
THE REVIEW OF SYMBOLIC LOGIC

Volume 13, Number 1, March 2020

SYLLOGISTIC LOGIC WITH CARDINALITY COMPARISONS,
ON INFINITE SETS

LAWRENCE S. MOSS

Department of Mathematics, Indiana University
and

SELÇUK TOPAL

Department of Mathematics, Bitlis Eren University

Abstract. This article enlarges classical syllogistic logic with assertions having to do with com-
parisons between the sizes of sets. So it concerns a logical system whose sentences are of the
following forms: All x are y and Some x are y, There are at least as many x as y, and There are
more x than y. Here x and y range over subsets (not elements) of a given infinite set. Moreover, x
and y may appear complemented (i.e., as x and y), with the natural meaning. We formulate a logic for
our language that is based on the classical syllogistic. The main result is a soundness/completeness
theorem. There are efficient algorithms for proof search and model construction.

§1. Introduction. This article is a contribution to the study of extended syllogistic
logics. The idea is to take the classical syllogistic S as a base system and to extend this
base with reasoning power for some phenomenon which is not expressible in first-order
logic, and then to show that on top of the small base, the resulting system is still well-
behaved. We thus take the logical system S whose sentences are of the form All p are
q and Some p are q, and No p are q. We shall explain the semantics shortly, but for
the time being we do without the semantics. To add expressive power, we also allow the
variables to be complemented. So for each p we would also have p; the interpretation is the
set theoretic complement of [[p]]. The complementation operation also provides an extra
sentence coming from the Aristotelian syllogistic to the system: Some p are not q. In our
work, this is expressed via the syntax Some p are q. We call this system S†.

In formulating S†, we may omit No x are y, as it is equivalent to All x are y. This article
enlarges the syntax with assertions There are at least as many x as y, and There are
more x than y. In this article, we require the universe to be infinite. The case of finite
universes was treated in Moss (2016). The syntax and semantics of the systems are exactly
the same. But the main point of the article is to craft a sound and complete proof system,
and the proof system in this article is different from the one in Moss (2016).

Syntax: preliminary. Here is the definition of the logical language L(P) which we study
in this article. A noun system is a pair

P = (P, ),
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2 LAWRENCE S. MOSS AND SELÇUK TOPAL

where P is a set, and p �→ p is an involutive operation on P . Thus, p = p for all p ∈ P.
We call the elements of P nouns. All Roman letters p, q, x , y, . . . denote nouns.

We fix a noun system P for the rest of this article.

Syntax of L(P). L(P) has sentences ∀(p, q) and ∃(p, q), ∃≥(p, q), ∃>(p, q), and M(p, q).
We read “∃≥(p, q)” as “there are at least as many p as q”, and we read “∃>(p, q)” as “there
are more p than q.” There are no connectives.

Semantics

DEFINITION 1.1. A structure S is a pair consisting of a set S and an interpretation function
[[ ]] : P → P(S), where P(S) is the power set of S. That is, a structure is a set S
together with a function which interprets nouns as subsets of S. A model is a structure
M = (M, [[ ]]) with the additional property that for all p, [[p]] = M \ [[p]] for all
nouns p.

We define the satisfaction relation between models and sentences as follows:

M |	 ∀(p, q) iff [[p]] ⊆ [[q]]
M |	 ∃(p, q) iff [[p]] ∩ [[q]] �= ∅
M |	 ∃≥(p, q) iff card [[p]] ≥ card [[q]]
M |	 ∃>(p, q) iff card [[p]] > card [[q]].

(1)

On the right in (1), the symbol card S stands for the cardinality of a given set S.

REMARK 1.2. Our treatment of cardinality and of cardinal comparison is completely
standard. We recall that card (X) ≤ card (Y ) means that there is a one-to-one f : X → Y .
Also, card (X) < card (Y ) means that card (X) ≤ card (Y ), but ¬(card (Y ) ≤ card (X)).
All of our work with infinite cardinals is also standard. We remind the reader that if X and
Y are infinite sets, then card (X ∪ Y ) = max(card (X), card (Y )).

In addition, we use the Axiom of Choice at several points in this article. For example,
if M |	 ∃>(p, q) is false, then M |	 ∃≥(q, p) is true. We also use it equivalent, Zorn’s
Lemma, in the proof of Lemma 5.4.

Let us also mention that the main result in this article needs very little set theory. The
only notable point is that there are infinitely many infinite cardinals.

REMARK 1.3. We study our logic on infinite models M in this article. However, [[p]] is
not required to be infinite. It might even be empty.

Special attention should be given to sentences ∃≥(p, p). When the universe of a model
is finite, ∃≥(p, p) says that there are at least as many ps as non-ps. This sentence
∃≥(p, p) might, therefore, be read as “the p’s are at least half of the objects in the uni-
verse.” Similarly, ∃≥(p, p) might be read as “the p’s are at most half of the objects in
the universe.” We can also read ∃>(p, p) as “the p’s are more than half of the objects in
the universe,” and ∃>(p, p) as “the p’s are less than half of the objects in the universe.”
However, in this article, all models M have an infinite universe M . So our talk about
“half” must be taken with a grain of salt. To say that M |	 ∃≥(p, p) in fact says that
card [[p]] = card M . To say that ∃>(p, p) says that card [[p]] = card M and also
card [[p]] < card M .

DEFINITION 1.4. For every sentence ϕ, there is a sentence ϕ such that M |	 ϕ iff M �|	 ϕ.
Here is how this works:
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ϕ ϕ

∀(p, q) ∃(p, q)
∃(p, q) ∀(p, q)
∃≥(p, q) ∃>(q, p)
∃>(p, q) ∃≥(q, p)

The operation symbol on sentences is not part of the language L(P).
DEFINITION 1.5. Let � ∪ {ϕ} ⊆ L(P). M |	 � means that M |	 ϕ for all ψ ∈ � and
� |	 ϕ means that if M |	 �, then also M |	 ψ .

1.1. Proof system. The main goal of this article is to present a sound and complete
logic for the semantic consequence relation � |	 ϕ. This section describes the system and
provides some examples. The rules of the logic are shown in Figures 1 and 2.

Let � be a set of sentences in L(P). A proof tree over � is a finite tree T whose nodes
are labelled with sentences, and each node is either a leaf node labelled with an element
of �, or else matches one of the rules in the proof system in one of Figures 1 or 2. � � ϕ
means that there is a proof tree T for over � whose root is labelled ϕ.

PROPOSITION 1.6 (Soundness). If � � ϕ, then � |	 ϕ.

∀(p, p)
(AXIOM)

∀(n, p) ∀(p, q)

∀(n, q)
(BARBARA)

∃(p, q)

∃(p, p)
(SOME)

∃(q, p)

∃(p, q)
(CONVERSION)

∃(p, n) ∀(n, q)

∃(p, q)
(DARII)

∀(p, q)

∀(q, p)
(ANTI)

∀(p, p)

∀(p, q)
(ZERO)

∀(p, p)

∀(q, p)
(ONE)

∀(p, q)

∃≥(q, p)
(SUBSET-SIZE)

∃≥(n, p) ∃≥(p, q)

∃≥(n, q)
(CARD-TRANS)

∃(p, p) ∃≥(q, p)

∃(q, q)
(CARD-∃)

∃>(p, q)

∃≥(p, q)
(MORE-AT LEAST)

∃>(n, p) ∃≥(p, q)

∃>(n, q)
(MORE-LEFT)

∃≥(n, p) ∃>(p, q)

∃>(n, q)
(MORE-RIGHT)

∃>(p, q)

∃(p, q)
(MORE-SOME)

∃(p, q) ∀(q, q)
ϕ (X)

∃>(p, q) ∃≥(q, p)
ϕ (X-CARD)

Fig. 1. The first part of the rules of our logical system.
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4 LAWRENCE S. MOSS AND SELÇUK TOPAL

∃≥(p, p)

∃(p, p)
(NON-EMPTY)

∀(p, p)

∃>(p, p)
(NON-EMPTY-MORE)

∃>(q, p)

∃≥(p, x)
(WEAK-MORE-ANTI)

∃≥(x, p) ∃≥(x, p)

∃≥(x, q)
(UP)

Fig. 2. The second part of the rules for the logic in this article.

Proof. By induction on the heights of proof trees. The proof reduces to showing that all
of the rules are individually sound. The rules in Figure 1 discussed in Moss (2016), and in
any case they are easy to justify.

We show the soundness of the rules in Figure 2 by considering a single (arbitrary) infinite
model M, say of size κ . We assume the hypotheses of the rules in turn and show the
conclusions. This will show that our logic is sound.

Let us show the soundness of (NON-EMPTY). If ∃≥(p, p), then [[p]] = κ > 0.
The rule (NON-EMPTY-MORE) is sound because infinite sets are not empty.
Consider (WEAK-MORE-ANTI). If card [[q]] > card [[p]], then card [[p]] < κ . And so

card [[p]] = κ . Thus card [[p]] ≥ card [[x]] for all x .
Turning to (UP), suppose that [[x]] is at least as large as both [[p]] and [[p]]. Then [[x]] is

at least as their maximum. And this maximum is card M . So [[x]] is at least as large as the
size of any set. �

This concludes our discussion of the soundness of the logic. We turn to examples.

EXAMPLE 1.7. ∀(x, x) � ∃(x, x). Here are two different derivations:

∀(x, x)

∃≥(x, x)
(SUBSET SIZE)

∃(x, x)
(NON-EMPTY)

∀(x, x)
∃>(x, x)

(NON-EMPTY-MORE)

∃(x, x)
(MORE-SOME)

EXAMPLE 1.8. ∃≥(p, p) � ∃≥(p, q). Here is a derivation:

∃≥(p, p)

∀(p, p)
(AXIOM)

∃≥(p, p)
(SUBSET-SIZE)

∃≥(p, q)
(UP)

EXAMPLE 1.9. ∃≥(p, p), ∃≥(q, p) � ∃≥(q, x). Here is a derivation which quotes the
result just above:

∃≥(q, p)

∃≥(p, p)

∃≥(p, x)
(EXAMPLE 1.8)

∃≥(q, x)
(CARD TRANS)

EXAMPLE 1.10. ∃≥(p, p), ∃>(x, q) � ∃>(p, q):

∃≥(p, p)

∃≥(p, x)
(EXAMPLE 1.8) ∃>(x, q)

∃>(p, q)
(MORE-RIGHT)
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EXAMPLE 1.11. ∃>(p, p), ∃≥(p, q) � ∃>(q, q):

∃>(p, p) ∃≥(p, q)
∃>(p, q)

(MORE-LEFT)

∃≥(q, q)
(WEAK-MORE-ANTI)

EXAMPLE 1.12. ∃≥(p, p), ∃>(q, q) � ∃(p, q):

∃≥(p, p)

∃≥(p, q)
(EXAMPLE 1.8) ∃>(q, q)

∃>(p, q)
(MORE-RIGHT)

∃(p, q)
(MORE-SOME)

EXAMPLE 1.13. Here is a rules from Moss (2016) called (INT). We include this rule
because it is used later in this article. (INT) says ∃(p, p), ∃>(q, q) � ∃(q, q). Here is a
derivation:

∃≥(q, q)

∃≥(q, p)
(EXAMPLE 1.8) ∃(p, p)

∃(q, q)
(CARD-∃)

EXAMPLE 1.14. We have a derivation of ∃>(p, x), ∃>(q, x) � ϕ. That is, we derive a
contradiction from the two assumptions ∃>(p, x) and ∃>(q, x).

∃>(q, x)

∃>(p, x)

∃≥(x, q)
(WEAK-MORE-ANTI)

∃>(q, q)
(MORE-LEFT)

∀(q, q)

∃≥(q, q)
(SUBSET-SIZE)

ϕ (X-CARD)

EXAMPLE 1.15. ∃≥(p, p), ∃>(q, p) � ϕ. Here is a derivation:

∃>(q, p)

∃≥(p, p)

∃>(q, p)

∃≥(p, q)
(WEAK-MORE-ANTI)

∃≥(p, q)
(CARD-TRANS)

∃>(q, q)
(MORE-LEFT)

And the rest at the bottom is as in Example 1.14.

REMARK 1.16. In the remainder of this article, � denotes a finite set of sentences. The
reason for this restriction is that the logic is not compact. Specifically, the set

� = {∃>(x0, x1), ∃>(x1, x2), . . . , ∃>(xn, xn+1), . . .}
has no model, but every finite subset of it does have a model. So � |	 ∀(p, q). But clearly
we cannot have � � ∃(p, q), no matter what the rules of the (sound) proof system are.
That is, we cannot hope to define a proof system and show that for all (possibly infinite) �
and all ϕ: � |	 ϕ iff � � ϕ.

1.2. Prior work. We make a short digression at this point to mention the difference
between the logical system in Moss (2016) and the one here. The reader not interested in
this point may safely skip ahead to §1.3.
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6 LAWRENCE S. MOSS AND SELÇUK TOPAL

The syntax used in this article is exactly the same as the one in Moss (2016). The
definition of M |	 ϕ is the same, too. The difference lies in the fact that in Moss (2016),
the models were taken to be finite, while in this article they are taken to be infinite. The
rules in Figure 3 are from Moss (2016); they are not sound on infinite models.

Let us check that these are not sound when we allow the universe to be infinite. We give
some counter-examples. In all cases, we take M = ω.

For (CARD-MIX), let [[q]] = ω \ {0} and [[p]] = ω.
For (MORE), let [[q]] = ω \ {0} and [[p]] = ω.
For (MORE-ANTI), let [[q]] = {0, 1} and let [[p]] = {0}.
For (CARD-ANTI), [[p]] = ω and let [[q]] = ω \ {0}.
For (STRICT-HALF), let [[p]] = ω, and let [[q]] be the set of even numbers. Then

card [[p]] > card [[p]], and card [[q]] = card [[q]]; but card [[p]] �> card [[q]].
For (MAJ), let

[[p]] = {3n : n ∈ N }
[[q]] = {3n + 1 : n ∈ N }.

Then card [[p]] = card [[p]] = card [[q]] = card [[q]]. Then 2 ∈ [[p]] ∩ [[q]], but
[[p]] ∩ [[q]] = ∅.

THEOREM 1.17 (Moss, 2016). The logical system whose rules are shown in Figures 1
and 3 is sound and complete for the class of all finite models.

1.3. Consistent sets. A set of sentences in any logic is consistent if it is not the case
that � � ϕ for all ϕ. In our setting, this is equivalent to saying that there are no derivations
from � which use one of the two ex falso quodlibet rules, (X) or (X-CARD).

EXAMPLE 1.18. If � is consistent and contains ∃>(p, x), then � �� ∃>(q, x) for all q.
This follows from Example 1.14. Similarly, Example 1.15 shows that if � is consistent and
contains ∃>(q, p), then � �� ∃≥(p, p).

EXAMPLE 1.19. For all consistent �, there is some x such that � �� ∀(x, x). To see this,
take any variable x. Suppose that � � ∀(x, x). By (NON-EMPTY), � � ∃(x, x). If we also
had � � ∀(x, x), then � would be inconsistent.

1.4. Architecture of the completeness result in this article. The main result in this
article is the Completeness Theorem 7.1. We shall show the following: (1) For a given set
� and sentence ϕ, if � �� ϕ, then there is a model of � where ϕ is false.

∀(p, q) ∃≥(p, q)

∀(q, p)
(CARD-MIX)

∀(q, p) ∃(p, q)

∃>(p, q)
(MORE)

∃>(q, p)

∃>(p, q)
(MORE-ANTI)

∃≥(p, q)

∃≥(q, p)
(CARD-ANTI)

∃>(p, p) ∃≥(q, q)

∃>(p, q)
(STRICT HALF)

∃≥(p, p) ∃≥(q, q) ∃(p, q)

∃(p, q)
(MAJ)

Fig. 3. These rules are also part of the sound and complete system for reasoning about finite sets,
but they are not sound for the semantics of this article.

https://doi.org/10.1017/S1755020318000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000126


SYLLOGISTIC LOGIC WITH CARDINALITY COMPARISONS, ON INFINITE SETS 7

Before we prove this theorem, we show the weaker statement (2) every consistent set �
has a model. Let us explain why (2) is weaker than (1). If we take the special case of (1)
when � is ∃(x, x), then we get: if � is consistent, then � has a model. So we basically get
(2) as a special case of (1). Now in logics with a rule of reductio ad absurdum (RAA), (2)
implies (1). Here is the argument. Suppose that � �� ϕ. Then � ∪ {¬ϕ} is consistent. (This
is exactly where (RAA) is used. And us by (2), we have a model M of � where ϕ fails; so
(1) holds. Now our logic does not have (RAA) since it complicates the proof search to add
it. (That is, (RAA) is an admissible rule, as we shall prove the following completeness.)
But adopting (RAA) from the start would lead to a proof search algorithm that is more
complicated that necessary. As far as we can see, it would not be in polynomial time. So
the extra work that we shall do by using the (X) rules leads to a more efficient proof search
algorithm.

§2. Preliminaries. In this section, we gather some preliminary background materials
which will be used later in the article.

2.1. Preliminary: listings of finite transitive relations. A listing of a set X is a se-
quence x1, . . . , xn from X so that if i �= j , then xi �= x j . Let (T, <) be a finite set with a
transitive, irreflexive relation. A proper listing of (T, <) is a listing of the set T with the
property that if ti < t j , then i < j . In words, the <-predecessors of each point are listed
before it. This is also called a topological sort.

LEMMA 2.1. Let (T, <) be a finite set with a transitive, irreflexive relation. Then (T, <)
has a proper listing.

LEMMA 2.2. Let (T, <) be a finite set with a transitive, irreflexive relation. Let y ∈ T .
Then there is a proper listing of (T, <) in which every x such that y �≤ x comes before y
in the listing.

Lemma 2.1 is standard, and Lemma 2.2 is small refinement. One source for the proofs
is Moss (2016).

2.2. Preliminary: unions and disjoint unions. Beginning in §5.3, we shall need to
keep track of the difference between unions and disjoint unions. Given sets X1, . . . , Xn ,
we write X1 + · · · + Xn for

n⋃

i=1

({i} × Xi ).

We also write
∑n

i=1 Xi for this same set. We make use of this notation even when some of
the sets Xi are themselves unions of other sets. For example,

(X ∪ Y )+ Z = {(1, x) : x ∈ X} ∪ {(1, y) : y ∈ Y } ∪ {(2, z) : z ∈ Z}.

§3. The relations ≤, ≤c, <c, <more, and ≡. The method of proof of (1) in §1.4 is
model-construction. We fix a consistent set � throughout this section. It is convenient to
suppress � from the notation. We also will adopt suggestive notation for various assertions
in the logic.

DEFINITION 3.1. Let � be a (finite) set of sentences. We write x ≤ y for � � ∀(x, y).
Note that � is left off the notation. And we write x ≡ y for x ≤ y ≤ x.

We write x ≤c y for � � ∃≥(y, x). We also write x ≡c y for x ≤c y ≤c x, and x <c y
for x ≤c y but x �≡c y.
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8 LAWRENCE S. MOSS AND SELÇUK TOPAL

Finally, we write x <more y if � � ∃>(y, x).

PROPOSITION 3.2. Let V be the set of variables in �, and let w, x , x ′, y, y′, z ∈ V .

1. If x ≤ y, then x ≤c y.

2. (V,≤c) is a preorder: a reflexive and transitive relation.

3. (V, <c) is a strict preorder.

4. If x ≤c y, x ≡ x ′, and y ≡ y′, then x ′ ≤c y′.
5. If w ≤c x <more y ≤c z, then w ≤more z.

Proof. Part (3.2) uses the (SUBSET-SIZE) rule. In part (3.2), the reflexivity of ≤c comes
from that of ≤ and part (3.2); the transitivity is by (CARD-TRANS). Part (3.2) follows from
the previous part. Part (3.2) uses part (3.2) and transitivity. Part (3.2) uses (MORE-LEFT)
and (MORE-RIGHT). �

REMARK 3.3. Let us emphasize that there is a difference between <c and <more. When
we write p <c q, we mean that

� � ∃≥(q, p) and � �� ∃≥(p, q).

This is weaker than p <more q; recall that this last assertion means that � � ∃>(q, p).
For example, if � contains just the sentence ∃≥(q, p) (and nothing else), then p <c q but
not p <more q.

§4. Small, large, and half. Let � be consistent in L(P). Define a partition of variables
of L(P) into three classes, as follows:

1. For all p such that p ≤c p ≤c p, put both p and p into half.
2. For all p such that p <more q for some q, put p ∈ small and p ∈ large.

3. Put all other nouns in half.

We call this the standard partition of the nouns according to �.

LEMMA 4.1. Let � be consistent in L(P). The standard partition puts each p and p
into exactly one of the three class small, half, and large. Moreover, this partition has the
following properties:

(i) If (p ≤c p and p ≤c p), then p, p ∈ half.
(ii) If p <more q for some q, then p ∈ small.

(iii) p ∈ large iff p ∈ small.
(iv) If p ∈ small and q ≤c p, then q ∈ small.
(v) If p ≤c p, then either (p ∈ small and p ∈ large), or else p, p ∈ half.

(vi) If p ∈ half and q ≤c p, then either q ∈ small or q ∈ half.
(vii) If p ≤ p (that is, � � ∀(p, p)), then p ∈ small and p ∈ large.

Proof. The main thing is to check that the first two points in the definition of the standard
partition cannot conflict. Here are the verifications. If p ≤c p ≤c p, then we cannot also
have p <more q. (See Example 1.15.) We cannot have both p <more q and p <more x .
(See Example 1.14.)

Parts (i)–(iii) are immediate from the construction. Part (iv) follows from Proposition 3.2.
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Then, we check that (v) holds. Suppose that p ≤c p but that neither of the conditions
in (v) hold. By (iii), p ∈ small and p ∈ large. But then by (iv), p ∈ small. And this is a
contradiction.

For (vi), suppose that p ∈ half and q ≤c p, and towards a contradiction that q ∈ large.
Then p ≤c q. But also p ≤c p, so we have p ≡c q. And this is a contradiction since
q ∈ large. (So again we are using Proposition 3.2.)

Part (vii) follows immediately from (NON-EMPTY-MORE). �

4.1. Refinement. We also need a refined version of the standard partition. Let � be
consistent. Fix a noun p∗. Suppose that ¬(p∗ ≤c p∗), and also that there are no x such
that p∗ <more x . Then the standard partition might put p∗ ∈ half (due to the final step
in the definition of the standard partition), and it might put p∗ ∈ small. But it cannot put
p∗ ∈ large. In case it puts p∗ ∈ half, we might want a modification which instead puts
p∗ ∈ small.

Therefore we modify the standard partition, as follows:

1. For all p such that p ≤c p∗, put p ∈ small and p in large.

2. For all p such that p ≤c p ≤c p, put both p and p into half.
3. For all p such that p <more q for some q, put p ∈ small and p ∈ large.

4. Put all other nouns in half.

LEMMA 4.2. Let � be consistent in L(P). Let p∗ be such that ¬(p∗ ≤c p∗), and also
that there are no x such that p∗ <more x. Then the refined version of the standard partition
puts p∗ ∈ small, and it also puts each of p and p into exactly one of the three classes
small, half, and large. Moreover, all of the points in Lemma 4.1 hold.

Proof. This time, we must check that the first three points in the definition of the standard
partition cannot conflict. Since there are no conflicts between (2) and (3), we only need to
check conflicts between (1) for a noun p and its complement p, conflicts between (1) and
(2), and finally conflicts between (1) and (3).

For all p, we cannot have p ≤c p∗ and also p ≤c p∗. This is by (UP), taking x to be p∗.
Concerning conflicts between (1) and (2), suppose that p ≤c p ≤c p and also that

p ≤c p∗. Then by Example 1.9, we have p∗ ≤c p∗, and this contradicts our assumption
on p∗ in this result.

As for conflicts between (1) and (3), suppose that p <more q and p ≤c p∗. Then by
Example 1.10, p∗ <more q. So again we have a contradiction.

The verification of (i)–(vii) is nearly the same as what we saw in Lemma 4.1. That is,
(i)–(iv) are immediate from the construction, and (v) and (vi) follow easily from these. �

The work in this section shall be used in §7.2.

4.2. A result on infinite models and the logic of All, Some, and complemented
variables.

LEMMA 4.3. Let κ be an infinite cardinal. Let � be a finite consistent set of sentences
of the form ∃(p, q) and ∀(p, q). Then � has a model with the following properties:

1. All nouns p have the property that either [[p]] = ∅, or [[p]] = ∅, or both [[p]] and
[[p]] are sets of cardinality exactly κ .

2. For all p and q, [[p]] ∩ [[q]] �= ∅ iff � � ∃(p, q). (A special case is when p = q, we
see that [[p]] = ∅ iff � �� ∃(p, p).)
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10 LAWRENCE S. MOSS AND SELÇUK TOPAL

Proof. Since our logic includes a complete syllogistic logic of ∃ and ∀, � is consistent
in the syllogistic logic of sentences ∀(p, q), and ∃(p, q). By Moss (2008), � has a finite
model M with the extra property that if � �� ∃(p, q), then [[p]] ∩ [[q]] = ∅. Fix such a
model M. Let p1, p1, . . . , pk , pk include the finite set of nouns that occur in sentences
in �. (Since we are only dealing with finite sets of sentences, this is a finite set.) Let the
universe M of the model M be {1, . . . ,m}. Let A1, . . . , Ak be a pairwise disjoint family
of sets of size exactly κ . (For example, we might have Ai = κ × {i}.) Then make a new
model N by taking the universe N to be

⋃{Ai : 1 ≤ i ≤ k}, and then by interpreting each
p thus:

[[p]]N = ⋃{Ai : i ∈ [[p]]M}.
It then follows that

[[p]]N = ⋃{Ai : i /∈ [[p]]M}.
The assertions about [[p]] and [[p]] in our result are easy to check.

CLAIM 4.4. M and N agree on all sentences using ∀ and ∃.

Proof. Consider first a sentence ∀(a, b). Assume that M |	 ∀(a, b). So [[a]]M ⊆
[[b]]M. Let α ∈ [[a]]N . So for some i ∈ [[a]]M, α ∈ Ai . But this i belongs also to
[[b]]M. And therefore α ∈ [[b]]N . This for all α shows that [[a]]N ⊆ [[b]]N . In the other
direction, assume that [[a]]N ⊆ [[b]]N . Let i ∈ [[a]]M. Since Ai is infinite, it is nonempty.
Let α ∈ Ai . Thus α ∈ [[a]]N . By our assumption, α ∈ [[b]]N . And since the sets A j are
pairwise disjoint, we see that i ∈ [[b]]M. This for all i shows that [[a]]M ⊆ [[b]]M.

We turn to the sentences ∃(a, b). Assume that M |	 ∃(a, b), and let i ∈ [[a]]M∩ [[b]]M.
Let α ∈ Ai . Then α ∈ [[a]]N ∩ [[b]]N . So N |	 ∃(a, b). Going the other way, assume that
N |	 ∃(a, b). Let α ∈ [[a]]N ∩ [[b]]N . We have i ∈ [[a]]M and j ∈ [[b]]M so that α ∈
Ai ∩ A j . But since the A’s are pairwise disjoint, we have i = j . Then i ∈ [[a]]M ∩ [[b]]M.
And i shows us that M |	 ∃(a, b), as desired. �

By this claim, N |	 �. Finally, suppose that � �� ∃(p, q). Then in M, [[p]] ∩ [[q]] = ∅.
It follows that the same is true in N . Finally, suppose that [[p]]N �= ∅. As we have just
seen, this means that � � ∃(p, p).

Finally, each interpretation [[p]]N is either empty or has size κ , by construction. �

§5. Consistent sets have models.

THEOREM 5.1. Every consistent (finite) set � has a model M. Moreover, given a partition
of the nouns into three classes as in Lemma 4.1, we can find a model M with the following
additional properties:

1. If p, q ∈ small ∪ half and [[p]] ∩ [[q]] �= ∅, then � � ∃(p, q).

2. If [[p]] �= ∅, then [[p]] is infinite.

The rest of this section is devoted to the construction of a model; the verification that
it works is in §6. The actual completeness theorem of the logic is a stronger result, and it
appears as Theorem 7.1 below.

Before the construction: find the partition and the listing. Fix �, and hence ≤, ≤c,
<more, and ≡. Let

Q = {p ∈ small : � � ∃(p, p)}. (2)
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Note that if p ∈ Q has this property and p ≡c q, then also q ∈ Q. This is due to the rule
(INT) which is derivable in our system.

To begin, use Lemma 4.1 to partition the nouns into the three sets small, half, and
large. The relation ≡c is an equivalence relation on the nouns, and<c is an irreflexive and
transitive relation on the quotient set. We write [pi ] for {q : q ≡c pi }. Use Lemma 2.1,
and fix a listing of the strict (irreflexive) order on the quotient set

(Q/≡c, <c),

say as

[p1], . . . , [pn]. (3)

(This sequence is finite because � is a finite set of sentences.)
Our construction has several steps. In Steps 1, . . . , n, we carry out a construction for each

term in (3). Step i builds something which is a structure (see Definition 5.2 just below) but
probably not a model in our sense.

DEFINITION 5.2. Let A be a set of nouns. A structure over A is a set S together with
interpretations [[x]] of all x ∈ A. (Again, the difference between a structure and a model is
that a structure need not interpret x for x ∈ A. For that matter, A could be empty; in that
case, a structure over A is just a set.) We denote structures by letters S .

Step i will produce a structure Si over [pi ]. We also use the notation κi for cardSi . In
Step n + 1, we do the same thing for half, obtaining a structure over half. Note that half
is closed under complements, unlike all of the classes [pi ] in (3). After this, we put the
models S1, S2, . . . , Sn , Sn+1 together, in a non-obvious way. And at the end, we have a
final step for the nouns in large. Then we turn our structure into a model.

5.1. Construction: i = 1, . . . , n. We remind the reader that the listing in (3) is a
topological sort of the equivalence classes [x] modulo ≡c which are in small and which
have the property that � � ∃(x, x). It is possible that n = 0, and in that case we skip ahead
to §5.2.

Let κ1 = ℵ0. Given κi−1, we first give the definition of κi , and then this is used in the
definition of Si .

DEFINITION 5.3. Let 2 ≤ i ≤ n. We say that i demands a larger size if for some j < i ,
p j <more pi but κ j = κi−1. (Please note that for i = n + 1 we shall see a different
definition in §5.2.)

(Here is the point of this definition: Suppose that i demands a larger size. We make sure
that Si is of size strictly larger than Si−1, and we interpret all x ∈ [pi ] by sets whose size
is that of the universe Si of Si . Thus, [[x]] will be a set which is larger than the size of [[y]]
whenever ∃>(x, y) is in �.)

If i = 1, then as we have mentioned, κi = ℵ0. If i > 1 demands a larger size, set
κi = (κi−1)

+. (This is the smallest infinite cardinal larger than κi .) If i > 1 does not
demand a larger size, set κi = κi−1.

Continuing, let

�i = {ϕ ∈ � : all variables in ϕ belong to [pi ]}
�i = {ϕ ∈ �i : ϕ is a sentence in ∀ or ∃} ∪ {∃(x, x) : x ∈ [pi ]}.

Let Si be a structure obtained by applying Lemma 4.3 so that
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12 LAWRENCE S. MOSS AND SELÇUK TOPAL

Si |	 �i (4)

card Si = κi (5)

card [[x]]Si = κi for all x ∈ [pi ]. (6)

For all p, q ∈ [pi ], [[p]] ∩ [[q]] �= ∅ iff � � ∃(p, q). (7)

5.2. Construction: step n + 1, for the nouns in half. At this point, we take care of the
nouns in half. Even if half = ∅, our construction still might need to increase the overall
size of the model to be sure that the interpretations of variables in large are truly larger
than those in small.

At step n + 1, we have structures S1, . . . , Sn and also κ1, . . . , κn . Before building Sn+1,
we need a slightly different notion of n + 1 demands a larger size. We say that n + 1
demands a larger size if either (a) for some j < n + 1, p j <more pn+1, but κ j = κn ; or
(b) for some x ∈ large, there is some j < n + 1 so that p j <more x , but κ j = κn ; or
(c) κn = 0. As before, if n + 1 demands a larger size, set κn+1 = (κn)

+; otherwise, set
κn+1 = κn . (In case (c) just above, we take κn+1 = ℵ0.)

Then build Sn+1 exactly in §5.1, using �n+1 and κn+1. Note that for h ∈ half, both h
and h are interpreted in Sn+1.

5.3. Construction: combining S1, . . . , Sn+1 into a structure S . Let

S = S1 + · · · + Sn+1 + �∃, (8)

where �∃ is the set of sentences ∃(a, b) which belong to �. (The + notation is explained
in §2.2.) S is made into a structure called S , as follows. For x ∈ small ∪ half,

[[x]] = ∑
i
⋃

y∈[pi ]{[[y]]Si : y ≤ x} + ∃x

where ∃x = {∃(y, z) ∈ � : y ≤ x or z ≤ x}. (9)

Once again, note that S is a structure, not necessarily a model. An overall requirement
of our models is that they interpret x and x as complements for all x . This is probably not
the case for x ∈ half, and so this is why we need §5.4 just below.

5.4. Construction: taking care of the variables in half. For x, x ∈ half, there is more
to do. The sets [[x]] and [[x]] are disjoint, and their cardinalities are the same. But it need
not be the case that [[x]] ∪ [[x]] is all of S. (See Moss (2016) for the easy details.) And now
we use Lemma 5.4 just below to define the semantics in this case.

LEMMA 5.4. Let κ be an infinite cardinal, let W be a set of size κ . Let N be a set of
nouns which is closed under complements. For each x ∈ N, let 〈x〉 be a subset of W . We
assume two properties:

1. 〈x〉 and 〈x〉 are disjoint for all x.

2. If x ≤ y, then 〈x〉 ⊆ 〈y〉.
Then, there are sets 〈〈x〉〉 for all x ∈ N with the following properties:

1. 〈〈x〉〉 and 〈〈x〉〉 are disjoint for all x.

2. If x ≤ y, then 〈〈x〉〉 ⊆ 〈〈y〉〉.
3. 〈x〉 ⊆ 〈〈x〉〉.
4. 〈〈x〉〉 ∪ 〈〈x〉〉 = W .

Moreover, if 〈x〉 has size κ for all x, then so does 〈〈x〉〉.
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Proof. We consider the family of all functions 〈〈 〉〉 : N → P(W ) where P(W )
is the set of subsets of W , and where we satisfy (1)–(3) in our result. This family or-
dered by pointwise inclusion. The resulting poset is closed under unions of chains, and
so we may use Zorn’s Lemma. Let 〈〈 〉〉 be a maximal element. We claim that for all x ,
〈〈x〉〉 ∪ 〈〈x〉〉 = W .

Suppose towards a contradiction that this is false. Fix some x so that 〈〈x〉〉 ∪ 〈〈x〉〉 �= W ,
and also fix w /∈ 〈〈x〉〉 ∪ 〈〈x〉〉. If for some y ≥ x , w ∈ 〈〈y〉〉 ∪ 〈〈y〉〉, then w can only
belong to one of those sets (since they are disjoint). Let us assume that w ∈ 〈〈y〉〉 and that
y ≥ x . (Other options include: w ∈ 〈〈y〉〉 and that y ≥ x ; or w ∈ 〈〈y〉〉 and that y ≥ x .
All of the details are similar in these cases, mutatis mutandis.) In this case, put w ∈ 〈〈z〉〉
for z ≥ y. This gives a larger 〈〈 〉〉 function. And if there is no y like this, we can simply
put w ∈ 〈〈z〉〉 for z ≥ y. Either way, we have a larger 〈〈 〉〉 function. So we have our
contradiction.

This shows the claim, and hence condition (4) holds. The last assertion (on cardinalities)
is easy. �

We apply Lemma 5.4 to interpret all of the nouns in half. We take κ = κn+1, W to be
M from (8), N to be half, and 〈x〉 = [[x]] from (9). The properties which we have seen to
insure that all of the assumptions in Lemma 5.4 hold. Also, if x ∈ half, then � � ∃(x, x)
by (NON-EMPTY). Thus, [[x]]Sn+1 �= ∅ for all such x . The same holds when we move from
Sn+1 to S . Thus the size of [[x]] in N is exactly κn+1.

5.5. Construction: the remaining nouns, and the overall model M. Up until this
point, we have not interpreted the nouns which are in small but not in the set Q of (2). For
each x in that set, we take [[x]] = ∅. So we now have interpreted all nouns in small ∪ half.

For x ∈ large, we would like to set

[[x]] = S \ [[x]]. (10)

However, we also would like the size of [[x]] to be at least that of S. If any y ∈ small ∪ half
has card (S \ [[y]]S) < card S, then add a copy of S to the universe without expanding the
size of any variable in small ∪ half. That is, replace S by S + S with all [[y]] taken from
the copy on the left. Then interpret [[x]] by (10) above, for the nouns h ∈ half, we need to
chose one of h or h to include the new points. And we need to be sure that any inequalities
h1 ≤ h2 are respected. So on top of all this, we need to appeal to Lemma 5.4 again.

At long last, we have interpreted all nouns: we have arranged that [[x]] = S \ [[x]] for
x ∈ small. It follows that the same fact is true for x ∈ large. And for x ∈ half, we have
arranged for this in §5.4. So we have a bona fide model. We write this model as M, we
change the name of the universe from S to M , and we let κ = cardS . The proof that
S |	 � comes next.

§6. Verifying the properties of the model. We must verify that M |	 �. For this, we
split the argument into a number of claims.

CLAIM 6.1. Let x /∈ Q, where Q is as in (2). Then [[x]] = ∅.

Proof. This was directly established in §5.5. �

CLAIM 6.2. If i ≤ j , then κi ≤ κ j . κn+1 is an infinite cardinal.

Proof. An easy induction shows the monotonicity assertion in our claim. Suppose that
some j ≤ n, j demands a larger size. Let j be least with this property. Then κ j is infinite,
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and so κn+1 also will be. If no j ≤ n demands a larger size, then κn = 0. So by condition
(c) in §5.2, we see that κn+1 = ℵ0. �

CLAIM 6.3. If z ≤ w are in small ∪ half, then [[z]] ⊆ [[w]].

Proof. First, if z /∈ Q, then [[z]] = ∅, and we are done. So we shall assume that z ∈ Q.
If w /∈ Q, then z /∈ Q. For if z ∈ Q and z ≤ w, then it is easy to use the logic to see that
� � ∃(w,w); this is a contradiction to w /∈ Q. Thus, we only need to verify this claim
when z and w are not in Q.

In S , we have [[z]] ⊆ [[w]] by the definition of the semantics in (9) and the (easy to
check) fact that ∃z ⊆ ∃w. So even when x and y are in half and we use Lemma 5.4 to
expand their interpretations in M, we still see that [[z]] ⊆ [[w]]. �

CLAIM 6.4. Let 1 ≤ i ≤ n + 1. If x ∈ [pi ], then card [[x]] = κi .

Proof. If � �� ∃(x, x), then also � �� ∃(pi , pi ) by (INT); see Example 1.13. In this
case κi = 0, [[x]] = ∅, and our result follows. The more interesting case is when � �
∃(pi , pi ). According to (9), [[x]] is the disjoint union of a family of sets

⋃{[[y]]Si :
y ≤ x} and a finite set ∃x . Since all the interpretations are infinite, we ignore the finite
set ∃x .

If y ≤ x , then the unique j such that y ∈ [p j ] is at most i . This is by (SUBSET-SIZE).
Thus card [[y]]S j = κ j ≤ κi . Hence [[x]] in our model M is a finite union of sets of size
≤ κi . So card ([[x]]) ≤ κi . But in Si , card ([[x]]) = κi . (For i ≤ n, this is by (6). For
i = n + 1, this was noted at the end of §5.4.) So the same is true in M. �

CLAIM 6.5. Let x, y ∈ small ∪ half. If [[x]] ∩ [[y]] �= ∅, then � � ∃(x, y).

Proof. Let i and j be such that x ∈ [pi ] and y ∈ [p j ]. The interpretations [[x]] and [[y]]
in M are disjoint unions, and so there is some k such that

([[x]] ∩ Sk) ∩ ([[y]] ∩ Sk) �= ∅.
Let α belong to the set on the left. There are p ≤ x and q ≤ y in [pk] such that α ∈
[[p]]Mk ∩ [[q]]Mk . But then [[p]]Mk ∩ [[q]]Mk �= ∅. And so by (7), � � ∃(p, q). Together
with p ≤ x and q ≤ y, we have our result. �

CLAIM 6.6. Let x ∈ large. Then card [[x]] = κn+1. If in addition, y <more x, then
card [[y]] < κn+1.

Proof. The fact that card [[x]] = κn+1 follows from what we did in §5.5.
Note that y belongs to small by Lemma 4.1. Let j ≤ n be such that y ∈ [p j ].
Suppose that κ j = κn . Then n + 1 demands a larger size (due to x and y), and so

κ j = κn < κn+1. And if κ j < κn , then of course κ j < κn ≤ κn+1. Either way, κ j < κn+1.
Now our result follows from Claim 6.4: card [[y]] = κ j < κn+1. �

CLAIM 6.7. M satisfies all ∃ sentences in �.

Proof. Consider first a sentence ∃(x, y) ∈ �, where x and y both belong to small ∪ half.
The sentence ∃(x, y) itself belongs to ∃x ∩ ∃y , hence to [[x]] ∩ [[y]] in M. Therefore,
M |	 ∃(x, y).

Now let us consider sentences ∃(x, y) ∈ �, where x ∈ (small ∪ half) and y ∈ large.
Then ∃(x, y) ∈ [[x]]. Suppose towards a contradiction that ∃(x, y) ∈ [[y]]. Note that y ∈
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small. In view of our definition of ∃y , either x ≤ y or y ≤ y. Either of these alternatives,
together with ∃(x, y) ∈ � shows that � is inconsistent.

Finally, we consider ∃(x, y), where x, y ∈ large. In this case, we argue that M |	
∃(x, y), even when this sentence does not belong to �.

As shown in Claim 6.6, the nouns in small are interpreted by sets whose size is strictly
smaller than the size of the universe, κn+1. Thus [[x]] ∪ [[y]] has size < κ . So the size of
M \ ([[x]] ∪ [[y]]) is κn+1. In particular, it is nonempty. This is to say that [[x]] ∩ [[y]] is
nonempty. �

CLAIM 6.8. M satisfies every ∀(x, y) sentence in �.

Proof. We consider a number of cases.

1. x, y ∈ small ∪ half. This case follows by Claim 6.3.

2. x ∈ small and y ∈ large. Let us check that [[x]] ∩ [[y]] = ∅ since this implies the
result. Note that y ∈ small. Suppose towards a contradiction that [[x]] ∩ [[y]] �= ∅.
By Claim 6.5, � � ∃(x, y). But then � is inconsistent. This contradiction shows that
[[x]] ∩ [[y]] = ∅.

3. x ∈ half and y ∈ large. Consider y and x , and then appeal to Case 2 above.

4. x ∈ large. Then we also have y ∈ large. Consider y and x , and then appeal to Case 1.

This completes the proof. �

CLAIM 6.9. M satisfies every ∃>(x, y) sentence in �.

Proof. Consider a sentence ∃>(x, y) ∈ �. So y <more x . Thus y <c x as well. We first
consider the case that x ∈ small. In our listing (3), we must list [y] before [x]. We must
check that our construction insures that card [[y]] < card [[x]]. That is, let j < i be such
that x ∈ [pi ] and y ∈ [p j ]. Let k be least such that j < k ≤ i and k demands a larger
size. There must exist such a k; it is the least number such that there is some w in [pw]
with � � ∃>(w, y). Our construction arranges that κi ≥ κk = (κk−1)

+ > κk ≥ κ j . And
by Claim 6.4, we see that card [[x]] > card [[y]].

We next turn to the case x ∈ half. Here we must have y ∈ small, by Lemma 4.1. Let
j ≤ n be such that y ∈ [p j ]. If κn > κ j , then

card [[x]] = κn+1 ≥ κn > κ j = card [[y]].

If κn = κ j , then n + 1 demands a larger size. So κn+1 > κn , and we have the same fact:
∃>(x, y) is true in M.

Finally, the case of x ∈ large follows immediately from Claim 6.6.
This completes the proof. �

CLAIM 6.10. M satisfies every ∃≥(x, y) sentence in �.

Proof. First, when x ∈ half ∪ large, card [[x]] = κn+1. (See Claims 6.4 and 6.6.) In
this case our result follows.

We are left with x ∈ small. In this case, y ∈ small, too, by Lemma 4.1, part (iv). Let i
and j be such that x ∈ [pi ] and q ∈ [p j ]. Since y ≤c x , have x ≡c y or x <c y. In the
first case, i = j and so card [[y]] = card [[x]]. In the second case, [pi ] comes before [p j ] in
the listing (3); this is by our definition of a listing. So i ≤ j , and thus κi ≤ κ j . Now our
result follows by Claim 6.4. �
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6.1. Completing the proof of Theorem 5.1. The work in the previous part of this
section constitutes a proof of Theorem 5.1. Although we did not discuss the additional
properties of the model which were stated in that theorem, the construction has arranged
them.

REMARK 6.11. At this point, we need an important remark on the entire construction of
this section. At various places, we needed to know that various numbers demanded a larger
size. We never used the assumption that any numbers did not demand a larger size. (We
shall need this in §7.2 below.) And examining all of our claims, we see that the verifications
all go through when more numbers demand a larger size.

This remark gives a certain flexibility to our construction which we shall exploit
in §7.1.

REMARK 6.12. Let � be a consistent set of sentences and suppose that (x ≤c y).
Claim 6.10 showed that M satisfies ∃≥(y, x). Since M satisfies ∃≥(y, x), we also have
M �|	 ∃>(x, y). In this case, we have a model whenever any numbers do not demand a
larger size (see Claims 6.4 and 6.10). We shall use this remark in §7.2.

§7. The full result. This section refines Theorem 5.1 and also proves the completeness
of the logic.

THEOREM 7.1. If � �� ϕ, then there is a model of � in which ϕ is false.

Caution. We review the point made in §1.4. It is very tempting at this point to argue as
follows for the completeness of the logic. “If � �� ϕ, then � ∪ {ϕ} is consistent, where ϕ
is the negation of ϕ which we saw in Definition 1.4. Thus by Theorem 5.1, this set has a
model. Such a model will satisfy � and falsify ϕ.” The problem with this is that we do not
have reductio ad absurdum in the logic. And so we are not entitled to say that � ∪ {ϕ} is
consistent. In fact, this set is consistent, and this follows from the work in this section. We
could try to prove the consistency of � ∪ {ϕ} proof-theoretically rather than semantically,
but this seems much harder.

Assumptions at this point. Here is how we show the completeness of the logic. We split
into cases according to ϕ. We show that either � � ϕ, or that � is inconsistent, or else there
is a model of � where ϕ is false.

Reminder. The model construction involves many choices that can be manipulated. First,
the order of the atomic sentences makes a difference in the three-fold partition in Lemma 4.1.
And even after that partition is determined, the particular listing which we use in (3) also
affects the model in a big way.

7.1. The first case: ϕ is of the form ∃≥(x, y). There are a number of cases. Our first is
when x ≤c x . In this case, � � ϕ. And so we contradict the assumption in this case. Thus,
we assume that ¬(x ≤c x) in what follows.

The second case is when x <more z for some z. In this case, we again have � � ϕ. So
we assume that for all z, ¬(x <more z).

Thus, we may refine the standard partition as in Lemma 4.2: we get a partition with
x ∈ small.

We further break into cases as to whether y ∈ small or y ∈ half ∪ large.
If both x and y are in small, let i, j ≤ n be such that x ∈ [pi ] and y ∈ [p j ]. We take

a listing whether the class of [pi ] comes before [p j ]. We can do this by Lemma 2.2. And
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then in our construction, when we come to Step j , we decide that j demands a bigger size.
Thus we arrange that κ j > κ j−1 ≥ κi . This builds a model where [[x]] is a set of smaller
size than [[y]].

If x ∈ small and y ∈ half ∪ large, then change the construction so that n + 1 demands
a larger size. (This might be true according to our work before, but even if n + 1 did not
demand a larger size, we can insist on it: see Remark 6.11.) We get a model with [[y]] a set
of strictly larger size than [[x]]. So ∃≥(x, y) is false in that model.

7.2. The next case: ϕ is of the form ∃>(x, y). Consider the standard partition accord-
ing to �. If x and y are both in half ∪ large, we have a model where card [[x]] = card [[y]],
as desired. If x ∈ small and y ∈ half ∪ large, we get a model where card [[x]] ≤ card [[y]].

If x ∈ half and y ∈ small, then we have two further cases. In case x ∈ half because
x ≤c x ≤c x , of even if just x ≤c x , we argue as follows. Since y ∈ small in the standard
partition, there is some z such that y <c z. So by Example 1.10, y <c x . And if ¬(x ≤c x),
then we may refine the standard partition as in Lemma 4.2. At this point, we have a partition
where x and y are both in small, and we treat this below.

If x ∈ large and y ∈ small, then we have p and q such that x <c p and y <c q. By
(WEAK-MORE-ANTI), q ≤c x . And so y <c x as well. This contradicts the assumption in
this section that ¬(y <c x).

We turn to the case when x and y are both in small, either in the standard parti-
tion or in a refinement thereof. (It makes no difference.) By the hypothesis in this sec-
tion, we do not have y <more x . If x ≡c y, then [x] = [y]. We thus get a model
where card [[x]] = card [[y]]. We have two more cases. First, consider what happens when
[y] �≤c[x]. We chose a listing of the ≡c-classes that puts x first. And then we get a model
where card [[x]] < card [[y]]. Finally, we have the case when y ≤c x . So [y] precedes x in
the listing. In this case, we must alter the listing even further. Some of the classes between
[y] and [x] might demand a larger size. We move those (in order) to after [x] in the listing.
We must be sure that all of the classes which are<c [x] still come before it in the listing. In
other words, the classes [z] between [y] and [x] which demand a larger size may be moved
to after [x] without falsifying the key property of the listing. The reason is that if such a
class [z] were problematic, then we would contradict ¬(y <more x). In this case, we get a
model where [[x]] and [[y]] have the same size.

7.3. The next case: ϕ is of the form ∀(x, y). We break into a number of subcases. In
each case, we take the model M of � from §5 and modify it by adding a point. M has
the property that the interpretation of everything is either empty or infinite. We shall be
adding one point, call it ∗, to this model. The point is added in such a way that it makes
∀(x, y) false. The addition of one point to any set doesn’t change the truth of any sentences
involving cardinality. Also, none of the ∃(p, q) sentences changes truth value when a point
is added to a model. But we shall be interested to check that the ∀(p, q) sentences from �
are true even after the point is added.

1. x ∈ small ∪ half, y ∈ small ∪ half. Add one fresh point ∗ to [[z]] for all z such that
x ≤ z.
Here are the details on the ∀(p, q) sentences in �. Review the argument in Claim 6.8.
The only case which we must consider is when p ∈ small and q ∈ large. If the new
point ∗ belongs to the interpretation of p and q, then x ≤ p and x ≤ q. But q ≤ p.
And so x ≤ p. Together with x ≤ p, we see that x ≤ x . And so � � ∀(x, y). This
contradiction shows that indeed ∀(p, q) is true after ∗ is added. Thus we obtain a
model of � which falsifies ϕ, as desired.
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2. x ∈ half ∪ large and y ∈ half ∪ large: replace x and y by y and x , and apply the
last case. We get a model falsifying ∀(y, x), and thus a model falsifying ∀(x, y).

3. x ∈ small, y ∈ large. This time, we add a single fresh point ∗ to [[z]] whenever
x ≤ z or y ≤ z. We assume that ∗ gets added to [[a]] since otherwise [[a]] ⊆ [[b]]
after the addition. If ∗ also gets added to [[b]], then again [[a]] ⊆ [[b]].
We have two cases as to why ∗ gets added to [[a]]: x ≤ a, and y ≤ a. Since ∗ was
not added to [[b]], it was added to [[b]]. (Notice that b ∈ small.) So again, we have
two cases: x ≤ b, and y ≤ b. The second is equivalent to b ≤ y.
We shall examine all four cases and show that in each of them we have x ≤ y. This
contradicts the overall assumptions in this section.
(a) x ≤ a and x ≤ b. So x ≤ a ≤ b, and also x ≤ b. Thus x ≤ x . As a result, x ≤ y.
(b) x ≤ a and b ≤ y. So x ≤ a ≤ b ≤ y. Thus x ≤ y.
(c) y ≤ a and x ≤ b. The y ≤ a ≤ b ≤ x . So we have y ≤ x , and thus x ≤ y.
(d) y ≤ a and b ≤ y. This time y ≤ y. This implies x ≤ y.

7.4. The last case: ϕ is of the form ∃(x, y). Consider the standard partition of the
variables according to �. When x and y are in small ∪ half, the model M constructed in
the previous section works: see part 5.1 of Theorem 5.1. When x and y are both in large,
or when one is in half and the other in large are easy: in these cases � � ∃(x, y). (See
Example 1.12.)

We are left with the case that one of the variables, say x , is in small, and the other one,
y, is in large. Both x and y belong to small. Furthermore, we cannot have � � ∃>(x, y)
since this implies � � ∃(x, y), using (MORE-SOME). Since � �� ∃>(x, y), we know from
our work in §7.2 that there is a model of � where card [[x]] ≤ card [[y]].

If M |	 ∀(y, y), then again we are done. So we shall assume that M |	 ∃(y, y). And
since y ∈ small, Theorem 5.1 tells us that � � ∃(y, y).

We modify M to obtain a different model to be called N . The two models have the same
set of points: N = M . The interpretation function of N will be written [[ ]]∗.

For p ∈ small,

1. If y ≤ p, then [[p]]∗ = [[p]] ∪ [[x]] and [[p]]∗ = [[p]] ∩ [[x]].

2. If ¬(y ≤ p), then [[p]]∗ = [[p]] and [[p]]∗ = [[p]].

These clauses also define [[p]]∗ for p ∈ large.
For p ∈ small ∪ half, note that we cannot have y ≤ p, p. (For if we did, then y ≤ y,

and we contradict our assumption that � � ∃(y, y).)

1. If p ∈ half and y ≤ p, then [[p]]∗ = [[p]] ∪ [[x]] and [[p]]∗ = [[p]] ∩ [[x]].

2. If p ∈ half and y ≤ p, then [[p]]∗ = [[p]] ∪ [[x]] and [[p]]∗ = [[p]] ∩ [[x]].

3. If p ∈ half, and neither y ≤ p nor y ≤ p, then [[p]]∗ = [[p]] and [[p]]∗ = [[p]].

Again, at most one of every pair of complementary nouns in half gets a larger interpre-
tation in N than in M. This completes the definition of N . Now this model N does not
change the sizes of any interpretations. (This is where we use the assumption that in M,
card [[y]] ≤ card [[x]].) So it satisfies the same ∃≥ and ∃> sentences as M. In particular, it
satisfies all of the ∃≥ and ∃> sentences which happen to belong to �.

CLAIM 7.2. N satisfies all sentences ∀(a, b) which are true in M, hence all sentences
∀(a, b) which belong to �.
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Proof. We have the following cases: (1) a, b ∈ small; (2) a ∈ small, b ∈ half; (3)
a ∈ small, b ∈ large; (4) a, b ∈ half; The other possible cases (such as a, b ∈ large)
follow from these by taking complements.

(1) Suppose that both a, b ∈ small. Since our sentence ∀(a, b) is in �, and M |	 �,
[[a]] ⊆ [[b]]. Note that [[a]]∗ is either [[a]] or the larger set [[a]] ∪ [[x]]. If [[a]]∗ = [[a]], then
clearly [[b]]∗ ⊇ [[a]]∗. And if [[a]]∗ = [[a]] ∪ [[x]], then y ≤ a. But then y ≤ b as well, and
so [[b]]∗ = [[b]] ∪ [[x]]. So again we have [[a]]∗ ⊆ [[b]]∗.

(2) Suppose that a ∈ small, b ∈ half.
The only extra step beyond what we saw in (1) is for the case when [[a]]∗ = [[a]] and

[[b]]∗ = [[b]] ∩ [[x]]. This case happens when ¬(y ≤ a), but y ≤ b. So b ≤ y. We must
show that [[a]] ⊆ [[x]]. For if not, [[a]] ∩ [[x]] �= ∅. Then � � ∃(a, x); this is due to the
fact that both a and x are in small. But since a ≤ b ≤ y, we have ∃(x, y) from �. This
contradicts the basic assumption in this section.

(3) We next consider the case a ∈ small, b ∈ large. Let us first assume that [[a]]∗ = [[a]].
If [[b]]∗ = [[b]], then of course we are done. So we assume that [[b]]∗ = [[b]]∩ [[x]], and thus
that y ≤ b. So b ≤ y. The rest of the argument at this point is exactly what we saw in (2)
just above.

We continue with (3), turning to the subcase [[a]]∗ = [[a]]∪ [[x]]. So y ≤ a. We show that
[[b]]∗ = [[b]] and that [[x]] ⊆ [[b]]. Suppose that y ≤ b. As we noted above, � � ∃(y, y).
Thus we have ∃(a, b); this contradicts a ≤ b. This contradiction goes to show that ¬(y ≤
b). Thus [[b]]∗ = [[b]]. It follows that [[b]]∗ = [[b]]. To show that [[a]]∗ ⊆ [[b]]∗, we only
need to see that [[x]] ⊆ [[b]]. Now if not, [[x]] ∩ [[b]] �= ∅. Since x and b belong to small,
� � ∃(x, b). But b ≤ a ≤ y. Thus � � ∃(x, y); this again contradicts the basic assumption
in this section.

Finally, (4) is when a, b ∈ half. If [[a]]∗ = [[a]] ∪ [[x]], then we have y ≤ a. So in this
case, y ≤ b, and thus [[b]]∗ = [[b]] ∪ [[x]]. So [[a]]∗ ⊆ [[b]]∗ in this case. We thus have
the case [[a]]∗ = [[a]] because ¬(y ≤ a). The only interesting subcase on [[b]]∗ is when
[[b]]∗ = [[b]] ∩ [[x]], and thus that y ≤ b. The argument is exactly as in (2) above, with the
slight change that a ∈ half rather than small. �

CLAIM 7.3. N satisfies all ∃(a, b) sentences in �.

Proof. Take a sentence ϕ = ∃(a, b) from �. We know that M |	 ∃(a, b). We still
must check that ∃(a, b) is true in N . This is obvious when a, b ∈ small ∪ half. As we
know, when a, b ∈ large, we always have ∃(a, b) on grounds of cardinality. We thus need
only check the case when a (say) belongs to small ∪ half and b to large. We know from
§6.7 that ϕ itself belongs to [[a]] ∩ [[b]]. We thus only need to show that ϕ ∈ [[b]]∗ when
[[b]]∗ = [[b]] ∩ [[x]]; i.e., when y ≤ b. So we must show that ϕ /∈ [[x]]. For if we had
∃(a, b) ∈ [[x]], then either a ≤ x or b ≤ x . In the case that a ≤ x , we have a ≤ x and
b ≤ y. So since ∃(a, b) ∈ �, � � ∃(x, y). This also happens in the second case, when
b ≤ x . For in this case, we have b ≤ x, y. Together with ∃(a, b) ∈ �, we again see that
� � ∃(x, y). Either way, we contradict the basic assumption in this section. �
We have proven Claim 7.3. As a result, N |	 �. But [[y]]∗ = [[x]] ∪ [[y]] = [[x]]∗ ∪ [[y]].
Thus [[x]]∗ ⊆ [[y]]∗. It follows that [[x]]∗ ∩ [[y]]∗ = ∅. The upshot is that N �|	 ∃(x, y), as
desired.

This concludes the work in §7.4. We have proved Theorem 7.1.

COROLLARY 7.4. If � �� ϕ, then � ∪ {ϕ} is consistent.

As a corollary to the proof of our theorem, we also have the following result.
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THEOREM 7.5. If � has a model, then � has a model of size ℵn for some n ∈ N.

Since the proof system is direct (i.e., reductio ad absurdum is not used), we also have
the following result.

THEOREM 7.6. The question of whether � |	 ϕ or not can be decided in logspace.

See Pratt-Hartmann & Moss (2009) for a general discussion of complexity matters
concerning syllogistic logics. The reason for the efficient proof search is that the logic
did not use reductio ad absurdum. Instead it uses ex falso quo quodlibet. In effect, one
tries to see whether � � ϕ by generating all of the proofs from �. One needs to know
that if � � ϕ, then a derivation may be found using only the atoms in � ∪ {ϕ} and their
complements. We omit the details. There are only polynomially many such sentences, and
the proof search is a generalization of searching for paths in graphs. If � �� ϕ, then there is a
counter-model. It may be chosen to be of size ℵn for some natural number n. Furthermore,
it may be taken to be finitely describable in a strong sense.

REMARK 7.7. One way to extend the completeness result in this article is to add
the boolean connectives ∧ and ¬ to the sentences. So in effect, one has propositional
logic with the sentences of L(P) as atomic sentences. The semantics is the obvious one.
For the proof theory, one takes a Hilbert style axiomatization of propositional logic, and
adds implicational sentences corresponding to the rules of L(P). (For example, corre-
sponding to (NON-EMPTY), we would have ∃≥(p, p) → ∃≥(p, x).) The argument is
an adaptation of one from Moss (2008). The completeness boils down to showing that
every consistent sentence ϕ in the new logic has a model. Using disjunctive normal forms,
we may assume that ϕ is a conjunction of atomic sentences or their negations. But the
atomic sentences in this language are closed under (semantic) negation, so we may as-
sume that ϕ is a conjunction

∧
S of a (finite) set S of sentences of L(P). And here,

we claim that the set of conjuncts of ϕ is consistent in L(P). For this, we argue by in-
duction on proofs in L(P) which don’t use the (X) rules that if S � ψ in L(P), then
� ∧

S → ψ .

§8. Examples. Let � be the set of sentences shown in Figure 4.

EXAMPLE 8.1. Notice that in any model of �, [[c]] and [[d]] would be sets of the same
size, and yet [[c]] is a proper subset of [[d]]. So [[c]] and [[d]] must be infinite. Furthermore,
since we have ∃>(e, c) in �, [[e]] must be uncountable.

EXAMPLE 8.2. The standard partition of � is

small = {a, b, c, d}
half = {e, e, f, f , g, g}
large = {a, b, c, d}.

EXAMPLE 8.3. The set Q in (2) is {c, d}. This set is an equivalence class for ≡c. The
one and only listing of Q is the one-term sequence {c, d}.

In terms of our earlier notation, [p1] = {c, d}; for later, p2 = half.
�1 is the set

{∃(c, c), ∃(d, d), ∀(c, d), ∃(d, c)}.
One possible finite model of �1 with the right properties has universe {1, 2}, [[c]] = {1},
and [[d]] = {1, 2}. So for our S1 we take two disjoint sets A1 and A2, each of cardinality
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∀(a, a) ∃>(c, b) ∃≥(c, d) ∃≥(d, c)
∃>(e, c) ∃≥(e, e) ∃≥(e, e) ∃≥( f, e)
∃≥(e, f ) ∃≥(g, b) ∀(c, d) ∃(d, c)
∃(c, f ) ∀(e, f ) ∃(e, f ) ∃(e, f )
∃(c, e)

The relation ≤ is given by a ≤ x for all x ; and c ≤ d , and e ≤ f . We also have the relations
derived from these by (ANTI): x ≤ a for all x ; d ≤ c, and f ≤ e.

We get ϕ1 = ∃(d, c), ϕ2 = ∃(e, f ), ϕ3 = ∃(e, f ), ϕ4 = ∃(c, e) and ϕ5 = ∃(c, f ) for �∃
sentences.

The relation ≤c has all of the pairs in ≤ above, and also b ≤c c, c ≤c d ≤c c, c ≤c e, e ≤c e ≤c e,
e ≤c f ≤c e, f ≤c f ≤c f , and b ≤c g; also, for the all nouns n, n ≤c a, b, c, d, e, e, f, f .

The strict part <c is a <c x for all x other than a; also b <c c, c <c e, e, f, f , and b <c g.

The relation<more is given by a, b <more x for all x other than a, b, g, g; also a, b, c, d <more y
for all y other than a, b, c, and d; and a, b, c, d <more a, b, c, d, e, e, f, f .

The relation ≡ is the identity and also c ≡c d , and e ≡c e ≡c f ≡c f .

A model:

[[a]] = ∅
[[b]] = ∅
[[c]] = A1 + {ϕ4, ϕ5}
[[d]] = (A1 ∪ A2)+ {ϕ1, ϕ4, ϕ5}
[[e]] = B1 + {ϕ4}
[[ f ]] = (B1 ∪ B2)+ {ϕ2, ϕ4, ϕ5}
[[g]] = B3 + {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5}

[[a]]= (A1 ∪ A2)+ (B1 ∪ B2 ∪ B3)+ {ϕ1, ..., ϕ5}
[[b]]= (A1 ∪ A2)+ (B1 ∪ B2 ∪ B3)+ {ϕ1, ..., ϕ5}
[[c]]= A2 + (B1 ∪ B2 ∪ B3)+ {ϕ1, ϕ2, ϕ3}
[[d]]= (B1 ∪ B2 ∪ B3)+ {ϕ2, ϕ3}
[[e]]= (A1 ∪ A2)+ (B2 ∪ B3)+ {ϕ1, ϕ2, ϕ3, ϕ5}
[[ f ]]= (A1 ∪ A2)+ B3 + {ϕ1, ϕ3}
[[g]]= (A1 ∪ A2)+ (B1 ∪ B2).

Here A1 and A2 are disjoint countable sets; B1, B2, B3 are pairwise disjoint sets of size ℵ1; and
ϕ1, . . . , ϕ5 are the ∃ sentences in � as in (11).

Fig. 4. At the top is shown a set of sentences � which is used as a running example throughout §8.
Below is some information about the relations derived from �. At the bottom is one example of a
model which may be found by the method of §5.

ℵ0, and then set S1 = A1 ∪ A2, [[c]] = A1, and [[d]] = A1 ∪ A2. Next, n + 1 = 2 demands
a larger size. So we set κ2 = ℵ1. Also,

�2 = {∃(e, e), ∃(e, e), ∃( f, f ), ∃( f , f ), ∃(g, g), ∃(g, g), ∀(e, f ), ∃(e, f ), ∃(e, f )}.
One finite structure of �2 has universe {1, 2, 3}, [[e]] = {1}, [[ f ]] = {1, 2}, and [[g]] = {3}.
(Note that [[g]] could also be {1} or {2}.) So for S2, we take disjoint sets B1, B2, B3 of size
ℵ1, and S2 = B1∪B2∪B3, [[e]] = B1, [[ f ]] = B1∪B2, and [[g]] = B3. Thus [[e]] = B2∪B3,
[[ f ]] = B3, and [[g]] = B1 ∪ B2.

We are almost ready to define the model of � produced by our method. We take the ∃
sentences in � and number them:

ϕ1 = ∃(d, c) ϕ2 = ∃(e, f ) ϕ3 = ∃(e, f ) ϕ4 = ∃(c, e) ϕ5 = ∃(c, f ). (11)

And now we can say what our structure S is. The universe is

(A1 ∪ A2)+ (B1 ∪ B2 ∪ B3)+ {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5},
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where the Ai have size ℵ0 and the B j have size ℵ1. The interpretations of the nouns are

[[a]] = ∅
[[b]] = ∅
[[c]] = A1 + {ϕ4, ϕ5}
[[d]] = (A1 ∪ A2)+ {ϕ1, ϕ4, ϕ5}
[[e]] = B1 + {ϕ4}
[[g]] = B3 + {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5}

[[e]] = (A1 ∪ A2)+ (B2 ∪ B3)+ {ϕ1, ϕ2, ϕ3}
[[ f ]] = (A1 ∪ A2)+ B3 + {ϕ1, ϕ3}
[[g]] = (B1 ∪ B2).

EXAMPLE 8.4. The work on refinements in §4.1 applies to both g and also to g. So we
would get two different partitions with all the required properties:

small = {a, b, c, d, g}
half = {e, e, f, f }
large = {a, b, c, d, g}

small = {a, b, c, d, g}
half = {e, e, f, f }
large = {a, b, c, d, g}.

§9. Conclusion. This article has shown a soundness and completeness theorem of
the logic L(P) when interpreted on infinite sets. The main point of the article is that the
language has cardinality comparison features are not expressible in first order logic, and
yet it has a complete proof system with an efficient proof search algorithm. Some may find
these results to be surprising. The message is that the very weak system of syllogistic logic
has extensions which are well-behaved and expressive.

This article contributes to the project of finding larger and larger well-behaved logics
which talk about sizes of sets. One next question would be to take the logic of Moss (2016)
and add the quantifier most, interpreted by strict majority.
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