transform by UB(ζ ) = ∑N

k=0 ukζ
k/k!. Evaluating the modulus of the Borel series

G(r) = |UB(reiφ)| along the rays reiφ , one obtains, through a steepest descent argument,
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C2

C1

C3

k (φ)

φ

Figure 21. The convex hull of a discrete set of complex singularities is the smallest convex polygon containing
all the singularities ci. The supporting function k(φ) is the distance from the origin of the supporting line,
normal to the direction φ, touching a singularity.

the following asymptotic behaviour

G(r) ≈ C(φ)r−(μ(φ)+1)eh(φ)r for r → ∞. (A3)

The indicatrix function h(φ), or equivalently the supporting function k(φ) = h(−φ), is the
relevant function to analyse.

In the case of isolated singularities (Pauls & Frisch 2007), h(φ) is a piecewise cosine
function

h(φ) = |cj| cos(φ − ρj) for φj−1 < φ < φj, (A4)

and the set of angular directions φj, j = 1, 2, . . . , n, is determined by the angle φ for which
the supporting line normal to φ touches the smallest convex polygon containing all the
singularities in cj (see figure 21).

The BPH method can be easily applied to discrete Fourier series u(z) = ∑k=K/2
k=−K/2 ukeikz

by writing u as an inverse Taylor series. This is accomplished by introducing the complex
variables Z+ = eiz, Z− = e−iz so that

u(z) =
K/2∑
k=0

ukeikz +
K/2∑
k=1

uke−ikz =
K/2∑
k=0

uk/Zk
− +

K/2∑
k=1

uk/Zk
+. (A5)

With the BPH method it is possible to capture information on all the singularities located
in the convex hull outside the radius of convergence of a Taylor series (or the strip of
analyticity of a Fourier series).
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