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The Jeans instability is examined in quantum dusty magnetoplasmas due to low-
frequency magnetosonic perturbations. The fluid model consisting of the momentum
balance equation for quantum plasmas, Poisson’s equation for the gravitational
potential and Maxwell’s equations for electromagnetic magnetosonic perturbations
is solved. The numerical analysis elaborates the significant contribution of magnetic
field, electron number density and variable dust mass to the Jeans instability.
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1. Introduction
From the beginning of life, astrophysical objects have been a great source of

learning. With the passage of time, the thirst for knowledge of the mechanisms
that take place in these objects has led human beings to explore the universe from
different angles. The interest in knowledge concerning different aspects has led to
different disciplines of research. One such research field is plasma physics. The
plasma physicists have made their highest priority the understanding of the formation
of astrophysical objects. Sir James Jeans developed his theory to explain the collapse
of mass into giant astro-objects. Accordingly, the dusty plasma is marginally stable, in
the sense of self-gravitational collapse, to all of the density perturbations which satisfy
the criteria of the Jeans length. The scale of the Jeans length is extremely large, at
astrophysical length scales. Such density perturbations are multidisciplined and may
lead to gravitational collapse. These perturbations fall into two major categories which
are low-frequency electrostatic and electromagnetic in nature. Examples of the prior
case are dust lower hybrid waves, dust acoustic and dust ion acoustic waves and
of the latter are Alfvén and magnetosonic waves. The corresponding instability can
describe the Jeans instability present in the literature (Verheest et al. 1997).

A new type of longitudinal oscillation propagating in the direction perpendicular to
the external magnetic field B0 is possible due to the restoring force of the magnetic
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field (magnetic pressure) and these are known as magnetoacoustic, magnetosonic or
simply compressional waves. These waves involve compression and rarefaction of the
magnetic lines of force as well as the plasma. The magnetosonic waves grow due
to the mixing of Alfvén wave phases. The amplitude of the Alfvén pulse generates
the magnetosonic waves (Nakariakov, Roberts & Murawshi 1997). For cold plasmas,
where the gyro-radius of the ions tends to zero, Adlam & Allen (1958), Gardner
et al. (1958) and Sagdeev (1958) pointed out the dispersive propagation of waves
even perpendicular to the external magnetic field due to the contribution of the finite
inertia of the electrons (Kennel & Sagdeev 1967). The magnetosonic waves are
low-frequency electromagnetic waves at a frequency well below the ion-cyclotron
frequency, propagating along the direction perpendicular to the magnetic field.
The magnetosonic waves are fundamental electromagnetic modes that exist in the
laboratory as well as in space plasmas and can be taken as an effective tool for the
diagnosis of materials. Salimullah et al. (2003), Shukla & Stenflo (2006), Schunk &
Nagy (2009) discussed the comparison between the gravitational and electromagnetic
forces on plasma charge carriers. Field (1965), Salahuddin & Shah (2004), Shaikh,
Khan & Bhatia (2008), Tsintsadze et al. (2008), Prajapati & Chhajlani (2010, 2011),
Prajapati et al. (2012) and Pensia et al. (2011) discussed the Jeans instability in the
classical regime and at the quantum scales this subject has also been the focus of
the eminent scientists Ren et al. (2009), Salimullah et al. (2009), Jamil et al. (2014),
Sharma, Jain & Prajapati (2016). The quantum plasmas are usually described by the
Fermi degenerate pressure and tunnelling potential of charge carriers. To the best
knowledge of the authors, the compressional electromagnetic perturbations for the
Jeans instability could not be more attractive to plasma researchers. In this paper
we investigate the Jeans instability in the presence of low-frequency electromagnetic
compressional perturbations in a quantum plasma system composed of electrons, ions
and micron-sized negatively charged dust particulates. The objective of our studies
is to investigate how the mechanism of Jeans instability would be altered due to
quantum effects for low-frequency electromagnetic propagation.

The plan of the paper is as follows. In § 2, the quantum hydrodynamic fluid
equations and Poisson’s equation of gravitation are solved for the perturbed
electromagnetic and gravitational fields in order to derive the dispersion law for
the uniform quantum dusty magnetoplasma. Finally, a numerical analysis of the
Alfvén Jeans instability is depicted in graphical representation and a summery of the
results is presented in § 3.

2. Mathematical model of the problem

An infinitely extended dense homogeneous quantum plasma composed of electrons,
ions and negatively charged dust grains is considered. The plasma system is assumed
to be embedded in an ambient static magnetic field B0 ‖ z in a Cartesian coordinate
system. The charge quasi-neutrality condition is satisfied at equilibrium, that is,
ne0 + (qd/e)nd0 = ni0, where nj0 is the equilibrium number density of the jth species,
j = electrons, ions or dust, qd is the average charge on a dust grain and e is the
electronic charge. Here, magnetosonic waves are studied that propagate along the
x-axis, perpendicular to the static magnetic field. All wave quantities will depend
only on x and time t. The governing equations of the electromagnetic waves include
the degenerate pressure with non-zero thermal effects, the tunnelling potential and
the gravitational potential. A small amplitude of oscillations is the matter of interest,
thus a system of linearized equations is used. At equilibrium, the plasma is assumed
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to have null zeroth-order velocities of the jth species. The microscopic state of
a quantum dusty plasma is governed by the following linearized set of quantum
hydrodynamic and Maxwell equations:

mjnj0

(
∂vj1

∂t

)
= nj0qj

(
E1 + 1

c
vj1 ×B0

)
−∇pj + h̄2

4mj
∇(∇2nj1)−mjnj0∇ψ1 (2.1)

∂nj1

∂t
+ nj0(∇ · vj1)= 0 (2.2)

∇×E1 =−1
c
∂B1

∂t
(2.3)

∇×B1 = 1
c
∂E1

∂t
+ 4π

c
J1. (2.4)

The symbols used here qj, mj, vj1, nj(0,1), B1, ψ1, E1, J1 are charge, mass, perturbed
speed for the jth species, equilibrium and perturbed number density, perturbed
magnetic field and gravitational potential, perturbed electric field and perturbed
current density respectively. The relationship between the Fermi pressure and
the number density of the jth species is defined as pj = (mjv

2
Fjn

3
j1/3n2

j0), where
v2

Fj = (6/5)(kBTFj/mj){1 + (5/12)π2(Tj/TFj)
2}, kB is the Boltzmann constant, Tj is

the thermal temperature, TFj = (h̄2(3π2nj0)
2/3/2mj) is the Fermi temperature while

h̄= (h/2π). The Poisson equation satisfying the perturbed gravitation potential ψ1 for
the massive dust grains is

∇2ψ1 = 4πGmd0nd1, (2.5)

where G is the universal gravitational constant and the subscript 1 indicates the
perturbed quantities. Taking Fourier transformations of the linearized equations (2.1),
(2.2) and performing some straightforward calculations provide the fluid velocities of
the jth species as a linear combination of the components of the wave electric field
and the gravitational potential:

vj1x = 1
ω2 − v′2Fjk2 −ω2

cj

[
iωqj

mj
E1x − qjωcj

mj
E1y +ωkψ1

]
(2.6)

vj1y = 1
ω2 − v′2Fjk2 −ω2

cj

[
qjωcj

mj
E1x +

iqj(ω
2 − v′2Fjk

2)

mjω
E1y − iωcjkψ1

]
(2.7)

vj1z = iqj

mjω
E1z. (2.8)

Here v′2Fj = v2
Fj + H2k2 is combined effect due to Fermi pressure and Bohm potential

where H = (h̄/2mj), while ω is perturbation frequency, k is wavevector and i is iota.
Solving Maxwell’s curl equations (2.3), (2.4) of the fields of the electromagnetic
wave, [

−kk ·E1 + k2E1 − ω
2

c2
E1

]
= 4πiω

c2
J1. (2.9)

Here, J1 =
∑

j=e,i,d[qjnj0vj1] is the perturbation current density of the jth species
in response to a small field of the electromagnetic wave and c is speed of
light. The subscripts of summation e, i, d are for electrons, ions and dust fluid,
respectively. The velocity components from (2.6) to (2.8), are used to attain the
corresponding components of current densities that yields (2.9) and, in turn, the
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following simultaneous equations{
1−

∑
j

ω2
pj

ω2 − v′2Fjk2 −ω2
cj

}
ωE1x −

∑
j

ω2
pjωcj

ω2 − v′2Fjk2 −ω2
cj

iE1y

+
∑

j

ωpjωJj

ω2 − v′2Fjk2 −ω2
cj

i√
G
ωkψ1 = 0 (2.10)

∑
j

ω2
pjωcj

ω2 − v′2Fjk2 −ω2
cj
ωE1x −

{
ω2 − c2k2 −

∑
j

ω2
pj(ω

2 − v′2Fjk
2)

ω2 − v′2Fjk2 −ω2
cj

}
iE1y

−
∑

j

ωpjωJjωcj

ω2 − v′2Fjk2 −ω2
cj

iωkψ1√
G
= 0 (2.11)

(
ω2 − c2k2 −

∑
j

ω2
pj

)
E1z = 0 (2.12)

similarly solving (2.5), we obtain∑
j

ωωpjωJj

ω2 − v′2Fjk2 −ω2
cj

E1x +
∑

j

iωpjωcjωJj

ω2 − v′2Fjk2 −ω2
cj

E1y

+
{
−1−

∑ ω2
Jj

ω2 − v′2Fjk2 −ω2
cj

}
iωk√

G
ψ1 = 0, (2.13)

where ωpj =
√

4πn0jq2
j /mj, ωJj =

√
4πGmjnj0, ωcj = (qjB0/mjc) are the plasma fre-

quency, gravitational frequency and cyclotron frequency of the jth species. For
(2.10)–(2.13), the components of the electric fields of the electromagnetic wave and
the gravitational field will form a fourth-order matrix for the equation of dispersion
containing the field force of gravitation in addition to the electromagnetic field. Dxx Dxy Dxz Dxψ

Dyx Dyy Dyz Dyψ
Dzx Dzy Dzz Dzψ
Dψx Dψy Dψz Dψψ




ωE1x
−iE1y

E1z
iωk√

G
ψ1

= 0, (2.14)

where the elements of dispersion matrix are

Dxx = 1−
∑

j

ω2
pj

ω2 − v′2Fjk2 −ω2
cj
, Dxy = Dyx =

∑
j

ω2
pjωcj

ω2 − v′2Fjk2 −ω2
cj
,
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∑

j

ωpjωJj
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cj

Dyy =ω2 − c2k2 −
∑

j

ω2
pj(ω

2 − v′2Fjk
2)
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cj
, Dyψ = Dψy =−

∑
j

ωpjωJjωcj

ω2 − v′2Fjk2 −ω2
cj

Dzz =
(
ω2 − c2k2 −

∑
j

ω2
pj

)
, Dψψ =

{
−1−

∑
j

ω2
Jj

ω2 − v′2Fjk2 −ω2
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Dxz = Dzx = Dyz = Dzy = Dψz = Dzψ = 0.



(2.15)
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The summation is expanded over electrons (e), ions (i) and dust (d) species.
Furthermore, the condition of a low-frequency wave, ω2� v′2Fek

2�ω2
ce, ω

2�ω2
cd, ω

2
ci,

ω2�ω2
Jd is applied in order to gain the simple expressions. The quantum effects of the

ions and dust are ignored in comparison with the electrons due to their higher masses.
The gravitational effects of the dust are dominant over the electrons and ions due to
the same reason of higher mass. Furthermore, for dense plasmas, (ω2

pe/ω
2
ce)� (ω2

pi/ω
2
ci),

(c2/v2
A) = (ω2

pd/ω
2
cd) + (ω2

pi/ω
2
ci) where vA = (B2/4π(ni0mi + nd0md))

1/2 is the Alfvén
speed associated with the ion and dust species. Hence the values of the D components
become

Dxx = c2

v2
A
, Dxy = Dyx = 0, Dxψ = Dψx =−ωPdωJd

ω2
cd

,

Dyy =ω2 c2

v2
A
− c2k2 − ω

2
pev
′2
Fjk

2

ω2
ce

, Dyψ = Dψy =−ωPdωJd

ωcd
, Dψψ =−1.

 (2.16)

Equation (2.14) is the generalized dielectric tensor introduced in such a way as
to make clear the distinction and relationship between the O and X mode dielectric
functions with quantum effects of the electrons and the gravitational effects of the
dust species. The dispersion relation of linear magnetosonic waves is obtained after
decoupling of these modes. Hence, using (2.16), the solution of (2.14) leads to the
dispersion relation containing the gravitational effects in addition to the quantum
effects that arise from the degenerate pressure and quantum tunnelling described by
the Bohm term

ω2 = v2
Ak2 + δev

′2
Fjk

2 − δdω
2
Jd

(
1− δd

ω2
Jd

ω2
cd

)
. (2.17)

Here, δe,d= (n0(e,d)m(e,d)/(n0imi + n0dmd)). The dispersion relation ‘(2.17)’ describes the
sound-like nature of magnetosonic waves perturbed due to quantum, electromagnetic
and gravitational forces. The threshold value of the wavevector k for the Jeans

instability is kJ =
√
δdω

2
Jd/((v

2
A + δev

′2
Fj)(1+ δdω

2
Jd/ω

2
cd)) while the Jeans length is

defined as λJ = (2π/kJ). The basic parameters for the coupling of magnetosonic
and gravitational modes are the corresponding time scales. Owing to the comparable
scales, the gravitational instability is opposed by the magnetosonic perturbations
and hence resists the gravitational squeezing. Henceforth, the resultant Jeans–Alfvén
mode propagates with the magnetoacoustic speed which is the equivalent speed of
the Alfvén and sound speeds in quantum plasmas. The sound speed is represented by
the Fermi temperature of the electrons and the sum of the masses of ions and dust
(Verheest et al. 1997).

3. Graphical analysis and discussion

From (2.17) the curves of frequency versus wavenumber are obtained for small
amplitude magnetosonic waves propagating perpendicular to the magnetic field in a
quantum plasma consisting of electrons, ions and dust species. The typical parameters
are defined in the cgs system of measurements (Jamil et al. 2014; Sharma et al.
2016), c = 3 × 1010 cm s−1, G = 6.67 × 10−8 cm3 gm−1 s−2, me = 9.1 × 10−28 gm,
mi = 1.67 × 10−24 gm, md/mi = (1.0–1.3) × 109, e = 4.8 × 10−10 statcoulomb, h̄ =
1.05× 10−27 erg s, kB = 1.38× 10−16 erg k−1, Te = 102 k, B0 = 1× 108–1.2× 1010 G,
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FIGURE 1. Relationship of (Im ω, Re ω) versus k with varying magnetic field, B0= 0.1×
109 G (dashed curve), B0 = 4.0× 109 G (dotted curve), B0 = 8.0× 109 G (dashed-dotted
curve), B0 = 1.2× 1010 G (solid curve).

n0i = 1.001 × 1027 cm−3, n0e = (0.7–1.0) × 1027 cm−3, n0d = 10−8n0i, qd = zde
statcoulomb, zd = (n0i − n0e)/n0d.

Figure 1 shows the gravitational stability with varying magnetic field. The imaginary
part shows the instability whereas the real part describes the wave structure. At
B0 = 1 × 108 G, the threshold value of the wavevector is k ' 6.0 × 10−9 cm−1.
Increasing k tends to decrease the rate of instability due to the competition between
the gravitational and magnetosonic effects in quantum magnetoplasmas. On increasing
the external magnetic field, the threshold value of k decreases significantly and reduces
the spectrum of magnetosonic waves which stabilize the gravitational collapse. The
increasing magnetic field decreases the gravitational collapse with a higher rate.
Physically, the increasing magnetic field minimizes the gyro-radius, and hence B0
contributes less to the stability of gravitational collapse. As for Re ω, the phase
speed gains its highest value at the highest magnetic field. With a strong magnetic
field the phase velocity and group velocity are higher than the velocities with a
week magnetic field, however, with a small field, the velocities are minutely affected.
Figure 2 shows the effect of varying the dust mass on the Jeans stability as variation
of dust particle size is a natural mechanism. With higher dust inertia, the Jeans
instability decreases with a small rate. The width of the electromagnetic spectrum
increases with increasing the mass of the dust species. The phase speed and group
speed of the magnetosonic waves are not significantly effected with increasing the
inertia of the dust particles. Figure 3, elaborates the effect of the number density of
quantized electrons in neutralized dusty plasmas. Increasing the number density of
electrons stabilizes the gravitational collapse with a higher rate. The true spirit of
the variable electron number density makes its contribution through the dust charge
number zd. In other words, maintaining quasi-neutrality, the variation of the electron
number density modifies the dust charge and therefore has an effect over the Jeans
instability. Physically, the potential of the dust particle stabilizes the gravitational
instability with a higher rate.

In summary, the study of the Jeans instability (for uniform quantum dusty
magnetoplasmas) in self-gravitating astrophysical high density objects and their
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FIGURE 2. Relationship of (Im ω, Re ω) versus k with variable dust mass md/mi =
1.0× 109 (solid curve), md/mi= 1.1× 109 (dashed-dotted curve), md/mi= 1.2× 109 (dotted
curve), md/mi = 1.3× 109 (dashed curve).

FIGURE 3. Relationship of (Im ω, Re ω) versus k with varying magnetic field, n0e= 1.0×
1027 cm−3 (dashed curve), n0e = 0.9 × 1027 cm−3 (dotted curve), n0e = 0.8 × 1027 cm−3

(dashed-dotted curve), n0e = 0.7× 1027 cm−3 (solid curve).

environments is presented. The multifluid model for quantum plasmas in the
presence of a uniform external magnetic field which is composed of Poisson’s
equation of the gravitational potential, momentum balance and Maxwell’s equations
for electromagnetic perturbations have been employed to derive a generalized
dispersion matrix of the fourth order. The solution of the dispersion matrix lead
to the linear dispersion relation of a magnetosonic wave in a self-gravitating plasma
with the quantum effects arising through the Fermi degenerate pressure as well
as the tunnelling potential. The numerical study is presented with different variable
parameters. It is found that the magnetic field, variable dust mass and electron number
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density play significant roles in the Jeans instability. In all of the figures, the value
of k (cm−1) at which ω (s−1) becomes zero is known as the threshold value. For
example, in figure 1, the threshold value at B0 = 108 G is k = 6.0× 10−9 cm−1. On
increasing B0, the threshold value comes into being at smaller values of k. Similar
or different trends are observed for different variable parameters. Henceforth, the
results of our studies at quantum scales may be useful in understanding the collapse
of self-gravitating dusty plasma systems.
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