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Lp-regularity of the Bergman projection on
quotient domains
Chase Bender, Debraj Chakrabarti, Luke Edholm, and Meera Mainkar

Abstract. We obtain sharp ranges of Lp-boundedness for domains in a wide class of Reinhardt
domains representable as sublevel sets of monomials, by expressing them as quotients of simpler
domains. We prove a general transformation law relating Lp-boundedness on a domain and its
quotient by a finite group. The range of p for which the Bergman projection is Lp-bounded on our
class of Reinhardt domains is found to shrink as the complexity of the domain increases.

1 Introduction

1.1 Main result

Let n ≥ 2, and for each 1 ≤ j ≤ n, let b j = (b j
1 , . . . , b j

n) ∈ Qn be an n-tuple of rational
numbers. Let U ⊂ Cn be a bounded domain (open connected subset) of the form

U = {z ∈ Cn ∶ for 1 ≤ j ≤ n,
n
∏
k=1
∣zk ∣ b

j
k < 1} ,(1.1)

where it is understood that a point z ∈ Cn does not belong to U if for some 1 ≤ j ≤ n,
the quantity∏n

k=1 ∣zk ∣ b
j
k is not defined due to division by zero. We call a domain such

as U a monomial polyhedron.
We refer the reader to Section 1.2 for a discussion of the significance of monomial

polyhedra in complex analysis. Our main result is the following:

Theorem 1.2 Suppose that the monomial polyhedron U of (1.1) is bounded. Then there
is a positive integer κ(U ) (the complexity of U , whose computation is described below)
such that the Bergman projection on U is bounded on Lp(U ) if and only if

2κ(U )
κ(U ) + 1

< p < 2κ(U )
κ(U ) − 1

.(1.3)
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To compute κ(U ), first define for a vector x ∈ Qn/{0}, the positive integer h(x)
(the projective height of x) as follows. If we think of x as the homogeneous coordinates
of a point [x] in the rational projective spacePn−1(Q), there is clearly an integer vector
y ∈ Zn such that [y] = [x] (i.e., there is a λ ∈ Q/{0} such that y = λx), and we have
additionally that gcd(y1 , . . . , yn) = 1. We then set

h(x) =
n
∑
j=1
∣y j∣ .(1.4)

We can think of h as a height function on Pn−1(Q) in the sense of Diophantine
geometry, uniformly comparable to the standard multiplicative height function (see
[HS00, pp. 174 ff.]).

Let B be the n × n matrix whose entry in the jth row and kth column is b j
k , i.e.,

the jth row of B is the multi-index b j in (1.1). It will follow from our work below
(Proposition 3.2) that the matrix B ∈ Mn(Q) is invertible. We define

κ(U ) = max
1≤k≤n

h(B−1ek),(1.5)

where ek denotes the n × 1 column vector all whose entries are zero, except the kth,
which is 1. Notice that B−1ek is simply the kth column of the matrix B−1, that is, the
arithmetic complexity of the monomial polyhedron U is the maximum projective
height of the columns of B−1, where B is the rational matrix whose rows are the multi-
indices occurring in the n inequalities that define U in (1.1). It will be shown below in
Proposition 3.5 that the integer κ(U ) is determined only by the domain U and not
the particular representation on the right hand side of (1.1).

1.2 Singular Reinhardt domains in complex analysis

Except in the degenerate case when it reduces to a polydisc (e.g., when b j = e j ,
the jth natural basis vector of Qn), the domain U is a Reinhardt pseudoconvex
domain (with center of symmetry at the origin) such that the origin is a boundary
point. These singular Reinhardt domains (their boundaries are not Lipschitz at 0)
display pathological holomorphic extension phenomena: the best-known example is
that of the Hartogs triangle {∣z1∣ < ∣z2∣ < 1} ⊂ C2, corresponding to a U with b1 =
(1,−1), b2 = (0, 1) (see [Beh33, Sib75]). For example, on a singular Reinhardt domain,
each holomorphic function smooth up to the closure extends holomorphically to
a fixed neighborhood of the closure (see [Cha19]), something which is impossible
for smoothly bounded pseudoconvex domains [HS80, Cat80]. Therefore, a profound
understanding of function theory on these domains is an important step in extending
classical results on the regularity of the ∂-problem (and associated operators such as
the Bergman projection) to new and more general settings (see [JP08]). Monomial
polyhedra are an interesting class of such singular Reinhardt pseudoconvex domains
with tractable geometry and some very interesting properties. They can be compared
to analytic polyhedra in the classical theory of pseudoconvex domains: model exhaust-
ing domains where explicit computations are possible (see [Vla66, Section 24]).
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The striking phenomenon observed in Theorem 1.2 was first noticed (see [EM17])
in the setting of the so-called generalized Hartogs triangles, defined for coprime
positive integers k1 , k2 as

Hk1/k2 = {(z1 , z2) ∈ C2 ∶ ∣z1∣ k1/k2 < ∣z2∣ < 1},(1.6)

which corresponds to b1 = ( k1
k2

,−1) and b2 = (0, 1). It is striking that the range (1.3)
should depend, not on the shape of the domain as a subset of C2 (which is determined
in the case of Hk1/k2 by the “fatness exponent” k1

k2
), but on the complexity (which, for,

Hk1/k2 is k1 + k2) , the range becoming narrower as the complexity rises. As a limiting
case, if γ > 0 is irrational, on the domain {∣z1∣ γ < ∣z2∣ < 1} ⊂ C2 (a domain of infinite
complexity!), the Bergman projection is bounded in the Lp-norm, only if p = 2. The
proofs of the precise range of Lp-boundedness of the Bergman projection on Hk1/k2

and its generalizations in earlier work [EM17, Che17, Huo18, Zha20, Zha19] consist of
an explicit computation of the Bergman kernel, followed by an application of Schur’s
theorem on Lp boundedness of operators defined by integral kernels to determine the
range of Lp-boundedness. Other authors have used techniques of classical harmonic
analysis, such as weak-type endpoint estimates along with interpolation in Lp-spaces,
Muckenhoupt Ap weights etc. to study related questions. See [CZ16, Edh16, EM16,
CEM19, HW19, CKY20, EM20, CJY20] for other results in this circle of ideas.

Theorem 1.2 not only encompasses the known examples of domains on which the
relation between the regularity of the Bergman projection and arithmetic complexity
has been observed, but also substantially extends this class of domains. Its proof
is based on an understanding of the geometry of monomial polyhedra as quotient
domains. It is hoped that this will eventually lead to a deeper understanding of this
mysterious notion of complexity, and its extension to other contexts.

1.3 Ingredients in the proof of Theorem 1.2

The range of Lp-boundedness of the Bergman projection on a domain is a function
theoretic property determined by its Hermitian geometry, but the full extent of this
relationship is yet to be understood. This article brings to bear a new perspective on
this problem in the case of monomial polyhedra: one in which the domain is realized
as a quotient of a simpler domain under the action of a group of biholomorphic
automorphisms Γ (Theorem 3.12 below).

Our approach to the geometry of U in Section 3 is inspired by the observation that
in the “log-absolute coordinates” ξk = log ∣zk ∣, it is represented as

n
∑
k=1

b j
k ξk < 0, for each 1 ≤ j ≤ n,(1.7)

which is an open polyhedral cone (intersection of open half-spaces) in the sense of
convex geometry. By a classical result (see [Zie95, Theorem 1.3, p. 30], also [Grü03,
Section 3.1]), such a polyhedral cone can also be represented as the cone generated by
its extreme points, i.e., it is the image of an orthant (in a possibly higher dimensional
Euclidean space) under a linear map. In Section 3, we prove an analogous statement
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for U : there is a domain Dn
L(B) ⊂ Cn , which is the product of a certain number of unit

discs with a certain number of punctured unit discs, and a proper holomorphic map
ΦA ∶ Dn

L(B) → U which is of the “quotient type” (see Definition 3.10), i.e., off some
small analytic sets in the source and target, it is essentially a quotient map by a group
Γ of automorphisms of the source. It turns out that the map ΦA is of “monomial type”
in the sense of [NP20], i.e., an n-dimensional analog of the branched covering map
from the disc to itself given by z ↦ za for an integer a > 0. This fact has several pleasant
consequences and facilitates computations.

One of the consequences of the existence of the map ΦA is that it allows us to
compute the Bergman kernel of U explicitly. This has been a crucial step in the study
of the Bergman projection on such domains in all prior investigations. In this paper,
however, we avoid computing Bergman kernels and directly study the transformation
properties of Lp-Bergman spaces. However, we do show in Proposition 3.22, using
Theorem 3.12, that the Bergman kernel of U is a rational function.

In Section 4, we study how Lp-Bergman spaces and the Bergman projection acting
on Lp-Bergman spaces transform under proper holomorphic maps of quotient type.
This point of view leads to a transformation law (Theorem 4.15 below) relating the
Lp-Bergman spaces and Bergman projections of the source and target—one that is
closely connected to the well-known Bell’s transformation law relating the Bergman
kernels. One new ingredient here is the use of subspaces invariant under the action
of the deck transformation group of the proper holomorphic map, which allows us to
state a sharp result which can be used in the Proof of Theorem 1.2. We believe that
the considerations of Section 4 have an independent interest beyond their application
here.

The transformation law Theorem 4.15 can be used to pull back the problem
from U to the well-understood domain Dn

L(B), which is the polydisc, except for a
missing analytic hypersurface. The pulled-back problem can be solved using classical
estimates on the polydisc. This is achieved in Sections 5 and 6, completing the proof
of Theorem 1.2.

The germ of the idea of relating the Lp-regularity of the Bergman projection with
the properties of a “uniformizing” map from a simpler domain may already be found
in [CZ16, CKY20]. The sharper version of this technique presented in this paper may
be thought of as a step toward a unified understanding of the way in which boundary
singularities affect the mapping properties of the Bergman projection.

1.4 Examples in C2

It is not difficult to see that a monomial polyhedron in Cn is bounded by n Levi-flat
“faces” (in the log-absolute representation (1.7), these faces are linear hyperplanes; see
the proof of Proposition 3.5). The generalized Hartogs triangles of (1.6) are special in
that one of the faces is a “coordinate face”, i.e., represented by a coordinate hyperplane
in log-absolute coordinates. In (1.6), this is, {∣z2∣ = 1} which corresponds to {ξ2 =
0} in the log-absolute representation. In two dimensions, the generic monomial
polyhedron has two noncoordinate faces, and can be thought of as an intersections
of two generalized Hartogs triangles. The Reinhardt shadows in R2 (the image of
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Figure 1: Reinhardt shadows of some monomial polyhedra.

z ↦ (∣z1∣ , ∣z2∣)) of three monomial polyhedra in C2 can be seen in Figure 1. The
domains corresponding to (a), (b), and (c) are respectively given by:

{∣z1∣ 4 < ∣z2∣ < ∣z1∣ 1/3} , {∣z1∣ 1/2 < ∣z2∣ < ∣z1∣ 1/4} , and {∣z1∣ 1/2 < ∣z2∣ < 1} .

1.5 Lp-theory of the Bergman projection

We collect here some general information about the Bergman projection, and set up
notation for later use.

Let Ω be a domain (an open connected set) in Cn . The Bergman space A2(Ω) is
the Hilbert space of holomorphic functions on Ω which are square integrable with
respect to the Lebesgue measure; see [Kra13] for a modern treatment. The space
A2(Ω) is a closed subspace of L2(Ω), the usual Hilbert space of measurable functions
square integrable with respect to the Lebesgue measure. The Bergman projection is the
orthogonal projection

BΩ ∶ L2(Ω) → A2(Ω).

The construction of Bergman spaces has a contravariant functorial character. If
ϕ ∶ Ω1 → Ω2 is a suitable holomorphic map of domains, we can associate a con-
tinuous linear mapping of Hilbert spaces ϕ♯ ∶ L2(Ω2) → L2(Ω1) defined for each
f ∈ L2(Ω2) by

ϕ♯( f ) = f ○ ϕ ⋅ det ϕ′ ,(1.8)

where ϕ′(z) ∶ Cn → Cn is the complex derivative of the map ϕ at z ∈ Ω1. It is clear
that ϕ♯ restricts to a map A2(Ω2) → A2(Ω1). We will refer to ϕ♯ as the pullback
induced by ϕ. It is not difficult to see that if ϕ is a biholomorphism, then the pullback
ϕ♯ is an isometric isomorphism of Hilbert spaces L2(Ω2) ≅ L2(Ω1), and restricts
to an isometric isomorphism A2(Ω2) ≅ A2(Ω1). This biholomorphic invariance of
Bergman spaces can be understood intrinsically by interpreting the Bergman space
as a space of top-degree holomorphic forms (see [Kob59] or [Kra13, p. 178 ff.]), and
the map ϕ♯ as the pullback map of forms induced by the holomorphic map ϕ. This
invariance can be extended to proper holomorphic mappings via Bell’s transformation
formula, and lies at the heart of classical applications of Bergman theory to the
boundary regularity of holomorphic maps; see [Bel81, Bel82, DF82, BC82].
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For 0 < p < ∞, define Lp-Bergman spaces Ap(Ω) of pth power integrable holo-
morphic functions on Ω. For p ≥ 1, these are Banach spaces when equipped with the
Lp-norm. An extensive theory of these spaces on the unit disc has been developed,
in analogy with the theory of Hardy spaces (cf. [DS04, HKZ00]). Unlike the L2-
Bergman space, the general Lp-Bergman space is not invariantly determined by the
complex structure alone, but also depends on the Hermitian structure of the domain
as a subset of Cn . An important question about these spaces is the boundedness of the
Bergman projection in the Lp-norm. After initial results were obtained for discs and
balls ([ZJ64, FR75]) the problem was studied on various classes of smoothly bounded
pseudoconvex domains using estimates on the kernel (e.g., [PS77, MS94]). On these
domains the Bergman projection is bounded in Lp for 1 < p < ∞. Many examples have
been given which show that there are domains on which the Bergman projection fails
to be bounded in Lp for certain p. See [Bar84, BŞ12, KP08, Hed02], in addition to
the singular Reinhardt domains already mentioned in [CZ16, EM16, EM17, Che17,
CKY20, Huo18, HW19]. This paper proves sharp Lp-regularity results on a large class
of singular Reinhardt domains.

1.6 Two examples of Theorem 1.2

We illustrate the application of Theorem 1.2 to two families of domains generalizing
the Hartogs triangle to higher dimensions, recapturing the results of [Zha20, Zha19].

Let k = (k1 , . . . , kn) be an n-tuple of positive integers. The domain

Hk =
⎧⎪⎪⎨⎪⎪⎩

z ∈ Dn ∶ ∣z1∣ k1 <
n
∏
j=2
∣z j∣ k j

⎫⎪⎪⎬⎪⎪⎭
,(1.9)

was introduced in [CKMM20] where it was called an elementary Reinhardt domain
of signature 1, and its Bergman kernel was computed explicitly. We see that Hk is a
monomial polyhedron as in (1.1), since

Hk = {z ∈ Cn ∶ ∣z1∣ k1 ∣z2∣ −k2⋯∣zn ∣ −kn < 1, and ∣z j∣ < 1 for 2 ≤ j ≤ n} .(1.10)

The matrix B whose rows are multi-indices occurring in the inequalities in (1.10) is
then given by

B =
⎛
⎜⎜⎜
⎝

k1 −k2 ⋯ −kn
0
⋮
0

In−1

⎞
⎟⎟⎟
⎠

, so that B−1 = 1
k1

⎛
⎜⎜⎜
⎝

1 k2 ⋯ kn
0
⋮
0

k1 ⋅ In−1

⎞
⎟⎟⎟
⎠

,

where In−1 is the identity matrix of size n − 1. The projective height of the first column

of B−1 is 1, and for 2 ≤ j ≤ n that of the jth column is
k1 + k j

gcd(k1 , k j)
, using (1.4). Therefore,

we get the complexity of Hk as (see (1.5)):

κ(Hk) =max{1, k1 + k2

gcd(k1 , k2)
, . . . , k1 + kn

gcd(k1 , kn)
} = max

2≤ j≤n
{

k1 + k j

gcd(k1 , k j)
} .
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Noting that the function x ↦ x
x−1 is decreasing for x > 1, and the function x ↦ x

x+1 is
increasing, by Theorem 1.2, the Bergman projection on Hk is bounded on Lp(Hk) if
and only if

max
2≤ j≤n

2(k1 + k j)
k1 + k j + gcd(k1 , k j)

< p < min
2≤ j≤n

2(k1 + k j)
k1 + k j − gcd(k1 , k j)

,

in consonance with the result of [Zha19].
The second family of domains, which we denote by Sk , gives a different type of

generalization of the Hartogs triangle. For an n-tuple of positive integers (k1 , . . . , kn)
we define:

Sk = {z ∈ Cn ∶ ∣z1∣ k1 < ∣z2∣ k2 < ⋅ ⋅ ⋅ < ∣zn ∣ kn < 1} .(1.11)

In [Par18], the Bergman kernel of Sk was explicitly computed for n = 3, and in [Che17]
the special case k = (1, 1, . . . , 1) was considered and it was shown that the Bergman
projection is Lp-bounded on S(1,1, . . . ,1) if and only if 2n

n+1 < p < 2n
n−1 . In [Zha20] the

Bergman kernel of Sk was computed in general, and the range of Lp-boundedness of
the Bergman projection was determined. Since Sk is a monomial polyhedron given
by

Sk = {z ∈ Cn ∶ for 1 ≤ j ≤ n − 1, ∣z j∣ k j ∣z j+1∣ −k j+1 < 1, and ∣zn ∣ kn < 1} ,(1.12)

the matrix B in the definition of complexity and its inverse B−1 are given as below:

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

k1 −k2 0 0 ⋯ 0
0 k2 −k3 0 ⋯ 0
⋮ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋮
0 0 ⋯ 0 kn−1 −kn
0 0 0 ⋯ 0 kn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, B−1 = 1
K

⎛
⎜⎜⎜⎜⎜
⎝

�1 �1 �1 ⋯ ⋯ �1
0 �2 �2 ⋯ ⋯ �2
0 0 �3 ⋯ ⋯ �3
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ⋯ 0 �n

⎞
⎟⎟⎟⎟⎟
⎠

,

where K = ∏n
j=1 k j and � j = K

k j
for 1 ≤ j ≤ n. Note that the height of the mth column

of B−1 is

hm =
∑m

j=1 � j

gcd(�1 , . . . , �m)
.

As m increases, the numerator ∑m
j=1 � j of hm increases and the denominator

gcd(�1 , . . . , �m) decreases, so hm increases with m. Therefore, the complexity of Sk is

κ(Sk) = max
1≤m≤n

hm = hn =
∑n

j=1 � j

gcd(�1 , . . . , �n)
.

Therefore, Theorem 1.2 shows that the Bergman projection on Sk is bounded on
Lp(Sk) if and only if

2∑n
j=1 � j

∑n
j=1 � j + gcd(�1 , . . . , �n)

< p <
2∑n

j=1 � j

∑n
j=1 � j − gcd(�1 , . . . , �n)

,

recapturing the main result of [Zha20].
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2 Notation

2.1 Elementwise operations on matrices

Let A be an m × n matrix. We denote the entry of A at the jth row and kth column
by a j

k , where 1 ≤ j ≤ m, 1 ≤ k ≤ n. We use two kinds of products of matrices: one is the
standard matrix multiplication, denoted by simple juxtaposition AB, or sometimes a
dot for clarity: A ⋅ B.

We also need a second type of multiplication, the elementwise, or Hadamard–Schur
product, in which the product of two m × n matrices A = (a j

k) and B = (b j
k) is the

m × n matrix C, for which we have c j
k = a j

k b j
k , i.e., the element at a certain position

of the product is the product of the corresponding entries of the factors. We denote
this by

C = A⊙ B.(2.1)

It will be important to distinguish between column and row vectors. We denote
the R-module of n × 1 column vectors by Rn , where R can be one of Z,Q,R,C. The
R-module of 1 × n row vectors is denoted by (Rn)†. We write the entries of the row
vector a (resp. the column vector b) as (a1 , . . . , an) (resp. as (b1 , . . . , bn)T ). We let 1
denote a 1 × n row vector, all whose entries are 1. The positive integer n will be clear
from the context:

1 = (1, . . . , 1). (n ones)(2.2)

Similarly, 1T is the n × 1 column vector, all whose entries are 1. Notice that these are
identity elements for the elementwise multiplication of row and column vectors.

For real matrices of the same size A, B, the notations

A ≻ B, A ⪰ B, A ≺ B, A ⪯ B(2.3)

stand for the natural elementwise order, e.g., A ≻ B denotes that a j
k > b j

k . Note that this
elementwise ordering of matrices is distinct from other notions of matrix ordering,
such as positive (semi-)definiteness.

2.2 Vector and matrix powers

If α is a row vector of size n, and z is column vector of the same size, we will denote

zα = zα1
1 . . . zαn

n =
n
∏
j=1

zα j
j ,

whenever the powers zα j
j make sense, and where we use the convention 00 = 1. For

example, we could have α ∈ (Zn)† and z ∈ Cn such that for each j such that α j < 0,
we have z j /= 0. In this context α is typically called a multi-index and zα a (Laurent)
monomial. We also set

φα(z) = zα .(2.4)

Informally, we think of a monomial function as a “vector power” of a vector variable.
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We will also use “matrix powers.” Recall from the previous subsection that for an
n × n matrix A, we denote the element at the jth row and kth column of A by a j

k . Let
a j denote the jth row of A, so that each row can be thought of as a multi-index. We
then define for a column vector z of size n,

zA =
⎛
⎜
⎝

za1

⋮
zan

⎞
⎟
⎠
=
⎛
⎜⎜
⎝

za1
1

1 za1
2

2 ⋯za1
n

n
⋮

zan
1

1 zan
2

2 ⋯zan
n

n

⎞
⎟⎟
⎠

(2.5)

provided each of the monomials is defined. We will also set

ΦA(z) = zA,(2.6)

which is called a monomial map.
For row vectors α, β, square matrices A, B and column vectors z, w such that the

vector and matrix powers are well-defined, the following simple algebraic properties
of monomials and monomial mappings can be easily verified. Not unexpectedly, these
mirror familiar rules of elementary algebra for exponents.

(z ⊙w)α = zα ⋅wα(2.7a)

(z ⊙w)A = zA ⊙wA(2.7b)

zα+β = zα ⋅ zβ(2.7c)

zA+B = zA ⊙ zB(2.7d)

(zA)α = zαA i.e., φα ○ΦA = φαA(2.7e)

(zA)B = zBA i.e., ΦB ○ΦA = ΦBA(2.7f)

2.3 Two other maps

(1) The (elementwise) exponential map

exp ∶ Cn → (C∗)n , exp(z) = (ez1 , . . . , ezn)T(2.8)

can be thought of as the exponential map associated to the abelian Lie group
(C∗)n . Notice that for α ∈ (Zn)† and A ∈ Mn(Z) we have:

exp(z)α = eαz and exp(z)A = exp(Az).(2.9)

(2) The multi-radius map

ρ ∶ Cn → Rn z ↦ (∣z1∣ , . . . , ∣zn ∣)T(2.10)

restricts to a surjective group homomorphism (C∗)n → (R+)n , and satisfies, for
α ∈ (Zn)† and A ∈ Mn(Z)

ρ(z)α = ∣zα ∣ and ρ(z)A = ρ(zA).(2.11)

https://doi.org/10.4153/S0008414X21000079 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000079


Lp-regularity of the Bergman projection on quotient domains 741

3 Geometry of monomial polyhedra

The main goal of this section is Theorem 3.12, which gives a “uniformization” of a
monomial polyhedron by a proper holomorphic monomial map. This construction
is crucial for everything that follows. We also show that the Bergman kernel of a
monomial polyhedron is rational, although this fact is not used in the sequel.

3.1 The matrix B

The definition of the domain U as given in (1.1) can be succinctly rewritten, using the
notation introduced in the previous Section 2 as

U = {z ∈ Cn ∶ ρ(z)B is defined and ρ(z)B ≺ 1T} ,(3.1)

where B ∈ Mn(Q) is the matrix whose jth row is b j . In the next proposition, we show
that the matrix B in the definition of U can always be taken to be an integer matrix
which is monotone in the sense of Collatz (see [Col66, p. 376 ff.]):

Proposition 3.2 In the representation (3.1) of the bounded monomial polyhedron U
of Theorem 1.2, we may assume without loss of generality (after switching two rows, if
necessary) that

B ∈ Mn(Z), det B > 0, and B−1 ⪰ 0.(3.3)

Proof Let B ∈ Mn(Q) be the matrix whose rows are b1 , . . . , bn , where for 1 ≤ j ≤ n,
the vector b j ∈ (Qn)†, b j = (b j

1 , . . . , b j
n) is as in (1.1), which can be written in the form

(3.1) using the notation introduced above. Notice that if any one of the vectors b j is 0,
then U is empty, since the inequality ρ(z)b j < 1 becomes 1 < 1.

If δ j > 0 is a common denominator for the rational numbers b j
1 , . . . , b j

n , then notice
that for a z ∈ Cn , the quantity ρ(z)b j

is defined and less than 1 if and only if ρ(z)δ j b j

is defined and less than 1. Therefore, we can assume without loss of generality that
the matrix B has integer entries. Note also that interchanging the rows of B simply
corresponds renumbering the equations in (1.1), so we can further assume without
loss of generality that det B ≥ 0.

Now, assuming that B ∈ Mn(Z) and det B ≥ 0, suppose for a contradiction that
det B = 0. We will show that U is unbounded, which will contradict the hypothesis
of Theorem 1.2. Since det B = 0, there is a nonzero vector x ∈ Rn such that Bx = 0. Let
r ∈ U be such that r ≻ 0 (such an r exists since U is nonempty, open, and Reinhardt).
Consider the curve f ∶ R→ Cn parametrized by

f (t) = r ⊙ exp(tx),

where exp is as in (2.8). Observe that

f (t)B = rB ⊙ exp(tx)B = rB ⊙ exp(tBx) = rB ,

since Bx = 0. Therefore,

ρ( f (t))B = ρ( f (t)B) = rB .
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But since r ∈ U , it follows that ρ( f (t))B = rB ≺ 1T , so in fact f is a curve in U . As
x ∈ Rn is nonzero, some component xk of x is nonzero, so that the kth component of
the curve f, given by fk(t) = rk e txk is unbounded as t → ±∞. Thus, U contains the
unbounded image of the curve f, showing that U is unbounded if det B = 0. Since by
assumption U is bounded, we have det B ≠ 0. So det B > 0.

To show that B−1 ⪰ 0, we let A be the adjugate of B, i.e., A = adj B, and we show that

ΦA((D∗)n) ⊂ U ,

where ΦA is the monomial map as in (2.6), and (D∗)n is the product of n punc-
tured unit disks. Since U is bounded this implies that ΦA((D∗)n) is bounded. Let
w ∈ ΦA((D∗)n) and let z ∈ (D∗)n be such that zA = w. Notice that z ∈ (D∗)n is
equivalent to 0 ≺ ρ(z) ≺ 1T , and we also have zA = w ∈ (C∗)n . By applying (2.11) and
Cramer’s rule, we find

ρ(w)B = (ρ(z)A)B = ρ(z)BA = ρ(z)(det B)I = (∣z1∣ det B , . . . , ∣zn ∣ det B)T
.

As det B > 0 we find that ρ(w)B ≺ 1T , i.e., w ∈ U , yielding the desired inclusion
ΦA((D∗)n) ⊂ U .

If A /⪰ 0 then there exist some 1 ≤ j, k ≤ n such that a j
k < 0. Let z ∈ (D∗)n be such

that all its components, except the kth, are 1/2. Then the jth component of ΦA(z) is
given by

za j
= za j

k
k ⋅

1
2m , where m = ∑

1≤�≤n
�≠k

a j
� .

As a j
k < 0 we see that as zk → 0, the monomial za j

is unbounded, showing that
ΦA((D∗)n) is unbounded. Therefore, the boundedness of U guarantees that A =
adj B ⪰ 0.

To complete the proof note that A ⪰ 0 implies that B−1 = (det B)−1 adj B ⪰ 0. ∎

Due to Proposition 3.2, we can easily establish a more concrete bound on monomial
polyhedra:

Corollary 3.4 A bounded monomial polyhedron is contained in the unit polydisc Dn

and its boundary contains the unit torus Tn = {∣z j∣ = 1, 1 ≤ j ≤ n}.

Proof For a bounded monomial polyhedron U , let z ∈ U so that ρ(z)B ≺ 1, where
B is as in Proposition 3.2. Since B−1 ⪰ 0, we have for any r ∈ Rn with, 0 ⪯ r ≺ 1 that
rB−1 ≺ 1. Therefore, we have (ρ(z)B)B−1 = ρ(z) ≺ 1, i.e., z ∈ Dn . The second assertion
follows on noting that in the log absolute representation (1.7) of U , the origin (which
corresponds to the unit torus of Cn) is a boundary point. ∎

In the Definition (3.1), it is clear that the matrix B is not unique: permuting the
order of inequalities, does not change to domain U , and multiplying for each j the
row b j by the same rational δ j > 0 also gives exactly the same U . Therefore, for any
permutation matrix P and any positive diagonal matrix D with rational entries, the
domains corresponding to B and DPB are the same. The following proposition shows
that the complexity κ(U ) is independent of the matrix B and depends only on U .
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Proposition 3.5 The complexity κ(U ) is independent of the choice of the representing
matrix B in (3.1).

Proof Notice that switching two rows of B does not change the complexity of U ,
we can assume that the conditions (3.3) hold for the representing matrix. In the log-
absolute coordinates ξk = log ∣zk ∣ the domain U is represented by the equations (1.7),
which define the open polyhedral cone CU = {Bξ ≺ 0} ⊂ Rn . We claim that for each
1 ≤ j ≤ n, the hyperplane H j = {b j ξ = 0} determined by the jth row of the matrix B
is a face of CU , i.e., the intersection CU ∩H j /= ∅. Indeed, since by Proposition 3.2,
B−1 ≻ 0 and B is a linear automorphism of Qn , it is easy to verify that the image
B−1(CU ) is precisely the negative orthant {η ≺ 0} ⊂ Rn . But the negative orthant
clearly has faces {η j = 0}, j = 1, . . . , n, which corresponds to the faces H j of CU .

Now, if C ∈ Mn(Q) is another matrix (satisfying (3.3)) such that

U = {z ∈ Cn ∶ ρ(z)C is defined and ρ(z)C ≺ 1T} ,

then the faces of CU are also given by {c j ξ = 0}, 1 ≤ j ≤ n, so that there exists a
permutation σ ∈ Sn such that

{c j ξ = 0} = Hσ( j) = {bσ( j)ξ = 0}

for each 1 ≤ j ≤ n. Then the transposes (c j)T and (bσ( j))T are both normal to Hσ( j),
so that there is a δ j ∈ Q/{0} such that c j = δ jbσ( j). Therefore, C = DPB, where D is the
diagonal matrix diag(δ1 , . . . , δn) and P is the permutation matrix whose jth column is
eσ( j). Note that P−1 is also a permutation matrix, and hence P−1 ≻ 0. Therefore, since
C−1 = B−1P−1D−1 and we have C−1 ≻ 0, B−1 ≻ 0 by Proposition 3.2, we have D ≻ 0 since
B−1P−1 ≻ 0. Therefore,

max
1≤ j≤n

h(C−1e j) = max
1≤ j≤n

h(B−1P−1D−1e j) = max
1≤ j≤n

h( 1
δ j

B−1eσ( j))

= max
1≤ j≤n

h(B−1eσ( j)) = max
1≤ j≤n

h(B−1e j).

This shows that κ(U ) as in 1.5 is well-defined, being independent of the matrix B. ∎

3.2 The Jacobian determinant of ΦA

For a subset E ⊆ {1, . . . , n}, define

Cn
E ∶= {z ∈ Cn ∶ zk ≠ 0 for all k ∈ E} =

n
∏
k=1

Ωk ,(3.6)

where Ωk = C if k /∈ E and Ωk = C∗ if k ∈ E. Then for P ∈ Mn(Q) define

K(P) = {1 ≤ k ≤ n ∶ p j
k < 0 for some 1 ≤ j ≤ n},(3.7)

that is,K(P) is the set of indices of those columns of P which have at least one negative
entry. Notice that if P ∈ Mn(Z) the matrix power zP is defined for z ∈ Cn if and only if
z ∈ Cn

K(P), i.e., in computing zP we do not raise zero to a negative power. Similarly, for
P ∈ Mn(Q) and a vector r ∈ Rn with r j ≥ 0, the rational power rP is defined provided
r ∈ Rn

K(P) for exactly the same reason.
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The following analog of the calculus formula d
dx xn = nxn−1 may be found in [NP09,

Lemma 4.2], and will be needed frequently in the sequel.

Lemma 3.8 For any A ∈ Mn(Z) and any z ∈ Cn
K(A) we have

det Φ′A(z) = det A ⋅ z1A−1 ,(3.9)

where ΦA(z) = zA and Φ′A(z) ∶ Cn → Cn is the complex derivative of ΦA at the point
z ∈ Cn

K(A).

Proof First assume that z is such that zk≠0 for each k. For 1 ≤ j, k ≤ n, the entry in

the jth row and kth column of the complex derivative matrix Φ′A(z) is ∂za j

∂zk
, where

recall that a j denotes the multi-index in (Zn)† whose entries constitute the jth row of
A. If a j

k ≠ 0 then

∂za j

∂zk
= a j

k za j
k−1

k

n
∏
�=1
�≠k

za j
�

� = a j
k ⋅

za j

zk
.

If a j
k = 0, then ∂za j

∂zk
= 0, so in fact the above formula holds for all j, k. Now, by the

representation of a determinant as an explicit polynomial in the matrix entries, we
find

det Φ′A(z) = ∑
σ∈Sn

sgn(σ)
n
∏
j=1

∂za j

∂zσ( j)
= ∑

σ∈Sn

sgn(σ)
n
∏
j=1

⎛
⎝

a j
σ( j)

za j

zσ( j)

⎞
⎠

= ∑
σ∈Sn

sgn(σ)
n
∏
j=1

a j
σ( j) ⋅

∏n
j=1 za j

∏n
j=1 zσ( j)

= det A ⋅
∏n

j=1 za j

z1
,

where we have used the fact that
n
∏
j=1

zσ( j) =
n
∏
j=1

z j = z1 . Also,

n
∏
j=1

za j
=

n
∏
j=1

n
∏
k=1

za j
k

k =
n
∏
k=1

z∑
n
j=1 a j

k
k = z1A.

Therefore,

det Φ′A(z) = det A ⋅ z1A

z1
= det A ⋅ z1A−1 ,

for z such that zk≠0 for each k. The result follows by analytic continuation. ∎

3.3 A branched covering of the domain U

In this section, we will construct a quotient map under a group action from a
domain with simple geometry (a product of some copies of discs with some copies
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of punctured discs) to the domain U , and this construction will be fundamental in
the proof of Theorem 1.2. We first specify what we mean by a quotient map.

Definition 3.10 Let Ω1 , Ω2 ⊂ Cn be domains, let Φ ∶ Ω1 → Ω2 be a proper holo-
morphic mapping. Let Γ ⊂ Aut(Ω1) be a group of biholomorphic automorphisms of
Ω1. We will say that Φ is of quotient type with group Γ if there exist closed lower-
dimensional complex-analytic subvarieties Z j ⊂ Ω j , j = 1, 2 such that Φ restricts to a
covering map

Φ ∶ Ω1/Z1 → Ω2/Z2

and for each z ∈ Ω2/Z2, the action of Γ on Ω1 restricts to a transitive action on the fiber
Φ−1(z). Other names in the literature for such proper maps include regular and Galois
proper maps. The group Γ will be referred to as the group of deck transformations of
Φ (sometimes called the Galois group).

Notice that the restricted map Φ ∶ Ω1/Z1 → Ω2/Z2 becomes a so called regular
covering map (see [Mas91, p. 135 ff.]), i.e., the covering map gives rise to a biholo-
morphism between Ω2/Z2 and the quotient (Ω1/Z1)/Γ, where it can be shown that Γ
acts properly and discontinuously on Ω1/Z1. Further, it follows that Γ is in fact the full
group of deck transformations of the covering map Φ ∶ Ω1/Z1 → Ω2/Z2, and that this
covering map has exactly ∣Γ∣ sheets. Notice that by analytic continuation, the relation
Φ ○ σ = Φ holds for each σ in Γ on all of Ω1.

Now let B be a matrix, let the set K(B) ⊂ {1, . . . , n} be as in (3.7), the set of indices
of those columns of B which have at least one negative entry. Define a subset L(B) ⊂
{1, . . . , n} by setting

L(B) = {1 ≤ � ≤ n ∶ ak
� ≠ 0 for some k ∈ K(B)}.(3.11)

We define the domain Dn
L(B) = Dn ∩Cn

L(B), i.e.,

Dn
L(B) = {z ∈ Dn ∶ z�≠0 for all � ∈ L(B)}.

Notice that Dn
L(B) is the product of some copies of the unit disc with some copies of

the punctured unit disc.

Theorem 3.12 Let U be the domain of Theorem 1.2, and assume (without loss of
generality) that U is represented as in (3.1), where the matrix B = (b j

k) satisfies the
conditions (3.3), and let A = adj B. Then the mononial map ΦA of (2.6) maps Dn

L(B)
onto U , and the map so defined

ΦA ∶ Dn
L(B) → U(3.13)

is a proper holomorphic map of quotient type with group Γ consisting of the automor-
phisms σν ∶ Dn

L(B) → Dn
L(B) given by

σν(z) = exp (2πiA−1ν) ⊙ z(3.14)

for ν ∈ Zn . Further, the group Γ has exactly det A elements.

Some related results may be found in [NP20, Zwo99].
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Proof By the conditions (3.3), we have A = (det B)B−1 ⪰ 0, so ΦA is defined on all
of Dn

L(B). We first claim that the image ΦA(Dn
L(B)) is contained in Cn

K(B). Indeed, if
z ∈ ΦA(Dn

L(B)), then z�≠0 if ak
�≠0 for some k ∈ K(B). Therefore the kth element of the

vector zA, i.e.,

zak
= zak

1
1 . . . zak

n
n(3.15)

is nonzero, so zA ∈ Cn
K(B) . Now notice that

U = {z ∈ Cn ∶ ρ(z)B is defined and ρ(z)B ≺ 1T} ⊂ Cn
K(B) ,

since ρ(z)B (and zB) are defined if and only if z ∈ Cn
K(B) . Therefore, as in the proof of

Proposition 3.2, we have

(ρ(z)A)B = ρ(z)BA = ρ(z)(det B)I ≺ 1,

for each point z ∈ Dn
L(B) since det B > 0. This shows that ΦA ∶ Dn

L(B) → U is a well
defined holomorphic map.

We now show that, if we think of ΦA as a map from Cn to itself (recall that A ⪰ 0),
then we have

Φ−1
A (U ) ⊂ Dn

L(B) .(3.16)

If z ∈ Cn is such that ΦA(z) = zA ∈ U , then ρ(zA)B is well defined and ρ(zA)B ≺ 1T .
The fact that ρ(zA)B is well defined is equivalent to zA ∈ Cn

K(B), i.e., for each k ∈ K(B)
we have the entry zak≠0. Now from (3.15), we see that whenever ak

�≠0 (so ak
� ≥ 1 since

A ⪰ 0), we must have z�≠0, i.e., z ∈ Cn
L(B). The other condition ρ(zA)B ≺ 1T on the

point z shows that

ρ(z)(det B)I = ρ(z)BA = ρ(zA)B ≺ 1T .

Since det B > 0, this shows that ρ(z) ≺ 1T , i.e., z ∈ Dn . Together these conditions show
that z ∈ Dn

L(B), proving the desired inclusion of (3.16).
We can now show that ΦA ∶ Dn

L(B) → U is a proper holomorphic map. Let K ⊂ U

be compact. Since the topology induced on K from U is the same as that induced
from Cn , it follows that K is closed in Cn (and bounded). As ΦA is continuous,
Φ−1

A (K) is closed in Cn and in fact Φ−1
A (K) ⊆ Dn

L(B) by (3.16), so that it is bounded
as well. Thus, Φ−1

A (K) is compact for every compact K ⊂ U , which is to say ΦA
is proper.

Now we want to verify that the proper holomorphic map ΦA ∶ Dn
L(B) → U is of

quotient type in the sense of Definition 3.10 with group Γ = {σν ∶ ν ∈ Zn}, with σν as
in (3.14) above. Let

Z1 = Z2 = {z1 = 0} =
n
⋃
j=1
{z ∈ Cn ∶ z j = 0}
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be the union of the coordinate hyperplanes, which is an analytic variety in Cn of
codimension one. Notice that the formula (3.9) shows that the set of regular points of
the map ΦA (i.e., the set of points {z ∈ Dn

L(B) ∶ det Φ′A(z)≠0}) contains Dn
L(B)/Z1, and

from the fact that ΦA(z) = zA, we see that the regular values of ΦA contains the open
set U /Z2. Notice that both Dn

L(B)/Z1 and U /Z2 are open subsets of the “algebraic
torus” (C∗)n , and it is clear that ΦA maps (C∗)n into itself (and is even a group homo-
morphism, if (C∗)n is given the group structure from the elementwise multiplication
operation ⊙). Since a proper holomorphic map is a covering map restricted to its
regular points, it now follows that ΦA ∶ Dn

L(B)/Z1 → U /Z2 is a holomorphic covering
map. We need to show that it is regular.

Let w ∈ U /Z2 have polar representation w = ρ(w) ⊙ exp(iθ), where θ ∈ Rn . Let
z ∈ Dn

L(B) be such that ΦA(z) = zA = w. Comparing the radial and angular parts, one
such preimage is

z = ρ(w)A−1
⊙ exp (iA−1θ) .

Now notice that the angular vector θ is known only up to an additive ambiguity of
2πZn , i.e., two values of θ corresponding to the same w differ by 2πν for some integer
vector ν ∈ Zn . Therefore two different preimages z, z′ of the point w (corresponding
to the choices θ and θ + 2πν of the angular vector in the polar representation of w) are
related by

z′ = ρ(w)A−1
⊙ exp (iA−1(θ + 2πν)) = ρ(w)A−1

⊙ exp (iA−1θ) ⊙ exp (2πiA−1ν)
= exp (2πiA−1ν) ⊙ z = σν(z),

which shows that the group Γ acts transitively on the fiber Φ−1(w).
Now we want to show that the group Γ has exactly det A elements. Consider the

map ψ ∶ Zn → Γ given by ψ(ν) = σν . For any ν, μ ∈ Zn and any z ∈ Dn
L(B) we find that

ψ(ν + μ)(z) = σν+μ(z) = exp (2πiA−1(ν + μ)) ⊙ z
= exp (2πiA−1ν) ⊙ (exp (2πiA−1 μ) ⊙ z)
= σν ○ σμ(z)
= ψ(ν) ○ ψ(μ)(z).

Hence, ψ ∶ Zn → Γ is a surjective group homomorphism, and so we have an
isomorphism

ψ ∶ Zn/ker ψ → Γ.

given by ψ([ν]) = σν where [ν] ∈ Zn/ker ψ is the class of ν ∈ Zn . Notice that ν ∈
ker ψ if and only if exp(2πiA−1ν) = 1T . This means that A−1ν ∈ Zn , so it follows that
ker ψ = A(Zn). Therefore, the group Γ is isomorphic to the quotient Zn/A(Zn) by the
isomorphism ψ ∶ Zn/A(Zn) → Γ

To complete the proof, it is sufficient to recall that for any matrix A ∈ Mn(Z) with
det A≠0 we have

∣Zn/A(Zn)∣ = ∣det A∣ .(3.17)
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For completeness, we give two proofs of (3.17), neither of which unfortunately
avoids high technology. The first (see [NP20] and [Zwo99, Theorem 2.1]) is based
on the Smith Canonical Form of an integer matrix (see [Mun84, p. 53 ff.]): for
any A ∈ Mn(Z) there exist P, Q ∈ GLn(Z) and a diagonal matrix D ∈ Mn(Z), say
D = diag(δ1 , . . . , δn), such that A = PDQ. Consider the automorphism of Zn given
by x ↦ P−1x. This maps A(Zn) to D(Zn) isomorphically, and therefore leads to an
isomorphismZn/A(Zn)withZn/D(Zn), butZn/D(Zn) is isomorphic to the product
abelian group ∏n

j=1 Z/δ jZ, which has exactly ∏n
j=1 ∣δ j ∣ elements. On the other hand

note that

∣det A∣ = ∣det(PDQ)∣ = ∣det P det D det Q∣ =
;;;;;;;;;;;
±1 ⋅

n
∏
j=1

δ j ⋅ ±1
;;;;;;;;;;;

,

which completes the first proof.
The second proof of (3.17) is geometric, and based on noticing that the inclusion of

abelian groups A(Zn) ↪ Zn gives rise to a covering map of tori

p ∶ Rn/A(Zn) → Rn/Zn(3.18)

given by x + A(Zn) ↦ x +Zn . If we endow Rn with the Euclidean metric (thought
of as a Riemannian metric), we obtain quotient (flat) Riemannian structures on
both Rn/A(Zn) and Rn/Zn , so that the covering map (3.18) is actually a local
isometry. Therefore, the number of sheets of this covering map coincides with the
ratio vol(Rn/A(Zn))/vol(Rn/Zn). But we know that vol(Rn/Zn) is 1, being also the
volume of the unit parallelepiped, and similarly vol(Rn/A(Zn)) is the volume of the
image of the unit parallelepiped under the action of A, which is therefore ∣det A∣. On
the other hand, by covering space theory, we see that the number of sheets is equal
to the order of the group of deck transformations of the covering p, which is in turn
isomorphic to π1(Rn/Zn)/p∗π1(Rn/A(Zn)) = Zn/A(Zn). ∎

3.4 Rationality of the Bergman kernel of U

For a domain Ω ⊂ Cn , denote by Rat (Ω) the rational functions of Cn restricted to Ω.
An element f of Ω is defined on Ω/Z f , where Z f is an affine algebraic variety in Cn .
Algebraically, Rat (Ω) is a field, and is isomorphic to the field of rational functions
C(z1 , . . . , zn) in n indeterminates. The map ΦA ∶ Dn

L(B) → U of (3.13) induces a
mapping of fields

Φ∗A ∶ Rat (U ) → Rat (Dn
L(B))

given by Φ∗A( f ) = f ○ΦA. Denote by k the image

k = Φ∗A(Rat (U )) ⊂ Rat (Dn
L(B)) .(3.19)
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Then k is clearly a subfield of Rat(Dn
L(B)). The following lemma records a special case

of a very general phenomenon:

Lemma 3.20 The field extension Rat(Dn
L(B))/k is Galois, and the map

Θ ∶ Γ → Gal(Rat (Dn
L(B)) /k) , Θ(σ)( f ) = f ○ σ−1 ,(3.21)

where f ∈ Rat(Dn
L(B)), σ ∈ Γ, is an isomorphism of the group of deck transformations of

the proper map ΦA with the Galois group of the extension.

Proof Denote by w j the jth component of the map ΦA, where 1 ≤ j ≤ n. Notice
that w j can be identified with the function Φ∗A(π j) = π j ○ΦA where π j is the jth
coordinate function on U . Since Rat(U ) = C(π1 , . . . , πn), the field k is generated
over C by the functions w1 , . . . , wn , i.e., k = C(w1 , . . . , wn). Denoting the coordinate
functions onDn

L(B) by z1 , . . . , zn , we see that Rat(Dn
L(B)) = k(z1 , . . . , zn). To show that

Rat(Dn
L(B))/k is Galois, we need to show that each z j is algebraic over k, and all the

conjugates of z j over k are already present in Rat(Dn
L(B)).

Notice that by definition for each 1 ≤ j ≤ n, we have w j = za j
1

1 . . . za j
n

n = za j
, which

follows from the fact that w = ΦA(z) = zA. Therefore we have

zdet A⋅I = zadj A⋅A = (zA)adj A = wadj A.

Denoting the jth row of the integer matrix adj A by c j we see that zdet A
j = wc j ∈

k, so that z j is a root of the polynomial tdet A −wc j ∈ k[t]. Further, all the roots
of this polynomial (which are of the form ω ⋅ z j for a (det A)th root of unity,
ω ∈ C) are clearly in Rat(Dn

L(B)). It follows that Rat(Dn
L(B)) is Galois over the

subfield k.
For each σ ∈ Γ, it is clear that Θ(σ) is an automorphism of the field Rat(Dn

L(B)).
We need to show that it fixes k. But for h = Φ∗A g ∈ k, where g ∈ Rat (U ),
we have

Θ(σ)h = h ○ σ−1 = g ○ΦA ○ σ−1 = g ○ΦA = h,

since σ is a deck transformation of ΦA. It follows that Θ(σ) ∈ Gal(Rat(Dn
L(B))/k). It is

easily verified by direct computation that Θ is an injective group homomorphism. To
show that Θ is surjective, for γ ∈ Gal(Rat(Dn

L(B))/k), we find a deck transformation
θ ∈ Γ such that γ( f ) = f ○ θ, so that γ = Θ(θ−1). Let θ j ∈ Rat(Dn

L(B)) be the function
θ j = γ(z j), where z j ∈ Rat(Dn

L(B)) is the jth coordinate function. As we saw above, we
have θ j = ω j ⋅ z j , where ω j is a (det A)th root of unity. Then θ = (θ1 , . . . , θn) defines
a diagonal unitary mapping of Cn and therefore maps Dn

L(B) (a product of discs and
punctured discs) into itself. Also, the jth component of ΦA ○ θ is given by

θa j
= θa j

1
1 . . . θa j

n
n = γ(z1)a j

1 . . . γ(zn)a j
n = γ(za j

) = γ(w j) = w j ,
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which is precisely the jth component of ΦA. Therefore, ΦA ○ θ = ΦA, and θ ∈ Γ.
Finally, for a rational function f = f (z1 , . . . , zn) ∈ Rat(Dn

L(B)), we have

γ( f ) = f (γ(z1), . . . , γ(zn)) = f (θ1 , . . . , θn) = f ○ θ .

∎

Proposition 3.22 The Bergman kernel of U is a rational function.

Proof Choosing a local continuous branch θ j of arg w j for each coordinate of
w ∈ U , we can write w = ρ(w) ⊙ exp(iθ) for θ ∈ Rn . Then ψ(w) = wA−1 = ρ(w)A−1 ⊙
exp(iA−1θ) is a local inverse to the proper holomorphic map ΦA ∶ Dn

L(B) → U . Since
ΦA is of the quotient type, it follows that the local branches of Φ−1

A are {σ ○ ψ ∶ σ ∈ Γ}.
By Theorem 3.12, the map σ ∶ Dn

L(B) → Dn
L(B) is the restriction of a unitary linear map

on Cn , so, noting that the argument behind the proof of (3.9) also applies for (locally
defined) rational matrix powers, we have

det(σ ○ ψ)′(w) = det σ ′ ⋅ det ψ′(w) = det σ ⋅ det A−1 ⋅w1A−1−1

= det σ ⋅ det A−1 ⋅ (wA−1
)1 ⋅ 1

w1
= det σ ⋅ ψ(w)1

det A ⋅w1
.

Therefore, by the Bell transformation formula, for z ∈ Dn
L(B) and w ∈ U , the

Bergman kernels KU and KD
n
L(B)
= KDn are related by

det Φ′A(z) ⋅ KU (ΦA(z), w) = ∑
σ∈Γ

KDn (z, σ ○ ψ(w)) ⋅ det(σ ○ ψ)′(w)

= 1
det A ⋅w1

⋅ ∑
σ∈Γ

KDn (z, σ ○ ψ(w)) ⋅ det σ ⋅ ψ(w)1 .

For a fixed z ∈ Dn
L(B), consider the function L on Dn

L(B) given by

L(ζ) = ∑
σ∈Γ

KDn (z, σ(ζ)) ⋅ det σ ⋅ ζ1 ,

where z = (z1 , . . . , zn) ∈ Dn
L(B). Recalling that

KDn(z, w) = 1
πn

n
∏
j=1

1
(1 − z jw j)2 ,(3.23)

we see that L ∈ Rat(Dn
L(B)), and

KU (zA, w) = 1
(det A)2 ⋅ z1A−1 ⋅w1

⋅ L(ψ(w)).

We now claim that L ∈ k, where k ⊂ Rat(Dn
L(B)) is as in (3.19). Since the exten-

sion Rat(Dn
L(B))/k is Galois, it suffices to show that for each field-automorphism

τ ∈ Gal(Rat(Dn
L(B))/k), we have τ(L) = L. But by Lemma 3.20, for each τ ∈

Gal(Rat(Dn
L(B))/k) there is a θ ∈ Γ such that τ(L) = L ○ θ. Notice that thanks to (3.14),
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we can think of the map θ ∶ Dn
L(B) → Dn

L(B) as a linear map of Cn represented by a
diagonal matrix. Therefore, we have (θ(ζ))1 = det θ ⋅ ζ1 . Consequently

τ(L)(ζ) = L(θ(ζ)) = ∑
σ∈Γ

KDn (z, σ(θ(ζ))) ⋅ det σ ⋅ (θ(ζ))1

= ∑
σ∈Γ

KDn (z, (σ ○ θ)(ζ)) ⋅ det σ ⋅ det θ ⋅ ζ1

= ∑
σ∈Γ

KDn (z, (σ ○ θ)(ζ)) ⋅ det(σ ○ θ) ⋅ ζ1

= L(ζ),

establishing the claim.
Now since L ∈ k, there is a function R(z, ⋅) ∈ Rat(U ) such that L = Φ∗AR(z, ⋅), i,e,

L(ζ) = R(z, ΦA(ζ)) = R(z, ζ A).

Therefore, we have

KU (zA, w) = 1
(det A)2 ⋅ z1A−1 ⋅w1

⋅ R(z, ΦA(ψ(w))

= 1
(det A)2 ⋅ z1A−1 ⋅w1

⋅ R(z, w),

which shows that for each fixed z ∈ Dn
L(B), the function KU (z, ⋅) is rational. By the

Reinhardt symmetry of KU , there is a function K̃ such that

KU (z, w) = K̃(z1w1 , . . . , znwn) = K̃(z ⊙w).

Since for a fixed z, the function w ↦ K̃(z ⊙w) is rational, it follows that the function
t ↦ K̃(t) = K̃(t1 , . . . , tn) is also rational. Therefore, the function KU is rational on
U ×U . ∎

4 Transformation of Lp-Bergman spaces under quotient maps

4.1 Definitions

In order to state our results, we introduce some terminology:

Definition 4.1 We say that a linear map T between Banach spaces (E1 , ∥⋅∥ 1) and
(E2 , ∥⋅∥ 2) is a homothetic isomorphism if it is a continuous bijection (and therefore
has a continuous inverse) and there is a constant C > 0 such that for each x ∈ E1 we
have

∥Tx∥ 2 = C ∥x∥ 1 .

Remark If T is a homothetic isomorphism between Banach spaces, then 1
∥T∥ ⋅ T is an

isometric isomorphism of Banach spaces, so a homothetic isomorphism is simply the
product of an isometric isomorphism and a scalar operator. In particular, a homothetic
isomorphism between Hilbert spaces preserves angles, and in particular orthogonality
of vectors.
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The following definition and facts are standard:

Definition 4.2 Let Ω ⊂ Cn be a domain, let λ > 0 be a continuous function (the
weight), and let 0 < p < ∞. Then we define

Lp(Ω, λ) = { f ∶ Ω → C measurable ∶ ∫
Ω
∣ f ∣ p λ dV < ∞}

and

Ap(Ω, λ) = { f ∶ Ω → C holomorphic ∶ ∫
Ω
∣ f ∣ p λ dV < ∞} ,

where the latter is called a weighted Bergman space. If p ≥ 1, then each of Lp(Ω, λ) and
Ap(Ω, λ) is a Banach space with the natural weighted norm, and Ap(Ω, λ) is a closed
subspace of Lp(Ω, λ).

We will make extensive use of the following notion:

Definition 4.3 Given a group G of biholomorphic automorphisms of a domain Ω ⊂
Cn , and a space F of functions on Ω, we denote by [F]G the subspace of F consisting
of functions which are G-invariant in the following sense

[F]G = { f ∈ F ∶ f = σ ♯( f ) for all σ ∈ G},(4.4)

where σ ♯ is the pullback induced by σ as in (1.8).

Remark Interpreting F as a space of holomorphic forms on Ω by associating f ∈ F
with the form f dz1 ∧ ⋅ ⋅ ⋅ ∧ dzn , this simply says that the forms in [F]G are invariant
under pullback by elements of G.

4.2 Transformation of Bergman spaces

With the above definitions, we are ready to state and prove the following elementary
facts. For completeness, we give details of the proofs.

Proposition 4.5 Let Ω1 , Ω2 be domains in Cn , and let Φ ∶ Ω1 → Ω2 be a proper
holomorphic map of quotient type with group Γ ⊂ Aut(Ω1). Then for 1 < p < ∞, the
pullback map Φ♯ gives rise to a homothetic isomorphism

Φ♯ ∶ Lp(Ω2) → [Lp (Ω1 , ∣det Φ′∣ 2−p)]Γ .(4.6)

This restricts to a homothetic isomorphism

Φ♯ ∶ Ap(Ω2) → [Ap (Ω1 , ∣det Φ′∣ 2−p)]Γ .(4.7)

Proof Let f be a function on Ω2, and let g = Φ♯ f be its pullback to Ω1, then we have
for each σ ∈ Γ that

σ ♯(g) = σ ♯(Φ♯ f ) = (Φ ○ σ)♯ f = Φ♯ f = g ,

where we have used the contravariance of the pullback (Φ ○ σ)♯ = σ ♯ ○Φ♯ and the fact
that Φ ○ σ = Φ which follows since the action of Γ on Ω2 restricts to actions on each
of the fibers. This shows that the range of Φ♯ consists of Γ-invariant functions. Special
cases of this invariance were already noticed [MSRZ13, CKY20].
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To complete the proof of (4.6) we must show that

(i) for each f ∈ Lp(Ω2),

∥Φ♯ f ∥ p
Lp(Ω1 ,∣det Φ′∣2−p) = ∣Γ∣ ⋅ ∥ f ∥ p

Lp(Ω2),(4.8)

(ii) The image Φ♯(Lp(Ω2)) is precisely [Lp (Ω1 , ∣det Φ′∣ 2−p)]Γ .

Let Z1 , Z2 be as in the Definition 3.10 of proper holomorphic maps of quotient type,
i.e., Φ is a regular covering map from Ω1/Z1 to Ω2/Z2. Let U be an open set in Ω2/Z2
which is evenly covered by Φ, and let V be an open set of Ω1/Z1 which is mapped
biholomorphically by Φ onto U. Then the inverse image Φ−1(U) is the finite disjoint
union⋃σ∈Γ σV . Therefore, if f ∈ Lp(Ω2) is supported in U, then Φ♯ f is supported in
⋃σ∈Γ σV , and we have

∥Φ♯ f ∥ p
Lp(Ω1 ,∣det Φ′∣2−p)

= ∫
Ω1
∣ f ○Φ ⋅ det Φ′∣ p ∣det Φ′∣ 2−pdV

= ∑
σ∈Γ
∫

σ V
∣ f ○Φ∣ p ∣det Φ′∣ 2dV = ∑

σ∈Γ
∫

U
∣ f ∣ pdV = ∣Γ∣ ⋅ ∥ f ∥ p

Lp(Ω2) ,

where we have used the change of variables formula applied to the biholomorphic map
Φ∣σ V along with the fact that the real Jacobian determinant of the map Φ is equal to
∣det Φ′∣ 2.

For a general f ∈ Lp(Ω2), modify the proof as follows. There is clearly a collection
of pairwise disjoint open sets {U j} j∈J in Ω2/Z2 such that each U j is evenly covered by
Φ and Ω2/⋃ j∈J U j has measure zero. Set f j = f ⋅ χ j , where χ j is the indicator function
of U j , so that each f j ∈ Lp(Ω2) and f = ∑ j f j . Also, the functions Φ♯ f j have pairwise
disjoint supports in Ω1. Therefore we have

∥Φ♯ f ∥ p
Lp(Ω1 ,∣det Φ′∣2−p) = ∑

j∈J
∥Φ♯ f j∥ p

Lp(Ω1 ,∣det Φ′∣2−p)

= ∣Γ∣∑
j∈J
∥ f j∥ p

Lp(Ω2) = ∣Γ∣ ∥ f ∥ p
Lp(Ω2) .

To complete the proof, we need to show that Φ♯ is surjective in both (4.6) and (4.7).
Let g ∈ [Lp (Ω1 , ∣det Φ′∣ 2−p)]Γ . Let {U j} j∈J be as in the previous paragraph, and set
g j = g ⋅ χΦ−1(U j), where χΦ−1(U j) is the indicator function of Φ−1(U j). Notice that g j ∈
[Lp (Ω1 , ∣det Φ′∣ 2−p)]Γ . Let Vj ⊂ Φ−1(U j) be such that Φ maps Vj biholomorphically
to U j , and let Ψ ∶ U j → Vj be the local inverse of Φ onto Vj . Define

f j = Ψ♯(g j).(4.9)
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We claim that f j is defined independently of the choice of Vj . Indeed, any other
choice is of the form σVj for some σ ∈ Γ and the corresponding local inverse is σ ○Ψ.
But we have

(σ ○Ψ)♯g j = Ψ♯ ○ σ ♯g j = Ψ♯g j = f j ,

where we have used the fact that σ ♯g j = g j since since g j ∈ [Lp(Ω1 , ∣det Φ′∣ 2−p)]Γ .
Now we define f = ∑ j f j . Notice that the f j have pairwise disjoint support, and it is

easily checked that Φ♯ f = g. This establishes that (4.6) is a homothetic isomorphism.
It is clear that if f is holomorphic on Ω2, then Φ♯ f is holomorphic on Ω1,

therefore, Φ♯ maps Ap(Ω2) into [Ap(Ω1 , ∣det Φ′∣ 2−p)]Γ . Now, in the argument in the
previous paragraph showing that the image Φ♯(Lp(Ω2)) is [Lp(Ω1 , ∣det Φ′∣ 2−p)]Γ ,
local definition of the inverse map (4.9) shows that if g ∈ [Ap(Ω1 , ∣det Φ′∣ 2−p)]Γ , then
the f constructed by this procedure is holomorphic, and therefore lies in Ap(Ω2). This
completes the proof of the proposition. ∎

4.3 Bell transformation law for quotient maps

The following is a refinement (for the class of proper holomorphic maps of quotient
type) of a classic result of Bell (see [Bel81, Theorem 1], [Bel82, Equation 2.2]).

Proposition 4.10 Let Ω1 , Ω2 be domains in Cn and let Φ ∶ Ω1 → Ω2 be a proper
holomorphic map of quotient type with group Γ ⊂ Aut(Ω1). Then the following diagram
commutes:

L2(Ω2)
Φ♯JJJ→
≅

[L2(Ω1)]
Γ

KKKKL
BΩ2

KKKKL
BΩ1

A2(Ω2)
Φ♯JJJ→
≅

[A2(Ω1)]
Γ .

(4.11)

In order to prove the proposition, we need the following simple lemma, which
shows that the Bergman projection interacts well with the action of automorphisms:

Lemma 4.12 Let Ω ⊂ Cn be a domain, and let BΩ be its Bergman projection operator.
(1) If σ ∈ Aut(Ω) is a biholomorphic automorphism, then

BΩ ○ σ ♯ = σ ♯ ○ BΩ .(4.13)

(2) If G ⊂ Aut(Ω) is a group of biholomorphic automorphisms, then BΩ restricts to the
orthogonal projection operator from [L2(Ω)]G onto [A2(Ω)]G .

Proof For (1), note that σ ♯ is a unitary operator on L2(Ω) and BΩ is an orthogonal
projection on L2(Ω), therefore the unitarily similar operator Q = σ ♯ ○ BΩ ○ (σ ♯)−1

is also an orthogonal projection. Since σ ♯ (and therefore its inverse) leaves A2(Ω)
invariant, it follows that the range of Q is A2(Ω). Therefore, Q = BΩ .

For (2), let f ∈ [L2(Ω)]G . Then using (4.13), we have for σ ∈ G

σ ♯(BΩ f ) = BΩ(σ ♯( f )) = BΩ f ,
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which shows that BΩ f ∈ [A2(Ω)]G , so that BΩ maps the G-invariant functions
[L2(Ω)]G into the G-invariant holomorphic functions [A2(Ω)]G . Since BΩ restricts
to the identity on [A2(Ω)]G , it follows that the range of BΩ is [A2(Ω)]G . Observe that

ker (BΩ ∣[L2(Ω)]G) ⊆ ker BΩ = A2(Ω)⊥ ⊆ ([A2(Ω)]G)⊥ ,

which shows that kernel of the restriction of BΩ to [L2(Ω)]G is orthogonal to its range,
and therefore an orthogonal projection. ∎

Proof of Proposition 4.10 By Proposition 4.5, the Φ♯ represented by the top (resp.
bottom) horizontal arrow is a homothetic isomorphism from the Hilbert space
L2(Ω2) (resp. A2(Ω2)) onto the Hilbert space [L2(Ω1)]Γ (resp. [A2(Ω1)]Γ). There-
fore, Φ♯ preserves angles and in particular orthogonality. Now consider the map
P ∶ [L2(Ω1)]Γ → [A2(Ω1)]Γ defined by

P = Φ♯ ○ BΩ2 ○ (Φ♯)−1 ,(4.14)

which, being a composition of continuous linear maps, is a continuous linear mapping
of Hilbert spaces. Notice that

P2 = Φ♯ ○ BΩ2 ○ (Φ♯)−1 ○Φ♯ ○ BΩ2 ○ (Φ♯)−1 = Φ♯ ○ BΩ2 ○ (Φ♯)−1 = P,

so P is a projection in [L2(Ω1)]Γ , with range contained in [A2(Ω1)]Γ . Since (Φ♯)−1

and Φ♯∣A2(Ω) are isomorphisms, and BΩ2 is surjective, it follows that P is a projection
onto [A2(Ω1)]Γ . We claim that P is in fact the orthogonal projection on to [A2(Ω1)]Γ ,
i.e., the kernel of P is ([A2(Ω1)]Γ)⊥, the orthogonal complement of [A2(Ω1)]Γ in
[L2(Ω1)]Γ . Since in formula (4.14), the maps (Φ♯)−1 and Φ♯ are isomorphisms, it
follows that f ∈ ker P if and only if (Φ♯)−1 f ∈ ker BΩ2 . But ker BΩ2 = A2(Ω2)⊥, since
the Bergman projection is orthogonal. It follows that ker P = Φ♯(A2(Ω2)⊥). Notice
that Φ♯, being a homothetic isomorphism of Hilbert spaces, preserves orthogonal-
ity, and maps A2(Ω2) to [A2(Ω1)]Γ isomorphically, therefore, Φ♯((A2(Ω2))⊥) =
([A2(Ω1)]Γ)⊥, which establishes the claim.

Therefore, we have shown that P = Φ♯ ○ BΩ2 ○ (Φ♯)−1 is the orthogonal projection
from [L2(Ω1)]Γ to the subspace [A2(Ω1)]Γ . To complete the proof, we only need to
show that the restriction of the Bergman projection BΩ1 to the Γ-invariant subspace
[L2(Ω1)]Γ is also the orthogonal projection from [L2(Ω1)]Γ onto [A2(Ω1)]Γ . But this
follows from Lemma 4.12 above.

Thus P = BΩ1 ∣[L2(Ω1)]Γ , and the commutativity of (4.11) follows. ∎

4.4 Transformation of the Bergman projection in Lp-spaces

The following result will be our main tool on studying Lp-regularity of the Bergman
projection in the domain U :

Theorem 4.15 Let Ω1 , Ω2 be bounded domains in Cn , let Φ ∶ Ω1 → Ω2 be a proper
holomorphic map of quotient type with group Γ ⊂ Aut(Ω1). Let p ≥ 1. The following two
assertions are equivalent:
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(1) The Bergman projection BΩ2 gives rise to a bounded operator mapping

Lp(Ω2) → Ap(Ω2).
(2) The Bergman projection BΩ1 gives rise to a bounded operator mapping

[Lp (Ω1 , ∣det Φ′∣ 2−p)]Γ → [Ap (Ω1 , ∣det Φ′∣ 2−p)]Γ .

If one of the conditions (1) or (2) holds (and therefore both hold), then the follow-
ing diagram commutes, where BΩ j , j = 1, 2 denote the extension by continuity of the
Bergman projections:

Lp(Ω2)
Φ♯JJJ→
≅

[Lp (Ω1 , ∣det Φ′∣ 2−p)]Γ

KKKKL
BΩ2

KKKKL
BΩ1

Ap(Ω2)
Φ♯JJJ→
≅

[Ap (Ω1 , ∣det Φ′∣ 2−p)]Γ

(4.16)

Remark Statement (1) in Theorem 4.15 means the following: the restriction of the
Bergman projection to a dense subspace of Lp(Ω2) given by

BΩ2 ∶ L2(Ω2) ∩ Lp(Ω2) → A2(Ω2)
is bounded in the Lp-norm, i.e., there is a C > 0 such that for all f ∈ L2(Ω2) ∩ Lp(Ω2),

∥BΩ2 f ∥ Lp(Ω2) ≤ C ∥ f ∥ Lp(Ω2).

By continuity BΩ2 extends to a bounded linear operator from Lp(Ω2) to Ap(Ω2).
Similarly, Statement (2) means the following: the restriction of the Bergman

projection to the dense subspace of [Lp (Ω1 , ∣det Φ′∣ 2−p)]Γ given by

BΩ1 ∶ [L2(Ω1)]Γ ∩ [Lp (Ω1 , ∣det Φ′∣ 2−p)]Γ → A2(Ω1)

is bounded in the Lp (Ω1 , ∣det Φ′∣ 2−p)-norm, i.e., there is a C > 0 such that for all
f ∈ [L2(Ω1)]Γ ∩ [Lp (Ω1 , ∣det Φ′∣ 2−p)]Γ ,

∥BΩ1 f ∥ Lp(Ω1 ,∣det Φ′∣2−p) ≤ C ∥ f ∥ Lp(Ω1 ,∣det Φ′∣2−p) .

We now see by Lemma 4.12 that

BΩ1 ([Lp (Ω1 , ∣det Φ′∣ 2−p)]Γ) ⊆ [Ap (Ω1 , ∣det Φ′∣ 2−p)]Γ ,

where we have used continuity to extend the operator.

Proof Proposition 4.5 says that Φ♯ is a homothetic isomorphism, mapping

Lp(Ω2) → [Lp(Ω1 , ∣det Φ′∣ 2−p)]Γ ,

and that it restricts to a homothetic isomorphism on the holomorphic subspaces.
Similarly, (Φ♯)−1 has the same properties with the domains and ranges switched.

First assume Statement (2). From the diagram (4.11), we write

BΩ2 = (Φ♯)−1 ○ BΩ1 ○Φ♯ .(4.17)
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By hypothesis, BΩ1 is a bounded linear operator mapping

[Lp(Ω1 , ∣det Φ′∣ 2−p)]Γ → [Ap(Ω1 , ∣det Φ′∣ 2−p)]Γ .

Consequently, this composition maps Lp(Ω2) boundedly into Ap(Ω2), giving state-
ment (1). A similar argument shows that (1) implies (2).

For the commutativity of the diagram, rewrite (4.17) and see that on the subspace
Lp(Ω2) ∩ L2(Ω2) of Lp(Ω2) we have the relation

Φ♯ ○ BΩ2 = BΩ1 ○Φ♯ .(4.18)

Using the hypothesis (for the BΩ j ) and Proposition 4.5 (for Φ♯), we see that each of
the four maps in the diagram (4.16) extends to the respective domain in that diagram
and is continuous. By continuity, (4.18) continues to hold for the extended maps. This
shows that the diagram (4.16) is commutative. ∎

Remark Diagram (4.11) is a special case of diagram (4.16) for p = 2.

5 The unboundedness of the Bergman projection on U

Using Proposition 5.1 and the results of Section 4, we will prove in this section the
following partial form of Theorem 1.2:

Proposition 5.1 The Bergman projection is not bounded in Lp(U ), provided

p ≥ 2κ(U )
κ(U ) − 1

,(5.2)

where κ(U ) ∈ N is the complexity of the domain U , as defined in Section 1.1.

5.1 Reinhardt domains

Recall some elementary facts about holomorphic function theory on Reinhardt
domains (which are always assumed to be centered at the origin). Let Ω ⊂ Cn be a
Reinhardt domain. Every holomorphic function f ∈ O(Ω) admits a unique Laurent
expansion

f = ∑
α∈(Zn)†

aα( f )φα ,(5.3)

where for α ∈ (Zn)†, φα(z) is the Laurent monomial zα as in (2.4), and where
aα( f ) ∈ C is the αth Laurent coefficient. The Laurent series of f converges absolutely
and uniformly to f on every compact subset of Ω.

When f lies in the Bergman space A2(Ω), we can say more about the series (5.3): it
is actually an orthogonal series converging in the Hilbert space A2(Ω), and the family
of monomials

{ φα

∥φα∥ L2
∶ φα ∈ L2(Ω)}(5.4)
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forms an orthonormal basis of A2(Ω). In particular, if f ∈ A2(Ω) then the Laurent
series (5.3) can have aα( f )≠0 only when φα ∈ L2(Ω). It is possible to generalize some
of these results to the spaces Ap(Ω); see [CEM19].

5.2 A criterion for unboundedness of the Bergman projection

We now give an easily checkable condition which shows Lp-Bergman unboundedness
on any Reinhardt domain.

Lemma 5.5 Let Ω be a bounded Reinhardt domain in Cn , and let p ≥ 2. Suppose that
there is a multi-index β ∈ (Zn)† such that

φβ ∈ L2(Ω)/Lp(Ω).(5.6)

Then the Bergman projection BΩ fails to map Lp(Ω) → Lp(Ω).

Proof Define subsets Jβ ,Kβ ⊂ {1, 2,⋯, n} with

Jβ = { j ∶ β j ≥ 0}, Kβ = { k ∶ βk < 0},

and let

f (w) = ∏
j∈Jβ

wβ j
j × ∏

k∈Kβ

(wk)−βk .

Then f is a bounded function on Ω, and therefore f ∈ Lp(Ω). We now show that
BΩ f = Cφβ for some C≠0. Since φβ /∈ Lp(Ω), this will show that BΩ fails to map the
element f ∈ Lp(Ω) to a function in Lp(Ω). This will imply that BΩ is not bounded
in the Lp-norm, since if it were so, it would extend to a map from the dense subspace
Lp(Ω) ∩ L2(Ω) to the whole of Lp(Ω).

Let γ = (∣β1∣ , . . . , ∣βn ∣) ∈ Nn be the multi-index obtained by replacing each entry of
β by its absolute value. Write the polar form of w as w = ρ(w) ⊙ exp(iθ) for a θ ∈ Rn .
Then f (w) = ρ(w)γ e iβθ , and for α ∈ (Zn)†, we have

φα(w) = wα = (ρ(w) ⊙ exp(iθ))α = ρ(w)α e iαθ .

Further, denote by ∣Ω∣ = {ρ(z) ∶ z ∈ Ω} ⊂ Rn the Reinhardt shadow of Ω, and let Tn

be the unit torus of n dimensions. Then, for each α ∈ Zn , we have

⟨BΩ f , φα⟩A2(Ω) = ⟨ f , φα⟩L2(Ω) = ∫Ω
f φα dV

= ∫
Ω

rγ e iβθ ⋅ rα e−iαθ dV = ∫∣Ω∣ r
γ+α r1dr × ∫

Tn
e i((β−α)⋅θ)dθ

×
⎧⎪⎪⎨⎪⎪⎩

= 0 if α /= β
> 0 if α = β.

Since (5.4) is an orthonormal basis of A2(Ω) it follows that all the Fourier coefficients
of BΩ f with respect this basis vanish, except the βth coefficient, which is nonzero.
Therefore, BΩ f = Cφβ ∉ Lp(Ω), for some constant C≠0. ∎
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5.3 Preliminaries

In this section (and the following Section 6), we will use the following default notation
and conventions:
(1) B ∈ Mn(Z) is a matrix such that the domain U is represented as in (3.1),
(2) B satisfies the properties (3.3), which is not a loss of generality by Proposition 3.2.
(3) We have A = adj B.
Observe that then by Theorem 3.12, the monomial map ΦA is a proper holomorphic
map of quotient type.

We note the following computation:

Proposition 5.7 The upper bound in (1.3) is given by

2κ(U )
κ(U ) − 1

=min
j

2 ⋅ 1 ⋅ a j

1 ⋅ a j − gcd(a j)
,(5.8)

where, as usual, a j is the jth column of the matrix A, where notation is as above.

Proof Recall the definition of the projective height function as in (1.4). Then we have,
by projective invariance, for each 1 ≤ j ≤ n:

h(B−1e j) = h(det B ⋅ B−1e j) = h j(adj B ⋅ e j) = h(Ae j) = h(a j).

Since A ≻ 0, it follows that a j is a vector of non-negative integers, and the vector
1

gcd(a j) a j is such that its entries are coprime non-negative integers. Therefore,

h(B−1e j) = h(a j) = h(
1

gcd(a j)
a j) =

n
∑
k=1

∣ak
j ∣

gcd(a j)
=

1 ⋅ a j

gcd(a j)
.

So

κ(U ) =max
j

h(B−1e j) =max
j

1 ⋅ a j

gcd(a j)
.

Since the function x ↦ 2x
x − 1

is strictly decreasing for x > 1, we have

2κ(U )
κ(U ) − 1

=
2 ⋅max j

1 ⋅ a j

gcd(a j)

max j
1 ⋅ a j

gcd(a j)
− 1
=min

j

2 ⋅ 1 ⋅ a j

gcd(a j)
1 ⋅ a j

gcd(a j)
− 1
=min

j

2 ⋅ 1 ⋅ a j

1 ⋅ a j − gcd(a j)
.

∎

5.4 p-allowable multi-indices

Let β ∈ (Zn)† be a multi-index. We say that β is p-allowable on a Reinhardt domain
Ω if we have that the monomial φβ ∈ Lp(Ω), i.e.,

∫
Ω
∣φβ ∣ pdV < ∞.
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We denote the collection of p-allowable multi-indices on Ω by Sp(Ω). We first
compute the p-allowable multi-indices on the domain U . Recall that the conventions
introduced in Section 5.3 are in force.
Proposition 5.9 Let β ∈ (Zn)† and p > 0. Then β ∈Sp(U ) if and only if

(p ⋅ β + 2 ⋅ 1)A ≻ 0.(5.10)

Proof By Theorem 3.12, ΦA ∶ Dn
L(B) → U is a proper holomorphic map of quotient

type with det A sheets. Therefore, by Proposition 4.5 (in particular (4.8)) we see that

∫
U
∣φβ ∣ pdV = 1

∣Γ∣ ∫D
n
L(B)

∣Φ♯A(φβ)∣ dV

= 1
det A ∫D

n
L(B)

∣φβ ○ΦA∣ p ∣det Φ′A∣ 2dV

= 1
det A ∫D

n
L(B)

∣zβ⋅A∣ p ∣det A ⋅ z1⋅A−1 ∣ 2dV(z)

using (2.7f) and (3.9)

= (2π)ndet A∫(0,1)n
rp⋅βA ⋅ r2⋅1⋅A−21 ⋅ r1dr

= (2π)ndet A∫(0,1)n
rp⋅βA+2⋅1⋅A−1dr

= (2π)ndet A
n
∏
j=1
∫

1

0
rp⋅βa j+2⋅1a j−1

j dr j ,

where a j ∈ Zn is the jth column of A. It is clear that ∫U ∣φβ ∣ pdV < ∞ if and only if
p ⋅ βa j + 2 ⋅ 1a j > 0 for each 1 ≤ j ≤ n. This completes the proof. ∎
Remark The above proposition can be seen as a special case of [Zwo00, Lemma
2.2.1].

We now consider the important case p = 2, so that S2(Ω) corresponds to the
monomials in the Bergman space. For a matrix A ∈ Mn(Z), none of whose columns
are zero, denote by gcd(a j) the greatest common divisor of the entries in the jth
column of A. We then let

g(A) = (gcd(a1), . . . , gcd(an)) ∈ (Zn)†(5.11)

be the integer row vector whose jth entry is the greatest common divisor of the jth
column of A.
Proposition 5.12
(1) Let β ∈ (Zn)†. Then β ∈S2(U ) if and only if

(β + 1)A ⪰ g(A).(5.13)

(2) For 1 ≤ j ≤ n let Π j be the integer hypersurface determined by equality in the jth
entry of (5.13), that is

Π j = {β ∈ (Zn)† ∶ (β + 1)a j =
n
∑
k=1
(βk + 1)ak

j = gcd(a j)} .(5.14)

https://doi.org/10.4153/S0008414X21000079 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000079


Lp-regularity of the Bergman projection on quotient domains 761

Then we have

Π j ∩S2(U )≠∅.

The following Lemma will be needed in the proof of part (2) of the proposition.

Lemma 5.15 Let P be an m × n integer matrix of rank m for positive integers n ≥ m,
and let q ∈ (Zn)†. Then there is an x ∈ (Zm)† such that xP ⪰ q.

Proof LetO = {x ∈ (Rm)† ∶ xP ⪰ q}. ThenO is an unbounded convex set, so at least
one of the coordinates x1 , . . . , xm is unbounded on O. Rename the coordinates so that
x1 is unbounded. It follows that the projection

{x1 ∈ R ∶ (x1 , . . . , xm) ∈ O}

of O on the coordinate axis x1 is an unbounded convex set, and therefore a ray or the
whole of R. For an integer N let CN = {x1 = N} ∩O, which is naturally thought of as a
subset of (Rm−1)†. Therefore, either there is an N1 such that CN is nonempty if N ≥ N1
or there is an N2 such that CN is nonempty if N ≤ N2. Assuming the former, we see
that the sets CN are convex subsets of (Rm−1)† and similar to each other, i.e., they
are dilations of the same set. As the size of each CN becomes infinite as N →∞, for
large N, the set CN contains cubes of arbitrarily large size, where a cube is a product
of intervals of the same size in each coordinate. As soon as CN contains a cube of side
(1 + ε) for some ε > 0, we see that there is a point M ∈ (Zm−1)† that belongs to CN . It
follows that the point (N , M) ∈ Z × (Zm−1)† belongs to O. ∎

Proof of Proposition 5.12 (1) If p = 2, the condition (5.10) becomes 2(β + 1)A ≻ 0,
which is equivalent to

(β + 1)A ≻ 0.(5.16)

Now the jth entry of the row vector on the left of the above equation is given
by (β + 1)a j = ∑n

k=1(βk + 1)ak
j , which is a positive integer divisible by gcd(a j) =

gcd(a1
j , . . . , an

j ). It follows that (5.16) holds if and only if

(β + 1)a j ⪰ gcd(a j),

which is precisely the content of (5.13).
(2) Fix 1 ≤ j ≤ n. By the Euclidean algorithm, Π j≠∅. Choose y ∈ Π j . Define a Z-

module homomorphism ϕ ∶ (Zn)† → Z by setting ϕ(x) = xa j , i.e.,

ϕ(x1 , . . . , xn) =
n
∑
k=1

xk ak
j .

We then see that Π j = y + ker ϕ. Since Z is a principal ideal domain, ker ϕ is a free
Z-submodule of (Zn)† of rank ≤ n (see [DF04, Theorem 4, Chapter 12 (p. 460)]).
Moreover as ϕ is surjective, the quotient Z-module (Zn)†/ker ϕ is isomorphic to Z.
It can be seen, by tensoring with Q for example, that the rank of ker ϕ is n − 1. Let
D be an (n − 1) × n integer matrix whose rows are a Z-basis of ker ϕ. Then the map
f ∶ (Zn−1)† → (Zn)† given by f (t) = y + tD is a parametrization of Π j , i.e., it is one-
to-one and its range is precisely Π j . To complete the proof of the result, it is sufficient
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to show that f −1(S2(U )) is a nonempty subset of (Zn−1)†. Notice now that an integer
vector t ∈ f −1(S2(U )), i.e., f (t) ∈S2(U ) ∩Π j if and only if

(y + tD + 1)A ⪰ g(A), i.e., tDA ⪰ g(A) − (y + 1)A.

By Lemma 5.15, there is an integer vector t ∈ (Zn−1)† that satisfies the above system of
inequalities. This concludes the proof of part (2) ∎

5.5 Proof of Proposition 5.1

Recall that p satisfies (5.2). Now by (5.8),

p ≥ 2κ(U )
κ(U ) − 1

=min
j

2 ⋅ 1 ⋅ a j

1 ⋅ a j − gcd(a j)
,

so that there is a J with 1 ≤ J ≤ n such that

p ≥ 2 ⋅ 1 ⋅ aJ

1 ⋅ aJ − gcd(aJ)
.(5.17)

By part 2 of Proposition 5.12, there is an β ∈ (Zn)† which lies in S2(U ) ∩ΠJ . Such a
β satisfies:

(β + 1)aJ = gcd(aJ),(5.18)

and also

(β + 1)A ⪰ g(A),(5.19)

with g(A) as in (5.11). By construction, β ∈S2(U ). We now claim that β /∈Sp(U ).
By Lemma 5.5 this shows that the Bergman projection is not bounded in Lp(U ). To
establish the claim we note that the Jth entry of the row vector (p ⋅ β + 2 ⋅ 1)A is

(p ⋅ β + 2 ⋅ 1)aJ = p ⋅ (βk + 1) ⋅ aJ + (2 − p) ⋅ 1 ⋅ aJ

= p ⋅ gcd(aJ) + (2 − p) ⋅ 1 ⋅ aJ

= p ⋅ (gcd(aJ) − 1 ⋅ aJ) + 2 ⋅ 1 ⋅ aJ ,(5.20)

where in the second line we have used (5.18). Thanks to the inequality (5.17) it follows
that the quantity in (5.20) is not positive. It follows by Proposition 5.9 that β is not in
Lp(U ), which establishes the claim and completes the proof.

6 Boundedness of the Bergman projection

In this section, we obtain the following part of Theorem 1.2:

Proposition 6.1 Let

2 ≤ p < 2κ(U )
κ(U ) − 1

,(6.2)

then the Bergman projection is bounded on Lp(U ).
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We begin by recalling the following fact, which will be the main “hard analysis”
ingredient of the proof:

Proposition 6.3 The Bergman projection on the polydisc Dn gives rise to a bounded
operator BDn ∶ Lp(Dn) → Ap(Dn) for all 1 < p < ∞.

Proof For the polydisc Dn , the Bergman projection has the well-known integral
representation

BDn f (z) = ∫
Dn

K(z, w) f (w)dV(w), f ∈ L2(Dn),

where K is the Bergman kernel of the polydisc, which is easily shown to be given by
the well-known formula (3.23).

The case n = 1 of Propsition 6.3 is by now a staple result in Bergman theory,
going back to [ZJ64], where it was proved using the Lp-boundedness of a Calderón–
Zygmund singular integral operator. Another approach, based on Schur’s test for Lp-
boundedness of an integral operator, was used in [FR75]. An alternative proof of the
main estimate needed in this method can be found in [Axl88] and in the monograph
[DS04].

Since Dn is a product domain, the theorem in higher dimensions follows from a
textbook application of Fubini’s theorem to the case n = 1. ∎

6.1 Two lemmas

The following two simple lemmas will be used to deduce monomially weighted
estimates starting from Proposition 6.3:

Lemma 6.4 Let 1 ≤ p < ∞, let n ≥ 1, and let γ ∈ (Rn)† be such that γ ≻ −2 ⋅ 1. Then
there is a C > 0 such that for any f ∈ Ap(Dn) we have

∫
Dn
∣ f ∣ pργ dV ≤ C ∫

Dn
∣ f ∣ pdV ,(6.5)

where as usual, ρ(z)γ = ∏n
j=1 ∣z j∣ γ j .

Proof Throughout this proof, C will denote a constant that depends only on p and
γ. The actual value of C may change from line to line.

Proceed by induction on the dimension n. First consider the base case n = 1. We
have, by the Bergman inequality (cf. [DS04, Theorem 1]) that there is a C > 0 such that

sup
∣z∣< 1

2

∣ f (z)∣ ≤ C ∥ f ∥ Lp(D)

for all f ∈ Ap(D). Therefore, for f ∈ Ap(D) we have the estimate

∫∣z∣< 1
2

∣ f (z)∣ p ∣z∣ γdV(z) ≤ sup
∣z∣< 1

2

∣ f (z)∣ p ⋅ ∫∣z∣< 1
2

∣z∣ γdV(z) < C ⋅ ∥ f ∥ p
Lp(D),(6.6)

where we have used the fact that since γ > −2 we have

∫∣z∣< 1
2

∣z∣ γdV(z) = 2π∫
1
2

0
rγ+1dr < ∞.
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On the other hand,

∫ 1
2 ≤∣z∣<1

∣ f (z)∣ p ∣z∣ γdV(z) ≤ C ∥ f ∥ p
Lp(D),(6.7)

where we have used the fact that sup
1
2 ≤∣z∣<1

∣z∣ γ < ∞.

Adding (6.6) and (6.7), the estimate (6.5) follows in the case n = 1.
For the general case, assume the result established in n − 1 dimensions. Write the

coordinates of Cn as z = (z′ , zn) ∈ Cn−1 ×C, and γ = (γ′ , γn) ∈ Rn−1 ×R. Then, using
Fubini’s theorem

∫
Dn
∣ f ∣ p ργdV = ∫

Dn−1
ρ(z′)γ′ (∫

D

∣ f (z′ , zn)∣ p ∣zn ∣ γn dV(zn)) dV(z′)

≤ C ∫
Dn−1

ρ(z′)γ′ (∫
D

∣ f (z′ , zn)∣ pdV(zn)) dV(z′)

≤ C ∫
D

(∫
Dn−1

∣ f (z′ , zn)∣ p ρ(z′)γ′dV(z′)) dV(zn)

≤ C ∫
D

(∫
Dn−1

∣ f (z′ , zn)∣ pdV(z′)) dV(zn)

= C ∫
Dn
∣ f (z′ , zn)∣ pdV(z′ , zn),

which proves the result. ∎

Lemma 6.8 Let 1 ≤ p < ∞, let n ≥ 1 and let λ ∈ Nn be a multi-index of non-negative
integers. Then there is a C > 0 such that for all f ∈ Ap(Dn) we have the estimate:

∫
Dn
∣ f ∣ pdV ≤ C ∫

Dn
∣φλ f ∣ pdV ,(6.9)

where φλ(z) = zλ is as in (2.4).

Proof We need only to prove the case in which λ = (1, 0, . . . , 0), so that φλ(z) = z1.
Once this special case is established, the general result follows by repeatedly applying
it and permuting the coordinates.

In what follows, C will denote some positive constant that depends only on p and
λ, where the actual value of C may change from line to line. First, consider the one
dimensional case, so that we have to show that for a holomorphic function f on the
disc we have

∫
D

∣ f (z)∣ pdV(z) ≤ C ∫
D

∣z f (z)∣ pdV(z),

where the left hand side is assumed to be finite (and therefore the right hand side is
finite.) First note that we obviously have

∫ 1
2 ≤∣z∣<1

∣ f (z)∣ pdV(z) ≤ 2p ∫ 1
2 ≤∣z∣<1

∣z f (z)∣ pdV(z).(6.10)
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On the other hand, if ∣z∣ = 1
2 , we have

∣ f (z)∣ p = 2p ∣z f (z)∣ p

≤ 2p sup
∣w∣≤ 1

2

∣w f (w)∣ p (maximum principle)

≤ C ∫
D

∣w f (w)∣ pdV(w) (Bergman’s inequality)

The maximum principle now implies

sup
∣z∣≤ 1

2

∣ f (z)∣ p ≤ C ∫
D

∣z f (z)∣ pdV(z),

so that we have

∫∣z∣≤ 1
2

∣ f (z)∣ pdV(z) ≤ C ∫
D

∣z f (z)∣ pdV(z).(6.11)

Combining (6.10) and (6.11) the result follows for n = 1.
For the higher-dimensional case, denote the coordinates of Cn as (z1 , z′) where

z′ = (z2 , . . . , zn). Then for f ∈ Ap(Dn) we have

∫
Dn
∣ f (z1 , z′)∣ pdV(z1 , z′) = ∫

Dn−1
(∫

D

∣ f (z1 , z′)∣ pdV(z1)) dV(z′)

≤ C ∫
Dn−1

(∫
D

∣z1 f (z1 , z′)∣ pdV(z1)) dV(z′)

= C ∫
Dn
∣z1 f (z1 , z′)∣ pdV(z1 , z′).

∎

6.2 Determination of Γ-invariant subspaces

In this section and Section 6.3, we use the notation established in Section 5.3 above,
so that B and A have the same meaning as there. The group Γ is as in Theorem 3.12:
the deck transformation group associated to the map ΦA. We will now determine the
Γ-invariant subspaces of holomorphic functions, in the sense of (4.4):

Proposition 6.12 Let α ∈ (Zn)†. Then the monomial φα(z) = zα belongs to the space
[O ((D∗)n)]Γ of Γ-invariant holomorphic functions on (D∗)n if and only if there is a
β ∈ (Zn)† such that

α = βA− 1.

Proof Recall that, by definition, the monomial φα is invariant under the group
action of Γ if and only if σ ♯ν(φα) = (φα ○ σν)det σ ′ν = φα for all σν ∈ Γ, where for
ν ∈ Zn , the automorphism σν ∈ Γ is as in (3.14). Denote the rows of A−1 by c1 , . . . , cn .
By the linearity of σν

det σ ′ν = det σν =
n
∏
j=1

e2πic j ν = e2πi∑n
j=1 c j ν = e2πi(1A−1)ν ,
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for ν ∈ Zn . Also, for z ∈ (D∗)n and ν ∈ Zn ,

φα ○ σν(z) = φα(exp(2πiA−1ν) ⊙ z) = (exp(2πiA−1ν) ⊙ z)α = e2πiαA−1 νzα .

Therefore,

σ ♯ν(φα)(z) = e2πiαA−1 ν ⋅ zα ⋅ e2πi1A−1 ν = e2πi(α+1)A−1 ν ⋅ zα = e2πi(α+1)A−1 ν ⋅ φα(z).
(6.13)

Hence, φα ∈ [O(Dn
L(B))]Γ if and only if σ ♯ν(φα) = φα for all ν ∈ Zn , i.e.,

e2πi(α+1)A−1 ν ⋅ zα = zα

for all z ∈ (D∗)n and ν ∈ Zn , i.e., if and only if (α + 1)A−1ν ∈ Z for all ν ∈ Zn .
Now if there is β ∈ (Zn)† such that α = βA− 1, then clearly, (α + 1)A−1ν = βν ∈ Z

for all ν ∈ Zn . Conversely, assume that (α + 1)A−1ν ∈ Z for all ν ∈ Zn and let e1 , . . . , en
be the standard basis of Zn . Then the jth column of (α + 1)A−1 = (α + 1)A−1I (where
I is the n × n identity matrix) is (α + 1)A−1e j which is therefore in Z. Therefore, we
have (α + 1)A−1 = β ∈ (Zn)†. It follows that α = βA− 1 as desired. ∎

Corollary 6.14 Let f ∈ [O(Dn)]Γ . Then there is an h ∈ O(Dn) such that

f (z) = zg(A)−1 ⋅ h(z),
with g(A) as in (5.11).

Proof Let f (z) = ∑
α⪰0

aα zα , be the Taylor expansion of f. If f is Γ invariant, then we

claim that for each α such that aα≠0, we have that zα is Γ-invariant. Indeed using (6.13)
we have

f = σ ♯ν f = σ ♯ν (∑
α⪰0

aα φα) = ∑
α⪰0

aα e2πi(αA−1+1)ν ⋅ φα ,

comparing this with the Taylor expansion of f and equating coefficients the claim
follows. Therefore, the Taylor expansion of f is of the form

f (z) = ∑
β∈(Zn)†

βA⪰1

aβA−1zβA−1 .(6.15)

Notice that zβA−1 =
n
∏
j=1

zβa j−1
j . The integer βa j = ∑n

k=1 βk ak
j which occurs in the

exponent is divisible by gcd(a j). Further since ∑n
k=1 βk ak

j ≥ 1 it follows that βa j ≥
gcd(a j). It follows that the monomial zβA−1 is of the form zg(A)−1 ⋅ zγ , where γ ⪰ 0.
The corollary follows from (6.15). ∎

6.3 Proof of Proposition 6.1

By Theorem 3.12, ΦA ∶ Dn
L(B) → U is a proper holomorphic map of quotient type with

group Γ. Therefore, thanks to Theorem 4.15, the Bergman projection

BU ∶ Lp(U ) → Lp(U )
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is bounded if and only if

BD
n
L(B)
∶ [Lp(Dn

L(B) , ∣det Φ′A∣ 2−p)]
Γ
→ [Ap(Dn

L(B) , ∣det Φ′A∣ 2−p)]
Γ

(6.16)

is bounded. We therefore show that the map (6.16) is bounded if 2 ≤ p < 2κ(U )
κ(U )−1 .

To do this we express the map of (6.16) as a composition of three maps, and show
that each of these three maps is continuous:
(1) We first show that we have an inclusion of Banach spaces

[Lp(Dn
L(B), ∣det Φ′A∣ 2−p)]

Γ
⊆ [Lp(Dn

L(B))]
Γ

,

and that the inclusion map

ı ∶ [Lp(Dn , ∣det Φ′A∣ 2−p)]Γ ↪ [Lp(Dn)]Γ(6.17)

is bounded.
It is clearly sufficient to show that there is a continuous inclusion of the full

space Lp(Dn
L(B), ∣det Φ′A∣ 2−p) into Lp(Dn

L(B)). For z ∈ Dn we have for p ≥ 2

∣det Φ′A(z)∣ 2−p = ∣det Az1A−1 ∣ 2−p = ∣det A∣ 2−pρ(z)(1⋅A−1)(2−p) ≥ ∣det A∣ 2−p ,

where we use the fact that the exponent of ρ(z) is nonpositive, since A
has non-negative integer entries and p ≥ 2. Thus for any p ≥ 2 and any f ∈
Lp(Dn

L(B), ∣det Φ′A∣ 2−p) we have

∫
D

n
L(B)

∣ f ∣ pdV ≤ 1
∣det A∣ 2−p ∫

D
n
L(B)

∣ f ∣ p ∣det Φ′A∣ 2−pdV ,(6.18)

which proves the inclusion and its continuity.
(2) Let PΓ = BD

n
L(B)
∣
[Lp(Dn

L(B))]
Γ be the restriction of the Bergman projection operator

to the Γ-invariant functions. We claim that the operator of Banach spaces

PΓ ∶ [Lp(Dn
L(B))]

Γ
→ [Ap(Dn

L(B))]
Γ

(6.19)

is bounded. Indeed, we have that Lp(Dn
L(B)) = Lp(Dn) (since Dn

L(B) is obtained
from Dn by removing an analytic set Z, which is of measure zero) and
Ap(Dn

L(B)) = Ap(Dn), in the sense that the analytic set Z is a removable singu-
larity of functions integrable in the pth power, p ≥ 2 (see [Bel82, p. 687]). By
Proposition 6.3, the Bergman projection maps Lp(Dn) to Ap(Dn) boundedly.
Finally, by part (2) of Lemma 4.12, the Bergman projection maps Γ-invariant
functions to Γ-invariant functions. The boundedness of PΓ follows.

(3) Finally, we show that there is an inclusion [Ap(Dn
L(B))]Γ ⊂

[Ap(Dn
L(B), ∣det Φ′A∣ 2−p)]Γ , and the inclusion map so determined is bounded.

As noted above Ap(Dn
L(B)) = Ap(Dn), so it will suffice to show that there is a

continuous inclusion

ȷ ∶ [Ap(Dn)]Γ ↪ [Ap(Dn , ∣det Φ′A∣ 2−p)]Γ .(6.20)
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Let f ∈ [Ap(Dn)]Γ , so by Corollary 6.14, there exists h ∈ O(Dn) such that

f (z) = zg(A)−1h(z).(6.21)

In fact, h ∈ Ap(Dn), since

∫
Dn
∣h(z)∣ pdV = ∫

ρ(z)⪯ 1
2 1
∣h(z)∣ pdV + ∫ 1

2 1≺ρ(z)≺1
∣h(z)∣ pdV ,

where the first of the two integrals is clearly finite and the second integral is

= ∫ 1
2 1≺ρ(z)≺1

∣ f (z)
zg(A)−1 ∣

pdV ≤
⎛
⎝

n
∏
j=1

2gcd(a j)−1⎞
⎠

p

⋅ ∫ 1
2 1≺ρ(z)≺1

∣ f (z)∣ pdV < ∞.

Now we have that

∥ f ∥ p
Ap(Dn ,∣det Φ′A∣2−p) = ∫

Dn
∣ f (z)∣ p ∣det Φ′A(z)∣ 2−pdV(z)

= ∫
Dn
∣h(z)∣ p ∣zg(A)−1 ∣ p ∣det A ⋅ z1A−1 ∣ 2−pdV(z)

using (6.21) and (3.9)

= ∣det A∣2−p ⋅ ∫
Dn
∣h(z)∣p ∣zp(g(A)−1)+(2−p)(1A−1)∣dV(z)

= ∣det A∣ 2−p ⋅ ∫
Dn
∣h∣ p ρp(g(A)−1⋅A)+2⋅1⋅A−2⋅1dV(6.22)

Combining Hypotheses (6.2) and (5.8),

p < 2κ(U )
κ(U ) − 1

=min
j

2 ⋅ 1 ⋅ a j

1 ⋅ a j − gcd(a j)
,

so for each 1 ≤ j ≤ n,

p <
2 ⋅ 1 ⋅ a j

1 ⋅ a j − gcd(a j)
.

Therefore, the jth component of the exponent of ρ in (6.22) is

p(gcd(a j) − 1a j) + 2 ⋅ 1 ⋅ a j − 2 > (
2 ⋅ 1 ⋅ a j

1 ⋅ a j − gcd(a j)
)

× (gcd(a j) − 1 ⋅ a j) + 21a j − 2 = −2,

where we have used the obvious fact that gcd(a j) − 1 ⋅ a j ≤ 0. Therefore, we have

p(g(A) − 1A) + 2 ⋅ 1A− 2 ⋅ 1 ≻ −2 ⋅ 1,

and so we have, for constants C1 , C2 independent of the function f :

(6.22) ≤ C1 ∫
Dn
∣h∣ pdV by Lemma (6.4)

≤ C2 ∫
Dn
∣zg(A)−1 ⋅ h(z)∣ pdV(z) by Lemma (6.8)

= C2 ∫
Dn
∣ f ∣ pdV .
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It follows that the inclusion ȷ of (6.20) is continuous.

Therefore, the map BD
n
L(B)

of Banach spaces in (6.16) can be represented as a compo-
sition

BD
n
L(B)
= ȷ ○ PΓ ○ ı ,

where ı, PΓ and ȷ are as in (6.17), (6.19) and (6.20), respectively and each of which has
already been shown to be continuous. The proof of Proposition 6.1 is complete.

7 Conclusion

7.1 End of proof of Theorem 1.2

Recall that, as a consequence of the self-adjointness of the Bergman projection on
L2, the set of p for which the Bergman projection on a domain is Lp-bounded is
Hölder-symmetric (see [EM16, CZ16]), i.e., p belongs to this set if and only if the
conjugate index p′ also belongs to it, where 1

p′ +
1
p = 1. Notice now that the index

conjugate to 2κ(U )
κ(U )−1 is 2κ(U )

κ(U )+1 . Now by combining Propositions 6.1 and 5.1, we see that

for p ≥ 2, the Bergman projection on U is bounded if and only if p ∈ [2, 2κ(U )
κ(U )−1) .

By Hölder symmetry, for p ≤ 2, the Bergman projection is bounded if and only if
p ∈ ( 2κ(U )

κ(U )+1 , 2]. The bounds claimed in (1.3) are proved, and therefore Theorem 1.2
holds.

7.2 Comments and questions

The methods used to prove Theorem 1.2 are more general than the result itself, and
apply to the Bergman projection on various quotient domains of simple domains
with known Bergman kernels, provided the quotient type proper holomorphic map
is a monomial map. For example, we may deduce using a modification of our
arguments, the range of p for which the Bergman projection is bounded in Lp on the
domain

{(∣z1∣ 2 + ⋅ ⋅ ⋅ + ∣zn−1∣ 2)
k1
2 < ∣zn ∣ k2 < 1} ⊂ Cn ,

where k1 , k2 are positive integers.
Thanks to Theorem 1.2, the Bergman projection is no longer bounded in Lp(U )

if p ≥ 2κ(U )
κ(U )−1 . It is natural to ask if there is an alternate projection from Lp(U ) to

Ap(U ) for such p. In the special case U = Hm/n , the generalized Hartogs triangle
of (1.6), it is possible to construct for each p ≥ 2 a sub-Bergman projection which gives
rise to a bounded projection on Lp . It would be interesting to see whether a similar
statement holds for the monomial polyhedra considered in this paper.

Finally, we would like to understand the precise geometric significance of the
arithmetic complexity of U without reference to the representation in terms of the
matrix B. Such a description will pave the way of generalizing the results of this paper
to wider classes of domains.
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